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Fairness- Aware Optimal Graph Filter Design

O. Deniz Kose ¥, Gonzalo Mateos

Abstract—Graphs are mathematical tools that can be used to
represent complex real-world interconnected systems, such as fi-
nancial markets and social networks. Hence, machine learning
(ML) over graphs has attracted significant attention recently. How-
ever, it has been demonstrated that ML over graphs amplifies the
already existing bias towards certain under-represented groups in
various decision-making problems due to the information aggrega-
tion over biased graph structures. Faced with this challenge, here
we take a fresh look at the problem of bias mitigation in graph-
based learning by borrowing insights from graph signal processing.
Our idea is to introduce predesigned graph filters within an ML
pipeline to reduce a novel unsupervised bias measure, namely the
correlation between sensitive attributes and the underlying graph
connectivity. We show that the optimal design of said filters can
be cast as a convex problem in the graph spectral domain. We
also formulate a linear programming (LP) problem informed by a
theoretical bias analysis, which attains a closed-form solution and
leads to a more efficient fairness-aware graph filter. Finally, for a
design whose degrees of freedom are independent of the input graph
size, we minimize the bias metric over the family of polynomial
graph convolutional filters. Our optimal filter designs offer comple-
mentary strengths to explore favorable fairness-utility-complexity
tradeoffs. For performance evaluation, we conduct extensive and
reproducible node classification experiments over real-world net-
works. Our results show that the proposed framework leads to
better fairness measures together with similar utility compared to
state-of-the-art fairness-aware baselines.

Index Terms—Fairness, graph filter, graph neural network, node
classification, bias mitigation.

I. INTRODUCTION

E LIVE in the era of connectivity, where the actions
W of humans and devices are increasingly driven by their
relations to others. Concurrently, a significant amount of data
describing different interconnected systems, such as social net-
works, the Internet of Things (IoT), the Web, and financial mar-
kets, is increasingly available. Processing and learning from such
data can provide significant understanding and advancements for
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the corresponding networked systems [16], [26]. In this context,
machine learning (ML) over graphs has attracted increasing
attention [7], [24], since graphs are widely utilized to represent
complex underlying relations in real-world networks [38].

These relational patterns can be captured by graph edges,
while attributes of nodes (nodal features) can be interpreted
as signals defined on the vertices. For example, in a social
network, user ages can be modeled as a graph signal, and the
friendship information can be encoded by the edges. Graph
signal processing (GSP) extends the tools in classical signal
processing to graph signals [41], such as frequency analysis,
sampling, and filtering [22], [23], [37], [45], [48], [52]. GSP
and ML over graphs are closely intertwined, where the tools
in one domain can be useful in the other one [10], [41]. For
instance, it has been demonstrated that graph neural networks
(GNNGs) can be designed, analyzed, and improved by leveraging
GSP-based insights [10], [13], [14], which underscores the ad-
vancements that can be made by cross-pollinating the findings
in both domains. In this paper, we align with this vision and
leverage GSP advances to enhance fairness in ML over graphs
pipelines.

The pursuit of fairness in ML over graphs: Despite the grow-
ing interest in learning over graphs, the widespread deployment
of these algorithms in real-world decision systems depends
heavily on how socially responsible they are. Motivated by
this concern, fairness in ML algorithms has attracted significant
attention recently [20], [39], [43]. This work focuses on group
fairness, which ensures that the learning algorithms incur no
performance gap with respect to sensitive/protected attributes
(such as ethnicity and religion). For example, the predictions
of a job recommendation algorithm should be independent of
the gender of applicants for a fair algorithm with respect to
the sensitive attribute gender. Moreover, throughout this pa-
per, algorithmic bias refers to the stereotypical correlations
the learning algorithms encode and further propagate with
respect to these sensitive attributes. Despite how critical the
fairness of algorithms is for their applicability in real-world
decision systems, several studies have demonstrated that ML
models propagate the historical bias within the training data and
lead to discriminatory results in ensuing applications [3], [39],
[43]. Specific to graph-based learning, the utilization of graph
structure in the algorithm design has been shown to amplify
the already existing bias [9]. Recognizing these compounded
challenges, recent works focus on fairness-aware learning over
graphs and advocate different techniques to mitigate bias, such as
adversarial regularization [4], [9], fairness constraints [5], [28],
and fairness-aware graph data augmentation [11], [30], [54]; see
also Section II for additional discussion on related work.
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Proposed approach and innovations in context: In this study,
we advocate fairness-aware optimal graph filter designs. In
order to mitigate bias derived from the graph topology, we
subsequently introduce these predesigned filters within stan-
dard ML pipelines. To this end, we introduce a bias metric, p,
which can be employed in graph-based unsupervised learning
approaches and measures the linear correlation between an
effective (filter-dependent) connectivity pattern and the sensitive
attributes. We show that the p-minimizing optimal filter design
can be cast as a convex problem in the graph spectral domain.
While this proposed approach is remarkably effective in miti-
gating graph-amplified biases, the total number of optimization
variables is equal to the input graph size. Accordingly, solving
the optimization problem becomes computationally expensive
for large input graphs. For a more efficient fairness-aware solu-
tion, we carry out a bias analysis and upper bound the bias metric
p by bringing to bear GSP notions. Based on these theoretical
findings, we formulate a novel linear programming (LP) filter
design problem that attains a closed-form solution minimizing
the derived upper bound. We finally propose a design whose
degrees of freedom are independent of the size of the input
graph, by minimizing p over the family of polynomial graph
convolutional filters.

Our previous endeavor [31] is also built upon spectral analysis
of graph signals, where a fairness-aware dimensionality reduc-
tion algorithm was developed. However, in [31], the information
carried in certain frequencies is completely removed, which can
adversely affect the overall utility (accuracy for node classifica-
tion) of the underlying ML task. Instead, in the present work,
we propose a suite of bias mitigation approaches to effectively
filter out traces of the sensitive attribute signal (e.g., race, gender
in social networks), while also offering the flexibility to delin-
eate favorable fairness-utility-complexity tradeoffs in ML over
graphs. Furthermore, unlike the intuitive but heuristic approach
in the conference precursor to this paper [29], the fairness-aware
graph filter designs proposed here are rooted on well-defined
optimality criteria.

Summary of contributions: Overall, our contributions are:

i) We introduce a novel, correlation-based bias metric for
graphs, which can facilitate fairness-aware unsupervised
learning from network data;

ii) We show that filtering nodal representations which are
obtained via graph aggregation can be used to manipulate
the bias metric. An optimal graph filter is designed to
minimize p by solving a convex optimization problem in
the spectral domain;

iii) For a more efficient bias mitigation solution, we upper
bound p by utilizing GSP-based tools and then minimize
this surrogate cost, leading to an LP problem that attains
a closed-form optimal solution. By restricting the search
to the class of polynomial graph convolutional filters,
the number of optimization variables decouples from the
input graph size, and the resulting fairness-aware filters
can be implemented in a distributed fashion;

iv) The novel filter designs are versatile and can be employed
in different stages of the learning pipeline, as well as for
various graph-based learning frameworks; and
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V) Comprehensive experimental results for node classifica-
tion on real-world networks corroborate the effectiveness
of the proposed methods in mitigating bias while provid-
ing comparable utility to state-of-the-art fairness-aware
baselines. In the interest of reproducible research, the
code used to obtain all results in this paper is publicly
available.

