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A B S T R A C T   

Metagenomics, i.e., shotgun sequencing of the total microbial community DNA from a sample, has become a 
mature technique but its application to pathogen detection in clinical, environmental, and food samples is far 
from common or standardized. In this review, we summarize ongoing developments in metagenomic sequence 
analysis that facilitate its wider application to pathogen detection. We examine theoretical frameworks for 
estimating the limit of detection for a particular level of sequencing effort, current approaches for achieving 
species and strain analytical resolution, and discuss some relevant modern tools for these tasks. While these 
recent advances are significant and establish metagenomics as a powerful tool to provide insights not easily 
attained by culture-based approaches, metagenomics is unlikely to emerge as a widespread, routine monitoring 
tool in the near future due to its inherently high detection limits, cost, and inability to easily distinguish between 
viable and non-viable cells. Instead, metagenomics seems best poised for applications involving special cir
cumstances otherwise challenging for culture-based and molecular (e.g., PCR-based) approaches such as the de 
novo detection of novel pathogens, cases of co-infection by more than one pathogen, and situations where it is 
important to assess the genomic composition of the pathogenic population(s) and/or its impact on the indigenous 
microbiome.   

1. Key parameters in shotgun metagenomic datasets 

Several key concepts and assumptions that are central to all meta
genomic approaches must be clearly defined to avoid confusion. First, 
metagenomics is an approach that involves the application of shotgun 
sequencing to the total DNA of a microbial community. Producing data 
in this way yields a set of sequence reads thought to represent the fea
tures (e.g., gene, operon, pathway, or genome) at the same proportions 
relative to one another in which they existed at time of sampling 
(Handelsman et al., 2007). This assumption can be violated due to 
inadequate or biased sampling, DNA extraction biases, and G + C% 
content bias in protocols that require amplification prior to sequencing, 
to name only a few of the potential limiting factors. Several studies have 
shown that biases can be managed and efforts to do so are certainly the 
responsibility of all researchers utilizing metagenomics (Jones et al., 
2015; Nearing et al., 2021). These issues have been covered extensively 

elsewhere and are not discussed further here (McLaren et al., 2019; 
Nayfach and Pollard, 2016). Instead, the focus of this review is the 
bioinformatic analysis of the resulting sequence data based on the 
assumption that the sequence data is adequately representative of the 
sampled communities. 

Three central metrics associated with metagenomic datasets are 
sequencing depth, sequencing breadth, and sequencing effort (Table 1). 
Sequencing depth refers to the number of metagenomic reads covering a 
feature at a base pair position and is often communicated as an average 
for the entire feature followed by an “X” (e.g., 10× depth). Sequencing 
depth may sometimes be referred to as simply “coverage” (e.g., 10×

coverage). In contrast, sequencing breadth denotes the fraction of base 
pair positions in a feature covered by at least one metagenomic read and 
is often communicated as a fraction or percentage (e.g., 50 % breadth). 
Sequencing breadth is unfortunately also sometimes referred to as 
“coverage” in various studies, which can lead to confusion (e.g., 50 % 
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coverage). Herein, we only use the explicit terms sequencing depth and 
sequencing breadth to avoid ambiguity. The amount of data produced 
by metagenomic sequencing is often referred to as sequencing effort and 
is usually measured on the order of gigabases (i.e., 109 base pairs or Gbp) 
per sample. Sequencing effort is commonly communicated as the num
ber of total reads or base pairs in a dataset. Alternatively, sequencing 
effort can be indirectly communicated in terms of the sequence depth of 
a universal single copy gene (e.g., RNA polymerase subunit B or rpoB) or 
the average depths of a set of universal prokaryotic single copy genes. 
This approach for reporting sequencing effort is often termed “genome 
equivalents” (GEQ) and represents the equivalent number of prokaryotic 
genomes present in a metagenome. This metric is useful because it pairs 
the idea of sequencing effort with the average genome size of the pro
karyotic community sampled. 

Ratios of sequencing depth and sequencing effort produce one of the 
more useful metrics reported in metagenomics: relative abundance. 
Although multiple methods are commonly used to estimate the relative 
abundances of a feature, it is important to note that it is always produced 
via some ratio of a feature’s sequencing depth to the sample’s 
sequencing effort. Accordingly, the sum of the relative abundances of all 
features in a dataset equals to one, and methods for calculating these 
abundances are discussed in subsequent sections. Importantly, relative 
abundances are the proportions representing various features in meta
genomic datasets and can hold powerful clues about the underlying 
biology and ecology of the community being studied. It is important to 
note, however, that relative abundances are proportions and as such 
cannot indicate the actual load of a feature within a sample without 
additional data or information about the system (Morton et al., 2019). 
Therefore, considering the inherent compositionality of metagenomic 
datasets as well as the notion that any given read set represents only a 
subset of the total community DNA are both important outlooks to 
maintain when researchers aim to use metagenomics to detect patho
gens. The next section summarizes approaches and recent findings that 
can help address some of the abovementioned challenging aspects 
related to metagenomic work. 

2. Prokaryotic species may exist and be recognized by 
metagenomic data 

Many studies have used species as the main target unit for organizing 
and interpreting metagenomic data but to what extent species exist for 
prokaryotes and can be recognized by metagenomic data remains a 
highly debatable issue. Recent evidence, however, has lent strong sup
port for using species as a key unit of diversity. Specifically, meta
genomic studies of natural bacterial populations (Konstantinidis and 
DeLong, 2008; Olm et al., 2020) and comparative analysis of the ge
nomes of bacterial isolates (Jain et al., 2018; Rodriguez et al., 2021) 
have revealed that bacteria and archaea predominantly form sequence 
discrete species. Specifically, these studies have shown that intra-species 
genomic sequence relatedness typically ranges from 95 % to 100 % 
genome-aggregate average nucleotide identity (ANI) depending on the 
population considered. For clarity, ANI refers to the average nucleotide 
identity of all shared genes between the two genomes compared. These 
results mean that since the last diversity sweep event, younger species 
show lower levels of intra-species diversity compared to older species. In 
contrast, ANI values between members of distinct bacterial species are 
typically lower than 90 % (Caro-Quintero and Konstantinidis, 2012). 

