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Abstract

Nitrous oxide (N2O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed
by N2O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N2O
reduction has remained elusive. Acidic (pH< 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico,
and microcosms maintained with low (0.02 mM) and high (2 mM) N2O assessed N2O reduction at pH 4.5 and 7.3. All microcosms
consumed N2O, with lag times of up to 7 months observed in microcosms with 2 mM N2O. Comparative metagenome analysis revealed
that Rhodocyclaceae dominated in circumneutral microcosms under both N2O feeding regimes. At pH 4.5, Peptococcaceae dominated in
high-N2O, and Hyphomicrobiaceae in low-N2O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered
from the N2O-reducing microcosms harbored nos operons, with all eight MAGs derived from acidic microcosms carrying the Clade II
type nosZ and lacking nitrite reductase genes (nirS/K). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa
indicating an unexplored N2O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5–5.7 soil metagenome datasets revealed
that nosZ genes commonly occur, suggesting broad distribution of N2O reduction potential in acidic soils.

Keywords: nitrous oxide (N2O), greenhouse gas, non-denitrifying N2O reducers, acidic soils, low pH N2O reduction, Clade II N2O
reductase (NosZ)

Introduction
Nitrous oxide (N2O) is a long-lived ozone-depleting greenhouse
gas with a global warming potential far exceeding that of the
equivalent amount of CO2 [1, 2]. The global atmospheric N2O
concentration has increased from 270 parts per billion (ppb) in
1750 to 331 ppb in 2018 [3]. During the 2007 to 2016 time period,
the net global atmospheric N2O increase was estimated at 4.3
Tg N year−1 [4], indicating that N2O sources outpace N2O sinks.
Major sources of N2O include denitrification (NO3

−/NO2
− → N2O)

[5] and chemodenitrification [6], with additional N2O released
from nitrification (NH4

+ → NO3
−) [7] and dissimilatory nitrate

reduction to ammonium (NO3
−/NO2

− → NH4
+) [8]. Compared

to multiple sources of N2O, its consumption catalyzed by N2O
reductase (NosZ) is the major natural biotic sink.

Canonical, complete denitrifiers possess the nos operon
and can synthesize NosZ responsible for N2O reduction to

dinitrogen (N2), the latter a gas without warming potential.
Genomic analyses distinguished two types of nos operons with
distinct nosZ: Clade I nosZ generally associated with canonical
denitrifying bacteria and Clade II nosZ often found on genomes
lacking the denitrification biomarker genes nirS or nirK [9–11].
Subsequent studies reported that Clade II nosZ are generally
more abundant and diverse in soils than Clade I nosZ [12,
13], suggesting N2O reduction potential outside the group of
complete denitrifiers. Kinetic studies using axenic bacterial
cultures demonstrated that Clade II N2O reducers exhibit higher
affinities to N2O and growth yields than their N2O-reducing Clade
I counterparts [14], suggesting Clade II reducers capture energy
during growth with N2O as electron acceptor more efficiently.
Environmental factors, including pH, temperature, O2 levels,
substrate availability, and NO3

−/NO2
− levels are known to affect

N2O reduction [15–17]. The final reduction step (N2O → N2)
catalyzed by NosZ was found particularly sensitive to pH,
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explaining N2O emissions from acidic environments [18, 19].
Expression studies suggested posttranscriptional interference at
low pH, with the NosZ remaining in the catalytically inactive apo-
form, a possible reason for the observed decline in NosZ activity
under acidic conditions [18, 20].

Natural soils are the dominant source of N2O (∼5.6 Tg N2O-
N year−1), accounting for ∼33% of global N2O emissions [4], with
tropical forest soils contributing∼1.34 Tg N2O-N year−1 [21]. Trop-
ical soils were reported to emit N2O at a rate of 0.1±0.04 g N2O-
Nm−2 year−1, which is about 50% above the average rate of global
soil N2O emissions [22]. The large contribution of tropical soils
to N2O emissions has been explained by high N2 fixation activity
and generally acidic soil pH [23–25]. N2O production can be spo-
radic suggesting that fluxes and concentrations of N2O can vary
substantially both over temporal and spatial scales [26]. A com-
parative metagenomic study found similar relative abundances
of nosZ sequences in acidic tropical and circumneutral temperate
soils [23]. Apparently, acidic tropical soil environments have the
metabolic potential to reduce N2O, a hypothesis supported by
isotopic measurements that revealed biotic reduction of N2O in
acidic tropical forest soils [24]. Although some evidence for N2O
reduction under acidic conditions exists, the consensus backed
by laboratory observations is that N2O reduction is negligible at
acidic pH [18, 20, 27, 28].

To reconcile existing inconsistencies between field measure-
ments and laboratory studies, and to explore the impacts of
pH and N2O concentration on N2O-reducing microorganisms,
acidic (pH 4.4–5.0) soil samples were collected in the Luquillo
Experimental Forest (LEF) in Puerto Rico. A series of microcosms
explored the impact of pH (i.e. 4.5 versus circumneutral) and
N2O concentrations (i.e. 0.02 and 2 mM) on N2O reduction.
Metagenome analyses indicate that both pH and N2O concen-
tration select for distinct N2O-reducing microbiomes and suggest
widespread distribution of N2O reduction potential across various
acidic soil ecosystems.