Notation: The entries of a matrix V and a vector v are
denoted by V;; and v;, respectively. Calligraphic capital letters
are utilized to represent sets. Iy refers to an /N x IV identity
matrix. The notation ' stands for the transpose operation. For
a vector v, diag(v) represents a diagonal matrix whose ith
diagonal entry equals to v;. The £,—norm of vector v is given

by [[vll, == (O0i, |Ui|p)1/p~

II. RELATED WORK

Here, we briefly review relevant related work to better position
our contributions in context.

A. Graph Filters

Extending classical signal processing tools to networked sys-
tems, graph filters are specific operators to manipulate graph
signals. The existing literature generally focuses on linear graph
filters represented by polynomials of a graph-shift operator [14],
[22], [45], [48], [50], [51]. Graph filters are utilized for a number
of applications, including but not limited to modeling the dynam-
ics of opinion formation in social networks [18], [42], or model-
ing the diffusion/percolation dynamics over networks [40], [51].
Recently, with the success of graph neural networks (GNN5s)
for a number of graph-based tasks, graph filters have attracted
increasing attention as the key component of GNNs [14], [21],
[36], [46], [58]. However, to the best of our knowledge, there
has been no prior attempt to examine the benefits of pretrained
filters towards decorrelating learned nodal representations from
sensitive attributes. So far, optimal graph filter designs have not
incorporated fairness criteria.

B. Fairness-Aware Learning on Graphs

In the fairness-aware graph-based learning domain, [44] is a
pioneering study that proposes a bias mitigation solution for ran-
dom walk-based algorithms. Moreover, motivated by its success
in general fairness-aware ML, adversarial regularization is also
employed by several graph-based ML frameworks [4], [9], [12],
[15]. Specifically, [9] focuses on partially available sensitive
attributes, and [12] considers knowledge graphs. By modeling
the sensitive attribute signal in the prior distribution, [6] proposes
aBayesian strategy for fair node representation learning. In addi-
tion, [35] links the subgroup generalization to accuracy disparity
based on a PAC-Bayesian analysis, while [56] presents multiple
strategies to reduce the algorithmic bias in the representations
of heterogeneous information networks. There is also a line of
work that designs fair graph data augmentations to mitigate the
bias within nodal features and the graph topology [1], [27],
[30], [54]. Finally, with a specific focus on link prediction, [33],
[34] introduce fairness-aware strategies that alter the adjacency
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matrix, while [5] employs a fairness-aware regularizer. Unlike
most of these works, the proposed strategies herein are based on a
theoretical bias analysis and enjoy well-defined optimality. Fur-
thermore, the collection of fairness-aware graph filters designed
in Section V can be employed in a versatile manner as both
a pre-processing and post-processing operator in a number of
graph-based learning environments; see also the numerical tests
in Section VI. While the draft of this paper was being finalized,
we became aware of an interesting unpublished preprint [32]
that explores fairness for GSP-based graph mining applications
with a markedly different goal than ours. Indeed, [32] advocates
a GNN framework as a surrogate of a fairness-aware graph filter,
and here we design graph filters to mitigate bias in general ML on
graphs pipelines. The approach in [32] is to “edit” the input graph
signal for fairness enhancement and does not focus on optimal
filter design. Overall, our study is the first attempt to design fair
graph filters to mitigate intrinsic bias by cross-pollinating the
tools of GSP and ML over graphs.

III. PRELIMINARIES AND PROBLEM STATEMENT

The focus of this study is to mitigate bias in graph-based
learning algorithms by employing graph filters for a given undi-
rected graph G := (V, E), where V := {v1, va, ..., vy } denotes
the set of nodes and £ C V x Vs the set of edges. Connectivity
of the input graph is encoded in the symmetric adjacency matrix
A € {0,1}M*N where A;; = 1 if and only if (v;,v;) € €. In
addition, X € RV*F represents the nodal features of G, whose
columns are graph signals (one per feature). The diagonal degree
matrix is D € RV*V where D;; denotes the degree of v;. Let
L =Iy — D 2AD" 2 denote the normalized graph Laplacian
matrix, where the normalized adjacency matrix is represented
by A: =D zAD =.

The sensitive attribute is the nodal feature (such as ethnicity,
religion) on which the decisions should not be dependent for
fair decision-making. Herein, the sensitive attribute is assumed
to be binary and is denoted by s € {—1,1}". The feature
vector and the sensitive attribute of node v; are denoted by
x; € RF and s; € {—1,1}, respectively. In (semi-supervised)
node classification tasks, some vertices have (e.g., binary) la-
bels y;. For concrete examples of nodal features, labels, and
sensitive attributes in several real-world network datasets, see
Section VI-A.

A. Graph Signal Processing Fundamentals

The graph Fourier transform (GFT) is an orthonormal trans-
form that provides the representation of a graph signal z € RV
in the graph spectral domain [8], [17], [52]. Specifically, taking
the GFT of a graph signal amounts to projecting the signal
onto a space spanned by the orthogonal eigenvectors of the
positive semi-definite (PSD) normalized graph Laplacian matrix
L [52]. Let the eigendecomposition of the normalized Lapla-
cianbe L = VAV, where A = diag(Ay, ..., Ax) collects the
non-negative eigenvalues and V is the matrix of Laplacian
eigenvectors. Then, the GFT of the graph signal z € R% is given
by z = V "z. Graph frequencies correspond to the eigenvalues
of the Laplacian (a measure of smoothness of the eigenvectors
with respect to the graph), meaning that the GFT decomposes

signals into frequency modes (i.e., the eigenvectors of L) of
different variability over G.

In classical signal processing, filters are utilized to manip-
ulate signals such that their, e.g., unwanted components are
attenuated or removed. Similarly, graph filters can be used to
modify graph signals for different purposes, including graph
signal classification [2], [59], smoothing, and denoising [53],
[57]. Filtering an input graph signal z;, € RY via a filter with
frequency response h := [h,...,hy]' can be mathematically
expressed as (e.g., [14], [41], [52])

Zow = V diag(hy, ..., hy)V 2. (1)

Frequency domain filtering

Therefore, filtering in the frequency domain corresponds to
point-wise multiplication of the input signal’s GFT, z;,, with
the frequency response of graph filter, h. Identity (1) is akin to
a convolution theorem for graph signals.

