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AbstractÐ We propose a novel change point detection ap-
proach for online learning control with full information feed-
back (state, disturbance, and cost feedback) for unknown
time-varying dynamical systems. We show that our algorithm
can achieve a sub-linear regret with respect to the class of
Disturbance Action Control (DAC) policies, which are a widely
studied class of policies for online control of dynamical systems,
for any sub-linear number of changes and very general class of
systems: (i) matched disturbance system with general convex
cost functions, (ii) general system with linear cost functions.

Specifically, a (dynamic) regret of Γ
1/5
T T

4/5 can be achieved
for these class of systems, where ΓT is the number of changes
of the underlying system and T is the duration of the control
episode. That is, the change point detection approach achieves a
sub-linear regret for any sub-linear number of changes, which
other previous algorithms such as in [1] cannot. Numerically,
we demonstrate that the change point detection approach is
superior to [1] and to standard online learning approaches for
time-invariant dynamical systems. Our work presents the first
regret guarantee for unknown time-varying dynamical systems
in terms of a stronger notion of variability like the number of
changes in the underlying system. The extension of the present
work to state and output feedback controllers is a subject of
future work.

I. INTRODUCTION

In recent years, there has been significant interest in the

finite-time performance of learning-based control algorithms

for uncertain dynamical systems. Such a control setting is

broadly termed as online control, borrowing the notion from

online learning, where a learner’s performance is assessed

by their ability to learn from a finite number of samples.

The performance in online control is typically measured

in terms of regret, which is the loss of performance using

the proposed algorithm as compared with the best possible

policy. Predominantly, the goal is to design algorithms that

adapt to uncertainties arising from disturbances and adver-

sarial cost function so that the regret scales sub-linearly in

T , i.e., as Tα with α < 1, where T is the duration of the

control episode. Significant progress has been made in online

control. For example, algorithms have been developed for

control of unknown systems, with adversarial cost functions

and disturbances [2]±[5], algorithms for known systems with

some predictability of future disturbances [6], [7], and for

unknown systems with predictability [8].

Control of uncertain systems is an extensively researched

theme in control theory. Stochastic control, robust control
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and adaptive control are large subfields with voluminous

literature that address the analysis and synthesis of control

for different types of uncertainties. In particular, adaptive

control comes closest to ªonline controlº described above.

While the primary focus in adaptive control is on closed-loop

stability and asymptotic performance, there have been some

papers on transient performance. Adaptive control has been

studied for systems of all types such as linear, non-linear, and

stochastic. There are many variants of adaptive control such

as adaptive model predictive control, adaptive learning con-

trol, stochastic adaptive control, and robust adaptive control.

These variations address the design of adaptive controllers

for different variations of the basic adaptive control setting.

Thus, adaptive control is a very rich and extensively studied

topic. The key differences in the ªonline controlº setting

from the classical adaptive control are (a) the consideration

of regret as the measure of performance and (b) in some

cases the more general nature of the costs, which could

be adversarial and/or unknown. Consequently, the classical

adaptive control approaches can be inadequate to analyze

online control problems. From a techniques point of view,

progress in online control is achieved by merging tools from

statistical learning, online optimization, and control theory.

A typical assumption in online control is that the system is

time-invariant. In many circumstances, however, the underly-

ing system or environment can be time-varying. While some

works have studied time-varying dynamical systems [9],

[10], they have been limited to quadratic cost functions. Very

recently, authors of [1] explored the problem of online con-

trol of unknown time-varying linear dynamical systems for

generic convex cost functions. Their work presents some im-

possibility results and a regret guarantee of Õ
(
|I|σI + T 2/3

)

for any interval I , where |I| denotes the length of the interval

and σI is the square root of the average squared deviation

of the system parameters in the interval I . Clearly, in their

case [1], the achievability of sub-linear regret is limited to

scenarios with number of changes of the underlying system

within o(T 1/3). Motivated by this observation, we investigate

the question, whether sub-linear regret is achievable for any

number of changes over the duration T , and under what

system, information and cost structures assumptions can we

achieve sub-linear guarantees.

Contribution: Distinct from most of the prior works in

online control, which study the control of time invariant

dynamical systems, the present paper studies the problem

of controlling a time varying dynamical system over a finite

time horizon for generic convex cost functions. Specifically,

a linear dynamical system with arbitrary disturbances, whose
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system matrices can be time varying is considered. For such

systems, we address the question of how to learn online and

optimize when the system matrices are unknown, in addition

to the cost functions and disturbances being arbitrary and

unknown a priori. The goal is to design algorithms with

regret guarantees in terms of stronger notions of variability

(compared to σI ), such as the number of changes. Towards

this end, we consider the full information feedback structure,

where in addition to the cost and state feedback at the end

of a time step, the controller also receives disturbance as a

feedback. We specifically consider the regret with respect to

the class of Disturbance Action Control (DAC) policies [1],

which are a widely used class of policies for online control

of dynamical systems.

We propose a novel change point detection-based on-

line control algorithm for unknown time-varying dynamical

systems. We present guarantees for very general class of

systems: (i) matched disturbance system with general convex

cost functions, (ii) general system with linear cost functions.

