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HIGHLIGHTS GRAPHICAL ABSTRACT

e Shotgun metagenomics was employed
to investigate the impact of litter appli-
cation on adjacent soils and downstream Impact of Litter from Poultry CAFOs to Adjacent Soil and Water
creek waters from poultry farms in Microbial Communities

Southeast US.

Shifts in the microbial diversity, func-
tional gene content and antibiotic resis-
tance genes (ARGs) in litter-receiving
soils were assessed against adjacent
control samples (no litter application).
Litter-associated microorganisms or
ARGs were not detectable at the detec-
tion limit of our metagenomic

sequencing effort in any of the soils or g W

nearby waterways after a couple months of

of litter application.
e Our findings highlight the high resil-

ience of natural microbial communities

to litter perturbations.
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creek waters in terms of microbial diversity and antimicrobial resistance profile changes. Our data indicate that

ARGs while a few microbial groups increased in abundance within a short period of time after litter application, these
populations subsequently decreased to levels similar to those found prior to the litter application or to below the
detection limit of our metagenome sequencing effort. Microbial taxonomic composition analyses, relative
abundance of Metagenome-Assembled Genomes (MAGs) and detection of Antimicrobial Resistance Genes (ARGs)
allow us to conclude that this practice of litter application had a negligible effect on the microbiome or resistome
profile of these soils and nearby waterways, likely due to its dilution in the field and/or outcompetition by
indigenous microbes, revealing a minimal impact of these poultry facilities on the natural microbial

communities.

1. Introduction

Human food consumption has experienced important changes over
the past decades, with the demand for foods of animal origin, including
milk and dairy products, eggs and meat growing significantly (Henchion
et al.,, 2021). Chicken meat production, in particular, has increased
worldwide by over ten-fold since the 1960s (Ritchie et al., 2017). A
direct consequence of this growth in poultry consumption is the
resulting increase in litter production, defined as the mixture of poultry
manure with spilled feed, feathers and bedding materials. Concentrated
Animal Feeding Operations (CAFOs) are agricultural facilities where a
large number of animals (n > 1000) are confined indoors with feeding
operations lasting for at least 45 days at a time and no plant crops sus-
tained within the facility (U.S. Environmental Protection Agency, 2001).
CAFOs raising chickens are prevalent throughout the United States,
especially in the Southern states (Georgia, Alabama, Arkansas, North
Carolina and Mississippi), and are the major source of poultry meat sold
at markets across the country (National Chicken Council, 2021). Ac-
cording to the United States Department of Agriculture (USDA), the
number of broilers chickens produced in the state of Georgia alone
reached the number of ~1.3 billion heads in 2021, representing ~14 %
of the total broiler chicken production in the United States (National
Agricultural Statistics Service, 2022).

CAFOs produce large quantities of animal waste within very small
areas which can contribute to problems of water and air pollution (e.g.,
odorous gases such as ammonia or uncontrolled greenhouse gas emis-
sions). These issues of CAFO driven environmental pollution are exac-
erbated by variable waste management practices such as, for example,
the direct application of waste to agricultural land as fertilizer (Bolan
et al., 2010; Mallin and Mclver, 2018). Thus, several environmental and
human health risks are frequently associated with CAFO facilities
(Ayala-Ramirez et al., 2023). Other potential threats to public health
include the widely extended practice of antibiotic use in animal agri-
culture for prophylaxis, therapy, and growth promotion (Van Boeckel
et al., 2015). There are growing concerns about antimicrobial resistance
(AMR) development within CAFOs and its spread into the nearby
environment and associated bacterial communities (Hu et al., 2016;
Wang et al., 2012). Studies have shown that AMR genes may enter the
environment through runoff, leaching, or application of animal waste as
manure to land, all of particular concern in poultry operations (Chee-
Sanford et al., 2009; Martinez, 2009; Zhang et al., 2009). Nevertheless,
due to the yet-limited number of available studies, there is a need to
understand and quantify to what extent the microbiota from the animal
wastes and the antimicrobial resistance genes (ARGs) are transferred to
the adjacent natural microbial communities and downstream waters as a
consequence of different waste management practices. The limited
number of studies available to date have mainly focused on the impact of
manure application on land through 16S rRNA gene (or simply 16S)
amplicon sequencing or quantitative PCR approaches (Liu et al., 2020;
Riber et al., 2014; Xie et al., 2018). However, very few studies have
focused specifically on litter, investigated the impact of animal waste in
nearby waterways, or used metagenomic techniques. Moreover, in situ
studies are rare, with several relying on ex-situ experiments (Han et al.,
2018; Wang et al., 2017; Zhang et al., 2017).

