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Abstract— We propose a novel change point detection ap-
proach for online learning control with full information feed-
back (state, disturbance, and cost feedback) for unknown
time-varying dynamical systems. We show that our algorithm
can achieve a sub-linear regret with respect to the class of
Disturbance Action Control (DAC) policies, which are a widely
studied class of policies for online control of dynamical systems,
for any sub-linear number of changes and very general class of
systems: (i) matched disturbance system with general convex
cost functions, (ii) general system with linear cost functions.
Specifically, a (dynamic) regret of FlT/ 5T4/5 can be achieved
for these class of systems, where I'r is the number of changes
of the underlying system and 7" is the duration of the control
episode. That is, the change point detection approach achieves a
sub-linear regret for any sub-linear number of changes, which
other previous algorithms such as in [1] cannot. Numerically,
we demonstrate that the change point detection approach is
superior to [1] and to standard online learning approaches for
time-invariant dynamical systems. Our work presents the first
regret guarantee for unknown time-varying dynamical systems
in terms of a stronger notion of variability like the number of
changes in the underlying system. The extension of the present
work to state and output feedback controllers is a subject of
future work.

I. INTRODUCTION

In recent years, there has been significant interest in the
finite-time performance of learning-based control algorithms
for uncertain dynamical systems. Such a control setting is
broadly termed as online control, borrowing the notion from
online learning, where a learner’s performance is assessed
by their ability to learn from a finite number of samples.
The performance in online control is typically measured
in terms of regret, which is the loss of performance using
the proposed algorithm as compared with the best possible
policy. Predominantly, the goal is to design algorithms that
adapt to uncertainties arising from disturbances and adver-
sarial cost function so that the regret scales sub-linearly in
T, ie., as T* with o < 1, where T is the duration of the
control episode. Significant progress has been made in online
control. For example, algorithms have been developed for
control of unknown systems, with adversarial cost functions
and disturbances [2]-[5], algorithms for known systems with
some predictability of future disturbances [6], [7], and for
unknown systems with predictability [8].

Control of uncertain systems is an extensively researched
theme in control theory. Stochastic control, robust control
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and adaptive control are large subfields with voluminous
literature that address the analysis and synthesis of control
for different types of uncertainties. In particular, adaptive
control comes closest to “online control” described above.
While the primary focus in adaptive control is on closed-loop
stability and asymptotic performance, there have been some
papers on transient performance. Adaptive control has been
studied for systems of all types such as linear, non-linear, and
stochastic. There are many variants of adaptive control such
as adaptive model predictive control, adaptive learning con-
trol, stochastic adaptive control, and robust adaptive control.
These variations address the design of adaptive controllers
for different variations of the basic adaptive control setting.
Thus, adaptive control is a very rich and extensively studied
topic. The key differences in the “online control” setting
from the classical adaptive control are (a) the consideration
of regret as the measure of performance and (b) in some
cases the more general nature of the costs, which could
be adversarial and/or unknown. Consequently, the classical
adaptive control approaches can be inadequate to analyze
online control problems. From a techniques point of view,
progress in online control is achieved by merging tools from
statistical learning, online optimization, and control theory.

A typical assumption in online control is that the system is
time-invariant. In many circumstances, however, the underly-
ing system or environment can be time-varying. While some
works have studied time-varying dynamical systems [9],
[10], they have been limited to quadratic cost functions. Very
recently, authors of [1] explored the problem of online con-
trol of unknown time-varying linear dynamical systems for
generic convex cost functions. Their work presents some im-
possibility results and a regret guarantee of O (\I lor + T2/ 3)
for any interval I, where || denotes the length of the interval
and o7 is the square root of the average squared deviation
of the system parameters in the interval I. Clearly, in their
case [1], the achievability of sub-linear regret is limited to
scenarios with number of changes of the underlying system
within o(T''/3). Motivated by this observation, we investigate
the question, whether sub-linear regret is achievable for any
number of changes over the duration T, and under what
system, information and cost structures assumptions can we
achieve sub-linear guarantees.

Contribution: Distinct from most of the prior works in
online control, which study the control of time invariant
dynamical systems, the present paper studies the problem
of controlling a time varying dynamical system over a finite
time horizon for generic convex cost functions. Specifically,
a linear dynamical system with arbitrary disturbances, whose
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system matrices can be time varying is considered. For such
systems, we address the question of how to learn online and
optimize when the system matrices are unknown, in addition
to the cost functions and disturbances being arbitrary and
unknown a priori. The goal is to design algorithms with
regret guarantees in terms of stronger notions of variability
(compared to o1), such as the number of changes. Towards
this end, we consider the full information feedback structure,
where in addition to the cost and state feedback at the end
of a time step, the controller also receives disturbance as a
feedback. We specifically consider the regret with respect to
the class of Disturbance Action Control (DAC) policies [1],
which are a widely used class of policies for online control
of dynamical systems.