Materials and methods
Soil collection
Soil samples were collected from four locations (5–20 cm depth) in
the LEF in Puerto Rico, including the El Verde tabonuco forest (EV,
453m abovemean sea level [MSL]), the PalmNido palm forest (PN,
634 m MSL), the Pico del Este elfin forest (PE, 953 m MSL), and the
Sabana tabonuco forest (S, 265 m MSL) (Supplementary Fig. S1).
The soil materials were transferred to sterile Whirl-Pak bags,
placed at 4◦C, and manually homogenized prior to microcosm
setup. Detailed descriptions of the LEF can be found elsewhere
[29, 30], and physicochemical properties of the soil samples are
presented in Supplementary Table S1.

Soil microcosms
Completely synthetic, reduced (0.2 mM l-cysteine) mineral salt
medium was prepared following established protocols [31]. In the
pH 4.5medium,50mMpotassiumdihydrogen phosphate replaced
the 30 mM bicarbonate buffer used in the pH 7.3 medium [32].
The pH was adjusted with CO2 (pH 7.3 medium) or with 4 M
hydrochloric acid (pH 4.5 medium). CuCl2 (17 μM) and the Wolin
vitamin mix were added from concentrated stock solutions to
individual 160 mL glass serum bottles after autoclaving [32].

Inside a glove box (Coy Laboratory Products, Grass Lake, MI)
filled with 97% N2 and 3% H2, 2 g (wet weight) of homogenized
soil material was aseptically transferred to sterile glass serum

bottles containing 100 ml of medium using stainless-steel spat-
ulas. The serum bottles were immediately resealed with sterile
butyl rubber stoppers, crimpedwith aluminumcaps, and removed
from the glove box. Lactate (5 mM) was added to each serum
bottle from a 1 M stock solution by syringe and replenished four
times over the 15-month incubation period. Two replicate series of
microcosms were established at pH 4.5 and at pH 7.3 with dupli-
cate pH 4.5 microcosms (Supplementary Fig. S1). Plastic syringes
(Becton, Dickinson and Company, Franklin Lakes, NJ) with 25-
gauge needles (Becton, Dickinson and Company) were used to add
0.1 ml (4.17 μmol, 0.02 mM aqueous N2O) and 10 ml (416.7 μmol,
2 mM aqueous N2O) of undiluted N2O gas to the incubation
vessels. N2O was periodically analyzed by gas chromatography
(GC) as described [32] and replenishedwhen consumed.All bottles
were incubated at 30◦C under static conditions for 15 months.
Negative controls included heat-killed (autoclaved) replicates and
microcosms without N2O but with lactate at pH 4.5 for each soil
sample.

Analytical procedures
N2O was analyzed with an Agilent 3000A Micro-GC (Agilent, CA)
equipped with a thermal conductivity detector and a Plot Q
column [14]. The limit of detection was 50 ppmv of N2O with
signal-to-noise ratio of 3:1. The injector and column temperatures
were set to 100◦C and 50◦C, respectively, and the column pressure
was set to 25 psi. For eachmeasurement, a 0.1 ml headspace sam-
ple was withdrawn from the microcosm and manually injected
into the Micro-GC. Aqueous N2O concentrations were calculated
from the headspace concentration using a dimensionless Henry’s
constant for N2O at 20◦C of 1.68 based on the equation Caq =Cg/Hcc

[33]. Caq and Cg are the aqueous N2O and the headspace N2O
concentrations (μM), respectively, and Hcc is the dimensionless
Henry’s constant. The total amount of N2O was calculated as the
sum of N2O in the headspace and the aqueous phase.

DNA extraction and metagenome sequencing
When about half of the final N2O amendment had been con-
sumed, the microcosms were shaken, and 5 ml suspension sam-
ples were collected with 5-ml plastic syringes equipped with 18-
gauge needles. DNA for shotgun metagenome sequencing was
extracted with the DNeasy PowerSoil kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s instructions. DNA con-
centrations were determined using the Qubit fluorometer (Life
Technologies, Carlsbad, CA). Metagenome sequencing was per-
formed at the Institute for Genome Sciences at the University of
Maryland using the Novaseq 6000 platform (Illumina, San Diego,
CA) to generate 48 to 73 million reads with 150-bp read length per
sample (Supplementary Table S2). Replicate high- and low-N2O
pH 4.5 microcosms showed similar N2O reduction performance,
and a single microcosm per treatment was randomly selected for
metagenome sequencing.