The purpose of this study was to evaluate, using a culture-
independent metagenomic approach, the effect of several CAFOs facil-
ities on adjacent natural soil and water microbial communities,
including in their resistome, by following the microbial community
composition in these systems over time after receiving the litter appli-
cation. We also investigated whether or not the microbial communities
recovered to the pre-application state in terms of community ecology
and ARG prevalence. To the best of our knowledge, this is one of the first
studies to examine the impact of CAFO litter on the adjacent soil and
water microbial communities in-situ via metagenomic techniques
following application of chicken litter to land.

2. Materials and methods
2.1. Sample collection

Six litter samples were collected across six CAFO sites at 1-2 sam-
pling events per site (Table S1). Litter sample collection days occurred
within 24 h after birds were vacated from the house. For each sample, 10
litter samples were collected along the length of drinker lines inside
grow houses and treated as one composite sample. Sampling dates were
determined by growers and dependent on flock grow out dates. In total,
21 land-applied soil samples receiving litter from the CAFO were taken
across six CAFOs at two sampling events per location (Table S1). Litter
was applied to the sampled land by the growers using a “manure
spreader”. Three soil samples were taken at each sampling event at a
depth of 0-15 cm and on a 10 x 10 cm grid and treated as individual
samples (not a composite). Litter handling practices varied between
individual farms, making it difficult to control for the imprecise and
varied methodologies used in situ. For example, most operations stored
spent litter in sheds for different amounts of time before land applica-
tion, making it difficult to determine the exact age of litter actively being
land applied. Nonetheless, when possible, soil samples were collected at
the uphill, mid-hill, and downhill boundaries of the land-applied areas
feeding into a receiving stream. The time between sample collection
and, the most recent land application event varied between 21 days and
365 day with an average of 109 days. Access to facilities and land and
the schedule of growers performing land application were not such that
regular intervals of sampling could be obtained. Soil samples with no
history of litter application were also collected and used as negative
controls. In addition to soil samples, 21 water samples were taken in
receiving waters downstream of six CAFOs at two sampling events per
location where land-applied litter and contaminants may have been
mobilized via runoff or subsurface transfer into receiving waters
(Table S1). Three samples (50-mL/each) were collected at each sam-
pling event using hollow-filter dead-end ultrafiltration (DEUF) for re-
covery of enteric pathogens (Mull and Hill, 2012). When possible,
samples were collected at the point of discharge, ~1 km downstream of
the point of discharge, and 1-5 km further downstream. Water samples
were also collected downstream from the soil control sites and used as
controls. The most upstream samples were located between 0.5 km and
1 km from land-applied soil sampling sites. Receiving waters were
streams located on or directly adjacent to the farm property that fed into
a river.
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2.2. DNA extraction

DNA extraction was performed on litter and soil samples with
0.2-0.5 g of litter or 10 g of soil, using Qiagen's PowerFecal kit and
Qiagen's PowerMax Soil kit, respectively. For the water samples, DNA
extraction was performed with 75-750 pL of resuspended PEG pellet
using Qiagen's PowerFecal kit, following the manufacturer's protocol
with a modified 30-second bead-beating lysis step. DNA concentration
was measured using a Qubit™ 3.0 Fluorometer and purity was deter-
mined by measuring the absorbance ratios at 260/280 and 260/230
using a Nanodrop 1000 Spectrophotometer.

2.3. Metagenomic sequencing

The DNA samples were prepared for sequencing by using the Nextera
XT DNA library prep kit manufactured by Illumina, San Diego, CA. The
resulting DNA libraries were sequenced using an Illumina HiSeq 2500
instrument available at the Georgia Institute of Technology High
Throughput DNA Sequencing Core. Adapter trimming and demulti-
plexing of the samples were carried out on the sequencing instrument.

2.4. Sequence data analysis

Raw data were quality assessed and trimmed using FaQCs 2.10 (Lo
and Chain, 2014). Reads with a quality lower than 15 and shorter than
50 bp after trimming were removed. The Nonpareil tool 3.401 (Rodri-
guez-R and Konstantinidis, 2014) with default parameters was used to
estimate the microbial community coverage by each metagenomic
dataset. Overall similarities between metagenomic datasets were
determined based on Mash distances (Ondov et al., 2016) for the trim-
med reads and visualized using a PCoA plot generated with the ggplot2
package in R (Wickham, 2011). Permutational multivariate analysis of
variance using distance matrices was performed with the adonis func-
tion of the R package vegan (Dixon, 2003).

Kraken2 was used to assign taxonomy (at the rank of class, order,
family and genus) against a reference library, including bacteria,
archaea, viruses, protozoa, human, and fungal reference genomes
(Wood et al., 2019). The relative abundance of the Kraken2 profiles was
estimated by Bracken as performed previously (Lu et al., 2017).