We propose a novel change point detection-based on-
line control algorithm for unknown time-varying dynamical
systems. We present guarantees for very general class of
systems: (i) matched disturbance system with general convex
cost functions, (ii) general system with linear cost functions.
We show that, in both these settings, a (dynamic) regret of
O (T3/>T4/5) is achievable with a high probability, where
I'r is the number of times the system changes in 7' time
steps and T is the duration of the control episode. Through
numerical simulations, we demonstrate that the change point
detection approach is superior to a standard restart approach,
the adaptive algorithm of [1], and also standard online
learning approach for time-invariant dynamical systems such
as [5]. Our result guarantees sub-linear regret for any sub-
linear number of changes, which is an improvement over
[1]. Our work presents the first regret guarantee in terms of
a stronger notion of variability like the number of changes
in the underlying system. The extension of our work to the
setting without disturbance feedback is a subject of future
work.

Notation: We denote the spectral radius of a matrix A
by p(A), the discrete time interval from m; to ms by
[m1,ms], and the sequence (T, Tmy+1s- Tmy) COM-
pactly by Z;,,.m,. Unless otherwise specified, ||| is the 2-
norm of a vector and the Frobenious norm of a matrix. We
use O(-) for the standard order notation, and O(-) denotes
the order neglecting the poly-log terms in 7. We denote the
inner product of two vectors x and y by (x,y).

II. PROBLEM FORMULATION

We consider the online control of a general linear time-
varying dynamical system. Let ¢ denote the time index, zy,
the state of the system, g, the output of the system that is to
be controlled, u;, the control input, w; and e;, the disturbance
and measurement noise, and 6; = [A;, By], the time-varying
system matrices. Then, the equation governing the dynamical
system is given by

i1 = Aty + Brug + By Wy,
Yy = Cyxy + ey (D

Let w; € RY, e; € RP, 2, € R", y; € RP, and u; € R™.
We assume that the sequence of system parameters 6y.7 is

unknown to the controller. The disturbance w; could arise
from unmodeled dynamics and thus need not be stochastic.
For generality, we assume that the disturbances and measure-
ment noise are bounded and arbitrary. We denote the total
duration of the control episode by 7.

Like in any control problem, at any time ¢, the controller
incurs a cost ¢;(ys, ut), which is a function of the output
and the control input. In addition to the system parameters
being unknown, the sequence of cost functions c;.p and
the disturbances wj.p for the duration T is arbitrary and
unknown a priori. We assume that the full cost function
¢t(+,-) and the disturbance w; are revealed to the controller
after its action at ¢. Such a feedback is typical in online
control and optimization and is termed the full information
feedback. The difference here compared to a standard online
control formulation is the feedback of the disturbance wy.
Thus, a control policy has the following information by any
time ¢: (i) the cost functions and the disturbances until ¢ —1,
c1.4—1 and wi.t—1, (ii) the control inputs until £ — 1, uq.4—1,
and (iii) the observations until ¢, y1.;. Let II; denote the set
of policies that satisfy this information setting.

We denote a control policy by 7. The state, output, and
the control input under the policy is denoted by =z}, yf
and wu] respectively. Given that the cost functions and
disturbances are only revealed incrementally, one step at a
time, the control policy will have to be adapted online as
and when the controller gathers information to achieve the
best performance over a period of time. Like in a standard
online control problem, we characterize the performance of
a control policy over a finite time by its regrer. We denote
the regret of a policy 7 over a duration 7" with respect to a
policy class ITxq € II; by Ryp(m):

T

T
Rr(m) =Y eyl up) = min > ey, uf). ()

t=1 M t=1

Policy Cost comparator cost

The primary goal is to design a control policy that minimizes
the regret for the stated control problem. Since the regret
minimization problem is typically hard, a typical goal is
to design a policy that achieves sub-linear regret, i.e., a
regret that scales as 7' with 7, with a @ < 1 that is
minimal. Such a regret scaling implies that the realized costs
converge to that of the best policy from the comparator class
asymptotically. Our objective is to design an adaptive policy
that can track time variations and achieve sub-linear regret.
We note that the regret defined above is static regret. Later,
we present the extension to dynamic regret, which is a notion
that is more suitable for time-varying dynamical systems.

The comparator class we consider is the class of Distur-
bance Action Control (DAC) policies (see [1]). A Distur-
bance Action Control (DAC) policy is defined as the linear
feedback of the disturbances up to a certain history h. Let’s

TDAC

denote a DAC policy by mpac. Then, the control input u;
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under policy mpac is given by
h
uere = 3" MPw, . (3)
k=1

Here, M; = [Mt[l], cee Mt[h] are the feedback gains or the
disturbance gains and are the (time-varying) parameters of
mpac. Here, we note that, Tpac can be dynamic, i.e., it’s
parameters can be varying with time. Therefore, the regret
defined in Eq. (2) is the notion of dynamic regret. We note
that the policy is implementable with disturbance feedback.
An extension to the case without the disturbance feedback
can be made by using estimates of the disturbances instead.
We defer the treatment without any disturbance feedback to
future work. Our objective here is to optimize the parameter
M online so that the regret with respect to the best DAC
policy in hindsight is sub-linear.