These results contrast with the view that bacteria do not form distinct 
species due to the extensive genetic exchange they often undergo and 
their very large population sizes (e.g., species diversity sweep events are 
not common) (Doolittle, 2019; Lawrence, 2002). The difference between 
the metagenomics results and those of previous studies that reported 
non-discrete species, including for important foodborne pathogens such 
as Escherichia coli (Luo et al., 2011) and Campylobacter jejuni (Sheppard 
et al., 2008), may be due to isolation biases (Caro-Quintero and Kon
stantinidis, 2012; Rodriguez et al., 2021). That is, the latter studies 
included heterogeneous collections of organisms isolated in the labo
ratory that represent different ecological niches and genomic adapta
tions specific to local environmental conditions at the place of isolation. 
Comparisons among such organisms may have confounded the existence 
of sequence discrete species by often revealing non-discrete species 
(Hanage et al., 2005; Luo et al., 2011). However, a more recent analysis 
of all available isolate genomes in the NCBI database (n = ~90,000) also 
revealed sequence discontinuities between most named species around 
85–95 % ANI (Jain et al., 2018), consistent with the picture emerging 
from metagenomics but not the early picture from comparisons of isolate 
genomes that often showed indiscrete species. 

In summary, recent metagenomic and genomic high-throughput 
studies have revealed that bacterial species may exist, which is an 
important prerequisite for species and strain detection – especially 
within the context of culture independent methodologies like meta
genomics. Further, how genomes have been classified into named spe
cies during recent decades is highly consistent with the ANI threshold; 
~97 % of named species encompass only genomes sharing >95 % ANI. 
Notably, similar results to those mentioned above for bacteria have 
recently been reported for other microbes, most notably, protozoa 
(Seabolt et al., 2021) and viruses (Simmonds et al., 2017), indicating a 
broad applicability of the 95 % ANI threshold within the microbial 
world. 

3. Reliable units of intra-species diversity based on ANI 

Despite the likely existence of sequence discrete species among 
prokaryotes, foodborne outbreaks are typically caused by specific 
members (e.g., strains) of a species, and thus it is important to obtain 
intra-species resolution in cases where metagenomic approaches are 
employed for pathogen detection and to distinguish pathogens from any 
innocuous relatives of the same or closely related species co-occurring in 

Table 1 
Key terms and their use in estimating metagenomic sensitivity.  

Sequencing 
depth 

The number of sequence reads covering a feature at a particular 
base pair position or the average across all base pair positions of 
a feature (e.g., 10×) 

Sequencing 
breadth 

The fraction of base pair positions in a feature covered by at least 
one sequence read (e.g., 50 %, 0.5). 

Sequencing effort The amount of data produced by metagenomic sequencing per 
sample (e.g., 5 gigabases (or Gbp), 33 million reads). 

Genome 
equivalents 

The average sequencing depth of universal single copy gene(s) 
in a sample (e.g., 1000 GEQ). 

Relative 
abundance 

The ratio of some metric representing a feature’s average 
sequencing depth to an appropriate metric for the sample’s total 
sequencing effort (e.g., 1 %, 0.01). 

(1) Smin = ρLOD
1

αtarget
γtarget (2) Smin = ρLOD

Ctotal

Ctarget
γavg (3) Cmin =

ρLOD
GEQ

Ctotal  

Top: Definitions of key terms related to estimating metagenome sensitivity. 
Bottom: Several expressions for estimating relationships between sequencing 
depth and population detection in metagenomic datasets. Smin (in base pairs) 
defines the minimum expected sequencing effort to detect a target genome. ρLOD 
is the sequencing depth of the target genome considered necessary to call a true 
detection. αtarget is the sequence-based relative abundance of the target genome 
in situ. Ctarget/Ctotal is the cell-based relative abundance of the target genome in 
situ with Ctarget and Ctotal being the target genome and total community cellular 
concentrations, respectively. γ represents the genome size (in base pairs) of the 
target genome or the average genome size of the community. Lastly, Cmin is the 
minimum cellular load expected to be detectable given by choice of ρLOD and 
genome equivalents (GEQ). 
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the sample. An important associated challenge, however, is the precise 
definition of “strain” particularly within the context of metagenomic 
datasets possibly lacking associated cultured-based data. Prokaryotic 
taxonomy defines strains on the basis of the pure culture approach as “a 
group of genetically similar descendants of a single colony or cell” (Parker 
et al., 2019). Therefore, a strain includes all derivative lines of a single 
isolate, even if these descendants have undergone substantial gene loss, 
gene duplications, or genomic rearrangements. Such mutational events 
are common when an organism is grown in the laboratory and 
commonly result in significant phenotypic differences (Knoppel et al., 
2018); yet, despite clear structural and even functional dissimilarities, 

the wild-type and the lab-adapted cells are usually considered the same 
strain (Dijkshoorn et al., 2000). Although, if the gene differences involve 
the key phenotype of interest such as virulence or antibiotic resistance, 
the derived culture could be designated as different strain. Perhaps more 
importantly, in surveys of natural populations, where strain ancestry 
information is typically unavailable, strains have instead been discerned 
based on single nucleotide variants patterns (SNVs). However, a widely 
accepted definition on the number of SNVs expected to define a strain 
has not yet emerged, even for such natural populations (Yan et al., 
2020). 

