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Abstract—In the field of high-performance computing (HPC),
there has been recent exploration into the use of deep reinforce-
ment learning for cluster scheduling (DRL scheduling), which
has demonstrated promising outcomes. However, a significant
challenge arises from the lack of interpretability in deep neural
networks (DNN), rendering them as black-box models to system
managers. This lack of model interpretability hinders the prac-
tical deployment of DRL scheduling. In this work, we present a
framework called IRL (Interpretable Reinforcement Learning) to
address the issue of interpretability of DRL scheduling. The core
idea is to interpret DNN (i.e., the DRL policy) as a decision tree
by utilizing imitation learning. Unlike DNN, decision tree models
are non-parametric and easily comprehensible to humans. To
extract an effective and efficient decision tree, IRL incorporates
the Dataset Aggregation (DAgger) algorithm and introduces the
notion of critical state to prune the derived decision tree. Through
trace-based experiments, we demonstrate that IRL is capable of
converting a black-box DNN policy into an interpretable rule-
based decision tree while maintaining comparable scheduling
performance. Additionally, IRL can contribute to the setting of
rewards in DRL scheduling.

Index Terms—cluster scheduling; deep reinforcement learning;
high-performance computing; interpretation; decision tree

I. INTRODUCTION

Cluster scheduling, also known as batch scheduling, is piv-
otal to high-performance computing (HPC). It is responsible
for determining the order in which jobs are executed on
an HPC system. Heuristics play a significant role in cluster
scheduling, with the first-come, first-served (FCFS) policy
being a widely employed scheduling approach on production
systems [1]. To improve system utilization, backfilling is com-
monly used in cluster scheduling to enhance system utilization,
which allows subsequent jobs to be moved ahead to utilize
available resources [1].

Reinforcement learning, a subfield of machine learning, fo-
cuses on the automatic learning of decision-making strategies
to maximize cumulative rewards through interactions with the
environment [2]. Deep reinforcement learning (DRL), which
combines reinforcement learning with deep neural networks,
has been employed for cluster scheduling [3]–[6], demon-
strating promising results. Unfortunately, very few, if any, of
these approaches have been deployed on real-world production
systems. One key hurdle is the lack of model interpretability.
The superior performance of DRL scheduling stems from its

deep neural network (DNN) [7]; however, DNN appears as
a black-box to system managers [8], making it challenging
to comprehend, debug, deploy, and adjust in practice. As a
result, system managers have reservations about using DRL
scheduling on production systems. Therefore, it is essential
to develop interpretable models that facilitate the practical
deployment of DRL scheduling.

Many techniques have been developed to understand the
behaviors of DNNs; however, there are two issues when
applying these techniques to interpret DRL scheduling. First,
existing techniques predominantly focus on monitoring neuron
activations to identify the features that trigger them [9]. Con-
sequently, system managers still need to possess knowledge
of machine learning. Second, the current DNN interpretation
methods are primarily designed for well-structured vector
inputs such as images [10], [11] and sentences [12], [13],
which are not applicable to the cluster scheduling problem.
We believe there is a pressing need to provide a simple,
deterministic, and easily understandable model for interpreting
DRL scheduling.

Decision tree is non-parametric, and easy for humans to
understand. However, training a decision tree in the context
of DRL poses significant challenges [14]. While some studies
have attempted to train some decision tree policies for re-
inforcement learning [15], subsequent work pointed out that
these approaches struggled with relatively simple problems
such as cart-pole [14]. Other efforts have sought to convert the
DNNs employed in DRL to decision trees [14], [16]. This con-
version is built upon a teacher-student training process, where
the DNN policy serves as the teacher, generating input-output
samples to construct a student decision tree for classification
or regression. Compared to directly training decision tree
policies for reinforcement learning, these converted decision
trees can achieve better performance and handle more complex
problems [14], [16].

In this work, we present IRL, an Interpretable modeling
for deep Reinforcement Learning scheduling. IRL is based
on imitation learning [17]. In simple terms, a decision tree is
trained to mimic the DRL agent (i.e., deep neural network).
Specifically, once a DRL agent (deep neural network) is built
for cluster scheduling, this agent is used to generate input-
output samples. These samples are used to train a decision
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tree policy. However, we observe that the decision tree ob-
tained through this straightforward conversion process does
not closely resemble the original DRL agent as expected.