We show that, in both these settings, a (dynamic) regret of

Õ
(
Γ
1/5
T T 4/5

)
is achievable with a high probability, where

ΓT is the number of times the system changes in T time

steps and T is the duration of the control episode. Through

numerical simulations, we demonstrate that the change point

detection approach is superior to a standard restart approach,

the adaptive algorithm of [1], and also standard online

learning approach for time-invariant dynamical systems such

as [5]. Our result guarantees sub-linear regret for any sub-

linear number of changes, which is an improvement over

[1]. Our work presents the first regret guarantee in terms of

a stronger notion of variability like the number of changes

in the underlying system. The extension of our work to the

setting without disturbance feedback is a subject of future

work.

Notation: We denote the spectral radius of a matrix A
by ρ(A), the discrete time interval from m1 to m2 by

[m1,m2], and the sequence (xm1
, xm1+1, ..., xm2

) com-

pactly by xm1:m2
. Unless otherwise specified, ∥·∥ is the 2-

norm of a vector and the Frobenious norm of a matrix. We

use O(·) for the standard order notation, and Õ(·) denotes

the order neglecting the poly-log terms in T . We denote the

inner product of two vectors x and y by ⟨x, y⟩.

II. PROBLEM FORMULATION

We consider the online control of a general linear time-

varying dynamical system. Let t denote the time index, xt,

the state of the system, yt, the output of the system that is to

be controlled, ut, the control input, wt and et, the disturbance

and measurement noise, and θt = [At, Bt], the time-varying

system matrices. Then, the equation governing the dynamical

system is given by

xt+1 = Atxt +Btut +Bt,wwt,

yt = Ctxt + et. (1)

Let wt ∈ R
q , et ∈ R

p, xt ∈ R
n, yt ∈ R

p, and ut ∈ R
m.

We assume that the sequence of system parameters θ1:T is

unknown to the controller. The disturbance wt could arise

from unmodeled dynamics and thus need not be stochastic.

For generality, we assume that the disturbances and measure-

ment noise are bounded and arbitrary. We denote the total

duration of the control episode by T .

Like in any control problem, at any time t, the controller

incurs a cost ct(yt, ut), which is a function of the output

and the control input. In addition to the system parameters

being unknown, the sequence of cost functions c1:T and

the disturbances w1:T for the duration T is arbitrary and

unknown a priori. We assume that the full cost function

ct(·, ·) and the disturbance wt are revealed to the controller

after its action at t. Such a feedback is typical in online

control and optimization and is termed the full information

feedback. The difference here compared to a standard online

control formulation is the feedback of the disturbance wt.

Thus, a control policy has the following information by any

time t: (i) the cost functions and the disturbances until t−1,

c1:t−1 and w1:t−1, (ii) the control inputs until t− 1, u1:t−1,

and (iii) the observations until t, y1:t. Let ΠI denote the set

of policies that satisfy this information setting.

We denote a control policy by π. The state, output, and

the control input under the policy is denoted by xπ
t , y

π
t

and uπ
t respectively. Given that the cost functions and

disturbances are only revealed incrementally, one step at a

time, the control policy will have to be adapted online as

and when the controller gathers information to achieve the

best performance over a period of time. Like in a standard

online control problem, we characterize the performance of

a control policy over a finite time by its regret. We denote

the regret of a policy π over a duration T with respect to a

policy class ΠM ∈ ΠI by RT (π):

RT (π) =

T∑

t=1

ct(y
π
t , u

π
t )

︸ ︷︷ ︸
Policy Cost

− min
κ∈ΠM

T∑

t=1

ct(y
κ
t , u

κ
t )

︸ ︷︷ ︸
comparator cost

. (2)

The primary goal is to design a control policy that minimizes

the regret for the stated control problem. Since the regret

minimization problem is typically hard, a typical goal is

to design a policy that achieves sub-linear regret, i.e., a

regret that scales as Tα with T , with a α < 1 that is

minimal. Such a regret scaling implies that the realized costs

converge to that of the best policy from the comparator class

asymptotically. Our objective is to design an adaptive policy

that can track time variations and achieve sub-linear regret.

We note that the regret defined above is static regret. Later,

we present the extension to dynamic regret, which is a notion

that is more suitable for time-varying dynamical systems.

The comparator class we consider is the class of Distur-

bance Action Control (DAC) policies (see [1]). A Distur-

bance Action Control (DAC) policy is defined as the linear

feedback of the disturbances up to a certain history h. Let’s

denote a DAC policy by πDAC. Then, the control input uπDAC

t
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under policy πDAC is given by

uπDAC

t =

h∑

k=1

M
[k]
t wt−k. (3)

Here, Mt =
[
M

[1]
t , . . . ,M

[h]
t

]
are the feedback gains or the

disturbance gains and are the (time-varying) parameters of

πDAC. Here, we note that, πDAC can be dynamic, i.e., it’s

parameters can be varying with time. Therefore, the regret

defined in Eq. (2) is the notion of dynamic regret. We note

that the policy is implementable with disturbance feedback.

An extension to the case without the disturbance feedback

can be made by using estimates of the disturbances instead.