Convolutional filters are commonly utilized in ML due to
their computational efficiency and parameter-sharing property,
which motivates their generalization to the graph domain. Graph
convolutional filters” input-output relation can be described via
shift and sum operations. Specifically, a graph convolutional
filter of order L is a linear mapping of the form

L—-1
H .= Z AL, (2)
=0

with input-output relation 2z, = Hz;,. Here, h := [ho,
...,hL_l]T € RE are the filter coefficients, and A is the se-
lected graph-shift operator [49]. Notice how (2) resembles a
finite impulse response (FIR) filter, with the identification of Al
as an [th-order shift operator acting on graph signals [22]. By
utilizing the spectral decomposition of A, H can also be written
asH = V( ZL:_Ol hi(In — A)')VT. Thus, the filter is diagonal-
ized by the graph’s eigen basis and H:= Zf;ol hi(Iy — A) =
(jiag(lgl) can be regarded as the frequency response of H, where
h = [hy,...,hy]" collects the filter’s spectral response at the N
discrete graph frequencies. Moreover, notice that upon defining
the N x L Vandermonde matrix ¥, where U;; := (1 — A;;)7 7,
then it holds that h := Wh [49].

Unlike the general frequency response in (1), for polynomial
graph convolutional filters (2) one introduces an explicit param-
eterization fi; = le_Ol hy(1 — 2;)!. Accordingly, the number of
filter coefficients (or degrees of freedom) is L, independent of
the graph size V.

B. Problem Statement

In this paper, given G and s, we address the problem of
designing graph filters with frequency response h € RV, so that
the bias caused by the graph topology can be attenuated with the
application of the designed filters in the learning algorithm. A
possible application of the fairness-aware graph filter in a GNN-
based learning pipeline is depicted in Fig. 1. As we elaborate in
Section IV-B, bias attenuation will be pursued by minimization
of a judicious bias metric; namely, the linear correlation between
s and the effective graph aggregation operator that results upon
filtering with h.
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IV. BIAS MITIGATION RATIONALE AND CRITERION

In this section, we first motivate our filtering approach for bias
mitigation and provide a graph spectral domain illustration of
the fairness-utility tradeoff. We then propose a filter-dependent
bias measure that will serve as a criterion for our subsequent
designs.

A. Spectrum Analysis

The homophily principle suggests that nodes with similar
attributes are more likely to connect in networks, which hints at
denser connectivity between the nodes with the same sensitive
attributes and also with the same label [19]. Hence, both the
sensitive attributes s and node labels y are expected to be smooth
signals over G. In the GSP parlance, this implies higher energy
concentration for § and y over lower frequencies. Now, we
wish to design a filter that preserves the necessary information
for a downstream task (node classification in this paper) after
“filtering out” traces of the sensitive attribute. Naturally, the
extent of the overlap between the spectra of s and y plays
an important role in the feasibility of said fairness-aware filter
design.

To examine this tension, the GFT coefficients in s and y over
lower frequencies are depicted in Fig. 2 for two real-world social
networks with more than 6000 nodes. For additional details of
the datasets, see Section VI-A. Fig. 2 depicts normalized GFT
coefficients, i.e., §/ max(8) and y/ max(y), to better highlight
the discrepancy between these two signals. As expected, it can
be observed that the spectra of s and y exhibit similar char-
acteristics. However, there are certain (low) frequencies where
the magnitudes of s are markedly higher than those of y. This
subtle but important discordance (which is not just an artifact
of these datasets) inspires our pursuit of frequency-selective
graph filters for bias mitigation. The goal is to attenuate the
sensitive information while preserving graph signals necessary
for downstream ML tasks.

B. Bias Metric

It has been demonstrated that leveraging graph structure in
learning algorithms amplifies already existing bias due to the
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Employment of a fairness-aware graph filter h within a standard two-layer GNN-based learning pipeline as a pre-trained bias mitigation operator. Here,
represents the hidden node embeddings output by the Ith GNN layer.
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Fig. 2. Spectra of the graph signals s (sensitive attributes) and y (labels)
over different graph frequencies, for the real-world social network datasets (top)
Pokec-z and (bottom) Pokec-n. Dataset statistics are presented in Table I. There
are few low frequencies where the magnitudes of s are markedly higher than
those of y.

biased connectivity information [9]. To exemplify this important
point, in social networks, users (nodes) are often more likely to
connect to other users with the same sensitive attributes (e.g.,
ethnicity, religion). This leads to denser connectivity between the
nodes from the same sensitive groups, and hence a graph struc-
ture that is highly correlated with the sensitive attributes [19].
Motivated by this, the linear correlation between the sensitive
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attribute signal s and graph topology is considered for the
ensuing bias analysis and mitigation strategy.

Several graph-based learning approaches rely on node repre-
sentations obtained via local aggregation of information (pos-
sibly followed by a pointwise non-linearity) [24], [41]. In the
simplest possible terms, this process can be summarized as

R = AX, 3)

where R denotes the aggregated node representations, and X is
the input graph signal (or the representations from the previous
layer as in Fig. 1); see, e.g., [7], [24]. In (3), we have pur-
posely omitted learnable weights to simplify the notation while
retaining the components essential to our argument. Hence, if a
filtered graph signal X = Vdiag(h)V " X is input, the obtained
representation becomes

R = AX
=V(Iy -A)V'X
= V(Iy — A)VVdiag(h)V'X
= V(Iy — A)diag(h)V'X

= AX, “)
where A := V(I — A)diag(h)V . Therefore, if a filtered sig-
nal X is fed to the aggregation process, the effective network op-
erator that is utilized in the information aggregation becomes A..
In other words, while forming the representation of node v;, the
information coming from other nodes v;, where {j: /L-j #+ 0},
will be combined with strength proportional to the values of
/Lj. All in all, (4) shows that filtering the input signal X can
be equivalently viewed as a mechanism to modify the network
aggregation operator used to obtain node representations.
Building on this quite simple but key observation, the linear
correlation between the sensitive attributes s and A is employed
as abias measure. This metric is inspired by the finding that many
real-world graphs exhibit denser connectivity among nodes with
common sensitive attributes; i.e., s is a smooth signal as shown
in Fig. 2. Hence, aggregating information predominantly from
nodes with the same sensitive attribute will exacerbate algorith-
mic bias [27]. For this reason, it is desirable to have a lower
correlation between s and the effective network operator, A,
which governs information aggregation when filters are applied
to the input signals. This correlation is proportional to |STA
for the ith column of A, as A = A, . and A. . encodes the
nodes over which the 1nformat10n aggregation will be executed
for node v; (together with the corresponding weights). For
example, if A, . takes significantly higher values for the nodes
with the same sensitive attributes to node v; compared to the
nodes with different sensitive attributes, this implies a high cor-
relation between s and Aiﬁ . This correlation can also be reflected
by [sTA; .|, as it takes a higher value for the described case
compared to the case where A. . values are uniform for different

sensitive attributes (specifically for s; = —1 and s; = 1).
Overall, we aim at minimizing the total correlation [30]
between A and s, which we denote as p := ||s" A ||,. Notice that

p = p(h) because A = V(Iy — A)diag(h)V, hence we can

search over filter frequency responses to reduce graph-induced
bias. This filter design problem is the subject we deal with next.