To overcome this issue, we employ the DAgger algorithm
[18] to improve the scheduling performance of the decision
tree. Furthermore, we have found that existing conversion
algorithms [19] tend to produce a large decision tree with
an excessive number of branches, which will greatly impact
the effectiveness of the decision tree for decision making. To
reduce the size of the decision tree, we introduce the concept
of critical state in the scheduling environment. A critical state
is defined as a system state that has a nontrivial impact on
scheduling performance. By utilizing the critical state, we can
decrease the size of the decision tree while still maintaining
effectiveness. Specifically, we make three major contributions
in this work:
• We present IRL, an interpretable modeling for DRL

scheduling. IRL converts a black-box DRL policy to an
easy-to-understand decision tree policy, thereby overcom-
ing the lack of interpretability issue of DRL scheduling.

• We showcase how the interpretability of IRL can assist
in the design of DRL scheduling, such as reward setting.

• Our trace-based experiments demonstrate the decision
tree derived from IRL achieves comparable scheduling
performance to the original DRL scheduling. In contrast
to the black-box deep neural network, the decision tree
is straightforward to comprehend, debug, and modify.

II. BACKGROUND

A. Cluster Scheduling in HPC

A cluster scheduler is responsible for allocating resources
and for determining the order in which jobs are executed on
an HPC system. When submitting a job, a user is required to
provide two pieces of information: the number of compute
nodes required for the job (i.e., job size) and job runtime
estimate (i.e., walltime). The scheduler determines when and
where to execute the job. The jobs are stored and sorted in
the waiting queue based on a site’s policy. The scheduler
determines when and where to execute the jobs [20]. Once
a new job is submitted, the job scheduler sorts all the jobs in
the waiting queue based on a job prioritizing policy. A number
of popular job prioritizing policies have been proposed, and
one of the widely used policies is FCFS [1], which sorts jobs
in the order of job arrivals.

In addition, backfilling is a commonly used approach to
enhance job scheduling by improving system utilization, where
subsequent jobs are moved ahead to utilize free resources. A
widely used strategy is EASY backfilling which allows short
jobs to skip ahead under the condition that they do not delay
the job at the head of the queue [1].

While cluster scheduling is an active area of research in both
HPC and cloud computing, these two communities target dif-
ferent workloads, resulting in divergent research approaches.
In data centers such as those at Google or Microsoft, typical
workloads include long-running services and directed acyclic
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Fig. 1: The interaction between environment and an agent in
reinforcement learning.

graph (DAG) jobs. Each job comprises multiple tasks, and the
resource requirements for these tasks are often adjustable (i.e.,
malleability). In this context, the smallest scheduling unit is
typically a task. In contrast, HPC is characterized by tightly-
coupled parallel jobs (i.e., rigidity). Here, the scheduling unit
is usually an entire job.

B. Deep Reinforcement Learning Scheduling

Reinforcement learning is an area of machine learning that
is primarily focused on dynamic decision making where an
intelligent agent takes actions in an environment with the goal
of maximizing some reward [2]. The recent advancement of
reinforcement learning enhanced with deep neural networks
has yielded a number of promising performances for cluster
scheduling [3]–[6]. In DRL driven scheduling, the agent is
trained to learn a proper scheduling policy according to a
specific scheduling objective (e.g., reward) provided by system
managers. Once trained, the agent can automatically interact
with the scheduling environment and dynamically adjust its
policy as workload changes. Since the state space is typically
enormous, memorizing all states becomes infeasible. DRL
driven scheduling uses a deep neural network for approx-
imation [21]. Figure 1 shows an overview of typical DRL
driven scheduling. At each step, state is observed and fed to
the scheduling agent. The agent provides job selection and
receives the reward as the feedback.

C. Related Work

Interpreting deep neural networks is an active topic in the
machine learning area [10], [12], [22], [23]. The interpretation
methods can be broadly classified into two categories [24].
One is local methods, such as LIME [25]. These methods focus
on explaining the prediction of a single instance in the dataset.
The other is global methods [26], which aim to explain the
average behavior of a machine learning model. In this work,
we adopt global methods because our objective is to interpret
the average behavior of a DRL-driven scheduling model.