We defer the treatment without any disturbance feedback to

future work. Our objective here is to optimize the parameter

M online so that the regret with respect to the best DAC

policy in hindsight is sub-linear.

The DAC policy is typically used in online control for

regulating systems with disturbances; see [4]. The important

feature of the DAC policy is that the optimization problem to

find the optimal fixed disturbance gain for a given sequence

of cost functions is a convex problem and is thus amenable

to online optimization and online performance analysis. A

very appealing feature of DAC is that, for time-invariant

systems, the optimal disturbance action control for a given

sequence of cost functions is very close in terms of the

performance to the optimal linear feedback controller of the

state; see [4]. Thus, for time-invariant systems, by optimizing

the DAC online, it is possible to achieve a sub-linear regret

with respect to the best linear feedback controller of the state,

whose computation is a non-convex optimization problem.

For time-varying dynamical systems, as pointed out in

[1, Theorem 2.1], there exist problem instances where the

DAC class (with disturbance feedback) incurs a much better

cost than other types of classes such as linear state or

output feedback policies and vice versa. Therefore, the DAC

class is not a weaker class to compete against compared

to these standard classes. Moreover, as pointed out by the

impossibility result [1, Theorem 3.1], it is an equally harder

class to compete against in terms of regret. In this work,

we focus our study on the regret minimization problem with

respect to the DAC class (with disturbance feedback) and

defer the treatment of other control structures to future work.

Even with the disturbance feedback, the challenge of es-

timating the unknown system parameters does not diminish.

This is because of the presence of measurement noise and

the variations itself. In the time-invariant case, following

an analysis similar to [5], it can be shown that, even with

disturbance feedback, only a regret of T 2/3 can be achieved

with the state-of-the-art methods, which is not any better than

the regret that can be achieved without disturbance feedback

(see [5]). The same holds for the time-varying case. It can

be shown that, what [1] can achieve for the system in Eq.

(1), even with disturbance feedback, cannot be improved.

Therefore, the conclusions we draw later on comparing the

bounds we derive and the regret upper bound of [1] are valid.

We state our other assumptions below.

Assumption 1 (System). (i) The system is stable, i.e.,

∥Ct+k+1At+k . . . At+1Bt∥2 ≤ κaκb(1−γ)k, ∀ k ≥ 0, ∀ t,
where κa > 0, κb > 0 and γ is such that 0 < γ < 1,

and where κa, κb and γ are constants. Bt is bounded, i.e.,

∥Bt∥ ≤ κb. (ii) The disturbance and noise wt and et is

bounded. Specifically, ∥wt∥ ≤ κw, where κw > 0 is a

constant, and ∥et∥ ≤ κe, where κe > 0 is a constant.

Assumption 2 (Cost Functions). (i) The cost function ct is

convex ∀ t. (ii) ∥ct(x, u) − ct(x
′, u′)∥ ≤ LR∥z − z′∥ for a

given z⊤ := [x⊤, u⊤], (z′)⊤ := [(x′)⊤, (u′)⊤], where R :=
max{∥z∥, ∥z′∥, 1} and L is a constant. (iii) For any d > 0,

when ∥x∥ ≤ d and ∥u∥ ≤ d, ∇xc(x, u) ≤ Gd,∇uc(x, u) ≤
Gd, where G is a constant.

Remark 1 (System Assumptions). Assumption 1.(i) is the

equivalent of stability assumption used in time invariant

systems. Such an assumption is typically used in online

control when the system is unknown; see for eg., [1], [5].

Assumption 1.(iii) that noise is bounded is necessary, espe-

cially in the non-stochastic setting [4], [5]. The assumption

on cost functions is also standard [4].

Definition 1. (i) M :={M = (M [1], . . . ,M [h]) : ∥M [k]∥ ≤
κM} (Disturbance Action Policy Class). (ii) G = {G[1:h] :
∥G[k]∥2 ≤ κaκb(1−γ)k−1}. (iii) Setting (S-1): Matched dis-

turbance system with convex cost functions: Bt = Bt,w, C =
I, et = 0. Setting (S-2): General system with linear cost

functions: Bt,w = I , and there exists a coefficient αt ∈
R

p+m such that ct(y, u) = α⊤
t z, ∥α⊤

t ∥ ≤ G.

III. ONLINE LEARNING CONTROL ALGORITHM

Typically, online learning control algorithms for time-

invariant dynamical systems explore first for a period of

time, and then exploit, i.e., adapt or optimize the control

policy. While, in the time-invariant case, this strategy results

in sub-linear regret, in the time-varying case, it can be less

effective. For instance, consider the case where the system

remains unchanged for the duration of the exploration phase

and then changes around the instant when the exploration

ends. Clearly, in this case, the estimate made at the end of the

exploration phase will be very distant from the underlying

system parameter realized after the exploration phase and

therefore not result in a sub-linear regret.

We propose an online algorithm that continuously learns to

compute an estimate of the time varying system parameters

and that simultaneously optimizes the control policy online.

Our estimation algorithm combines (i) a change point detec-

tion algorithm to detect the changes in the underlying system

and (ii) a regular estimation algorithm. The online algorithm

runs an online optimization parallel to the estimation to

optimize the parameters of the control policy, which in our

case is a DAC policy.