Recently Rodriguez-R and colleagues analyzed 330 bacterial species 

Fig. 1. Comparison of the ANI threshold with Sequence Types (STs). The graph is based on 239 complete Campylobacter jejuni genomes downloaded from NCBI and 
shows their pairwise shared genome fraction (y-axes) plotted against their ANI values (x-axes). The top eight STs consisting of the greatest number of genomes were 
used for this analysis (ST-677 = 42 genomes, ST-22 = 17, ST-2993 = 14, ST794 = 12, ST-43 = 11, ST-21 = 10, ST-50 = 9, and ST-45 = 8). FastANI was used to 
generate pairwise ANI values and shared genome fraction with default settings, excluding self-comparisons. The genome pairs compared are colored based on the ST 
that the two genomes in a pair were assigned to, using the tool mlst (https://github.com/tseemann/mlst). The filtered data was then plotted in R-studio using the 
ggplots package with either ST-677 (Panels A and B) or ST-22 (Panels C and D) as the reference ST, for which the reference for a given plot is indicated by a triangle in 
its respective legend. Panels B and D represent zoomed-in versions of Panel A and C. Marginal density plots show either the joint (grey) or individual (color) dis
tribution for STs. Note that the 99.5 % ANI threshold closely matches the areas of discontinuity between distinct STs (e.g., Panel A and C) and that probably STs 667 
and 794 are too overlapping and clonal in terms of the genomic relatedness of the grouped genomes, and thus could be merged into one ST (Panel B). 
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that are each well-sampled by multiple sequenced isolate genomes, 
representing both pathogenic and environmental taxa, and showed that 
a clear bimodal distribution in the ANI values characterizes most of 
these species (or 95 % ANI-defined genomospecies). That is, there is a 
scarcity of genome pairs (or an ANI gap) showing 99.2–99.8 % ANI 
(midpoint at 99.5 % ANI) in contrast to genome pairs showing ANI 
>99.8 % or < 99.2 % (Fig. 1) (Rodriguez-R et al., In press). Therefore, it 
appears that another important level of genomic differentiation may 
exist within species and can be used to define and standardize intra- 
species units across different taxa. Further, the 99.5 % ANI gap is 
highly consistent with sequence types (STs), a key concept that has been 
widely used, especially in medical microbiology and epidemiological 
studies, to identify an outbreak caused by a specific pathogenic organ
ism (strain) or groups of highly related organisms. An ST is typically 
defined as a group of genomes with no nucleotide sequence differences 
in 6–7 selected genetic loci (Maiden et al., 1998). Their evaluation based 
on species that are well sampled by genome sequences such as Escher
ichia coli and Campylobacter jejuni has shown that the 99.5 % ANI 
threshold is largely consistent with how STs have been defined in these 
species, e.g., ~80 % of ST assignments were supported by the 99.5 % 
ANI threshold. Nonetheless, the 99.5 % ANI threshold provides intra- 
species groups with ~20 % higher accuracy in terms of genomic and 
gene-content relatedness of the grouped genomes (Fig. 2 and Rodriguez- 
R et al., In press). The main reason for the higher accuracy of the 99.5 % 
ANI threshold is the limited signal carried by 6–7 loci vs. the whole 
genome (ANI), including the horizontal transfer of one (or more) of the 
loci that can confound ST assignments. Other important advantages of 
the 99.5 % ANI approach are that it can be automatically implemented, 
and thus does not require manual curation, which is needed for estab
lishing ST numbers for new sequences not seen previously (Maiden 
et al., 1998). Additionally, the computation of ANI is two orders of 
magnitude faster compared to the phylogenetic placement of a genome 
using all core (but probably not faster than using 6-7 marker) genes in 
whole-genome-based ST analysis (Jain et al., 2018). 

Rodriguez-R and colleagues did not observe another pronounced ANI 
gap within species, and thus recommended the use of the term strain 
only for nearly identical genomes. Specifically, they proposed to define a 
strain as a collection of genomes sharing ANI >99.99 % based on the 
high gene-content similarity observed at this level based on the genomes 
compared e.g., typically, >99.0 % gene content is shared (Viver et al., 
2023). It should be noted, however, that genomes sharing >99.99 % ANI 
are not clonal, meaning they may still show non-trivial gene-content 
differences attributed (mostly) to mobile elements (e.g., 1 % gene- 
content difference for a 5Mbp genome translates to 50 genes being 
different). It was suggested to let the ANI >99.99 % threshold override 
such mobile-element-driven gene-content differences in order to 
simplify strain identification and communication. However, in cases 
where important phenotypic differences that distinguish between or
ganisms sharing ANI >99.99 % are known such as antibiotic resistance 

genes carried by plasmids, the proposed definition for strain could be 
neglected or adjusted upwards as appropriate. Accordingly, Rodriguez-R 
and colleagues proposed to use the 99.5 % ANI threshold to define new 
or refine existing STs toward more genomically homogenous and data- 
driven STs. If the ST should maintain its original conception of 6–7 
identical loci for historic or other reasons, they suggested instead to use 
the term genomovar to refer to these 99.5 %-ANI intra-species units. The 
term genomovar was originally used to name distinct genomic groups 
within species that cannot be distinguished phenotypically from each 
other in order to be named as distinct species (Ursing et al., 1995). 
Hence, genomovar may best capture conceptually the 99.5 % ANI units. 