Many global interpretability approaches focus on under-
standing the mechanism of DNNs, such as convolutional neu-
ral networks (CNN) [10], [12] and recurrent neural networks
(RNN) [22], [23]. These approaches still require the system
manager to have knowledge of machine learning, which is not
the goal of IRL. In addition, these approaches are designed
for well-structured inputs such as images and sentences, and
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TABLE I: Comparison of heuristics, DRL scheduling, and IRL (Interpretable Reinforcement Learning).

Features

Methods Heuristics
[1]

DRL scheduling
[3], [4], [6] IRL

Not black-box √ × √

Easy to comprehend √ × √

Superior scheduling performance × √ √

Rapid decision making √ × √

thus are not suitable for deep reinforcement learning driven
scheduling problems.

Another way to achieve interpretability is to use only
a subset of algorithms that create interpretable models. A
decision tree is a commonly used interpretable model [27].
A decision tree is a decision-support hierarchical model that
uses a tree-like model of decisions and their possible con-
sequences. It can represent a complex policy. However, the
main hurdle is that the decision tree is hard to train directly
in reinforcement learning problems. There have been work
training decision tree policies for reinforcement learning [15],
but the following research pointed out that this method could
not even achieve satisfactory performance in a not complicated
reinforcement learning problem such as cart-pole [14]. To
overcome this obstacle, some researchers refer to the idea
of imitation learning to convert the DNN to a decision tree
[14], [16]. The conversion is built on top of a teacher-student
training process, where the DNN policy acts as the teacher
and generates input-output samples to construct the student
decision tree. Compared to directly training decision tree
policies for reinforcement learning, the converted decision tree
achieves better performance in many reinforcement learning
problems [14], [16].

Interpreting DNNs to decision trees has shown promising
results in many areas [28]–[30]. Meng et al. presented Metis
to interpret deep learning based networking systems based on
decision trees and hypergraphs [28]. Hu et al. demonstrated
the decision tree converted from DRL achieved satisfactory
performance in learning adaptive bitrate (ABR) algorithms
[29]. Schmidt et al. applied the conversion from DNN to the
decision tree in autonomous driving [30]. However, there is no
effort made to interpret the DNNs in DRL driven scheduling
in HPC. To the best of our knowledge, IRL is the first attempt
to interpret DRL scheduling in HPC. Table I summarizes the
key features of heuristics, DRL scheduling, and the proposed
IRL — interpretable reinforcement learning scheduling.

III. IRL DESIGN

IRL, shown in Figure 2, is developed to provide an in-
terpretable model for general DRL scheduling in HPC. The
design of IRL is based on imitation learning, where the DNN
policy of the DRL agent acts as the teacher and generates
input-output samples to construct the student decision tree.
Specifically, a trained deep neural network is obtained by
training a workload trace. This neural network acts as the
teacher and generate input-output samples from the original

training workload trace. These generated input-output samples
are used as the training dataset to train an interpretable
decision tree.

There are two issues in the above process: (1) the derived
decision tree might not resemble the original deep neural
network very well, and (2) the size of the decision tree
could be huge. To overcome these obstacles, we employ two
techniques. We integrate the DAgger algorithm [18] to address
the former issue, and then introduce the critical state concept
for the latter one.

The details are described in the subsequent subsections. In
order to make the description of our method more straightfor-
ward, we use deep Q-network (DQN) as an illustrative exam-
ple. In Section III-A, we describe DQN driven scheduling. In
Section III-B, we present the conversion from the DQN policy
to the decision tree policy. We describe the generation of the
input-output sample datatset by DQN, and the generation of
the decision tree with the sample dataset. We also describe how
to integrate DAgger in our design to improve the scheduling
performance of the decision tree, and how to reduce the size
of the decision tree via the concept of critical state.