Online Optimization: Since the cost functions and the

disturbances are unknown a priori, the optimal parameter

M of the DAC policy cannot be computed a priori. Rather,

the parameters have to be adapted online continuously with

the information gathered along the way to achieve the best
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performance. Given the convexity of the cost functions and

the linearity of the system dynamics, we can apply the

Online Convex Optimization (OCO) framework to optimize

the policy parameters online.

We call a policy that learns the DAC policy parameters

online as an online DAC policy. We formally denote such a

policy by πDAC−O. Let the parameters estimated by πDAC−O

be denoted by Mt =
[
M

[1]
t , . . . ,M

[h]
t

]
. Given that the

parameter Mt is continuously updated, the control input

u
πDAC−O

t can be computed by,

u
πDAC−O

t =
h∑

k=1

M
[k]
t wt−k. (4)

Given that the realized cost is dependent on the past control

inputs, we will have to employ an extension of the OCO

framework called Online Convex Optimization with Memory

(OCO-M) to optimize the parameters of the DAC policy.

For the benefit of the readers, we briefly review the online

convex optimization (OCO) setting (see [11]). OCO is a

game played between a player who is learning to minimize its

overall cost and an adversary who is attempting to maximize

the cost incurred by the player. At any time t, the player

chooses a decision Mt from some convex subset M given by

maxM∈M∥M∥ ≤ κM , and the adversary chooses a convex

cost function ft(·). As a result, the player incurs a cost

ft(Mt) for its decision Mt. The goal of the player is to

minimize the regret over a duration T , given by

RT =

T∑

t=1

ft(Mt)− min
M∈M

T∑

t=1

ft(M).

The challenge is that the player does not know the cost

function that the adversary will pick. Once the adversary

picks a cost function, the player observes the realized cost

and in some cases can also observe the full cost function. The

objective of the learner is to achieve the minimal regret or

at the least a sub-linear regret. We direct the readers to [11]

for a more detailed exposition and the various algorithmic

approaches for this problem.

The difference in the OCO-M setting is that the cost

functions can be dependent on the history of past decisions

up to a certain time. Let the length of the history dependence

be denoted by h. The regret in the OCO-M problem is then

given by

RT =

T∑

t=1

ft(Mt−h:t)− min
M∈M

T∑

t=1

ft(M).

One limitation of the OCO-M framework is that it can only

be applied when the length h is fixed or bounded above. In a

control setting though, the cost is typically a function of the

state or the output, which is dependent on the full history of

decisions M1:t, the length of which grows unbounded with

the duration of the control episode. Let

Gt = [G
[1]
t , G

[2]
t , . . . , G

[h]
t ], G̃t = [G̃

[1]
t , G̃

[2]
t , . . . , G̃

[t−1]
t ],

G̃
[k]
t = CtAt−1 . . . At−k+2At−k+1, ∀ k ≥ 2, G̃

[1]
t = Ct,

G
[k]
t = CtAt−1 . . . At−k+2At−k+1Bt−k, ∀ k ≥ 2,

and G
[1]
t = CtBt−1. Thus, the history of dependence

increases with t and is not fixed. In order to apply the OCO-

M framework, typically, a truncated output ỹt is constructed,

whose dependence on the history of control inputs is limited

to h time steps:

ỹ
πDAC−O

t [Mt:t−h|Gt, s1:t] = st +

h∑

k=1

G
[k]
t u

πDAC−O

t−k ,

where st = yt −
t−1∑

k=1

G
[k]
t u

πDAC−O

t−k .

Using the truncated output, a truncated cost function c̃t is

constructed as

c̃t(Mt:t−h|Gt, s1:t)

= ct(ỹ
πDAC−O

t [Mt:t−h|Gt, s1:t], u
πDAC−O

t ).

We denote the function c̃t(Mt:t−h|Gt, s1:t) succinctly by

c̃t(M |Gt, s1:t) when each Mk in Mt:t−h is equal to M . This

denotes the (truncated) cost that would have been incurred

had the policy parameter been fixed to M at all the past h
time steps.

A standard gradient algorithm for OCO-M framework

updates the decision Mt by the gradient of the function

ft(Mt:t−h) with all Mk in Mt:t−h fixed to Mt. Using the

same compact notation as above, this gradient is equal to

∂ft(Mt). An interpretation of this gradient is that, it is the

gradient of the cost that would have been incurred had the

policy parameter been fixed at Mt the past h time steps. We

employ the same idea to update the policy parameters of the

DAC policy online. The online optimization algorithm we

propose updates the policy parameter Mt by the gradient of

the cost function c̃t(Mt|Gt, s1:t) where each Mk in Mt:t−h

is fixed to Mt, i.e., as

Mt+1 = ProjM

(
Mt − η

∂c̃t(Mt|Gt, s1:t)

∂Mt

)
, (5)

where M is a convex set of policy parameters.