The DAC policy is typically used in online control for
regulating systems with disturbances; see [4]. The important
feature of the DAC policy is that the optimization problem to
find the optimal fixed disturbance gain for a given sequence
of cost functions is a convex problem and is thus amenable
to online optimization and online performance analysis. A
very appealing feature of DAC is that, for time-invariant
systems, the optimal disturbance action control for a given
sequence of cost functions is very close in terms of the
performance to the optimal linear feedback controller of the
state; see [4]. Thus, for time-invariant systems, by optimizing
the DAC online, it is possible to achieve a sub-linear regret
with respect to the best linear feedback controller of the state,
whose computation is a non-convex optimization problem.

For time-varying dynamical systems, as pointed out in
[1, Theorem 2.1], there exist problem instances where the
DAC class (with disturbance feedback) incurs a much better
cost than other types of classes such as linear state or
output feedback policies and vice versa. Therefore, the DAC
class is not a weaker class to compete against compared
to these standard classes. Moreover, as pointed out by the
impossibility result [1, Theorem 3.1], it is an equally harder
class to compete against in terms of regret. In this work,
we focus our study on the regret minimization problem with
respect to the DAC class (with disturbance feedback) and
defer the treatment of other control structures to future work.

Even with the disturbance feedback, the challenge of es-
timating the unknown system parameters does not diminish.
This is because of the presence of measurement noise and
the variations itself. In the time-invariant case, following
an analysis similar to [5], it can be shown that, even with
disturbance feedback, only a regret of 72/% can be achieved
with the state-of-the-art methods, which is not any better than
the regret that can be achieved without disturbance feedback
(see [5]). The same holds for the time-varying case. It can
be shown that, what [1] can achieve for the system in Eq.
(1), even with disturbance feedback, cannot be improved.
Therefore, the conclusions we draw later on comparing the
bounds we derive and the regret upper bound of [1] are valid.
We state our other assumptions below.

Assumption 1 (System). (i) The system is stable, i.e.,
HCt-&-k-&-lAt-&-k: ce At+lBt||2 < Iia;‘ib(l—’)/)k7 vk > O7 N t,
where kg > 0,ky > 0 and v is such that 0 < v < 1,
and where kg, ky and 7y are constants. By is bounded, i.e.,
|Be|l < Kp. (ii) The disturbance and noise w; and e; is
bounded. Specifically, |[wi| < kK, where K, > 0 is a
constant, and ||e;|| < ke, where k. > 0 is a constant.

Assumption 2 (Cost Functions). (i) The cost function c; is
convex ¥ t. (ii) ||ci(z,u) — er(a’,u)|| < LR||z — 2'|| for a
given zT =[x u'],(z)T == [(2")T, ()], where R :=
max{||z||, ||Z’|l, 1} and L is a constant. (iii) For any d > 0,
when ||z|| < d and ||u|| < d, Vye(z,u) < Gd, V,c(z,u) <
Gd, where G is a constant.

Remark 1 (System Assumptions). Assumption 1.(i) is the
equivalent of stability assumption used in time invariant
systems. Such an assumption is typically used in online
control when the system is unknown; see for eg., [1], [5].
Assumption 1.(iii) that noise is bounded is necessary, espe-
cially in the non-stochastic setting [4], [5]. The assumption
on cost functions is also standard [4].

Definition 1. (i) M:={M = (MM ... M) || MH)| <
k) (Disturbance Action Policy Class). (ii) G = {GI¥h] .
G|y < Kry(1—~)E~1Y. (iii) Setting (S-1): Matched dis-
turbance system with convex cost functions: By = By ,,,C =
I, e, = 0. Setting (S-2): General system with linear cost
Sunctions: B, = I, and there exists a coefficient oy €
RPH™ such that ci(y,u) = o] 2, || || < G.

III. ONLINE LEARNING CONTROL ALGORITHM

Typically, online learning control algorithms for time-
invariant dynamical systems explore first for a period of
time, and then exploit, i.e., adapt or optimize the control
policy. While, in the time-invariant case, this strategy results
in sub-linear regret, in the time-varying case, it can be less
effective. For instance, consider the case where the system
remains unchanged for the duration of the exploration phase
and then changes around the instant when the exploration
ends. Clearly, in this case, the estimate made at the end of the
exploration phase will be very distant from the underlying
system parameter realized after the exploration phase and
therefore not result in a sub-linear regret.