Notably, discrete, or somewhat discrete (Hanage et al., 2005), 
ecological or evolutionary units within bacterial species have long been 
recognized and are designated by various terms such as ecotypes, clonal 
complexes, sequence types, and serotypes, among several other terms 
(recently reviewed in Rossello-Mora and Amann, 2015; Van Rossum 
et al., 2020). However, the application of these units has commonly been 
inconsistent between different taxa and studies, e.g., different marker 
genes and standards for each marker are used, creating challenges in 
communication about intra-species diversity. The findings by 
Rodriguez-R and colleagues (e.g., Fig. 1 and Rodriguez-R et al., In press) 
suggest that the 99.5 % ANI clusters could represent such a consistent 
intra-species unit that can be used to help standardize definitions across 
taxa. Therefore, these ANI thresholds can provide convenient and robust 
means in identifying strains and STs/genomovars associated with food 
poisoning and outbreaks, as well as facilitate communication about 
these intra-species units. While the 99.2–99.8 % ANI range should 
represent the gap for most species based on the dataset evaluated (all 
330 species evaluated are available on the GitHub at https://github. 
com/rotheconrad/bacterial_strain_definition), it was still suggested to 
directly evaluate the ANI value distribution among genomes of the 
species of interest and adjusting the genomovar/ST-defining ANI 
threshold to match the gap in the observed ANI value distribution should 
the data indicate that a 99.5 % cutoff is inappropriate. 

Detecting STs and strains based on short-read sequencing data (reads 
of 100-250bp in length) and read-recruitment plots is technically chal
lenging because such short-reads do not provide enough resolution in 
the most critical area, that of 99–100 % nucleotide identity level (e.g., 1 
mismatch in a 200bp read would result in a nucleotide identity of 99.5 
%, lacking resolution in the critical 99.5–100 % nucleotide identity 
range). However, long-read sequencing such as that offered by the Ox
ford Nanopore and PacBio instruments (reads 10Kbp or longer), or 
isolate and single-cell complete or draft genomes, should provide 
adequate resolution as our recent work has shown (Rodriguez-R et al., In 
press). The approach outlined above should provide the means to 
identify distinct units within species and define strains and other sub- 
species units. Further, several tools such as inStrain (Olm et al., 2021), 
ConStrains (Luo et al., 2015), and StrainGE (van Dijk et al., 2022) to 
name a few, can reliably identify strains present in a short-read 

Fig. 2. An example of the new read-recruitment plot. For these plots, a healthy human gut metagenome (accession SRX20110658) was spiked with simulated reads 
from a pathogenic E. coli genome (accession GCA_026384595.1), and resulting reads were mapped against the latter genome (reference). The top plot shows the 
whole genome; bottom plot shows a zoomed-in version around positions 3.9Mbp to 4.0Mbp, where a pathogenicity-associated genomic island is located. The four 
different panels of each plot represent: Bottom-Left: is a 2-D histogram displaying the percent identity of reads mapped to the reference genome on the y-axis and the 
position in the genome on the x-axis. Shading in orange represents reads mapping above the nucleotide identity threshold, here shown at 97 % (tool’s default is 95 
%). Top-Left: is a line plot of the average sequencing depth across the genome region shown on the main panel (bottom-left). The orange line represents reads 
mapping above the nucleotide identity threshold; blue represents reads below the threshold. Top-right: is a histogram of sequencing depths across the reference 
sequence, with colors corresponding to those in the top-left panel. Bottom-right: is a histogram of the number of bases displayed in the main panel that fall within 
specific percent identity windows (y-axis), displayed in log scale. Minor panels in the middle: the middle two subplots are for gene annotations (left), and per-contig 
sequencing depth (TAD) summaries (right). The annotation plot will include information about the genes predicted in the genome when available (off by default), 
including strand, G + C % content, and coordinates, while TAD80 values (and other sequencing depth metrics) are provided for the contigs. Please see tool’s manual 
and interactive mode (pop-up boxes) for further details. 
Note the even sequencing depth over the entire genome caused by the spike-in reads of the pathogenic E. coli (top-left panel) and high ANIr (~100 %, bottom-right 
panel) compared to the more variable sequencing depth and lower ANIr (~88–93 %) from reads representing the close relative(s) present in the metagenome in 
orange. Also note the regions of near-zero sequencing depth (i.e., corresponding to genes/regions that are not detectable) for the genomic island near the bottom of 
the top-left panel for the population of the relative(s) (but not the spiked-in pathogen). See also the text for further details. 
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metagenome based on the nucleotide substitution patterns when the 
corresponding strain genomes are available in the internal databases of 
these tools. However, these tools are limited when novel strains are 
instead present in the metagenome, and cannot typically reconstruct the 
genomes of (known) strains in cases where multiple strains or strain 
hybrids are present (which is often the case) due to the nature of short- 
read data. Additionally, these tools have varied requirements regarding 
the minimum sequencing depth necessary to accurately identify strains 
to which users should pay strict attention. Finally, it should also be 
mentioned that the exact mechanisms underlying the 99.5 % ANI gap, or 
the previously established 95 % ANI for the species level, remain unclear 
but are likely related to ecological differentiation, coupled to recombi
nation frequency, e.g., higher horizontal gene transfer mediated by 
homologous recombination within vs. between groups (Fraser et al., 
2009; Hanage et al., 2005), and should be the subject of future research. 

In summary, the ANI-based definitions proposed by Rodriguez-R and 
colleagues for species (>95 % ANI), genomovar (>99.5 %), and strain 
(>99.99 %) designations should provide convenient and reproducible 
means for grouping sequence reads into clear units. Additionally, these 
definitions facilitate communication about diversity units during path
ogen monitoring and/or outbreak detection. Next, we will explore 
technical approaches for utilizing these concepts and their associated 
ANI thresholds for pathogen detection and diagnosis. 