Definition 2 (Disturbance Action Policy Class). M :=
{M = (M [1], . . . ,M [h]) : ∥M [k]∥ ≤ κM}

Optimization for Dynamic Regret: The online opti-

mization procedure described above can only fetch a sub-

linear regret for static regret. To fetch a sub-linear dynamic

regret, multiple online optimizers like in Eq. (5) are required

to be run parallelly as in [12]. Let’s index the parallel

learners by i and let the parameters corresponding to the

learner i be Mt,i. Just as in [12], the final parameter Mt

is computed by Mt =
∑H

i=1 pt,iMt,i, where pt,i are a

set of weights such that
∑N

i=1 pt,i = 1 and pt,i are also

updated online along with Mt,is. Specifically, pt,i is updated

by pt+1,i ∝ pt,ie
−lt,i(Mt,i), where lt,i(M) = ζ∥Mt,i −

Mt−1,i∥ + ⟨Mt,i, ∂c̃t(Mt|Gt, s1:t)⟩. The Mt,is are updated
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by

Mt+1,i = ProjM

(
Mt,i − ηi

∂c̃t(Mt|Gt, s1:t)

∂Mt

)
, (6)

The complete online optimization algorithm is given in

Algorithm 1.

Algorithm 1 Online Learning Control with Full Knowledge

(OLC-FK) Algorithm [12, scream.control]

Input: ζ,H , Step sizes ηis, parameters θ1:T .

Initialize M1,i ∈ M arbitrarily for all i ∈ [1, H]
Initialize p1,i ∝ 1/(i2 + i) for all i ∈ [1, H]
for t = 1,. . . ,T do

Apply u
πDAC−O

t =
∑h

k=1 M
[k]
t wt−k

Observe ct, wt and incur cost ct(y
πDAC−O

t , u
πDAC−O

t )
Compute: lt,i = ζ∥Mt,i − Mt−1,i∥ +
⟨Mt,i, ∂c̃t(Mt|Gt, s1:t)⟩ for all i ∈ [1, H]

Update: pt+1,i ∝ pt,ie
−lt,i for all i ∈ [1, H]

Update: Mt+1,i = ProjM

(
Mt,i − ηi

∂c̃t(Mt|Gt,s1:t)
∂Mt

)

end

Main Result: We state the performance of the algorithm

OLC-FK formally below.

Theorem 1 (Full System Knowledge). Suppose the set-

ting is the general setting S-2, and the cost functions are

general convex functions. Then, under Algorithm 1 [12,

scream.control], with h = log T
(log (1/1−γ)) , H = O(log(T )),

ζ = O(h2), and ηi = O(2i−1/
√
ζT ), the regret with respect

to any DAC policy M⋆
1:T ,

RT ≤ Õ
(√

T (1 + PT )
)
, (7)

where PT is the path length of the sequence M⋆
1:T .

The proof follows from a standard proof for online opti-

mization. Please see Arxiv version for the full proof.

A. Disturbance Action Control without System Knowledge

In the previous case, where the system parameters are

known, the control policy parameters are optimized online

through the truncated cost c̃t(·), whose construction explic-

itly utilizes the knowledge of the underlying system parame-

ters G
[k]
t . In this case, since the underlying system parameters

are not available, we construct an estimate of the truncated

state and the truncated cost by estimating the underlying

system parameters G
[k]
t s. With this approach, the control

policy will have to solve an online estimation problem to

compute an estimate of the system parameters. Since the

parameters are time-variant, the online estimation has to be

run throughout, unlike the other online estimation approaches

[5], [8], along with the policy optimization. Below, we

describe in detail how our algorithm simultaneously performs

estimation and optimizes the control policy.

Online Estimation and Optimization: The Online Learn-

ing Control with Zero Knowledge (OLC-ZK) of the system

parameters has two components: (i) a control policy and (ii)

an online estimator that runs in parallel to the control policy

and throughout the control episode. The control policy and

online optimization algorithm is similar to the online algo-

rithm 1, except that the control policy parameters are updated

through an estimate of the truncated cost function. The online

estimation algorithm employs a change point detection to

identify the changes in the underlying system and a standard

estimation algorithm to estimate the underlying system that

is restarted after every detection of change. We discuss the

details of our algorithm below.

A. Online Control Policy: We use the same notation for

the control policy and the control input, i.e., πDAC−O and

u
πDAC−O

t respectively. The estimation algorithm constructs

an estimate Ĝ
[k]
t of the parameters G

[k]
t of the system in Eq.

(1) for k ∈ [1, h]. Thus, the estimation algorithm estimates

G
[k]
t s only for a truncated time horizon (looking backwards),

i.e., for k ∈ [1, h]. We describe the estimation algorithm later.

The policy πDAC−O computes the control input u
πDAC−O

t

(zero knowledge case) by combining two terms: (i) distur-

bance action control just as in the full knowledge case and

(ii) a perturbation for exploration. In this case, we require an

additional perturbation, just as in [2], so as to be able to run

the estimation parallel to the Online DAC, the control for reg-

ulating the cost. Let ũ
πDAC−O

t [Mt|w1:t] =
∑h

k=1 M
[k]
t wt−k.

Therefore, the total control input by πDAC−O is given by

u
πDAC−O

t = ũ
πDAC−O

t [Mt|w1:t]︸ ︷︷ ︸
DAC

+ δu
πDAC−O

t︸ ︷︷ ︸
Perturbation

. (8)

As in [2], we apply a Gaussian random variable as the

perturbation, i.e.,

δu
πDAC−O

t ∼ N (0, σ2I), (9)

where σ denotes the standard deviation, and is a constant to

be specified later.