We propose an online algorithm that continuously learns to
compute an estimate of the time varying system parameters
and that simultaneously optimizes the control policy online.
Our estimation algorithm combines (i) a change point detec-
tion algorithm to detect the changes in the underlying system
and (ii) a regular estimation algorithm. The online algorithm
runs an online optimization parallel to the estimation to
optimize the parameters of the control policy, which in our
case is a DAC policy.

Online Optimization: Since the cost functions and the
disturbances are unknown a priori, the optimal parameter
M of the DAC policy cannot be computed a priori. Rather,
the parameters have to be adapted online continuously with
the information gathered along the way to achieve the best
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performance. Given the convexity of the cost functions and
the linearity of the system dynamics, we can apply the
Online Convex Optimization (OCO) framework to optimize
the policy parameters online.

We call a policy that learns the DAC policy parameters
online as an online DAC policy. We formally denote such a
policy by mpac—o. Let the parameters estimated by mpac—o
be denoted by M, = [M", ... M™|. Given that the
parameter M, is continuously updated, the control input

uy P29 can be computed by,

h
w0 =3 M. 4)
k=1

Given that the realized cost is dependent on the past control
inputs, we will have to employ an extension of the OCO
framework called Online Convex Optimization with Memory
(OCO-M) to optimize the parameters of the DAC policy.

For the benefit of the readers, we briefly review the online
convex optimization (OCO) setting (see [11]). OCO is a
game played between a player who is learning to minimize its
overall cost and an adversary who is attempting to maximize
the cost incurred by the player. At any time ¢, the player
chooses a decision M, from some convex subset M given by
maxprem||M|| < kar, and the adversary chooses a convex
cost function f;(-). As a result, the player incurs a cost
fe(My) for its decision M;. The goal of the player is to
minimize the regret over a duration 7', given by

T T
Ry = tz:;ft(Mt) - A%?A;ft(M)

The challenge is that the player does not know the cost
function that the adversary will pick. Once the adversary
picks a cost function, the player observes the realized cost
and in some cases can also observe the full cost function. The
objective of the learner is to achieve the minimal regret or
at the least a sub-linear regret. We direct the readers to [11]
for a more detailed exposition and the various algorithmic
approaches for this problem.

The difference in the OCO-M setting is that the cost
functions can be dependent on the history of past decisions
up to a certain time. Let the length of the history dependence
be denoted by h. The regret in the OCO-M problem is then
given by

T T
Ry = ; Fi(Mypey) = min ; Fi(M).

One limitation of the OCO-M framework is that it can only
be applied when the length A is fixed or bounded above. In a
control setting though, the cost is typically a function of the
state or the output, which is dependent on the full history of
decisions M., the length of which grows unbounded with
the duration of the control episode. Let

G =GN . M e = ¢ Gl Gl
G = CAy . Ao A, Y > 2, G =,

G = ClAy Ak Ak B, Y k2> 2,

and GE] = (yB¢_1. Thus, the history of dependence
increases with ¢ and is not fixed. In order to apply the OCO-
M framework, typically, a truncated output g, is constructed,
whose dependence on the history of control inputs is limited
to h time steps:

h

~TDAC—O k] mpac—o
Y [My.t—n|Gt, 51:¢] = 8¢ + E Gy lu 20,
k=1
t—1
_ [k], TpAC-O
where s; = y; — E Gy lu, PO,
k=1

Using the truncated output, a truncated cost function ¢; is
constructed as

5t(Mt:t—h\Gt, Sl:t)

= (G P27 [My—n |G, s1:¢], uy PA7°).

We denote the function é(M;.;—p|Gy, s1.¢) succinctly by
¢t(M|Gy, s1.+) when each My, in My.;_j, is equal to M. This
denotes the (truncated) cost that would have been incurred
had the policy parameter been fixed to M at all the past h
time steps.

A standard gradient algorithm for OCO-M framework
updates the decision M; by the gradient of the function
fe(My4—p) with all My in My, _p, fixed to M,. Using the
same compact notation as above, this gradient is equal to
Ofy(My). An interpretation of this gradient is that, it is the
gradient of the cost that would have been incurred had the
policy parameter been fixed at M; the past i time steps. We
employ the same idea to update the policy parameters of the
DAC policy online. The online optimization algorithm we
propose updates the policy parameter M; by the gradient of
the cost function ¢;(M|Gy, s1.+) where each My, in My,
is fixed to M,, i.e., as

. 06 (M| Gy, s1.
My = Proj (Mt _ nt(ttlt)> 7 (5)

OM;

where M is a convex set of policy parameters.