4. Detecting sequence discrete units (species and strains) in 
metagenomic datasets 

Several different approaches exist for monitoring species and strains 
within metagenomic datasets. A core feature shared among all ap
proaches is the need for some kind of reference sequence (e.g., a diag
nostic gene or genome) to which sequence reads can be compared in 
order to identify the corresponding taxon. These reference sequences 
can be obtained from existing data (e.g., Benson et al., 2012), from 
sequencing efforts of isolates or enrichments, or produced de novo 
through recovery of metagenome-assembled genomes (MAGs) from the 
metagenomic data itself (Fig. 4). MAGs are typically thought to repre
sent the average, composite genome of a population present in a sample 
(Chen et al., 2020; Sczyrba et al., 2017). The choice of what reference 
sequence should be used is undoubtedly a key parameter that depends, 
at least, on both the pathogen(s) being surveyed and the background 
sample matrix. Yet, the tendency of prokaryotes to form sequence 
discrete units when considering whole genome ANI relatedness is 
incredibly useful for evaluating what signals in metagenomic data likely 
correspond to populations of interest. 

Taxonomic profilers are one of the most accessible approaches for 
surveying the prevalence (and abundance) of microbial species in met
agenomic datasets. These tools are invariably based on some notion of 
sequence discreteness occurring in the underlying data, whether using 
percent sequence identity cut-offs or k-mer matching, to determine what 
reads match to what taxa in the reference dataset. Performance of any 
taxonomic profiler primarily relies on the reference database construc
tion and searching tool/approach, in addition to a few parameters that 
are further discussed in the next section. Popular examples of meta
genomic profiling software include MetaPhlAn (Beghini et al., 2021; 
Blanco-Miguez et al., 2023), Kaiju (Menzel et al., 2016), and Kraken (Lu 
and Salzberg, 2020), and these types of software are usually heteroge
neous with respect to how they handle tied matches among sequence 
reads, database construction, and benchmarking efforts. To assess the 
importance of these differences on the results obtained, some tools have 
been benchmarked across a few use cases. It is important to note, 
however, that these cases may or may not correspond with the perfor
mance expected in food systems, which should be a key consideration of 
researchers aiming to use taxonomic profilers in food sample matrices. 
Notably, community efforts are ongoing which aim to more compre
hensively understand and benchmark taxonomic profiler performance 
across a variety of representative use cases (Sczyrba et al., 2017). 

Importantly, taxonomic profilers report relative abundances for detec
ted populations though these methods are not uniform between ap
proaches and a tool’s sensitivity is usually not clear to the user, possibly 
frustrating the interpretation of non-detects. 

Another way that species and, sometimes strains, can be effectively 
detected and monitored in metagenomic surveys is by performing read 
recruitment plots (Fig. 2). In these plots, the reads of a metagenome are 
mapped against the genome representing the population with a read 
mapping tool (Boratyn et al., 2019), and the mapping patterns can 
reveal sequence discontinuities and gene content diversity (Kon
stantinidis and DeLong, 2008; Rodriguez-R and Konstantinidis, 2016; 
Rusch et al., 2007). Therefore, read recruitment plots can provide a 
transparent and quantitative view of the natural population in a sample, 
which can be highly useful for several downstream analyses. For 
instance, radical changes in the sequencing depth of specific regions of a 
genome by reads from timeseries metagenomes may signify genes 
gained or lost by the population due to selection for or against the 
corresponding functions, respectively, by the prevailing conditions 
during sampling (Bendall et al., 2016; Meziti et al., 2019). Yet, this 
approach trades throughput and speed for granularity and transparency 
of read mapping results of only a single genome (or gene) of interest at a 
time. Certainly, this framework is advantageous for metagenomic use 
cases like pathogen surveillance but cumbersome elsewhere. We see 
taxonomic profilers and read recruitment plotting as complementary 
approaches, i.e., deploying read recruitment plotting for a few species of 
interest while the community composition can be ascertained via the 
best performing taxonomic profiler for a given dataset. 

Recently, our team has advanced the read recruitment plot tool to 
provide additional information based on read mapping results. This 
information includes what is the average sequencing depth of the 
reference genome, the average identity of the mapped reads to the 
reference, which we denote as ANIr (i.e., ANI based on reads), and 
whether related species exist in the sample. A couple use cases are shown 
in Fig. 2 and additional cases are documented in our recent publication 
(Gerhardt et al., 2021). ANIr is an important population genetics 
parameter to estimate because it reflects the clonality of the sampled 
population of the species when the reference genome is a good repre
sentative of the population. For example, if ANIr changes, this could 
indicate the emergence of adapted genotypes or strain replacement that 
could be targeted to identify the adaptive genes in future studies. If the 
reference genome is not a good representative of the population sampled 
by the metagenomic dataset (e.g., not many high identity reads evenly 
map to it across its total sequence), then ANIr reflects the level of 
divergence of the reference from the population (Fig. 2). In such cases, 
and also cases where multiple closely related populations exist in the 
sample, it is important to perform competitive read mapping against 
representatives of each (related) population(or species) for more accu
rate read mapping and robust estimations of relative abundance, as we 
described recently (Meziti et al., 2021; Viver et al., 2021). Therefore, 
read recruitment plots can be used to detect a target feature such as a 
gene or genome in a metagenome and characterize its allelic diversity. 
Further, the new read recruitment plots have been made interactive such 
that users are able to point the mouse cursor to a specific gene or region 
in the reference genome or a read and obtain information on the func
tional annotation of the corresponding sequences and other associated 
metadata, view multiple reference genomes/genes at a time, and more. 