V. FAIR GRAPH FILTER DESIGNS
A. Direct Optimization of p

Here we describe our convex optimization framework for
fairness-aware optimal graph filter design. The idea is to for-
mulate the following optimization problem to reduce the bias
metric p = ||s' A||, via the employment of a graph filter with
frequency response h:

h':= argmin p(h)
i
5. 10 p(h) = [|s"V(Iy — A)diag(h)V'[|5,
N

gﬁ

=
I\/

<1,vie{l,...,N} (5)

While we have discussed the criterion at length, the constraints
deserve justification. Here, 7 is a hyperparameter to control the
amount of filtered information. It is important to emphasize
that p can be minimized by setting h' = 0 (7 = 0), which is
equivalent to filtering out all information. This trivial solution
is fair but naturally undesirable, because it sacrifices all utility.
At the gther extreme, if 7 = 1, all filter coefficients become
1, i.e., hf = 1, which would mean that we preserve all infor-
mation without any fairness consideration. As we argued in
Section IV-A, there needs to be a trade-off between utility and
fairness. This trade-off can be empirically adjusted via the design
parameter 7. Furthermore, the entries of h' are constrained to not
exceed 1. The spectrum of the input graph signal does not change
for those frequencies X;, where h; = 1. Thus, this constraint is
utilized to preserve information in the frequencies that do not
propagate bias as dictated by p. Overall, this choice is motivated
by utility considerations in the downstream tasks. Note that the
formulation in (5) is convex for the specified constraints; thus, it
can be solved to global optimality using off-the-shelf methods.

Remark I (Spectral-domain design and eigendecomposition):
The advocated graph spectral-domain design of the bias mit-
igating filter necessitates computing an eigendecomposition
of the normalized Laplacian L prior to optimization. This
O(N?) step can certainly challenge the applicability of the
proposed approach when it comes to learning over large-scale
graphs. This limitation nonwithstanding, our experimental re-
sults demonstrate this framework can comfortably handle net-
work datasets with several thousands of nodes. Follow-up work
on eigendecomposition-free filter designs in the vertex domains
is certainly of interest; see also the related discussion preceding
Remark 2.

B. Linear Programming With Closed-Form Solution

The formulation in (5) involves the optimization of N vari-
ables, which incurs high complexity for large graphs. To sidestep
this potential computational bottleneck, we derive a surrogate
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cost that is amenable to efficient minimization. Specifically, we
first conduct a bias analysis and upper bound the bias metric
p. We then show that minimization of the upper bound results
in an LP, whose solution is a filter with frequency response
flg - Remarkably, the solution to the LP attains a closed-form
solution, which sidesteps the need for iterative solvers, and
hence brings computational savings compared to (5). Together
with this improved computational efficiency, once more, fli f
can effectively “filter out” the sensitive information from the
bias-amplifying graph connectivity.

First, Proposition 1 reveals the sources of bias and provides
an upper bound on the total correlation between s and A..

Proposition I: Consider filtering signals using a graph filter
with frequency response h prior to aggregation using A, and
let A :=V(Iy — A)diag(h)V". Then, p := [|[s" A||> can be
upper bounded by

p<f2|sz|\1— )[al. 6)

Proof: Leveraging the definitions of p and the effective ag-
gregation operator A, we have A := V(Iy — A)diag(h)V":

p=ls"All
=||s"V(Iy — A)diag(h)V"||,. (7)

Furthermore, (7) can be reformulated based on the definition of
GFT for the sensitive attribute signal s:

p=[8"(Ix — A)diag(h) V|5, ®)
By utilizing the norm inequality, p can be upper bounded:

p < 8" (Ix — A)diag(h) V||,
)w')ili'vji|~ &)

Based on the triangle inequality, the following inequality can
further be derived:

N N _
p< DD 151 = rihivjil
j=11i=1
N N ~
<D I = 20|l [l
j=1i=1
N
= Z|Sz|\ (1—2)[|h |Z\Uﬂ\
=1
N ~
:Z|Sz|\(1— )[Rl IV il (10)
=1

Moreover, the relation between the ¢; and /5-norms of a vector
a € RY can be written as ||a||; < v/N||a||2, based on which it
follows that:

3[Rl [V il

N
ZI&II

147

N
< VN 1SN = 1) Rl Vel
1=1

*fZISZH (1= )||al, (11)

where the last equality holds because the eigenvectors of L are
orthonormal. ]

Proposition 1 shows that the linear correlation between the ef-
fective graph topology and the sensitive attributes is a function of
SN 156011 = 14)||hs|. Therefore, we can design a “matched”
graph filter to reduce this term and hence the bias. Define
m; = [3;||(1 — )|, foralli =1,..., N, and let m € RY be
the vector whose ith component is m;. Then, the following LP
problem can be formulated for the design of an optimal fair
graph filter:

hff ‘= argmin m'h

..,N}. (12)

The same set of constraints as in (5) are employed here. Let
a = argsort(—m) be the vector containing the indices of the
elements in m sorted in descending order. The closed-form
solution for this LP problem can be obtained as:

i—1

va-n-£ o) |

Jj=1 I
(13)

(?lfcf)oh =|1-

where [z]4 := max(0, ) is a projection operator onto the non-
negative reals.

Proof (sketch): Italways holds thatm; > 0and iLl > (0, forall
1 =1,..., N, due to the definition of m and the box constraints
on each of the h;. Therefore, the cost function is always non-
negative, i.e., m'h > 0, and the equality is achieved when h =
0. However, such a solution does not satisfy the constraint that
lower bounds the sum of elements in h (unless when 7 = 0, but
as discussed in Section V-A, this case is of no practical interest).
The conclusion is that the optimal solution is attained on the
boundary of the feasible set, where h; takes the smallest possible
values for the largest entries of m, as long as the first constraint
holds. Specifically, the optimal h has null entries (or entries
that are smaller than 1) in the indices where vector m takes the
largest values as long as the filtering budget (imposed by the
first constraint) is not exhausted, which provides the recursive
solution in (13). O

For the budget prescribed by 7, the recursive definition of the
filter’s frequency response in (13) specifies the optimal solution
of the LP design in (12).
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C. Polynomial Graph Convolutional Filter

The LP-based filter design in the previous section admits a
closed-form solution, and accordingly, it offers computational
savings relative to (5), since solving the latter necessitates an
iterative procedure. Here, instead, we adopt a polynomial graph
filter parameterization [22], which offers an explicit handle on
the number of optimization variables. This way, the number of
variables decouples from (and can be markedly smaller than)
the size of G.

Polynomial graph convolutional filters are often the operators
of choice in several SP and ML tasks due to their parameter
sharing property, locality and linear computational complexity.
When these filters are used in GNNs, the parameter sharing
property allows them to learn complex relations within graphs
(including large-scale ones) based on a limited number of
training samples. The locality property implies they can be
implemented in a distributed fashion, solely via exchanges of
information with neighboring nodes in the graph. Finally, their
linear computational complexity aids scalability [22].