Definition 2 (Disturbance Action Policy Class). M :=
{M = (M MY | MEF| < kppd

Optimization for Dynamic Regret: The online opti-
mization procedure described above can only fetch a sub-
linear regret for static regret. To fetch a sub-linear dynamic
regret, multiple online optimizers like in Eq. (5) are required
to be run parallelly as in [12]. Let’s index the parallel
learners by ¢ and let the parameters corresponding to the
learner ¢ be M, ;. Just as in [12], the final parameter M,
is computed by M; = Zi1pt,th,i’ where p;,; are a
set of weights such that Zi:l pei = 1 and p;,; are also
updated online along with M, ;s. Specifically, p; ; is updated
by pir1i o< ppietiMed) - where Iy (M) = (||My; —
M1 + (Mg, 06, (M|Gy, s1.4)). The M, ;s are updated

5042

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 26,2024 at 05:53:48 UTC from IEEE Xplore. Restrictions apply.



by

a (M '
M1 = ProjM <Mt,i - TIimw> , (6)

OM;

The complete online optimization algorithm is given in
Algorithm 1.

Algorithm 1 Online Learning Control with Full Knowledge
(OLC-FK) Algorithm [12, scream.control]

Input: ¢, H, Step sizes 7);s, parameters 6.7.

Initialize M; ; € M arbitrarily for all ¢ € [1, H]

Initialize p;; o< 1/(i® + i) for all i € [1, H]

forr=1...,T do
Apply U’TDAC = Yh MMy,
Observe ¢, w; and incur cost c;(y; 297, uy PA°°)
Compute: Iy, = ClIMy; — M4l +
<Mt,i,8ét(Mt\Gt, S1. t)> for all 7 € [1, ]
Update: p;11,; o< py e for all i € [1, H]
Update: M;1; = Proj (Mm - 17@( tGt.01 t)>

end

Main Result: We state the performance of the algorithm
OLC-FK formally below.

Theorem 1 (Full System Knowledge). Suppose the set-
ting is the general setting S-2, and the cost functions are
general convex functions. Then, under Algorithm 1 [I2,
scream.control], with h = %, H = O(log(T)),
¢ = O(h?), and m; = O(2i=1/\/{T), the regret with respect

to any DAC policy M7,

Rr <O ( Ta+ PT)) : %)

where Pr is the path length of the sequence M7 ..

The proof follows from a standard proof for online opti-
mization. Please see Arxiv version for the full proof.

A. Disturbance Action Control without System Knowledge

In the previous case, where the system parameters are
known, the control policy parameters are optimized online
through the truncated cost é(-), whose construction explic-
itly utilizes the knowledge of the underlying system parame-
ters Gl[tk]. In this case, since the underlying system parameters
are not available, we construct an estimate of the truncated
state and the truncated cost by estimating the underlying
system parameters Gl[fk]s. With this approach, the control
policy will have to solve an online estimation problem to
compute an estimate of the system parameters. Since the
parameters are time-variant, the online estimation has to be
run throughout, unlike the other online estimation approaches
[5], [8], along with the policy optimization. Below, we
describe in detail how our algorithm simultaneously performs
estimation and optimizes the control policy.

Online Estimation and Optimization: The Online Learn-
ing Control with Zero Knowledge (OLC-ZK) of the system
parameters has two components: (i) a control policy and (ii)

an online estimator that runs in parallel to the control policy
and throughout the control episode. The control policy and
online optimization algorithm is similar to the online algo-
rithm 1, except that the control policy parameters are updated
through an estimate of the truncated cost function. The online
estimation algorithm employs a change point detection to
identify the changes in the underlying system and a standard
estimation algorithm to estimate the underlying system that
is restarted after every detection of change. We discuss the
details of our algorithm below.

A. Online Control Policy: We use the same notation for
the control policy and the control input, i.e., Tpac—o and
uy PAOTO respectlvely The estlmatlon algorithm constructs
an estimate G of the parameters G of the system in Eq.
(1) for k € [17 h]. Thus, the estimation algorithm estimates
GLk]s only for a truncated time horizon (looking backwards),
i.e., for k € [1, h]. We describe the estimation algorithm later.

The policy Tpac_o computes the control input u; °*°~°
(zero knowledge case) by combining two terms: (i) distur-
bance action control just as in the full knowledge case and
(ii) a perturbation for exploration. In this case, we require an
additional perturbation, just as in [2], so as to be able to run
the estimation parallel to the Online DAC, the control for reg-
ulating the cost. Let @7~ [M;|wy.] = S0, MM w,_y.
Therefore, the total control input by mpac—o is given by

T ~TT — T —
Uf DAC-0O — ut DAC-0O [Mt|w1:t] + é’ut DAC-O . (8)
—_—— N——

DAC Perturbation

As in [2], we apply a Gaussian random variable as the
perturbation, i.e.,

Sup P2 ~ N(0,0°1), 9)

where o denotes the standard deviation, and is a constant to
be specified later.