5. Metagenomics-based estimation of relative abundance and 
limit of detection 

As noted above, methods for estimating relative abundance vary 
greatly. A common approach utilized across many manual and auto
mated workflows is to estimate abundance as the approximate 
sequencing depth based on the number of reads (or base pairs) mapped 
to a reference genome (or gene) divided by the respective total number 
of reads (or base pairs) in the sample. While this is a straightforward way 
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for communicating relative abundance, it produces values that likely 
correspond to the fraction of DNA belonging to the target and not the 
fraction of the community occupied by the target. Alternatively, a sim
ple average of sequencing depth, without a clear denominator for 
normalizing the value to sequencing effort, is sometimes used. Lastly, 
relative abundance communicated as “reads per kilobase per million 
mapped reads” (RPKM) has also been commonly used. However, these 
measures can be prone to both false-positive read mappings due to un
usual gene features as well as issues of relative abundance estimation 
caused by differences in the average genome size of the sampled mi
crobial communities. To precisely estimate the limit of detection for a 
target genome in a metagenome, and thus help calculate its relative 
abundance, we recently developed and validated the imGLAD algorithm 
(in-silico metagenomes for Genomic Low-Abundance Detection) based 
on inoculation of known cell concentrations of E. coli on plant leaves 
followed by metagenome sequencing (Castro et al., 2018). Key obser
vations from the imGLAD work are: i) that almost all genomes have 
regions (most often, genes) that are not reliable for diagnostics, such as 
highly conserved rRNA genes and recently horizontally transferred 
genes. These regions/genes may (misleadingly) recruit reads from co- 
occurring relatives in environmental samples, even when the actual 
target genome is absent, and ii) that when about 10 % of a genome re
cruits reads, it is generally enough sequencing breadth to sidestep the 
abovementioned limitation and provide reliable detection. 

As a result of the above, we suggest replacing the simple average 
sequencing depth for reporting relative abundance with a more so
phisticated metric that we term TAD-80 (truncated average sequencing 
depth over the middle 80 % of indices sorted by depth). TAD-80 is an 
average of sequencing depths calculated over only the middle 80 % of 
depths across the whole reference sequence, which is typically a whole 
genome. In detail, TAD-80 calculation involves sorting the base pair 
positions of the reference sequence by decreasing sequencing depth and 
then averaging across only the positions (or indices) remaining after 
removal of the top 10 % and bottom 10 % of positions. This approach 
automatically ensures nonzero values are reported only for genomes 

with sequencing breadth above 10 %, meeting (or exceeding) our sug
gested limit of detection from (ii) above (Rodriguez et al.,2020). 
Importantly, the removal of positions with high sequencing depth 
removes the problematic, non-diagnostic genes mentioned above that 
recruit spurious matches from co-occurring relatives in a sample (Castro 
et al., 2018). Further, the exclusion of high depth positions alone would 
likely result in a systematic underestimation of sequencing depth for 
several genomes, but the removal of an equal proportion of low depth 
positions counterbalances that to ensure that the TAD-80 value remains 
unbiased. To further facilitate the use of TAD-80, the new read 
recruitment plot tool automatically calculates TAD-80 values for a wide 
range of nucleotide identity cutoffs for mapping reads (default is 95 % 
identity) that may be used to describe the sequence-discrete boundaries 
of a species, based on the level of intra-population diversity presented on 
the same plot. 

While the use of TAD-80 improves upon simple average sequencing 
depth for estimating relative abundance, we further suggest normalizing 
sequencing depth by prokaryotic genome equivalents (GEQ) in the 
sample (Nayfach and Pollard, 2015) to arrive at a final estimate of the 
relative abundance of a genome. The use of GEQ essentially controls for 
genome size differences among samples or microbial communities and is 
generally a more robust metric than simpler alternatives, most notably 
RPKM (Nayfach and Pollard, 2016). Though different metrics could 
provide very similar estimates if the average genome sizes of the com
munities compared are similar e.g., timeseries datasets of the same 
community (Konstantinidis et al., 2009; Nayfach and Pollard, 2015; 
Rodriguez et al., 2020). Specifically, a microbial community that is 
enriched in organisms with larger genome sizes will harbor the target 
genome in higher relative abundance compared to a community 
enriched in smaller genome sizes (smaller sequencing space available) 
when the target shows same sequencing breadth and depth in datasets 
from the two communities. Normalizing TAD-80 by GEQ results in a 
final estimate of relative abundance that intrinsically measures the 
abundance of a target genome in units of community fraction (i.e., 
percent of total genomes or cells as opposed to percentage of DNA) in a 

Fig. 3. Theoretical estimates of sensitivity for metagenomic datasets based on sequencing effort, depth, and breadth expectations. Panel A shows the relationship 
between expected sequencing breadth and sequencing depth proposed by Lander and Waterman (1988). Note that for low sequencing breadths the expectation of 
producing overlapping sequence reads is low as shown by the nearly linear relationship at this level. Both the proposed general purpose sequencing breadth detection 
limit of 10 % and the corresponding sequencing depth [−ln(0.9)] are marked for convenience. Panel B relates this information back to the relative abundance of a 
target and estimates of the lowest relative abundance that is expected to be detectable based on the amount of sequencing effort applied (in Gbp) and target’s genome 
size (1-6Mbp genome sizes shown). 
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manner more appropriate for direct abundance comparisons across 
communities or samples. Continual refinement of the reference univer
sal gene sets used for GEQ estimation, separate for bacterial and 
eukaryotic fractions and facilitated by the continuous increase in the 
number of complete reference genomes, will further improve the accu
racy of this approach in the future (Lind and Pollard, 2021). 