A. DQN Scheduling

Recent studies have employed various deep reinforcement
learning (DRL) methods for cluster scheduling [5], [6]. Re-
gardless of the specific DRL method employed, the underlying
principle remains consistent. In this study, we utilize DQN
[21] as a practical example. The scheduling system, driven by
a DRL agent, follows the approach outlined in [6]. The DRL
scheduling agent aims to optimize scheduling performance by
making decisions on when and which jobs in the waiting queue
should be allocated to available computer resources. At each
scheduling instance, the agent encodes both job and system
information into a vector, which is fed as an input to the
neural network. Based on the neural network’s output, the
agent selects jobs from the wait queue and then receives a
reward signal from the scheduling environment.

In DQN, the deep neural network is utilized to approximate
Q-value as Q(sk, ak) (i.e., the expected cumulative reward
of taking an action ak in the state of sk). DQN processes
one job at a time and produces the expected Q-value for this
job. The input of DQN is a 1-D vector containing job size
(i.e., number of nodes requested), job length (i.e., estimated
job runtime), and system utilization. The output is a single
neuron corresponding to the expected Q-value of the job. The
scheduler enforces a window of jobs at the front of the job
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Fig. 2: Overview of IRL design. A cylinder represents a data repository D. A rounded rectangle denotes a scheduling policy,
which is either DRL or a decision tree. A rectangle represents a datatset. It is sampled from D, or produced by a scheduling
policy (decision tree or DRL).

wait queue. The window alleviates the job starvation problem
by providing higher priorities to older jobs.

In order to explore various actions, during the training, the
agent follows the ε-greedy policy (i.e., the agent randomly
chooses a job instead of the job with the highest Q-value with
probability ε). During the testing or inference time, the agent
selects the job with the highest Q-value.

B. Decision Tree Conversion

Decision tree is a supervised learning method commonly
used for classification or regression. In this work, we use
decision tree for regression. Specifically, in order to interpret
the DQN policy, our IRL works as follows. The input of the
decision tree is the state, and the output of the decision tree is
the imitated output (Q-value) of DQN. The DQN scheduling
agent replays the workload trace to produce a trajectory of
(state, Q-value) pairs. This trajectory will be used as the
training dataset D of the decision tree so that the output of
the decision tree will approximate the output of the DQN.

The process of extracting an effective and efficient decision
tree to interpret the DQN policy presents several challenges.
Firstly, we observed that the decision tree trained once may
not resemble the DQN policy well. When replaying the same
workload trace, the decision tree agent may choose a different
job from the DQN agent, since the imitated Q-value by the
decision tree is unlikely to precisely match the Q-value output
by DQN. Consequently, due to the varying job selection, the
decision tree is prone to jump to a state which it has never
seen in the training dataset D, and behaves unpredictably in
these unseen states.

To address this issue, we incorporate DAgger [18] into
the decision tree conversion. DAgger is an iterative training
algorithm. Instead of training the decision tree one time,
we train it multiple times. After each training iteration, the
newly generated decision tree is used to replay the workload
trace and demonstrate its policy to the DQN agent. As a
result, a new trajectory of (state, Q-value) pairs following
the newly generated decision tree policy is produced, denoted
as Di. This new trajectory may contain unseen states in the
training dataset D. As a teacher, the DQN agent assigns the
Q-values to the states in this new trajectory, and aggregate
this newly produced trajectory D′i into the training dataset D.

The updated dataset D is then used to train the decision tree
in the next iteration. This process repeats multiple times until
the maximum iteration is reached. In this work, the maximum
iteration is set to 5. The middle part of Figure 2 illustrates the
iterative process of generating the decision tree.

Next, another challenge of the decision tree conversion is
that the generated decision tree with DAgger is normally huge
[14]. The cost of decision time is proportional to the size of
the decision tree. Hence a smaller-sized decision tree without
sacrificing scheduling performance is desired. To overcome
the issue, IRL introduces the concept of critical state with the
goal of generating a reduced-sized decision tree.

Our design is based on a key observation, that is, when
the system is relatively idle (i.e., few jobs are in the waiting
queue), the job selection has less impact on the scheduling
performance. There are two reasons. First, the range of job
selection is limited when there are a few jobs in the waiting
queue. For instance, when there is only one job in the waiting
queue, this job is selected anyway. Similarly, if the available
resources can accommodate only one job, it is chosen among
all the waiting jobs. Second, even if a job is not selected at
this scheduling instance, it is likely to be scheduled shortly
thereafter.