In the frequency domain, as also mentioned in Section III-A,
the graph convolutional filter’s response is given by h := ¥h,
for the N x L Vandermonde matrix ¥, where ¥,;; := (1-
A;;)7~! [49]. Based on this parameterization, the optimization
problem in (5) can be reformulated as:

hf:= argmin p(h)
h

s.to p(h) = [|s"V(Ixy — A)diag(Th)V |2,
N
> (¥h); > N7,
i=1
0<(¥h); <1,Vie{l,...,N}. (14)

The number of optimization variables is L, regardless of the
number of nodes in G. By selecting a filter order that satisfies
L < N, this approach can be a better fit for large graphs. Mean-
while, the fairness improvement it provides may be limited when
compared to our previous designs, as its degrees of freedom are
purposedly reduced. Another salient feature of the polynomial
graph filter (2) obtained by solving (14) is that it can be directly
implemented in the vertex domain via (distributed) information
exchanges among neighbors. Polynomial parameterizations of
the filters h/ and flff can be obtained as well, because they

are jointly diagonalizable with A by construction [51, Prop. 1].
However, this requires extra computation to interpolate the
designed frequency responses and will likely necessitate a high
value of L.

Note that p can also be optimized in the vertex domain by min-
imizing  p = [sTAlls = ||s"AH> = | " usT AN
with respect to the graph filter coefficients h. This way, one
eliminates the need to calculate eigenvectors and eigenvalues
of the graph Laplacian (cf. Remark 1). However, the design
of constraints for this formulation is less intuitive than in the

frequency domain and becomes non-trivial. We leave this
interesting endeavor as a future research direction.

Remark 2 (Flexible use of the proposed filter designs): The
designed fair filters hf, hf, and hf s can be employed in a
flexible way to mitigate bias for different graph-based learning
algorithms. They can be applied to the graph signals that are
input to or output from the learning algorithms. Models designed
for attributed graphs generally utilize the information from both
the nodal features and graph topology [24]. Thus, the proposed
filters can be applied to the nodal features before they are fed to
the learning pipeline in order to prevent the amplification of bias
due to the graph connectivity. Alternatively, for any algorithm
that outputs a graph signal (e.g., node labels in node classifi-
cation), h', h', and h{, can be employed on the output graph
signal as fairness-aware post-processing operators. Overall, the
impact of the proposed fair filter designs can permeate several
GNN-based learning frameworks in a versatile manner.

D. Discussion

We have proposed three novel designs with complementary
strengths to mitigate bias in the network topology via graph
filtering. Each design has certain advantages over the others
when it comes to manipulating the effect that input graph struc-
tures and sensitive attributes have on learned representations. In
the first design, a fair graph filter h', is obtained by solving a
convex optimization problem that directly minimizes the bias
measure p. Compared to flif whose design is based on an

upper bound on p, hf is expected to yield better bias mitigation
performance, especially when the bound gets looser for the input
graph. Moreover, as h' has higher degrees of freedom than the
polynomial filter h', again its application is expected to decrease
p in a more effective way. On the other hand, both fl(f: s and hf
provide computationally more efficient bias mitigation solutions
than hf. Furthermore, while fli f is given in closed form and
thus eliminates the need for iterative solvers, the number of
optimization variables in the problem defining h' is independent
of the input graph size (the complexity of the sorting operation in
the recursive computation of flfcf still grows with V). Granted,
the number of constraints in (14) does depend on NV, and that is
why a full-blown vertex domain formulation is still of interest;
see the discussion preceding Remark 2. All in all, both hi ¢ and
h' can provide the most efficient solution based on the input
graph properties.

Overall, all our proposed fairness-aware graph filter designs
can be employed in a flexible and efficient manner in several
graph-based ML frameworks. For example, within GNN struc-
tures, these filters can be utilized as pre-trained bias mitigation
operators before each GNN layer, e.g., see Fig. 1. It is important
to emphasize that the employment of these filters as bias mitiga-
tion sub-layers within NNs does not modify the training process,
unlike the majority of existing approaches that utilize fairness-
aware regularizers and constraints [4], [5], [9], [12], [15], [34].
Therefore, our filters can lead to more stable training compared
to these strategies, especially adversarial regularization-based
ones that are known to suffer from instability issues [25]. More-
over, the proposed filters need to be computed only once for a
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TABLE I
DATASET STATISTICS

Dataset |S_1‘ |51| D)_1| |))1| ‘Sl
Pokec-z 4851 2808 3856 3803 29476
Pokec-n 4040 2145 3432 2753 21844

given G, after which they can be utilized for various tasks on
said graph.

VI. EXPERIMENTAL RESULTS
A. Dataset and Experimental Setup

Datasets: The performance of the proposed fair filter designs
is evaluated on the node classification task over real-world social
networks Pokec-z and Pokec-n. Pokec-z and Pokec-n are the
sampled versions of the 2012 Pokec network [55], which is a
Facebook-like social network in Slovakia [9]. The region of
the users is utilized as the sensitive attribute, where the users
are from two major regions. Labels for the node classification
task are the binarized working field of the users. Statistics for
the utilized datasets are presented in Table I, where S; and Y
represent the set of nodes with sensitive attribute and class label
i, respectively. Note that N = |S_1| + |S1| = |V_1| + |1 ].

Evaluation metrics: Accuracy is adopted as the utility metric
of node classification. For fairness assessment, two quantitative
measures of group fairness metrics are reported, namely szatis-
tical parity: Agp =|P(g=1]s=-1)—P(g=1]s=1)]
and equal opportunity: Ao = |P(g=1|y=1,s=—-1) —
P(g=1]y=1,s=1)|, where y represents the ground truth
label, and ¢ is the predicted label. Here, statistical parity is a
measure for the independence of positive rate from the sensi-
tive attribute, and equal opportunity signifies the level of the
independence of true positive rate from the sensitive attribute.
Lower values for Agp and Ao indicate better fairness perfor-
mance [9] and are more desirable.

Implementation details: We evaluate the proposed filter de-
signs in two different environments. First, they are employed
as bias mitigation sub-layers to filter the input representations
to GNN layers in a two-layer graph convolutional network
(GCN) [24]; see also Fig. 1. The GCN model is trained for node
classification by employing the negative log-likelihood function
as the objective. For this setting, the training set consists of 40%
of the nodes, while the remaining nodes are evenly split to create
validation and test sets. The hyperparameter 7 is selected via grid
search among the values {0.0003,0.0004, 0.0005, 0.0006} for
the filters h" and h!, ;- Specifically, for hf, 7 is chosen to be 0.0005
and 0.0003 on Pokec-z and Pokec-n, respectively, while it equals
0.0004 for fli ¢ on both datasets. Moreover, for the proposed
polynomial filter, L is selected as 40 and 50 on datasets Pokec-z
and Pokec-n, respectively, based on a grid search among the
values {30, 40, 50}. To alleviate the hyperparameter tuning step
for hf, 7 = 0.0004 is directly utilized on both datasets without
any fine-tuning.