In this case the policy parameters are optimized by apply-
ing OCO-M on an estimate of the truncated cost. To construct
this estimate, we construct an estimate of s; and the truncated
state ;°*“~°(-). Given that s; is the state response when
the control inputs are zero, we estimate s; by subtracting the

contribution of the control inputs from the observed state:

h
Se=y o0 =G0 a0)

Then the estimate of the truncated output follows by sub-
stituting §; in place s; and using the estimated G, in place
Gt:

P (M| G, 314 —st+ZG[’“]~“DA° °. (1
k=1

Then, the estimate of the truncated cost is calculated as
5t(Mt:t—h ‘Gta §1:t)

= Ct@:mc_o [My.t—n |Gy, 814, a7 P2 ).
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The online update to the policy parameters is just as in
Algorithm 1, i.e., by the gradient of the estimate of the
truncated cost

9¢(My|Gr, 31,
My 1,5 = Proj (Mt,z‘ - ni—Ct( ! t’SM)) - 312

OM;

A. Online Estimation: The online estimation algorithm
is a combination of a change point detection algorithm and
a regular estimation algorithm. The change point detection
algorithm detects changes larger than a certain threshold
and resets the estimation algorithm upon every detection.
The estimation algorithm continuously updates the estimates
using all of the data from the last reset point. This offers the
online learner more flexibility as it only resets whenever there
is a significant underlying change, while it continues to refine
the estimate otherwise. Thus, the change point detection
approach can track the time variations more optimally. This
is observed to be the case in the numerical simulations.

A.1. Change Point Detection: The goal of the Change
Point Detection (CPD) algorithm is to detect the underlying
changes in the system reliably. To do this, the CPD algorithm
runs a sequence of independent estimation algorithms each of
duration ¢, = N +h one after the other, where the estimation
algorithms are the standard least-squares estimation applied
to the data collected from the respective periods of duration

= N + h. Here, t, has to be necessarily greater than
h, since computing the estimate of G requires at least a
length of h inputs. Essentially, the CPD algorithm ignores
the past and only considers the recent history to compute
an estimate of the system parameters. This allows the CPD
algorithm to compute a reliable estimate of the current values
of the parameters of the system provided N is of adequate
size and at the same time not very large. Then, provided
the estimation in each period of duration N is an accurate
estimate of the system parameter values in the respective
periods, any change point can be detected by comparing the
estimates across the different periods. More specifically, if
the estimate at the end of a period is greater than a certain
threshold compared to the estimate from an earlier period,
we can proclaim change point detection.

We denote the index of the successive periods of duration
t, by k. We denote the start and end time of each of these
periods by t¥ and t*. Therefore, it follows that t¥ = tF=!
for all k. The CPD algorithm computes the following least-
squares estimate at the end of each period k

te
Gyt = argmin Y 4, (@) + G2,
G p=tk+h

h
A >0, gp (é) = Hy;fDAcfo _ Z 6u7TDAC OH2 (13)
=1

We denote the first period of duration ¢, after a detection,
as the baseline period with index k£ = 1. By default, the
very first period of duration ¢, at the beginning of the
control episode is also a period with index k = 1. The CPD
algorithm proclaims change point detection, when at the

end of a period k&

|G — G54, > forany ¢ st 1</{<k.

2p
oV N’

where [ is a constant to be defined later.

Algorithm 2 Online Learning Control with Change Point

Detection (OLC-ZK-CPD) Algorithm

Input: Step sizes 1.y, H,(,0,8,N,h

Initialize M;,; € M arbitrarily V ¢ € [1,H|, tq = 1,k =
1,ts =1,t. = N + h.

Initialize p;; o 1/(i + i) for all i € [1, H].

fort=1...,T do

Observe yy PAOT0,

if t ==t. then

Estimate @;d according to Eq. (13).

if £ > 1 then

if [|Ged —
then

Proclaim change point detection. Set ¢4 = ¢.

Set k= 1.
else

| k=k+1.
end

ch” (2)

SIN forany 1 <0 < k

else
| k=k+1.
end

ts = te,

te=ts+N+h—1
end
Compute G, according to Eq. (14).
Apply u;°*°~° from Eq. (8).
DAC-O

Observe ¢, w; and incur cost c;(y; ,up A0,

Compute:  l;; = Cl|M; — Me_ag| +
<Mt z,aét(Mt‘Gt,él t)> fOI' all Z S []., ]

Update: p;11,; o< py e 't for all i € [1, H]

Update: M;1; = Proj (Mt s m%@)

end

A.2. System Estimation: Upon detection of a change by
the CPD algorithm, the online estimation algorithm restarts
the estimation of the system parameters after a delay of h.
Let t; denote the most recent time of detection by the CPD
algorithm. Then, the estimate of the system parameters for
any time t > t; + 2h is given by

t—h
G, = Projg(CAv'?), Gr = argmin Z L, (@) +M|G)%,
€ p=tq+h

h
A (|, —o __ Al] 5, TDAC—-0 |2
@9((1) — [|yprrc-o ;g;(; SuTPheO |2, (14)

Main Result: The complete algorithm for the unknown
system case is shown in Algorithm 2. We state the perfor-
mance of the algorithm OLC-ZK-CPD formally below.

h _ log T

log(1/(1—7)”’ and

Definition 3 (Parameters).
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where

h AEg K
8 = 2hia (\/nlog (2) + 2log (%5)+WZW>’
CA _ <R5+ KaKbKmKwh + naHbRu> 7Ru = /{Jul’iwh +

B! B!
3oy/m+log(1/6), Rs = = + ke + 2&% and 6 > 0

is a constant. N =T ;08745 ¢ =T9%27-1/5.