Bioinformatic analysis
The metagenomes of the four original soils had been sequenced
previously [23], and were downloaded from European Nucleotide
Archive under project PRJEB26500. The raw reads of the original
soils and of the 16 N2O-reducing microcosms were trimmed with
Trimmomatic v0.39 using default parameters [34]. Subsequent
assembly was performed using IDBA-UD v1.1.3 [35], and only
contigs longer than 1000 bp were included in downstream anal-
yses. Contigs were binned using MaxBin2 v2.2.4 with default
settings to recover individual metagenome-assembled genomes
(MAGs) [36]. MAGs were dereplicated with dRep using default
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parameters [37] and checked for completeness and contamina-
tion using CheckM v1.0.18 [38]. The resulting MAGs were evalu-
ated for their intrapopulation diversity and sequence discreteness
using fragment recruitment analysis scripts available through the
Enveomics collection [39]. The coverage of each MAG in each
metagenome was calculated by estimating sequencing depth at
each position using Bowtie 2 [40] with default settings for read
mapping. In addition, BEDTools [41] was used to calculate the
average of the central 80% of the distribution, which removes the
highest and lowest 10% of outlier positions in terms of coverage
(i.e. the truncated average depth [TAD80]). TAD80 is a conservative
metric that produces no false-positive results [42]. TAD80 values
were normalized by the genome equivalent of the corresponding
metagenome to determine the relative abundance. The genome
equivalents of eachmetagenomic dataset were obtained using the
MicrobeCensus package [43].

Metagenomic community profiling
GraftM v0.13.1 was used to extract 16S rRNA gene fragments
from the trimmed metagenomic datasets for classification using
the Greengenes database (release 13_8) at the 97% nucleotide
identity level [44, 45]. The relative abundance of operational tax-
onomic units (OTUs) was calculated based on the number of
reads assigned to each OTU. Community profiling was based on
OTU taxonomic assignments at the phylum, family, and genus
levels.

Identification of nosZ genes
ROCker was used to identify metagenomic reads carrying nosZ
[46]. Briefly, trimmed short reads were used as the query for
BLASTX (Diamond v0.9.14.115) searches against the correspond-
ing ROCker protein database representing the target gene [47]. The
matching sequences were then filtered using the ROCker com-
piled models available through the Enveomics collection (http://
enve-omics.ce.gatech.edu/) [39]. The abundances of target genes
(i.e. Clade I and Clade II nosZ) were determined by calculating
the ratio between normalized target reads (counts divided by
the median protein length) and the genome equivalents [48].
Reference nosZ genes were also searched against the assemblies
and MAGs using precompiled hidden Markov models obtained
from FunGene and HMMer [49, 50]. Hits with an identity value of
100% were filtered based on the NosZ sequences in the reference
database [23].

NosZ phylogeny
NosZ reference sequences were aligned with ClustaloΩ using
default settings [51]. The alignment was used to build amaximum
likelihood reference tree in RAxML V8.2.12 with “-f a” algorithm,
gamma parameter optimization, and a general time reversible
model option [52]. ROCker identified reads carrying nosZ, which
were translated to protein sequences using MetaGeneMark [53].
The translated sequences were added to the NosZ reference pro-
tein alignment using MAFFT and the “addfragments” option [54],
and the new alignment placed in the NosZ reference phyloge-
netic tree using RAxML EPA algorithm (−f v option). The gener-
ated jplace file was processed using an in-house script (avail-
able through http://enve-omics.ce.gatech.edu/) for visualization
in iTOL [55]. Detected NosZ proteins in the assemblies and MAGs
were manually curated, added to the phylogenetic trees, and
visualized as described above.

Taxonomic assignment, functional annotation,
and comparative genomics
Taxonomic assignments of MAGs with >75% completeness
and<5% contamination used the GTDB-Tk v0.1.4 tool [56] of
the Genome Taxonomy Database (GTDB, http://gtdb.ecogenomic.
org) version R202 [57]. At this level of completeness, genes not
assembled in a MAG likely represent mobile and hypothetical
genes, rather than characterized functional genes [58]. Protein-
coding sequences were predicted using Prodigal v2.6.3 [59], and
assigned Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthologs using KofamScan v1.3.0 against Hidden Markov model
(HMM) profiles from the KEGG database (release February 2021)
[60]. The completeness of various metabolic pathways was
assessed using KEGG-Decoder v1.32.0 [61], and pathways of
interest (e.g. nitrogen cycling, lactate and hydrogen metabolism,
copper transport) were manually selected from the KEGG-
Decoder results. Average nucleotide identity and average amino
acid identity (AAI) between high-quality MAGs and genomes
of phylogenetically related bacteria were calculated with MiGA
(http://microbial-genomes.org/). Phylogenetic trees were created
using FastTree 2.1.8 (WAG+GAMMA models) with a concatenated
alignment of 120 bacterial and 122 archaeal conserved marker
genes [62] and visualized in iTOL [55].

N2O reduction potential in acidic soils
From MAGs and contigs from acidic N2O-reducing micro-
cosms, 33 near full-length NosZ sequences were recovered
(Supplementary Figs S2 and S3), and dereplication yielded
eight unique NosZ sequences. A customized database was
generated that comprised 14 NosZ, including six closely related
sequences from the reference NosZ database. To identify
nosZ genes recovered from acidic N2O-reducing microcosms
in various soil microbiomes, 35 available soil metagenome
datasets derived from representative pH 3.5–7.5 environmental
systems were downloaded from the European Nucleotide Archive
(Supplementary Table S3) and subjected to BLASTX query using
the customized NosZ database with a minimum identity value
of 60% and an e-value of 1e-05. The normalization approach
described above was used to calculate relative abundances based
on nosZ-carrying metagenomic reads.