Second, to illustrate the use of the fair filters as post-
processing operators, we use them to filter the predicted nodal la-
bels computed by the classification algorithm presented in [47].
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In the filtered signal, the components that are larger than a
threshold are assigned to the first class, while the others are
assigned to the second class. Note that this threshold is selected
to be 0 for labels —1 and 1 in the experiments, however it can
be adaptively chosen based on the input graph. In this second
setting, 40% of the nodes are used to train the model and the
remaining ones contribute to the test set. The hyperparameter
tuning process is kept the same as in the case where the filters
are employed as pre-processing operators. For h', 7 is chosen
to be 0.0004 on both datasets, while it equals to 0.0004 and
0.0006 for fli 7 on Pokec-z and Pokec-n, respectively. For the
polynomial filter, L is selected again as 40 and 50 on datasets
Pokec-z and Pokec-n.

For all experiments, results are obtained for five random
data splits, and their average along with the standard deviations
are reported in the tables that follow. Further implementation
details can be found in the publicly available code shared as
supplementary material to this paper, which can be used to
generate all results reported in this section.

Baselines: Fairness-aware baselines in the experiments in-
clude adversarial regularization [9], EDITS [11], and Fair-
Drop [54]. Adversarial regularization is a widely utilized fair-
ness enhancement strategy, where an adversary is trained to
predict the sensitive attributes. For adversarial regularization,
the multiplier of the regularizer is tuned via a grid search among
the values {0.1, 1, 10,100, 1000} (the multiplier of classifica-
tion loss is assigned to be 1). Furthermore, EDITS [11] is a
model-agnostic debiasing framework that mitigates the bias in
attributed networks before they are fed into any GNN. Specifi-
cally, it creates debiased versions of the nodal attributes and the
graph structure, which are then input to the GCN network used
here for node classification. For EDITS, the threshold proportion
is tuned among the values {0.015, 0.02, 0.06, 0.29}, where these
values are the optimized thresholds for other datasets used
in [11]. Finally, FairDrop [54] proposes a biased edge dropout
strategy for a more balanced graph topology in terms of the
edges connecting different (and the same) sensitive groups. The
hyperparameter ¢ in the FairDrop algorithm is tuned among the
values {0.7,0.8,0.9}.

B. Results

Comparative results for the proposed fairness-aware graph
filters, flf, fli f, and hfare presented in Table I1, for the case where
they are utilized as bias mitigation layers. The natural baseline
for the proposed strategies is to employ the GNN model without
any fairness-aware operations, where this scheme is denoted
by “GNN” in Table II. Moreover, “Adversarial”, “EDITS”, and
“FairDrop” in Table II stand for the adoption of adversarial
regularization in training [9], and state-of-the-art fairness-aware
baselines EDITS [11], and FairDrop [54], respectively.

The results in Table I demonstrate that all of the proposed
filter designs improve upon the naive GNN baseline in terms
of both fairness metrics, while also providing similar utility.
Specifically, the proposed strategies achieve 30% to 90% im-
provement in all fairness measures for every dataset compared
to GNN. The results further demonstrate the superior fairness

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 26,2024 at 06:18:59 UTC from IEEE Xplore. Restrictions apply.



150 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 18, NO. 2, MARCH 2024

TABLE II
PROPOSED FILTERS AS BIAS MITIGATION LAYERS IN A GNN MODEL

Pokec-z Pokec-n
Accuracy (%) Asp (%) Ago (%) Accuracy (%) Asp (%) Ago (%)
GNN 66.52 + 0.27 6.79 £ 2.45 7.26 + 3.29 64.96 + 0.19 6.79 £ 2.45 7.26 + 3.29
Adversarial 64.26 + 1.79 4.85 + 2.16 5.99 £ 2.71 64.22 + 0.71 4.34 £+ 3.87 3.84 +£2.71
EDITS [11] 62.67 + 2.64 3.17 £ 2.49 4.54 £+ 2.99 62.67 + 0.51 4.40 £ 2.41 5.38 £ 1.92
FairDrop [54] 66.79 4+ 0.65 9.11 £ 1.89 8.35 + 3.81 64.33 + 0.44 4.46 £ 1.67 5.02+1.84
h'+ GNN 66.05 4+ 0.30 1.08 +1.20 2.20 + 2.06 65.07 + 0.21 2.12+1.01 2.42 + 1.96
flfcf+ GNN 66.34 + 0.27 1.234+£1.43 2.15 £+ 1.96 65.05 + 0.21 2.13 +£0.93 2.39 £1.78
h'4 GNN 66.32 4+ 0.27 3.36+1.99 4.21+243 65.07+0.21 4394201 513 +2.00

The bold values indicate best results for the corresponding metric.

TABLE III
TOTAL PEARSON CORRELATION COEFFICIENTS [30] BETWEEN _
REPRESENTATIONS AND SENSITIVE ATTRIBUTES BEFORE/AFTER h/

Pokec-z Pokec-n
Before h/ %" After b/ @i Before h/ " After hfei"
1st layer 4.27 1.98 4.60 1.94
2nd layer 4.25 + 0.03 2.96 + 0.01 3.124+0.05 2.21 +0.02

performance of hf over the polynomial filter hf, which is ex-
pected, as h' can better optimize our bias metric p with a higher
number of degrees of freedom compared to h!. Moreover, it is
observed that our designs, hf and hf 7> lead to similar fairness
improvements, which signifies that the derived upper bound in
(11) is a successful surrogate bias measure for the Pokec graphs.

The results in Table IT also show that h' and hf, always
achieve better fairness performance together with similar/better
utility, compared to other fairness-aware baselines, namely Ad-
versarial [9], EDITS [11] and FairDrop [54]. While the polyno-
mial filter, h' generally leads to a similar fairness improvement
compared to other fairness-aware baselines, this fairness per-
formance is typically accompanied by a better utility for h'.
Furthermore, it can be observed that the employment of the
novel filters generally leads to the lowest standard deviation
values, and therefore enhances the stability of the results. The
improved utility provided by our filter designs compared to
the GNN baseline on Pokec-n might seem counter-intuitive,
due to the expected fairness-utility trade-off. Here, the higher
classification accuracy can be attributed to the denser structure
of the effective graph operator A used for message passing,
when compared to the sparser graph adjacency matrix A used
in the fairness-agnostic GNN. Denser connections can lead to
more powerful node representations (depending on the data),
however at the cost of higher computational complexity for the
message passing operations. Overall, the results corroborate the
efficacy of the proposed filter designs design in mitigating bias,
while also providing similar utility measures compared to the
state-of-the-art fairness-aware baselines.