Theorem 2 (Zero System Knowledge). Consider Algorithm

2 with the parameters given by Definition 3. Suppose T > 3,
H = O(log(T)), ¢ = O(h?), ;; = O2""1//(T), A
O(1), Ty = O(T%), d < 1 and the setting is either S-1
or S-2. Then, for 60 < 1/T, 6 arbitrarily small and § <

0, the regret with respect to any DAC policy M{.., Ry <
@ (\/T(l + Pr) + F1T/5T4/5> with probability greater than

1 — 0, where Pr is the path length of the sequence M7 .
Please see Arxiv version for the full proof.

Definition 4 (Switching DAC Policy). We defining a switch-
ing DAC policy as a policy which shifts its policy parameter
M at the instances of change in the underlying system.

Corollary 1 (Best Switching DAC Policy). Suppose the
setting is either S-1 or S-2. Then, under the parameter setting
of Theorem 2, for any 6 < 1/T, ¢ arbitrarily small and
0 < 6, the regret with respect to the best switching DAC
policy M{.p, Ry < 1) (FIT/5T4/5) with probability greater

than 1 — 9.

This is a straightforward conclusion that follows from
Theorem 2 after recognizing the fact that the number of
switches of the switching policy is I'7.

Remark 2 (Regret Result). Minasyan et al. [1] prove an adap-
tive regret bound of O (|I|o; +T?/3) for any interval I of
length |I|], where o is the square root of the average squared
deviation of G over the interval I. The key difference
compared to [1] is that our result is sub-linear with respect to
the number of changes I'r instead of o, and we present a dy-
namic regret bound that is O (\/T(l + Pr) + FlT/5T4/5 .
To compare with [1], lets consider the best switching policy
corresponding to the switches in the underlying system. Let
I be any interval where the system does not change and
let M correspond to the best policy parameter for the
interval k. Then, the regret achieved by [1] with respect
to M{p is I'pT?/3. The regret achieved by our algorithm

is O (I‘lT/ Sr4/ 5), which follows from the fact that Py =

O(I'r). It follows that, we can achieve a sub-linear regret
guarantee for I'r = O(T?) for any d < 1, whereas the
achievability of sub-linear regret in [1] is limited to scenarios
with T'p = o(T"/3).

Remark 3 (Unknown Time Variation). Algorithm 2 assumes
the knowledge of total number of changes. We can extend our
algorithm to the unknown time variation case by learning the
optimal interval period N and optimal o from an ensemble
by using a meta-bandit algorithm on top of Algorithm 2 just
as in [13]. We plan to incorporate this in our journal version.

60 60
—e— OLC-ZK-CPD

50 OLC-ZK-CPD with fixed M 50
—e— OLC-ZK-CPD with random M

—e— OLC-ZK-CPD
OLC-ZK-CPD with fixed G
—e— OLC-ZK-CPD with random G

] ]
540 540 —— oLcTl
g ]

o o
230 230
k5 &
e £
10 / 10 o

Fig. 1: Cumulative regret of OLC-ZK-CPD with (a) different
M estimation and (b) different G estimation.

IV. NUMERICAL EXPERIMENTS

In this section, experimental results are presented for
illustrating the performance of OLC-ZK-CPD.

Parameter setting: For all experiments, 6; := [As, By
and w,; are randomly generated at each time step; C is
randomly initialized, but is kept unchanged across all time
steps: Cy, = C,, V t1,t2 € [1,t], and e, = 0, Vt €
[1,¢]. The cost function is a quadratic function of y; and
ug: ci(ye,us) = yfQye + ul Ruy. The matrices @ and
R are randomly generated positive semi-definite matrices.
Experiments are averaged over 10 random runs. In each run,
all the algorithms use the same @, R,C, A; and Bj;.

Baselines: Below, we describe the baseline algorithms we
compare OLC-ZK-CPD with.

o OLC-ZK: is the online learning algorithm where the
output Gid is itself used as the estimate of the system
parameters for the duration of the period of the next
interval of the change point detection procedure. At the
end of the next interval, the estimate is updated to Gz‘il
and so on.

o Adaptive Estimation Algorithm (ADA): is Algorithm 2
with the estimation algorithm in [1], in place of the
estimation approach in Algorithm 2. Essentially, in this
combination, what is retained is only the policy param-
eter update step, with the entire estimation approach
replaced by the adaptive estimation algorithm in [1].

e OLC-TI: is the online learning algorithm for time invari-
ant systems [5]. In contrast to ours, which continuously
explores and exploits, OLC-TI explores first and then
exploits.

e OLC-ZK-CPD with fixed M: is the online algorithm
where M is a fixed value and is not udpated. OLC-ZK-
CPD with random M': the online algorithm where M
is picked randomly. R

o OLC-ZK-CPD with fixed G: is the OLC-ZK-CPD algo-
rithm with G; fixed to a constant value instead of an
estimator. R

o OLC-ZK-CPD with random G: is the OLC-ZK-CPD
algorithm with G, picked randomly.