In this case the policy parameters are optimized by apply-

ing OCO-M on an estimate of the truncated cost. To construct

this estimate, we construct an estimate of st and the truncated

state x̃
πDAC−O

t (·). Given that st is the state response when

the control inputs are zero, we estimate st by subtracting the

contribution of the control inputs from the observed state:

ŝt =

h∑

k=1

Ĝ
[k]
t wt−k(S-1)

ŝt = y
πDAC−O

t −
h∑

k=1

Ĝ
[k]
t u

πDAC−O

t−k (S-2). (10)

Then the estimate of the truncated output follows by sub-

stituting ŝt in place st and using the estimated Ĝt in place

Gt:

˜̃y
πDAC−O

t [Mt:t−h|Ĝt, ŝ1:t] = ŝt +
h∑

k=1

Ĝ
[k]
t ũ

πDAC−O

t−k . (11)

Then, the estimate of the truncated cost is calculated as

c̃t(Mt:t−h|Ĝt, ŝ1:t)

= ct(˜̃y
πDAC−O

t [Mt:t−h|Ĝt, ŝ1:t], ũ
πDAC−O

t ).
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The online update to the policy parameters is just as in

Algorithm 1, i.e., by the gradient of the estimate of the

truncated cost

Mt+1,i = ProjM

(
Mt,i − ηi

∂c̃t(Mt|Ĝt, ŝ1:t)

∂Mt

)
. (12)

A. Online Estimation: The online estimation algorithm

is a combination of a change point detection algorithm and

a regular estimation algorithm. The change point detection

algorithm detects changes larger than a certain threshold

and resets the estimation algorithm upon every detection.

The estimation algorithm continuously updates the estimates

using all of the data from the last reset point. This offers the

online learner more flexibility as it only resets whenever there

is a significant underlying change, while it continues to refine

the estimate otherwise. Thus, the change point detection

approach can track the time variations more optimally. This

is observed to be the case in the numerical simulations.

A.1. Change Point Detection: The goal of the Change

Point Detection (CPD) algorithm is to detect the underlying

changes in the system reliably. To do this, the CPD algorithm

runs a sequence of independent estimation algorithms each of

duration tp = N+h one after the other, where the estimation

algorithms are the standard least-squares estimation applied

to the data collected from the respective periods of duration

tp = N + h. Here, tp has to be necessarily greater than

h, since computing the estimate of Gt requires at least a

length of h inputs. Essentially, the CPD algorithm ignores

the past and only considers the recent history to compute

an estimate of the system parameters. This allows the CPD

algorithm to compute a reliable estimate of the current values

of the parameters of the system provided N is of adequate

size and at the same time not very large. Then, provided

the estimation in each period of duration N is an accurate

estimate of the system parameter values in the respective

periods, any change point can be detected by comparing the

estimates across the different periods. More specifically, if

the estimate at the end of a period is greater than a certain

threshold compared to the estimate from an earlier period,

we can proclaim change point detection.

We denote the index of the successive periods of duration

tp by k. We denote the start and end time of each of these

periods by tks and tke . Therefore, it follows that tks = tk−1
e

for all k. The CPD algorithm computes the following least-

squares estimate at the end of each period k

Ĝcd
k = argmin

Ĝ

tke∑

p=tks+h

ℓp

(
Ĝ
)
+ λ∥Ĝ∥2,

λ > 0, ℓp

(
Ĝ
)
= ∥yπDAC−O

p −
h∑

l=1

Ĝ[l]δu
πDAC−O

p−l ∥2. (13)

We denote the first period of duration tp, after a detection,

as the baseline period with index k = 1. By default, the

very first period of duration tp at the beginning of the

control episode is also a period with index k = 1. The CPD

algorithm proclaims change point detection, when at the

end of a period k

∥Ĝcd
k − Ĝcd

ℓ ∥2 >
2β

σ
√
N

, for any ℓ s.t. 1 ≤ ℓ < k.

where β is a constant to be defined later.

Algorithm 2 Online Learning Control with Change Point

Detection (OLC-ZK-CPD) Algorithm

Input: Step sizes η1:H , H, ζ, σ, β,N, h
Initialize M1,i ∈ M arbitrarily ∀ i ∈ [1, H], td = 1, k =
1, ts = 1, te = N + h.

Initialize p1,i ∝ 1/(i2 + i) for all i ∈ [1, H].
for t = 1,. . . ,T do

Observe y
πDAC−O

t .

if t == te then

Estimate Ĝcd
k according to Eq. (13).

if k > 1 then

if ∥Ĝcd
k − Ĝcd

ℓ ∥2 > (2)β

σ
√
N

for any 1 ≤ ℓ < k

then
Proclaim change point detection. Set td = t.
Set k = 1.

else
k = k + 1.

end

else
k = k + 1.

end

ts = te, te = ts +N + h− 1.
end

Compute Ĝt according to Eq. (14).

Apply u
πDAC−O

t from Eq. (8).