Statistics
Statistical analyses were performed using R version 4.0.2. Beta
diversity was calculated using Bray–Curtis dissimilarity and visu-
alized using the principal coordinate analysis (PCoA) plot in Rwith
packages ggplot2 [63] and phyloseq [64]. Statistical differences in
microbial communities among original soils, pH 4.5 microcosms,
and pH 7.3 microcosms were determined using permutational
multivariate analysis of variance (PERMANOVA) using the Ado-
nis function in vegan with 999 permutations [65]. Heatmaps of
annotation results of MAGs were generated using the R package
pheatmap.

Results
N2O reduction in tropical forest soil microcosms
N2O consumption occurred with lag times of 1–2 weeks in pH 4.5
and pH 7.3 microcosms with low level of 0.02 mM N2O. Longer
lag times of up to 7 months were observed in microcosms
with 2 mM N2O under both pH conditions, but microcosms
with high-level N2O consumed substantially more N2O over
the 15-month incubation period (Supplementary Fig. S4 and
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Supplementary Table S4). No N2O loss occurred in autoclaved
microcosms, indicating the acidic tropical forest soils harbor
N2O-reducing microorganisms. In addition, no N2O was detected
in control microcosms without N2O amendment, indicating that
N2O formation from nitrogenous compounds in the medium or
associated with the soil did not occur or was negligible.

Bacterial community composition
Following a 15-month incubation period and when the micro-
cosms had consumed about half of the final N2O feeding, DNA
was extracted for metagenome sequencing. The overarching goal
was to assess if the enrichment conditions selected for different
N2O-reducing taxa, rather than a fine-scale analysis of the overall
community responses over the 15-month incubation. Therefore,
single microcosms per treatment were subjected to metagenome
sequencing. Totals of 5963±2503 and 23399±15 030 sequences
representing 16S rRNA genes were obtained from the original
soil and the corresponding microcosm metagenome datasets,
respectively, and yielded 903 16S rRNA gene-based OTUs
(Supplementary Table S5). Rarefaction analysis suggested that
the number of unique 16S rRNA genes approached saturation
in most samples (Supplementary Fig. S5), and the number of
OTUs detected in N2O-reducing microcosms was lower than in
the corresponding original soils. Beta diversity analysis using
the 16 microcosm- and four original soil- [23] derived metage-
nomic datasets indicated distinct community compositions in
response to pH and N2O levels (P< .01, PERMANOVA) (Fig. 1A,
Supplementary Table S6). PCoA revealed that ∼55% of the total
variability of OTUs observed in pH 4.5 and in circumneutral
N2O-reducing microcosms compared to the respective original
soils was explained by pH and N2O (Fig. 1A). Datasets acquired
from same pH microcosms established with the four different
soils clustered together indicating that pH shaped distinct
microbial communities over the 15-month incubation period
(Fig. 1). The majority of the 16S rRNA gene sequences derived
from the original soils affiliated with the phyla Proteobacteria,
Actinobacteria, Verrucomicrobia, Planctomycetes, and Acidobacteria,
with a combined relative abundance exceeding 70% (Fig. 1B).
Higher relative abundances of Proteobacteria, Firmicutes, Chlorof lexi,
and Actinobacteria were observed in the 16 N2O-reducing micro-
cosms relative to the original soil inoculum. Analysis at the
family level showed that sequences representing Peptococcaceae,
Veillonellaceae, Clostridiaceae, and Hyphomicrobiaceae increased in
acidic microcosms, and sequences of Rhodocyclaceae, Clostridiaceae,
Hyphomicrobiaceae, and Ruminococcaceae were more abundant in
microcosms maintained at circumneutral pH compared to the
original soils (Supplementary Fig. S6A). Based on the relative
abundances of 16S rRNA gene sequences (highest observed
values shown in parentheses), the genera Desulfosporosinus
(45%), Desulfomonile (5%), Rhodoplanes (53%), Azospira (56%), and
Dechloromonas (38%) increased in response to N2O additions
compared to the original soils (Supplementary Fig. S6B). At least
some members of these genera comprise known N2O-respiring
species [9], suggesting that bacteria capable of using N2O as an
electron acceptor were enriched.