Fairness performance in Table II is reported in terms of com-
monly utilized group fairness measures; namely, statistical par-
ity and equal opportunity, same as prior works [9], [11], [54]. In
Table I1I, we also provide the total correlation values between the
sensitive attributes and representations that are input to or output

from the designed filter h'. With reference to the two-layer GNN
architecture in Fig. 1 that is used for this experiment, in the first
row of Table Il we report ||s " X ||; (before hf) and ||sT X||; (after
flf). Likewise, in the second row, we report the total correlations
|s"H; |1 (before h') and ||s"H; ||y (after h'). Overall, the re-
sults demonstrate that h' can significantly reduce the correlation
that is expected to lead to intrinsic bias, which is also reflected in
the improved Agp and A go values in Table II. This correlation
reduction is observed at both stages in this two-layer GCN and
for both datasets. Notice that ||s"H;||; > [|s" X||; because the
GCN layer (mapping X to H;) aggregates information using
A, and the latter is highly correlated with s as discussed in
Section I'V-B. Furthermore, by comparing the first and second
rows in Table III it is observed that the correlation reduction is
more pronounced before any GNN layer is used to process the
data. Since the representations output by a GNN layer are learned
to maximize utility, this phenomenon is an expected result of the
corresponding fairness-utility tradeoff.

We also provide experimental results herein, whereby the
proposed fair filters are employed as post-processing operators
on the predicted labels (a graph signal) of a node classification
algorithm. For this setting, the classification results are obtained
via the algorithm presented in [47], and we subsequently filter
these predicted labels to debiase them. The results are presented
in Table IV, which exhibit similar tendencies as those in Table I1.
Overall, our experiments confirm the efficacy of the proposed
graph filters in improving fairness measures and also for the
setting where they are employed as post-processing operators.
In addition, similar to the findings of Table II, better fairness
measures are typically accompanied by better stability and sim-
ilar utility to the fairness-agnostic baseline [47].

Ablation study: To examine the effect of filter placement in
the adopted two-layer GCN, we carry out an ablation study
whose results are presented in Table V. Therein, “h+GNN”
corresponds to an architecture where the designed filter is em-
ployed before both of the GCN layers; exactly as in Fig. 1.
In the meantime, “h’ before first layer” and “h' before second
layer” denote architectures that utilize a single filter placed
before the first layer only, or, the second layer only, respectively.
Naturally, “GNN” corresponds to a baseline model which does
not employ bias-mitigating filters. The key conclusion from this
study is that using at least one filter, regardless of its placement
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_ TABLE IV
ADAPTIVE FILTER, h" AS FAIRNESS-AWARE POST-PROCESSING OPERATOR

Pokec-z Pokec-n
Accuracy (%) Asp (%) Ago (%) Accuracy (%) Asp (%) Apo (%)
[47] 64.83 + 0.54 8.33 £2.64 9.38 £ 2.54 65.44 + 0.42 6.27 £+ 4.83 8.78 £6.18
[47] + h' 64.44 + 0.38 1.58 +1.01 1.69 +1.41 65.75 + 0.91 2.11+£2.19 3.48 +3.44
[47]+l~1‘;f 64.70 + 0.48 1.57+1.24 1.55+1.21 65.80 + 0.86 2.27+£2.14 3.48 +3.34
[47] + h' 64.62 + 0.54 5.19 £2.39 6.09 £+ 3.00 65.78 + 0.93 4.90 £+ 3.28 6.44 £ 5.48
The bold values indicate best results for the corresponding metric.
TABLEV _
ABLATION STUDY FOR THE EMPLOYMENT OF h" AS BIAS MITIGATION LAYERS
Pokec-z Pokec-n
Accuracy (%) Asp (%) Ago (%) Accuracy (%) Asp (%) Ago (%)
GNN 66.52 + 0.27 6.79 £ 2.45 7.26 £ 3.29 64.96 + 0.19 6.79 £ 2.45 7.26 £ 3.29
h'+ GNN 66.05+0.30 1.08 £1.20 2.20 £ 2.06 65.07 + 0.21 2.12£1.01 2.42 £1.96
h' before first layer 66.22 + 0.23 1.33 £ 1.00 1.98 £2.18 65.05+0.31 2.49 £1.08 2.55 £ 2.32
h' before second layer 66.17 £+ 0.24 1.13+1.26 2.06 £ 1.80 65.10 +0.18 2.05+1.09 2.46 £1.91
The bold values indicate best results for the corresponding metric.
TABLE VI

SENSITIVITY ANALYSIS FOR THE HYPERPARAMETER 7 IN hF AS A BIAS MITIGATION LAYER

Pokec-z Pokec-n
Accuracy (%) Asp (%) Agro (%) Accuracy (%) Asp (%) Ago (%)
GNN 66.52 £+ 0.27 6.79 £ 2.45 7.26 £ 3.29 64.96 + 0.19 6.79 £ 2.45 7.26 £ 3.29
T = 0.0003 66.33 £ 0.25 1.34 £ 1.39 2.26 £2.07 65.07+0.21 2.12+1.01 2.42+1.96
T = 0.0004 66.33 £ 0.22 1.154+1.33 2.26 £1.75 65.04 + 0.20 2.18 £0.95 2.47 £1.87
7 = 0.0005 66.05 + 0.30 1.08 +£1.20 2.20 £+ 2.06 65.05 + 0.18 2.41 £0.86 2.82 +1.68
T =0.0006 66.76 £ 0.25 1.49 +£1.27 2.73 £2.27 64.97 £ 0.12 2.46 £+ 0.66 2.93 +1.58

The bold values indicate best results for the corresponding metric.

TABLE VII B
SENSITIVITY ANALYSIS FOR THE HYPERPARAMETER T IN hl;f AS A BIAS MITIGATION LAYER
Pokec-z Pokec-n
Accuracy (%) Asp (%) Ago (%) Accuracy (%) Asp (%) Apo (%)
GNN 66.52 + 0.27 6.79 £+ 2.45 7.26 £+ 3.29 64.96 + 0.19 6.79 £ 2.45 7.26 £ 3.29
7 = 0.0003 66.30 + 0.24 1.34 +1.38 2.34 + 2.07 65.07 + 0.21 2.12+1.01 2.42 +1.96
7 = 0.0004 66.34 + 0.27 1.234+1.43 2.15 £ 1.96 65.05 + 0.21 2.13 £0.93 2.39 £ 1.78
7 = 0.0005 66.34 + 0.22 1.19+1.36 2.35+1.74 64.99 + 0.19 2.16 £ 0.82 2.39 £ 1.84
7 = 0.0006 66.19 + 0.36 1.66 £+ 1.10 2.64 +2.27 65.01 +0.10 2.28 +£0.92 2.58 +1.83

The bold values indicate best results for the corresponding metric.

within the architecture, always helps improve fairness measures.
Furthermore, if only one filter is used, we find that placing it
deeper (meaning before the second layer) results in better/similar
fairness measures compared to an earlier placement of the filter.
Finally, results in Table V are inconclusive as to whether
employing the filter before all layers is always the best strategy
due to the high variances. Still, we find that employing the
proposed filter before every layer achieves a similar fairness per-
formance in the worst case compared to single filter placements.
Thus, we suggest the use of filters in all layers for a simpler
design.