In the design of IRL, we define critical state as the system
state when the number of jobs in the waiting queue is greater
than a threshold, and non-critical state as the state when the
number of jobs in the waiting queue is less than or equal
to the threshold. The threshold should be chosen based on
the workload to balance the tree size and the scheduling
performance. Only samples with critical states (Dcritical) in
the dataset D are used to generate the decision tree. Put
together, Algorithm 1 shows the complete pseudo code of the
IRL method.

IV. EVALUATION

We have implemented IRL using TensorFlow [31]. Our
deployment of IRL involves integrating it with the discrete-
event driven scheduling simulator CQSim [32]. To thoroughly
evaluate the performance of IRL, we conduct extensive trace-
based simulations using actual workload traces.

In this section, we describe our evaluation methodology, and
the experimental results are listed in the next section.
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Algorithm 1 IRL algorithm

1: Initialize DataSet D ← Trajectory (state, Q-value) gener-
ated by DQN via workload trace replay

2: for i = 1 to N do
3: Dcritical ← D in critical states
4: Train decision tree DTi from Dcritical

5: DataSet Di ← Trajectory generated by DTi via work-
load trace replay

6: D′i ← Q-values are assigned by DQN for the states
in Di

7: D ← D ∪ D′i
8: end for

A. Workload Traces

In our evaluation, two real workload traces are used [33],
[34]. Table II summarizes the two workload traces. For each
trace, 10,000 jobs are employed for training to build both the
DQN policy and the decision tree. The convergence of the
DQN policy is confirmed by assessing its convergence rate.
Subsequently, an additional set of 2,500 unseen jobs is utilized
for inference testing.

B. Comparison Methods

We compare IRL with the following three methods.
• FCFS represents first come first served method, which is

the default scheduling policy deployed on many produc-
tion supercomputers [1]. FCFS prioritizes jobs based on
their arrival times.

• DQN denotes the reinforcement learning scheduling pol-
icy [6]. It acts as the teacher to construct the decision
tree policy.

• DAgger represents a generated decision tree policy with-
out the introduction of critical state.

In addition, backfilling is adopted in each of these methods
to mitigate resource fragmentation [1]. FCFS comes with
EASY Backfilling [1]. In DQN and IRL, the backfilled job
is selected by the agent.

C. Experiment Setup

When training the DQN agent, the reward is set to∑
j∈J −

1
tj

[3], where J is the set of jobs currently in the
system, tj is the (ideal) running time of the job. This reward
function aims to minimize the average job slowdown. The
window size of the waiting queue is set to 20. ε is set to
1.0 at the beginning of the training and decays at the rate of
α = 0.995. The input layer contains three neurons, and three
fully-connected hidden layers activated by rectified linear units
(ReLU) [35] with 32, 16, 8 neurons are used separately. The
output layer contains one neuron.

In our experiments, we set the critical state threshold to
three, meaning a critical state is defined when the number of
jobs in the waiting queue is more than three. Our sensitivity
study indicates that for these workloads, this configuration can
balance the tree size and its performance. Scikit-learn library
is used to generate the decision tree [36].

TABLE II: Workload Traces

Workload Site System Size Period

SP2 SDSC 128 April, 1998-April, 2000
DataStar SDSC 1,664 March, 2004-April, 2005

D. Evaluation Metrics

Following the common practice [37], we use the following
metrics to evaluate different scheduling methods.

1) Average job wait time: the average interval between job
submission to job start time.

2) Average job slowdown: the average ratio of job response
time (job runtime plus wait time) to the actual runtime,
representing the responsiveness of a system.

V. RESULTS

In this section, we present the experimental results. Our
analysis centers upon four questions:

1) What can IRL contribute to DRL driven scheduling?
(Section V-A.)

2) Does the decision tree obtained through IRL exhibit
comparable scheduling performance to DRL scheduling?
(Section V-B)

3) Does the use of critical state reduce the size of the
decision tree? (Section V-C)

4) Does IRL introduce less runtime overhead than DRL
scheduling? (Section V-D)

A. Reward Setting

Neural networks used in DRL function as black-box models.
However, since the decision tree obtained through IRL imitates
DRL, we can indirectly understand the DRL scheduling policy
by examining the resulting decision tree.