Phylogenetic distribution and relative abundance
of Clade II versus Clade I nosZ
N2O reduction is catalyzed by NosZ and nosZ gene abundances
increased during enrichment with N2O. The analysis of the
metagenome datasets showed that Clade II nosZ sequences
outnumbered Clade I nosZ gene sequences in the original soils and
in the N2O-reducing microcosms (except microcosm S_pH7.3_0.1)

(Supplementary Fig. S7, Supplementary Table S7). Placing Clade II
nosZ sequence reads extracted from the original soil metagenome
datasets in the reference Clade II nosZ phylogenetic tree revealed
affiliations with the genera Anaeromyxobacter and Opitutus
(Fig. 2A). In contrast, the nosZ sequence reads observed in the
acidic microcosms were assigned to the genera Profundibacter,
Desulfosporosinus, and Desulfomonile (Fig. 2B and C). In microcosms
maintained at pH 7.3, the majority of nosZ reads affiliated with
the genera Azospira, Dechloromonas, and Sulfuricella (Fig. 2D and E),
except for the EV soil microcosms with high level of N2O,
where nosZ sequences assigned to the genus Desulfosporosinus
dominated. A comparative analysis of Clade II nosZ reads
revealed that the microcosms maintained at pH 4.5 and at
pH 7.3 developed distinct N2O-reducing communities (P< .01,
PERMANOVA) (Supplementary Fig. S8A). Taken together, these
analyses suggest that bacteria with Clade II nosZ drive N2O
reduction in all tropical soil microcosms, and pH selects for
distinct Clade II N2O reducers (Fig. 2).

Most of the Clade I nosZ sequences could be assigned to the
genus Bradyrhizobium, and a small number of reads affiliated
with the genera Methylocystis, Methylocella, and Janthinobacterium,
independent of the pH conditions or N2O levels (Fig. 2F–J). Appar-
ently, acidic versus circumneutral pH and low versus high N2O
levels did not select for distinct Clade I nosZ N2O reducers. The
PCoA supports that acidic pH and circumneutral pH conditions
selected for similar Clade I N2O reducers (P> .05, PERMANOVA)
(Supplementary Fig. S8B).

Metagenome-assembled genomes
A non-redundant set of 17 high-quality MAGs (>75% com-
pleteness, <5% contamination) harboring nosZ genes was
recovered from the 16 metagenome datasets generated from
the N2O-reducing microcosms (Fig. 3A, Supplementary Tables S8
and S9). Eight of these 17 MAGs have high relative abundance
(TAD80>1%) in the corresponding metagenomes, revealing that
theseMAGs represented abundantmembers of the enriched com-
munities (Fig. 3B). Only five MAGs with nosZ were detected in the
metagenomic data of the original soils with relative abundance of
ranging between 0.01% and 0.02% (Supplementary Fig. S9), much
lower than the relative abundances observed in the corresponding
microcosms (Fig. 3B). The relative abundance of MAGs derived
from acidic microcosms in the corresponding (i.e. same soil sam-
ple) circumneutral microcosms was negligible, as was the relative
abundance of MAGs derived from circumneutral microcosms in
the corresponding acidic microcosms (Supplementary Fig. S10).
This observation indicates the strong impact of pH on the
enrichment of N2O-reducers in microcosms that received N2O.

The AAI results assigned all 17 MAGs harboring nosZ genes to
novel taxa (Supplementary Table S10), indicating an unexplored
diversity of N2O reducers exists in the tropical forest soils and can
be enriched in the N2O-reducing microcosms. Six of eight MAGs
recovered from acidic N2O-reducing microcosms were assigned
to the genera Desulfitobacterium, Rhodoplanes, and Desulfosporosinus
with AAI values exceeding 68% (Supplementary Table S10), prob-
ably representing novel species [66]. The AAI similarities between
the remaining two MAGs, PE_pH4.5_10_MAG7 and MAG8, and the
corresponding closest relatives are 45.04% and 44.04%, respec-
tively, suggesting these MAGs represent novel families (Fig. 3A
and Supplementary Table S10). MAGs obtained from circumneu-
tral, N2O-reducing microcosms were taxonomically related to the
genera Azospira, Sulfurimicrobium, Dechloromonas, and Desulfitobac-
terium (Supplementary Table S10).
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Figure 1. Microbial community composition of the original tropical forest soils and the N2O-reducing microcosms maintained under low versus high
levels of N2O and at pH 4.5 versus pH 7.3; (A) beta diversity of microbial communities based on weighted Unifrac analysis of 16S rRNA gene fragments
recovered from the metagenomes; samples are visualized by PCoA with colors distinguishing original soils and microcosms at acidic versus
circumneutral pH; the ellipses represent the 95% confidence intervals; (B) the relative abundance distributions of the top 20 phyla observed in the
original soils and the different microcosms; the numerals shown on the x-axis labels indicate the volumes of N2O added with each feeding to the
microcosms (0.1 ml [0.02 mM aqueous N2O] versus 10 ml [2 mM aqueous N2O]).