Sensitivity analyses: For our designs hf and fli £ sensitivity
analyses are presented in Tables VI and VII, respectively; in
order to assess their sensitivity to their hyperparameter, 7, for
the case where they are employed as bias mitigation layers. Note
that Fig. 2 suggests that the number of frequencies where the
magnitudes of S are markedly higher than y is around 3 for
both datasets. Thus, the range of 7 is chosen so that the total
number of spectral components for which the filters’ frequency
response is approximately equal to O is less than 10. This way,
we expect to improve markedly in terms of fairness without
incurring a major degradation in utility. Overall, the results
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TABLE VIII B
SENSITIVITY ANALYSIS FOR THE HYPERPARAMETER 7 IN h! AS A POST-PROCESSOR

Pokec-z Pokec-n
Accuracy (%) Asp (%) Apo (%) Accuracy (%) Asp (%) Ago (%)
[47] 64.83 +0.54  8.33 +2.64 9.38 4+ 2.54 65.44 + 0.42 6.27 +4.83 8.78 £6.18
7 = 0.0003 64.40 + 0.33 1.67 £ 0.95 1.83 +£1.30 65.48 + 0.50 2.33 +2.27 3.85 4+ 3.58
T = 0.0004 64.44 + 0.38 1.58+1.01 1.69+1.41 6575+091 2.11+219 3.48+3.44
7 = 0.0005 64.45 + 0.42 1.94 £+ 0.81 2.284+1.57 6578+ 0.91 2.14+2.20 3.50+3.47
T = 0.0006 64.27 + 0.48 2.01 +£1.17 2.63 +1.85 65.81 + 0.88 2.20+2.18 3.51+3.44
The bold values indicate best results for the corresponding metric.
TABLE IX B
SENSITIVITY ANALYSIS FOR THE HYPERPARAMETER T IN hi FASA POST-PROCESSOR
Pokec-z Pokec-n
Accuracy (%) Asp (%) Apo (%) Accuracy (%) Asp (%) Aro (%)
[47] 64.83 +0.54  8.33 +2.64 9.38 4+ 2.54 65.44 + 0.42 6.27 +4.83 8.78 £6.18
7 =0.0003 64.80 £ 0.39 1.64 £+ 0.82 1.76 £ 1.00 65.68 + 0.33 2.61 +2.19 5.57 £2.91
7 = 0.0004 64.70 + 0.48 1.57+1.24 1.55+1.21 65.48 + 0.50 2.33 +2.04 4.54 4+ 3.00
7 = 0.0005 64.35 + 0.50 1.83 +£1.14 2.374+0.47 65.79+0.90 2.24+214 3.55+3.40
7 = 0.0006 64.07 + 0.39 2.31 £ 1.70 3.094+1.72 65.80+0.86 2.27+214 3.48+3.34

The bold values indicate best results for the corresponding metric.

demonstrate that the filters, hf and f1£ 7»always lead to better fair-
ness measures compared to the fairness-agnostic GNN baseline,
within a broad range of hyperparameter choices. The sensitivity
analyses for setting where the filters are used as post-processing
operators are deferred to the Appendix, which lead to a similar
conclusion.

C. On the Effective Network Operator

Based on (4), the effective network operator used in the
learning process is defined to be A := V (Iy — A)diag(h)V .
Therefore, employing the proposed graph filters can be in-
terpreted as a modification to the original graph connectivity
with the final aim of reducing the structural bias. For graphs
encountered in various application domains, it is typically ob-
served that the number of edges connecting the same sensitive
groups, intra-edges, is significantly larger than the number of
edges linking different sensitive groups, inter-edges, due to the
homophily principle [9], [30]. Based on this observation, several
studies have demonstrated that the imbalance between the num-
ber of intra and inter-edges is a major factor for the resulting
algorithmic bias [30], [34], [54]. Motivated by this, here we
visualize the intra- and inter-edges in a sub-graph extracted from
the Pokec network and their distributional change in the effective
network operator after applying the filter h', Specifically, Fig. 3
illustrates the intra- and inter-edges using the colors green and
red, respectively, for the original subgraph and the modified
effective graph structure after hfis employed. The figure reveals
that the application of h! has a balancing effect in the number of
intra- and inter-edges in the resulting graph structure, which can
help visualize the bias mitigation mechanisms of the proposed
strategies. Note that this balancing effect is also supported by
comparing the total weights of intra- and inter-edges in the

Fig. 3. For a sampled subgraph from the Pokec network, the distribution of
the intra-edges (green) and inter-edges (red) in the effective network topology
without (top)/ with (bottom) the application of h'.

original network operator A versus the effective one A obtained
when accounting for the filters. Specifically, in the original
topology, the total weights of the intra- and inter-edges are 3102
and 165, respectively. On the other hand, the application of hf
has a balancing effect resulting in 1824 and 1424 intra- and
inter-edges, respectively.
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VII. CONCLUSION

In this study, we put forth three novel graph filter designs with
the goal of mitigating bias stemming from the graph topology.
Specifically, we first introduce a bias metric, p, that is applicable
to unsupervised learning settings and measures the correla-
tion between the connectivity pattern and sensitive attributes.
Our first graph filter design, flf, is obtained as a solution to
a convex optimization problem that minimizes p. For a more
efficient solution, we carry out a bias analysis and formulate an
LP problem that targets the minimization of an upper bound on
p. Remarkably, we show the LP attains a closed-form optimal
solution for a fair graph filter flfc - Finally, we take a fair, polyno-
mial graph convolution filter, hf, into consideration, where the
number of optimization variables in the corresponding design
is independent of the input graph size. The proposed fairness-
aware graph filters can be flexibly employed in various graph-
based ML and SP algorithms at different stages of learning. Node
classification experiments on real-world networks demonstrate
that all of the proposed filter designs mitigate bias effectively.
We observe they typically lead to better fairness measures when
compared to other state-of-the-art fairness-aware baselines, and
without notably sacrificing utility (i.e., classification accuracy).

This work opens up several exciting future directions. First,
the proposed designs assume the existence of a single sensitive
attribute, whereas considering multiple sensitive attributes in
our designs would be certainly of interest. Second, this study
focuses on the linear correlation between the graph structure
and sensitive attributes as a bias measure, and extending our
analysis to non-linear correlation metrics is another important
future direction. Finally, robust adaptations of the proposed de-
signs to accommodate several real-world challenges, including
but not limited to missing sensitive attribute/graph structure
information, and privacy constraints, are important components
of our future research agenda.

APPENDIX
FURTHER SENSITIVITY ANALYSES

The sensitivity analyses are further provided in Tables VIII
and IX for the case where the proposed filters, hf and f1£ £, are
employed in the post-processing step. The results in these tables
signify that the proposed strategies always improve the natural
baseline in terms of fairness for a wide range of 7 values also
for their employment as post-processing operators.
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