To summarize: we propose the use of TAD-80 values higher than zero 
as a general purpose threshold for determining the limit of detection of a 
sequencing effort in detecting a target genome/sequence of interest in a 
metagenomic dataset, and to use such non-zero TAD-80 values 
normalized by GEQ as the final estimate of (non-zero) relative abun
dance in units of community fraction. Note, however, that even after 
these normalizations, the resulting abundance data represents only 
relative abundance (e.g., % of total community or cells). If the goal is to 
obtain absolute abundances (number of copies per sample volume) then 
additional work is necessary. For example, absolute abundances can be 
obtained by spiking in reference DNA (or cells for the step prior to DNA 
extraction) into the sample at known concentrations as an internal 
standard, as suggested previously (Poretsky et al., 2005). The limit of 
detection for a certain amount of metagenomic sequencing effort can 
then be estimated based on the relationships between absolute (or 
relative) abundance of the target, the chosen detection criteria, and 
sequencing effort, as described recently (Lindner et al., 2022) and 
summarized here for convenience (Table 1). We provide a visual rep
resentation of this sort of general purpose LOD for metagenomic work in 
Fig. 3 based on previous work (Castro et al., 2018; Lindner et al., 2022; 
Wendl et al., 2013). Although other solutions exist, this framework is 
based on one of the early relationships proposed between expected 
sequencing breadth and sequencing depth for a target genome in an 
experiment (Lander and Waterman, 1988; Wendl et al., 2013; Fig. 3). 
Though, it is especially critical to note that this sort of theoretical 
framework is not an appropriate substitution for spike-in/process con
trols, mock microbial standards, etc. which assist researchers in deter
mining the actual sensitivity of their metagenomic experiments 
(Crossette et al., 2021; Sczyrba et al., 2017). Further, this theoretical 
LOD could be conservative in identifying a target organism as present in 
a metagenome, and thus users could visually inspect the corresponding 
recruitment plots to make a call about presence in cases where the 
relative abundance of the target is at or just below this LOD and higher 
sensitivity is required. 

This theoretical framework can also be useful in establishing ex
pectations for planning estimates of the sequencing effort necessary for 
studies aimed at surveilling pathogens via the equations described in 
Table 1. These equations theorize the sensitivity of a metagenome based 
on the minimum sequencing depth (ρLOD) chosen to call confident 
detection via the relationship theorized for relating sequencing breadth 
and sequencing depth at low values for both (Lander and Waterman, 
1988; Fig. 3). These equations can then estimate either the minimum 
sequencing effort (Smin) needed to detect a population given some a 
priori knowledge about its in situ relative abundance or communicate 
the smallest detectable population size (Cmin) based on the number of 
observed GEQ and average genome size for the community. For the limit 
of detection, the minimum sequencing breadth (and consequently ρLOD) 
could be adjusted if viewed necessary e.g., genomes undergoing infre
quent horizontal gene transfer may be reliably detectable even with 
lower breadth thresholds than 10 % (Castro et al., 2018). 

In our experience with human fecal and freshwater samples that are 
medium-to-high complexity (Rodriguez-R and Konstantinidis, 2014), 
the limit of detection of a 5 gigabases (or Gbp) sequencing effort for 
Escherichia coli or similar organisms is at about 0.01 %–0.001 % of the 
total microbial community (percent of total cells or genomes). That is, 
such sequencing efforts have a range of detection (and abundance esti
mation) of about 5 orders of magnitude (from 100 % to 0.001 % of the 
total). There are additional factors capable of confounding estimates of 
relative abundance. These factors include various sources of error such 
as substantial proportions of eukaryotic and viral sequences, G + C% 

bias caused by amplification-based library preparation methods, bias 
introduced against certain physiologies due to differing cell lysis effi
ciencies, etc. Viral sequences do not generally contribute to GEQ esti
mation because these genomes do not usually carry universal genes 
(except the giant viruses (Schulz et al., 2020)), and thus do not affect 
relative abundance normalization by GEQ but affect – for example – 
RPKM estimations. In cases that significant differences are observed, it is 
advisable to remove the eukaryotic sequences (e.g., by read mapping 
against NCBI genomes) prior to the genome equivalent estimation step 
or estimation of relative abundance. Currently, there exists no universal 
methodology for controlling relative abundance biases in bioinformatic 
analysis of metagenomic data and researchers should evaluate their 
individual use cases to decide the best approach for their work (Lin and 
Peddada, 2020). 

6. Identification of the etiological agent of a disease based on 
metagenomic datasets 

Identification of the etiological agent (pathogen) of a disease could 
be a challenging task, especially in cases where defining features of a 
pathogen are unclear (reviewed in Denamur et al., 2021). Such cases 
include instances where virulence factors are not known (e.g., Salmo
nella spp.) and/or some of the known virulence factors (e.g., iron 
acquisition genes or adhesins) are frequently shared with commensal 
close relatives. For instance, enteric infections caused by diarrheagenic 
strains of Escherichia coli (DEC) represent such challenging cases to di
agnose, despite their apparent (high) frequency and importance for 
children mortality, especially in low-income countries (Collaborators, 
2018). We recently developed an integrated approach, using the prin
ciples mentioned above, to identify the etiological agent of diarrheal 
disease based on metagenomic datasets obtained from fecal samples, 
thus facilitating the diagnosis of cases of DEC and other etiological 
agents (Pena-Gonzalez et al., 2019). The approach combines three key 
data features to determine the etiological agent: i) the in-situ meta
genomic abundance of the suspected pathogen(s) should be higher in the 
disease vs. control samples, ii) the level of clonality of the pathogen 
population should be higher (less intra-population diversity or higher 
ANIr) when causing disease compared to commensal relatives in the 
same disease sample or in control samples and, iii) the key virulence 
genes, when known, should be detected/present in the metagenome, 
even if they are not necessarily assembled as part of the MAG that 
represents the pathogen, and should be at comparable sequencing 
depths to that of the pathogen genome or MAG, unless carried on multi- 
copy plasmids. The virulence genes are frequently carried on plasmids or 
other mobile elements that are not assembled as part of a MAG, espe
cially when short-read data are used (Meziti et al., 2021). 