Observe ct, wt and incur cost ct(y
πDAC−O

t , u
πDAC−O

t ).
Compute: lt,i = ζ∥Mt,i − Mt−1,i∥ +

⟨Mt,i, ∂c̃t(Mt|Ĝt, ŝ1:t)⟩ for all i ∈ [1, H]
Update: pt+1,i ∝ pt,ie

−lt,i for all i ∈ [1, H]

Update: Mt+1,i = ProjM

(
Mt,i − ηi

∂c̃t(Mt|Ĝt,ŝ1:t)
∂Mt

)
.

end

A.2. System Estimation: Upon detection of a change by

the CPD algorithm, the online estimation algorithm restarts

the estimation of the system parameters after a delay of h.

Let td denote the most recent time of detection by the CPD

algorithm. Then, the estimate of the system parameters for

any time t ≥ td + 2h is given by

Ĝt = ProjG(Ĝ
⋆
t ), Ĝ⋆

t = argmin
Ĝ

t−h∑

p=td+h

ℓp

(
Ĝ
)
+ λ∥Ĝ∥2,

ℓp

(
Ĝ
)
= ∥yπDAC−O

p −
h∑

l=1

Ĝ[l]δu
πDAC−O

p−l ∥2. (14)

Main Result: The complete algorithm for the unknown

system case is shown in Algorithm 2. We state the perfor-

mance of the algorithm OLC-ZK-CPD formally below.

Definition 3 (Parameters). h = log T
log(1/(1−γ) , and
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β = 2
√
hζ∆

(√
n log (2) + 2 log

(
2h
δ

)
+ λκaκb

γζ∆σ
√
hN

)
, where

ζ∆ =
(
Rs +

κaκbκmκwh
γ + κaκbRu

γ

)
, Ru = κMκwh +

3σ
√
m+ log(1/δ), Rs = κaκw

γ + κe +
2Ruκaκb

γ and δ > 0

is a constant. N = Γ−0.8
T T 4/5, σ = Γ0.2

T T−1/5.

Theorem 2 (Zero System Knowledge). Consider Algorithm

2 with the parameters given by Definition 3. Suppose T ≥ 3,

H = O(log(T )), ζ = O(h2), ηi = O(2i−1/
√
ζT ), λ ∝

O(1), ΓT = Õ(T d), d < 1 and the setting is either S-1

or S-2. Then, for δ ≤ 1/T , δ̃ arbitrarily small and δ ≤
δ̃, the regret with respect to any DAC policy M⋆

1:T , RT ≤
Õ
(√

T (1 + PT ) + Γ
1/5
T T 4/5

)
with probability greater than

1− δ̃, where PT is the path length of the sequence M⋆
1:T .

Please see Arxiv version for the full proof.

Definition 4 (Switching DAC Policy). We defining a switch-

ing DAC policy as a policy which shifts its policy parameter

M at the instances of change in the underlying system.

Corollary 1 (Best Switching DAC Policy). Suppose the

setting is either S-1 or S-2. Then, under the parameter setting

of Theorem 2, for any δ ≤ 1/T , δ̃ arbitrarily small and

δ ≤ δ̃, the regret with respect to the best switching DAC

policy M⋆
1:T , RT ≤ Õ

(
Γ
1/5
T T 4/5

)
with probability greater

than 1− δ̃.

This is a straightforward conclusion that follows from

Theorem 2 after recognizing the fact that the number of

switches of the switching policy is ΓT .

Remark 2 (Regret Result). Minasyan et al. [1] prove an adap-

tive regret bound of Õ
(
|I|σI + T 2/3

)
for any interval I of

length |I|, where σI is the square root of the average squared

deviation of Gt over the interval I . The key difference

compared to [1] is that our result is sub-linear with respect to

the number of changes ΓT instead of σ, and we present a dy-

namic regret bound that is Õ
(√

T (1 + PT ) + Γ
1/5
T T 4/5

)
.

To compare with [1], lets consider the best switching policy

corresponding to the switches in the underlying system. Let

I be any interval where the system does not change and

let M⋆
k correspond to the best policy parameter for the

interval k. Then, the regret achieved by [1] with respect

to M⋆
1:ΓT

is ΓTT
2/3. The regret achieved by our algorithm

is Õ
(
Γ
1/5
T T 4/5

)
, which follows from the fact that PT =

O(ΓT ). It follows that, we can achieve a sub-linear regret

guarantee for ΓT = Õ(T d) for any d < 1, whereas the

achievability of sub-linear regret in [1] is limited to scenarios

with ΓT = o(T 1/3).

Remark 3 (Unknown Time Variation). Algorithm 2 assumes

the knowledge of total number of changes. We can extend our

algorithm to the unknown time variation case by learning the

optimal interval period N and optimal σ from an ensemble

by using a meta-bandit algorithm on top of Algorithm 2 just

as in [13]. We plan to incorporate this in our journal version.

(a) (b)

Fig. 1: Cumulative regret of OLC-ZK-CPD with (a) different

M estimation and (b) different Ĝ estimation.

IV. NUMERICAL EXPERIMENTS

In this section, experimental results are presented for

illustrating the performance of OLC-ZK-CPD.