Quality-trimmed reads were assembled independently, de novo with
Spades 3.15.4 (“-meta”) (Prjibelski et al., 2020) and IDBA-UD 1.1.3
(Peng et al., 2012) and the generated assemblies were quality checked
using metaQuast (Mikheenko et al., 2016). Contigs shorter than 5 Kbp
from both assemblies were removed prior to population genome
binning, which was performed independently by MaxBin 2.2.7 and
MetaBAT 2.12.1 with default parameters (Kang et al., 2019; Wu et al.,
2016). All resulting Metagenome-Assembled Genomes (MAGs) from the
same sample and the different assembly and binning runs were der-
eplicated using dRep 3.4.0 (Olm et al., 2017) at ANI 95 %. MAG
contamination and completeness was assessed with CheckM 1.1.2 (Parks
etal., 2015). MAG quality was calculated as “Quality = Completeness —
(5 x Contamination)”, and only medium-to-high-quality MAGs (quality
score > 50) were used for further analysis. To assign the taxonomy to the
generated MAGs the toolkits GTDB-Tk v2.2.6 and GTDB r207_v2
(Chaumeil et al., 2020), and Microbial Genome Atlas (MiGA) v1.3.8.3
and TypeMat databases (Rodriguez-R et al., 2018) were used. This
process resulted in 31 medium-to-high-quality MAGs (Table S3) for the
litter samples that represented the genome diversity recovered in each
sample. Dereplication across litter samples using the same 95 % ANI cut-
off resulted in 13 MAGs representing the species-level diversity recov-
ered in the samples.

The abundance and presence of recovered MAGs was assessed by
read recruitment. For this, individual MAG sequences were mapped
against all metagenomic reads from each dataset using stand-alone
BLASTn (best match when better than 95 % nucleotide identity and
70 % of read length were used to identify mapped reads). Read
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recruitment plots were obtained using the enveomics collection
(Rodriguez-R and Konstantinidis, 2016) and visually inspected for
presence/absence. Alternatively, the 80 % truncated average
sequencing depth (TAD80) of each MAG in each sample was estimated
using coverM 0.4.0 (https://github.com/wwood/CoverM) with the
following arguments: coverm genome -p bwa-mem —min-read-percent-
identity 95 -min-read-aligned-percent 75 —trim-max 90 —trim-min 10 -m
trimmed_mean. TAD8O0 values were further normalized by the genome
equivalent (GEQ) of each metagenome using MicrobeCensus (Nayfach
and Pollard, 2015), which represents a more accurate metric of abun-
dances that accounts for average genome size differences among meta-
genomes. The normalized abundances were represented by heatmap
using the ggplot2 package in R (Wickham, 2011). To predict the esti-
mated theoretical limit of detection (thLOD) of the microbial pop-
ulations, the methodology previously described by Castro et al., 2018
and Lindner et al., 2022 was followed under the assumption of 1 x 108
cells per gram and 1 x 10° cells per milliliter for soil and water samples,
respectively (Grenni et al., 2014; Lopes et al., 2011). That is, the target
populations must be present in an abundance higher than the estimated
thLOD in order to be detected by our sequencing effort.

The functional diversity of the metagenomes under study was
assessed as follows: genes were predicted on assembled contigs using
Prodigal v2.6.3 (Hyatt et al., 2010), followed by gene clustering using
MMseqs2 v13.45111 (Steinegger and Soding, 2017) at 90 % amino acid
sequence identity. The resulting gene clusters were subsequently an-
notated using the eggNOG-mapper v2.1.12 and the eggNOG 5.0.2
database (Cantalapiedra et al., 2021; Huerta-Cepas et al., 2019). The
gene diversity was assessed based on the fraction of total genes assigned
to each functional category.

2.5. Detection and quantification of antimicrobial resistance genes
(ARGs)

The detection of ARGs was performed using the tool ResFinder
(Florensa et al., 2022) based on the metagenomic reads BLASTn map-
ping against the “Acquired antimicrobial resistance genes” database,
with the following arguments: minimum identity 90 % and minimum
read coverage length 60 %. The relative abundance of each gene was
calculated by normalizing the average sequencing depth of each gene to
the GEQ estimate of each metagenome. Results were represented by
bubble charts using the ggplot2 package in R (Wickham, 2011).

Alternatively, to estimate the abundance of p-lactamase and tetra-
cycline encoding genes in the metagenomic datasets under study, short
reads were mapped against the reference gene sequences of precompiled
150 bp p-lactamase and tetracycline ROCker models (Suttner et al.,
2020; Zhang et al., 2022) by using the software DIAMOND 2.0.1 (blastx
—ultra-sensitive) (Buchfink et al., 2015). Mapped reads were selected for
best bit-score alignment and subsequently filtered by ROCker v1.5.2 as
described previously (Orellana et al., 2016). The relative abundance of
each ARG class was calculated by normalizing the average sequencing
depth of each gene to the GEQ of the corresponding metagenome and
summing across each class. Results were visualized as a heatmap using
the ggplot2 package in R (Wickham, 2011).