Functional analysis of MAGs harboring nosZ
genes
Key metabolic pathways or functions of the 17 MAGs harbor-
ing nosZ were predicted based on KEGG annotation (Fig. 3C).
All eight MAGs obtained from acidic N2O-reducing micro-
cosms lack the hallmark denitrification genes nirK/nirS, which
encode nitrite reductase. This indicates that these organisms
are non-denitrifiers. In contrast, seven of the nine MAGs
derived from circumneutral microcosms carried a complete
set of genes, including nirS, for canonical denitrification (i.e.
NO3

− →NO2
− →N2O→N2). In addition to nosZ, other genes of the

nos cluster were detected in all MAGs (Supplementary Fig. S11).
These findings indicate that non-denitrifying N2O-reducing
bacteria may be the main drivers for N2O reduction in low pH
soils. NosZ is a copper-containing enzyme and the extracellular
copper concentration controls nosZ expression [67]. Notably,
genes for copper transport were identified in 14 of the 17 MAGs
harboring nosZ. Sources of electrons for reductive processes, such
as N2O reduction, were exogenously added lactate and organic
material associated with the soil. Lactate was readily consumed
in all live microcosms. The analysis of PE_pH4.5_10_MAG6 and
MAG7 recovered from acidic N2O-reducing microcosms revealed
genes encoding l-lactate dehydrogenase (LDH, K00016), which
are implicated in the conversion of lactate to pyruvate. Only
PE_pH4.5_10_MAG6 contained the complete set of genes (pta,
K13788, and acyP, K01512) required to metabolize lactate to
acetate (Fig. 3C). In addition, five MAGs, three from acidic and two
from circumneutral pH microcosms, possessed genes implicated
in the fermentation of pyruvate to formate and acetyl-CoA
(Fig. 3C). These findings suggest that most MAGs harboring nosZ
genes were unable to directly utilize lactate as an electron donor.
Collectively, these results demonstrate that MAGs harboring nosZ
genes are taxonomically and metabolically diverse.

nosZ genes in metagenomes representing low pH
soil biomes
A total of 27 metagenomes from low pH (pH 3.5–5.7) forest,
agricultural, and permafrost soil ecosystems were analyzed
(Supplementary Table S3), and all of them harbored nosZ
sequences. nosZ abundances ranged from 0.002±0.001 to
0.25± 0.11 genome equivalents (i.e. the fraction of genomes

expected to carry nosZ assuming one gene copy per genome;
Fig. 4), suggesting that the respective acidic soils have N2O
reduction potential. The highest abundances of nosZ genes were
observed in the permafrost soil, and the lowest abundances were
detected in two temperate forest soils. nosZ genes were also
abundant in low pH tropical forest soils, which typically have high
N2 fixation and nitrogen turnover activities. An expanded survey
that included the 27 metagenomic datasets from low pH plus
eight datasets from pH 6 to 7.5 soils revealed that nosZ sequences
representing low pH soil biomes were predominantly found in
pH 4.5–6 environments (Supplementary Fig. S12). The number
of metagenome datasets from acidic soils is currently limited;
however, the observation that nosZ genes occur in all acidic soils
included in the analysis suggests broad distribution of low pH
microbial N2O reduction potential.

Discussion
pH paradigm for microbial N2O reduction
Biological N2O reduction is catalyzed by microorganisms express-
ing NosZ withmaximum efficiency observed at circumneutral pH
[68, 69]. N2O reduction under acidic pH conditions has received
considerable attention; however, experimental work with labora-
tory cultures has indicated that NosZ activity ceases at pH <5.7
[18, 20, 27, 28]. These observations have been used to explain the
lack of N2O reduction activity under low pH conditions, and acidic
environments are generally considered N2O sources. NosZ is a
periplasmic enzyme, and biochemical studies suggested that low
pH impacts the assembly and maturation of functional NosZ [18],
a plausible explanation for the observed lack of N2O reduction
activity at acidic pH. In contrast to the observations with labora-
tory cultures, soil microcosms studies reported N2O reduction at
pH <5.7 [70–72]. A possible reason for the contradictory findings
is the presence of microsites within the soil matrix with higher
pH than the measured bulk aqueous phase pH, allowing micro-
bial N2O reduction to occur in such micro-environments [18, 73,
74]. Further, the interpretation of observations made in short-
term soil microcosm incubations is not straightforward because
it is unclear if the N2O reduction activity observed under acidic
pH conditions is due to residual activity of existing biomass, or
linked to the formation of new cells that conserve energy for
growth from N2O reduction. The sustainable reduction of N2O

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae070#supplementary-data
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https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae070#supplementary-data


6 | Sun et al.

Figure 2. Phylogenetic diversity of nosZ reads recovered from the four original soils and the 16 microcosms maintained at pH 4.5 versus pH 7.3 and at
low versus high levels of N2O; trimmed Clade II and Clade I nosZ reads in the metagenomes were identified by ROCker and placed in the corresponding
reference nosZ phylogenetic tree, as described in the Methods section; the radii of the pie charts are proportional to the number of reads assigned to
each nosZ subclade and the colors represent the different soils; (A) diversity of Clade II nosZ reads from metagenomes of the four original soil samples;
(B) phylogenetic information of Clade II nosZ in N2O-reducing microcosms at acidic pH with low level of N2O; phylogenetic information of Clade II nosZ
in microcosms at acidic pH with high level of N2O (C), at circumneutral pH with low level N2O (D), and at circumneutral pH with high level N2O (E); (F)
diversity of Clade I nosZ reads from metagenomes of the four original soil samples; (G) phylogenetic information of Clade I nosZ in N2O-reducing
microcosms at acidic pH with low level of N2O; phylogenetic information of Clade I nosZ in microcosms at acidic pH with high level of N2O (H), at
circumneutral pH with low level N2O (I), and at circumneutral pH with high level N2O (J).