Parameter setting: For all experiments, θt := [At, Bt]
and wt are randomly generated at each time step; Ct is

randomly initialized, but is kept unchanged across all time

steps: Ct1 = Ct2 , ∀ t1, t2 ∈ [1, t], and et = 0, ∀t ∈
[1, t]. The cost function is a quadratic function of yt and

ut: ct(yt, ut) = yTt Qyt + uT
t Rut. The matrices Q and

R are randomly generated positive semi-definite matrices.

Experiments are averaged over 10 random runs. In each run,

all the algorithms use the same Q,R,C,At and Bt.

Baselines: Below, we describe the baseline algorithms we

compare OLC-ZK-CPD with.

• OLC-ZK: is the online learning algorithm where the

output Ĝcd
k is itself used as the estimate of the system

parameters for the duration of the period of the next

interval of the change point detection procedure. At the

end of the next interval, the estimate is updated to Ĝcd
k+1

and so on.

• Adaptive Estimation Algorithm (ADA): is Algorithm 2

with the estimation algorithm in [1], in place of the

estimation approach in Algorithm 2. Essentially, in this

combination, what is retained is only the policy param-

eter update step, with the entire estimation approach

replaced by the adaptive estimation algorithm in [1].

• OLC-TI: is the online learning algorithm for time invari-

ant systems [5]. In contrast to ours, which continuously

explores and exploits, OLC-TI explores first and then

exploits.

• OLC-ZK-CPD with fixed M : is the online algorithm

where M is a fixed value and is not udpated. OLC-ZK-

CPD with random M : the online algorithm where M
is picked randomly.

• OLC-ZK-CPD with fixed Ĝ: is the OLC-ZK-CPD algo-

rithm with Ĝt fixed to a constant value instead of an

estimator.

• OLC-ZK-CPD with random Ĝ: is the OLC-ZK-CPD

algorithm with Ĝt picked randomly.

Results: In the figures, the shaded regions represent the

standard deviation for the respective algorithms. Figure 1(a)

indicates that OLC-ZK-CPD has a smaller sub-linear in-

crease in cumulative regret and smaller variance compared to

the case when a fixed M or a randomly generated M is used

5045

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 26,2024 at 05:53:48 UTC from IEEE Xplore.  Restrictions apply. 



(a) h = 2, N = 4 (b) h = 2, N = 6.

(c) h = 4, N = 4. (d) h = 4, N = 6.

(e) h = 4, N = 4. (f) h = 4, N = 6.

Fig. 2: Performance Comparison with Baseline Algorithms

for Time-Varying Dynamical Systems. OLC-ZK-CPD-WE:

OLC-ZK-CPD with disturbance estimation. ADA-WE: ADA

with disturbance estimation.

instead. Similarly, it can be observed from Figure 1(b) that

the proposed OLC-ZK-CPD algorithm achieves a smaller

sub-linear regret with smaller variance compared to the case

when a fixed Ĝ or a randomly generated Ĝ is applied instead

of Eq. (14). Most importantly, while, initially the OLC-TI

algorithm is better, over time its performance worsens and

converges to the OLC-ZK-CPD with an arbitrarily fixed Ĝ.

This is expected as the estimate from the initial exploration

phase of OLC-TI can be very different from the underlying

dynamical system after a sufficiently long time and thus

behave like an arbitrarily fixed Ĝ over time. These results

corroborate the effectiveness of our proposed algorithm in

adapting to time variations.

In Fig. 2, we compare the performance of OLC-ZK-CPD

algorithm with the other adaptive algorithms for time-varying

dynamical systems such as the OLC-ZK algorithm [14] and

the ADA algorithm. The plots are averaged over 10 random

runs with parameters N = [4, 6] for h = 2 and N = [4, 6]
for h = 4. In each run, all the algorithms are simulated with

the same Q,R,C,At, and Bt. The performance of ADA is

unchanged with N because it does not use the parameter

N . We recall that h defines the length of the history of

disturbances in the DAC policy. For h = 2, we find that

OLC-ZK-CPD achieves a better regret compared to ADA

and OLC-ZK. For h = 4, we find that our algorithms OLC-

ZK-CPD and OLC-ZK achieve much better regret compared

to ADA. Overall, we also find that the statistical deviation

of OLC-ZK-CPD and OLC-ZK is lesser compared to ADA,

showing that OLC-ZK-CPD and OLC-ZK are more stable in

the statistical sense. We also note that, across all parameter

settings, OLC-ZK-CPD achieves the best performance. In

Figs. 2(e) and 2(f), we show the performance of OLC-ZK-

CPD and ADA that uses an estimate ŵt in their respective

control laws instead of the actual disturbance value wt. Given

that Bt,w = I in this specific case, the disturbance estimate

was calculated as ŵt = xt+1 − Âtxt − B̂tut, where Ât and

B̂t were calculated according to [15] from the estimate Ĝt.

OLC-ZK-CPD is better than ADA in this case as well.

V. CONCLUSION

In this work, we study the problem of online control

of unknown time varying dynamical systems with arbitrary

disturbances and cost functions. Our goal is to design an

online adaptation algorithm that can provably achieve sub-

linear regret up to any sub-linear number of changes in the

underlying system. We present system, information, and cost

structures along with algorithms that guarantee such results.
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