Results: In the figures, the shaded regions represent the
standard deviation for the respective algorithms. Figure 1(a)
indicates that OLC-ZK-CPD has a smaller sub-linear in-
crease in cumulative regret and smaller variance compared to
the case when a fixed M or a randomly generated M is used

5045

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 26,2024 at 05:53:48 UTC from IEEE Xplore. Restrictions apply.



—e— OLC-ZK-CPD —e— OLC-ZK-CPD
50 ADA 50 ADA
—e— OLC-ZK —e— OLC-ZK

20 20 f
o S
10 10

10 20 30 40 50 10 20 30 40 50
steps steps

(@ h=2,N=4 (b) h =2,N =6.

s
&

cumulative regret
w
8
cumulative regret
w
8

—e— OLC-ZK-CPD —e— OLC-ZK-CPD
50 ADA 50 ADA
—e— OLC-ZK —e— OLC-ZK

s
&

cumulative regret
w
&
cumulative regret
w
&

2N
s 3
2N
s 3

10 20 30 40 50 10 20 30 40 50
steps steps

() h=4,N =4. (d) h=4,N = 6.

—— OLC-ZK-CPD —— OLC-ZK-CPD
50 ADA 50 ADA

—e— OLC-ZK-CPD-WE —e— OLC-ZK-CPD-WE
—— ADAWE —— ADAWE

cumulative regret
w
g
cumulative regret
w
g

10 20 30 40 50 10 20

30 40 50
steps steps

(& h=4,N = 4. (f) h=4,N = 6.

Fig. 2: Performance Comparison with Baseline Algorithms
for Time-Varying Dynamical Systems. OLC-ZK-CPD-WE:
OLC-ZK-CPD with disturbance estimation. ADA-WE: ADA
with disturbance estimation.

instead. Similarly, it can be observed from Figure 1(b) that
the proposed OLC-ZK-CPD algorithm achieves a smaller
sub-linear regret with smaller variance compared to the case
when a fixed G or a randomly generated G is applied instead
of Eq. (14). Most importantly, while, initially the OLC-TI
algorithm is better, over time its performance worsens and
converges to the OLC-ZK-CPD with an arbitrarily fixed G.
This is expected as the estimate from the initial exploration
phase of OLC-TI can be very different from the underlying
dynamical system after a sufficiently long time and thus
behave like an arbitrarily fixed G over time. These results
corroborate the effectiveness of our proposed algorithm in
adapting to time variations.

In Fig. 2, we compare the performance of OLC-ZK-CPD
algorithm with the other adaptive algorithms for time-varying
dynamical systems such as the OLC-ZK algorithm [14] and
the ADA algorithm. The plots are averaged over 10 random
runs with parameters N = [4,6] for h = 2 and N = [4, 6]
for h = 4. In each run, all the algorithms are simulated with
the same @, R, C, Ay, and B;. The performance of ADA is
unchanged with N because it does not use the parameter
N. We recall that h defines the length of the history of
disturbances in the DAC policy. For i = 2, we find that

OLC-ZK-CPD achieves a better regret compared to ADA
and OLC-ZK. For h = 4, we find that our algorithms OLC-
ZK-CPD and OLC-ZK achieve much better regret compared
to ADA. Overall, we also find that the statistical deviation
of OLC-ZK-CPD and OLC-ZK is lesser compared to ADA,
showing that OLC-ZK-CPD and OLC-ZK are more stable in
the statistical sense. We also note that, across all parameter
settings, OLC-ZK-CPD achieves the best performance. In
Figs. 2(e) and 2(f), we show the performance of OLC-ZK-
CPD and ADA that uses an estimate w; in their respective
control laws instead of the actual disturbance value w;. Given
that B, ,, = I in this specific case, the disturbance estimate
was calculated as w; = 411 — A\txt — Etut, where th a/{ld
B; were calculated according to [15] from the estimate GY.
OLC-ZK-CPD is better than ADA in this case as well.

V. CONCLUSION

In this work, we study the problem of online control
of unknown time varying dynamical systems with arbitrary
disturbances and cost functions. Our goal is to design an
online adaptation algorithm that can provably achieve sub-
linear regret up to any sub-linear number of changes in the
underlying system. We present system, information, and cost
structures along with algorithms that guarantee such results.
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