requires the formation of new biomass (i.e. growth) under the
prevailing environmental conditions. Laboratory studieswith con-
sortia that utilize the toxin vinyl chloride as respiratory electron
acceptor illustrate this issue. Reductive dechlorination activity
was observed at pH <5.5 [73]; however, this activity relied on
existing biomass produced at circumneutral pH, and growth of
vinyl chloride-respiring Dehalococcoides mccartyi strains did not
occur at acidic pH, indicating that a sustainable process in acidic
groundwater cannot be envisioned [73]. In analogy, it is uncertain
if the results of short-term microcosm studies without repeated
N2O feedings generate meaningful information to predict in situ
N2O reduction activity in low pH soils. Further complicating data
interpretation is the observation that common oxygen-respiring
bacteria (e.g. members of the Gemmatimonadaceae) utilize N2O as
an electron sink following oxygen depletion; however, this process
is uncoupled from growth and not sustained under anoxia [75,
76]. The LEF soil microcosms were incubated for 15 months, and
repeated N2O additions were consumed at accelerating rates, an

observation inconsistent with the activity of residual (i.e. non-
growing) biomass and indicative of respiratoryN2Outilization and
growth of N2O reducers at pH 4.5. Our observations challenge the
notion that efficient N2O reduction requires circumneutral pH
and suggest that N2O reduction can be sustained under acidic pH
conditions.

Impact of enrichment on N2O-reducing taxa
Prior metagenomic work demonstrated that soils collected
at different locations (i.e. elevations) in the LEF share the
predominant Clade II nosZ genes and implicated similar taxa in
N2O reduction [23]. Enrichment during the 15-month microcosm
incubation revealed that different Clade II type N2O reducers are
responsible for N2O reduction in the LEF soil samples collected at
different elevations (Figs 2 and 3). For instance, the metagenome
analysis of the original soils prior to enrichment implicated
Anaeromyxobacter populations as predominant N2O reducers
(Fig. 2). N2O reduction by Anaeromyxobacter at circumneutral pH
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Figure 3. Phylogenetic and functional analysis of MAGs harboring nosZ genes; panel (A) shows a phylogenetic tree of the 17 MAGs harboring a nosZ
gene and their closest neighbors based on the analysis of 120 bacterial marker genes; MAGs recovered from pH 4.5 and pH 7.3 N2O-reducing
microcosms are shown in red versus green font, respectively; panel (B) shows the relative abundance of each MAG harboring a nosZ gene in the
corresponding N2O-reducing microcosms; the relative abundance was calculated by normalizing TAD80 values to genome equivalents; the abundance
of these MAGs in the original soil metagenomes was below 0.01% panel (C) depicts a heatmap showing the completeness of key metabolic pathways or
functions in the 17 MAGs harboring a nosZ gene based on KEGG annotation; the numbers 0.1 and 10 in the x-axis labels represent the low and high
levels of N2O added to the microcosms, respectively.

has been demonstrated [6]; however, microcosms maintained
at circumneutral pH selected for different N2O-reducing taxa,
includingAzospira andDechloromonas species,which have reported
growth optima near pH 7.0 [77, 78]. Apparently, circumneutral
pH favored Azospira and Dechloromonas over N2O-reducing
Anaeromyxobacter species in the laboratory microcosms. The
relative abundance of Anaeromyxobacter sequences in the original
soils can be explained by the presence of ferric iron, a favorable
electron acceptor for Anaeromyxobacter [6]. In acidic N2O-reducing
microcosms, sequences representing the genera Desulfosporosinus,
Desulfitobacterium, Desulfomonile, and Rhodoplanes increased. These
genera comprise members that grow under acidic conditions
(e.g. pH 4–6), and physiological and genomics investigations have
shown that at least some species affiliated with these genera can
reduce N2O [79–82]. The tropical soil microcosm experiments
demonstrate that pH selects for different N2O-reducing taxa
harboring Clade II nosZ, and show that N2O reducers are
distributed along the LEF elevational gradient spanning ∼700 m.
Despite the presence of taxa capable of low pH N2O reduction,
acidic tropical forest soils are considered N2O emitters, raising
the question of parameters, other than pH, that are limiting N2O
reduction activity in this relevant terrestrial ecosystem [18, 20,
24]. Our work focused on the roles of pH and N2O concentration
on the enrichment of N2O-reducing taxa; a rigorous assessment
of the overall community responses to pH and N2O levels was
not the goal, which would require more replication to enable
robust statistics. The overall goal of this study was to evaluate
whether enrichment conditions select for different N2O-reducing

taxa, and our current experimental approach achieves this goal
by discovering that pH selects for different N2O-reducing taxa in
microcosms that stably reduce N2O.