Using this strategy, we have recently elucidated the causative agents 
of foodborne outbreaks caused by DEC (Pena-Gonzalez et al., 2019) and 
Salmonella enterica (Huang et al., 2017) strains and showed that our 
integrated approach provides resolution and diagnostic signatures that 
are not attainable by the traditional, culture-based approaches. Most 
notably, our approach can elucidate the distinct signatures of different 
enteric pathogens on the gut microbiome, which could be useful for 
diagnostics on its own, and also provides the level of intra-population 
sequence and gene-content diversity for the detected pathogen (Huang 
et al., 2017; Pena-Gonzalez et al., 2019). Notably, in at least 1/3 of the 
diarrheal cases examined that involved DEC infections in Northern 
Ecuador, this metagenomic approach identified a different etiological 
agent compared to the traditional approach based on isolation followed 
by PCR typing for the pathogen-diagnostic genes (Pena-Gonzalez et al., 
2019). In most of these cases, it appeared that the isolation-based 
approach recovered a pathogen that was a minor player of the micro
bial community (rare biosphere), as opposed to the dominant pathogen, 
a known limitation of culture-based approaches that can recover a 
(target) organism present in a sample even as a single cell (but unlikely 
to cause disease at such low abundance). Further, the metagenomic 
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approach can be significantly faster than the traditional approach, e.g., 
<1 day vs. at least 2–3 days, which is important for diagnostic and 
treatment actions. Therefore, we suggest complementing traditional, 
culture-based approaches with a metagenomic approach like the one 
described above for clinical samples as well as food samples that are 
challenging to process with the traditional approach and/or when 
higher resolution or forensic/tracking evaluation is needed. 

7. Challenges remaining for metagenomics approaches in 
detecting target organisms 

As reviewed herein, metagenomics involves neither the isolation nor 
the enrichment of target organisms. Thus, despite the advancements 
mentioned above and its relatively high throughput, metagenomics is 
inherently an untargeted approach, and sequencing microbial commu
nities where the interesting feature(s) are rare can be quite expensive. 
That is, the associated cost can still be prohibitive for processing a large 
number of samples on a routine basis especially if the target(s) are 
anticipated to be at relatively low abundances (e.g., <0.001 % of the 
total community). At the time of this writing, an “average” metagenomic 
sample (e.g., 5 Gbp/sample) costs about a couple hundred US dollars, 
including DNA extraction, library creations and sequencing costs. 
Perhaps more importantly, often highly trained personnel and sub
stantial computational resources are required for the analysis of the 
resulting sequence data and interpretation of results. Moreover, the limit 
of detection is still a couple orders of magnitude – or more – higher than 
that of PCR-based methods, although the exact difference depends on 
the relative abundance of the target organism and the level of the 
sequencing effort applied. In our experience and using the equations 
shown in Table 1, metagenomic detection of a spiked-in pathogen onto 
plant leaves, which are characterized by relatively simple and low- 
biomass microbial communities, was possible even when the target 

was inoculated at ~80 cells per gram of sample (Castro et al., 2018). For 
a typical fecal sample and a sequencing effort around 3–5 Gbp/sample, 
this limit of detection is likely a couple orders of magnitude higher, at 
10,000 to 100,000 cells or about 0.01 % to 0.001 % of the total microbial 
community assuming that usually 109 to 1010 cells are sampled with the 
typical sample volumes used (0.2–0.5 g) and 10 % sequencing breadth is 
required for robust detection. The latter limit of detection is significantly 
higher than that which is usually associated with PCR-based approaches. 
It should be noted, however, that the biomass of fecal samples and their 
DNA yields can be highly variable, and thus their actual limit of detec
tion could be an order of magnitude or more different than the values 
mentioned above. The approach outlined in Table 1 and Fig. 3 can be 
used to estimate limits of detection for various situations based on the 
relative abundance of the target organism, sequencing effort applied, 
and sequence breadth threshold used for detection. 

Another notable limitation of metagenomics that is nonetheless 
shared with other culture-independent techniques including PCR, is that 
it cannot easily distinguish between living and dead cells or naked DNA. 
This issue has been discussed extensively in the literature and there are 
approaches to selectively remove dead cells (e.g., application of propi
dium monoazide or PMA) or naked DNA (e.g., by a DNAse treatment) 
but typically require additional steps and protocol optimization for the 
sample matrix of interest (Nocker et al., 2006). Accordingly, these ap
proaches have not been met with wide acceptance yet. Further, in our 
experience and unless there has been a recent application of a chemical 
(e.g., antibiotic) or processing (e.g., heat exposure) that killed the mi
crobial cells in a sample, species that are detected at high relative 
abundances by metagenomics (e.g., >0.1–0.01 % of the total commu
nity) represent alive and active members of the community. Naked DNA 
or dead cells are typically represented by only a few reads per species (e. 
g., members of the rare biosphere) although, altogether, such sequences 
could make up a large fraction of the total community, even close to 50 
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% of the total for some soil and bioaerosols (dust) samples (Sogin et al., 
2006). In cases that this is important, culture-independent approaches 
should be combined with cultivation to ensure that the detected targets 
are alive, and thus verify that they pose a public (or other) health risk. In 
fact, having the genome of the isolate(s) derived from the sample 
available can greatly facilitate the approaches mentioned above, e.g., it 
can serve as the reference sequence to perform the read-recruitment plot 
against and quickly assess if the genome is detectable in the sample, 
determine its relative abundance as a fraction of the total community, 
and elucidate how well it represents -or not- the natural population in 
the sample. While the focus on this review was bacterial pathogens, we 
expect that the approaches described herein and summarized in Fig. 4 
can be used for viral and eukaryotic pathogens, albeit with some opti
mizations for the complexity of the genomes targeted. For instance, 
eukaryotic genomes are generally engaged in less frequency horizontal 
transfer than bacterial genomes, and thus the 10 % sequencing breadth 
for reliable detection could be too high for such genomes. 
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