In order to illustrate the use of IRL, we conduct a case study
to demonstrate the contribution of IRL to DRL scheduling
in terms of reward setting. Specifically, we utilize the SP2
workload as our experimental scenario. Within this case study,
we explore two different reward settings: one that aligns with
our scheduling objective, and the other that fails to do so.
Through this use case, we showcase the interpretability of
IRL in identifying key features that significantly influence the
decision-making process of the DRL agent. Furthermore, IRL
enables us to explain the rationale behind whether a particular
reward setting can achieve the scheduling objective or not.

In this case study, the objective of the DQN agent is to
minimize the average job slowdown. Two reward settings are
used: (1) Reward A — the reward is set to

∑
j∈J −

1
tj

[3], and

(2) Reward I — the reward is set to
∑

j∈J −
(wj+tj)

tj
, where

J is the set of jobs currently in the system, tj is the (ideal)
running time of the job, and wj is the waiting time of the job.
Reward I appears reasonable since it aims to maximize the
negative values of all the jobs’ slowdown in the system, and
our objective is to minimize the average job slowdown. Since
job waiting time is in the reward, we also add job waiting time
in the input feature.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 26,2024 at 04:54:03 UTC from IEEE Xplore.  Restrictions apply. 



wait time <= 34986

wait time <= 13701

True

wait time <= 72182

False

wait time <= 4977 request time <= 10500

(...) (...) (...) (...)

request time <= 23400 wait time <= 95467

(...) (...) (...) (...)

Fig. 3: Decision tree (depth=10) generated by IRL from the
DQN agent with Reward I. Only the first two depths are
presented in the figure due to the space limitation. Note that
the decision tree’s branches primarily revolve around job wait
time for decision-making.

Figure 3 shows the decision tree generated by IRL from
this DQN agent using Reward I. The depth of the decision
tree is set to ten, and only the first two depths are presented
due to space limitation. It can be observed that this deci-
sion tree primarily bases its decisions on job waiting time.
Further analysis reveals that this decision tree favors jobs
with longer wait times, and its approach closely aligns with
FCFS. The underlying reason is that if we want to maximize∑

j∈J −
(wj+tj)

tj
, the DQN agent is trained to select (remove)

the job with the minimum value of − (wj+tj)
tj

. A longer wait

time leads to a smaller value of − (wj+tj)
tj

. In the end, the
DQN is trained to prefer early coming jobs. If the scheduling
objective is to minimize average slowdown, each scheduling
decision is supposed to consider the future job wait time
instead of the past job wait time. Therefore, the past job wait
time should not be a factor in either the reward or input feature.

Figure 4 shows the decision tree generated by IRL from
the DQN agent using Reward A. It can be observed that this
decision tree primarily bases its decisions on the job length
(the requested running time). Further analysis finds that the
decision tree prefers to select short jobs. Indeed, according
to the definition of job slowdown, the scheduling objective
of minimizing average job slowdown tends to allow shorter
jobs to wait less time. This demonstrates that the interpreted
DQN policy indicates that the reward setting – Reward A in
the DQN is appropriate.

Figure 5 shows the DQN scheduling performance under
different reward settings. Appropriate reward setting (Reward
A) can reduce the average job wait time and slowdown by up
to 66% compared to inappropriate reward setting. This study
clearly illustrates that IRL contributes to analyzing reward
settings in DRL driven scheduling.

B. Scheduling Performance

Figure 6 and Figure 7 compare different scheduling methods
under SP2 and DataStar workloads in terms of average job
slowdown and average job wait time. Different tree depths are
used in IRL and DAgger to observe the impact of the tree
depth on the scheduling performance.

request time <= 1950

request time <= 1110

True

request time <= 11700

False

utilization <= 0.824 request time <= 1350

(...) (...) (...) (...)

request time <= 5100 request time <= 19800

(...) (...) (...) (...)

Fig. 4: Decision tree (depth=10) generated by IRL from the
DQN agent with Reward A. Only the first two depths are
presented in the figure due to the space limitation. Note that
the decision tree’s branches mainly revolve around requested
running time for decision-making.
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Fig. 5: Comparison of scheduling performance with DQN
under different reward settings.