Non-denitrifying N2O reducers responsible for
N2O reduction under low pH conditions
A recent metagenome analysis of the same LEF soils used for
microcosm setup found abundant nosZ genes, with Clade II nosZ
genes generally more abundant than Clade I nosZ genes [23].
Following the 15-month incubation period, Clade II nosZ dom-
inated the nosZ gene pools in all microcosms irrespective of
pH and N2O concentration (Fig. 2 and Supplementary Fig. S7),
indicating that the enrichment conditions favored populations
with Clade II nosZ. The analysis of MAGs derived from acidic
N2O-reducing microcosms harboring nosZ indicated that non-
denitrifiers (i.e. bacteria lacking nirS/nirK) representing novel taxa
(Supplementary Table S10) are responsible for N2O reduction
(Fig. 3 and Supplementary Fig. S3). Prior studies reported that N2O
reduction under slightly acidic conditions (pH ∼6.0) was driven by
complete denitrifiers that represent cultivated taxa [83, 84]. Con-
sistent with these prior reports, the MAGs with nosZ derived from
microcosms maintained at circumneutral pH represent complete
denitrifiers. Of note, three MAGs derived from acidic microcosms
with low level of N2O each harbored two nosZ genes, one Clade
I and one Clade II, a genotype observed for few species of the
class Betaproteobacteria capable of denitrification at circumneutral
pH [85]. Collectively, the findings show that circumneutral pH
selects for complete denitrifiers, whereas acidic pH selects for

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae070#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae070#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae070#supplementary-data
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Figure 4. Distribution of N2O reduction potential in acidic (pH 3.5–5.7) soils; detailed information about the metagenome datasets is provided in
Supplementary Table S3; global soil pH data were obtained from the Soil Geographic Databases (https://www.isric.org); the plots show the total
abundance of nosZ genes per genome equivalent; the black lines point to the approximate locations from where the soil metagenomes were derived.

non-denitrifying N2O reducers in the tropical forest soils studied
here. A relevant conclusion from this observation is that complete
denitrifiers may not represent representative models to study low
pH N2O reduction.

Impact of N2O concentration on N2O reduction
A striking difference in microcosms with 0.02 mM versus 2 mM
N2O was the extended lag phase observed in the high-level N2O
microcosms independent of the pH condition. A possible expla-
nation for the delayed start of N2O consumption is the inhi-
bition of corrinoid-dependent pathways. Micromolar concentra-
tions of N2O were shown to repress methionine biosynthesis
[67], methanogenesis [86], methylmercury formation [87], and
bacterial reductive dechlorination [32], all processes that involve
enzymatic steps that strictly depend on the cobalt (I) supernucle-
ophile, a species highly susceptible to oxidation by N2O [88]. An
initial N2O concentration of 2 mM exceeds the reported inhibitory
constants for corrinoid-dependent enzymes about 100-fold, sug-
gesting the disruption ofmetabolic pathways directly or indirectly
impacted N2O-consuming populations. Only a subset of bacteria
and archaea synthesize corrinoids [89], and corrinoid prototrophs
supply this essential nutrient to corrinoid auxotrophs [90, 91].
The addition of N2O disrupts these microbe–microbe interactions,
which are influenced by the concentration of N2O. Also possible is
that the delayed onset of N2O reduction in microcosms with high
level of N2O reflects a switch to corrinoid-independent metabolic
pathways [32, 67].

Implications for N2O reduction in low pH
environments
Global atmospheric N2O concentrations are on the rise, and the
acidification of agricultural and forest soils, two major sources of

atmospheric N2O, is predicted to exacerbate emissions [4, 92, 93].
Soils with a pH below 5.5 currently comprise ∼30% of the global
ice-free land area and are mainly distributed in the northern
temperate to cold belt and the southern tropical belt [94]. Our
findings suggest that yet-to-be characterized, non-denitrifying
bacterial taxa catalyze N2O reduction at acidic pH. The microbial
N2O reduction potential appears to be distributed in acidic soils
(Fig. 4), a finding likely to be substantiated as more metagenomes
representing low pH microbiomes become available. These obser-
vations seem at odds with the dogma that acidic environmental
systems are predominantly N2O sources, and future research
should address two major knowledge gaps. Although N2O pools
(i.e. how much is there?) can be quantitatively captured, robust
tools to measure N2O fluxes (i.e. the rates of N2O formation and
consumption) that ultimately determine emissions are lacking.
Thus, it is not obvious if N2O emissions from acidic soil ecosys-
tems reflect a lack of microbial N2O consumption capacity or
an imbalance between N2O formation versus consumption. Very
limited information is available about the taxonomic diversity,
physiology, and ecology of microbes that reduce N2O under acidic
conditions. This study identified several genera (i.e.Desulfosporosi-
nus,Desulfitobacterium,Desulfomonile, and Rhodoplanes) as potential
targets formore detailed exploration of lowpHN2O reduction,and
future efforts should focus on the isolation and characterization
of N2O reducers from low pH environments to generate detailed
process understanding.
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