We observe that IRL yields much better scheduling perfor-
mance than FCFS. On SP2, IRL can reduce average job wait
time and average job slowdown by up to 70% compared to
FCFS. On DataStar, the average job wait time and slowdown
can be shortened by up to 36% in comparison with FCFS. In
addition, we notice that IRL achieves comparable scheduling
performance in contrast to DQN. On SP2, when the tree depth
is 10 or 12, the increase in average job wait time and slowdown
of IRL is within 3% compared to DQN. On DataStar, when
the tree depth is 10 or 12, the increase in average job wait
time and slowdown of IRL compared to DQN remains within
5%.

We also compare the performance between IRL and DAgger
to examine the impact of critical state on the scheduling
performance. On SP2, when the tree depth is 10 or 12, the
scheduling performance loss between IRL and DAgger is
within 1%. On DataStar, when the tree depth is 10 or 12,
the increase in average job wait time and slowdown remains
within 2%. This suggests that the introduction of critical state
causes negligible performance loss.

C. Tree Reduction

The time cost of making decisions with the decision tree is
proportional to the size of the tree. Thus, it is preferable to
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Fig. 6: Scheduling performance on SP2 workload trace. The tree depth is set to 8, 10, 12 separately in IRL and DAgger.
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Fig. 7: Scheduling performance on DataStar workload trace. The tree depth is set to 8, 10, 12 separately in IRL and DAgger.
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Fig. 8: Comparison of tree size generated by IRL and DAgger.

have a decision tree that is compact in size. In this subsection,
we analyze the impact of introducing critical state on the size
of the tree.

Figure 8 compares the sizes of the decision tree generated
by IRL and DAgger. On the SP2 workload, IRL reduces the
tree size by up to 34% compared to DAgger. On the DataStar
workload, IRL delivers a reduction of up to 48% in tree size.
The reduction of tree size on the DataStar workload is larger
than that on the SP2 workload. We attribute this to the relative
idleness of the DataStar system compared to the SP2 system.
As demonstrated in Figure 6 and Figure 7, the average job

wait time of the DataStar workload is significantly less than
that of the SP2 workload. Consequently, with the introduction
of critical state, IRL stands to benefit more in terms of tree
size reduction.

D. Runtime Overhead

In our experiments, with the tree depth set to 10, IRL takes
approximately 0.0003 seconds for each job selection, whereas
DQN requires around 0.02 seconds. Hence, IRL introduces
significantly less overhead compared to DQN. All the experi-
ments were conducted on a personal computer configured with
an Intel 2 GHz quad-core CPU and 16 GB memory.

VI. CONCLUSIONS

While DRL driven scheduling exhibits impressive perfor-
mance compared to heuristic and optimization methods, there
are significant limitations that hinder its practical deployment,
particularly the lack of model interpretability. The superior
performance of DRL driven scheduling stems from the neural
network employed in the design; however, the neural network
appears as a black box model to system managers as it is
incomprehensible to debug, deploy, and adjust in practice.

In this work, we have presented IRL, an interpretable
model for DRL driven scheduling. IRL converts the black-
box neural network employed in DRL driven scheduling to an
interpretable decision tree model, which not only can represent
a complex decision policy, but also is easy for humans to un-
derstand. The design of IRL poses several technical challenges.
In this work, we have described the detailed strategies for the
design of IRL. Moreover, we have shown the use of IRL via
several case studies. Specifically, one case study demonstrates
how IRL can contribute to the DRL scheduling design (e.g.,
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reward setting), and another case study shows that IRL can
deliver comparable scheduling performance as compared to
the existing scheduling methods including the widely used
heuristic method and the DRL scheduling method.

While this study focuses on DQN, IRL can be applied to
other DRL methods as well. As part of our future work, we
will investigate other interpretable models such as the regres-
sion model to IRL. To the best of our knowledge, this study
represents the first exploration of interpretable reinforcement
learning scheduling for HPC. We hope this work will pave
the way for further investigations in the field of interpretable
reinforcement learning scheduling for HPC.
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