3. Results
3.1. Description of sampling locations

Six different CAFOs raising broiler chickens located in the north of
the state of Georgia were sampled in this study. A total of 58 samples
were collected: six from the deep litter from the different CAFOs, 21
from soils receiving land application of spent litter, and 21 from water
sources located downhill of the CAFO or land application site (Table S1).
At each CAFO, soil and water samples were taken at two different time
points after litter application on land, hereafter designated as visit 1 (T1)
and visit 2 (T2) (Table S1). Dates elapsed between the litter application
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on land and sampling ranged from 21 days up to 365 days (Table S1).
Additionally, for comparison, 12 control samples were also collected
(Table S1). These samples (six from soils and six from water) represented
six different locations with downhill water sources where no litter was
applied on soils. Note that while six (different) sites were sampled for
litter (sites 1, 3, 4, 5, 7, and 8), companion soil and water samples were
collected for only three of the sites (1, 3, and 5) and one additional
fourth site (9), which was not sampled for litter, due to restricted access
during field work (see Table S1 for details).

3.2. Bacterial community structure in CAFO samples and effects of litter
application at the whole-community level

A total of 58 metagenomes were obtained from the six CAFOs,
ranging in size between 6.89 and 33.9 million Illumina short-read se-
quences (0.89 to 5.1 Gbp) after trimming (Table S2). For these samples,
an average of 84.7 %, 17 % and 24.3 % of the total community for litter,
soil, and water, respectively, was recovered by our sequencing effort
based on Nonpareil analysis (Table S2). Of note, to be able to recover 95
% of the total community in soil and water, ~250 Gbp and ~150 Gbp of
short-read sequencing would be needed, respectively. Consequently, the
assembly of the litter metagenomes was more successful than those from
soil and water, which is also consistent with the higher diversity ex-
pected in the latter two habitats. Consistently, Nonpareil sequence di-
versity (Nq) values showed that the soil and water samples were more
diverse than the litter samples (Fig. 1A). On the other hand, the level of
diversity of the soil and water samples as well as diversity patterns over
time (T1 and T2) did not differ from those of the soil and water control
samples, respectively (Fig. 1A).

Observations of beta diversity among samples revealed a clear
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clustering of samples based on their nature (litter, water or soil; p-value:
0.001) (Fig. 1B). Similarly, no significant differences were observed in
terms of beta-diversity at time-points (T1 and T2; p-value: 0.872) after
the litter application on soils (Fig. 1C). Notably, water samples showed a
clear clustering pattern based on the sampling site (p-value: 0.001), a
pattern that was not observed for soil sites (Fig. 1C and D).

To explore the microbial diversity of the different CAFO samples at
the individual taxon level, the community composition of the generated
datasets was characterized using a k-mer based approach as imple-
mented in the Kraken2 software followed by Bracken. In soil commu-
nities, Streptomycetaceae (5.8-8.4 %), Nitrobacteraceae (4.6-11.3 %),
Comamonadaceae (3.6-6.6 %), Burkholderiaceae (3.5-5.6 %) and Sphin-
gomonadaceae (2.9-5.9 %) were the most abundant families, whereas in
litter communities, and consistent with previous literature (Cressman
et al., 2010; De Cesare et al., 2019; Wang et al., 2016), Brevibacteraceae
(5.6-38.36 %), Corynebacteriaceae (8.3-37.7 %), Dermabacteraceae
(7.6-15.5 %), Staphylococcaceae (3.5-15.7 %) and Lactobacillaceae
(1.4-6.5 %) were dominant. In water, the most abundant bacterial
communities at the family level were Comamonadaceae (4.1-40.2 %),
Pseudomonadaceae (2.0-16.5 %) and Burkholderiaceae (3.2-10.2 %)
(Fig. 2). No differences were observed between the different time points.

3.3. Tracing litter-derived microorganisms in soils

The presence and differential abundance analysis over the time of
specific litter-associated taxa over time was examined in more detail,
based on the Kraken and Bracken results, to assess their persistence in
the environment and detect any finer impacts of litter application. The
average relative abundance of the 10 most abundant genera in the litter
samples showed that they were practically absent in the soil samples

o O
0 o
0.054 @O%
o P oo
- o ©
= .00/
3 00 @)g Source
< gog_o O Litter
o @) O soil
-0.051 @)
é OQ)E? O Water
(]
-0.10+
-0.151 %80
0.1 00 01
PCOA 1 (25.86%)
N=58
0.15 o
@]
0.10 o Visit
Oc
g © ] L E T
8 0.05 T2
2 O
= Site
2 0001 A -8
Q )
2 0 4 4l
A 0O g - @9
-005] A oDAD O Control
AA
]
-010{ ) ) A
0.1 00 01
PCoA 1 (34.19%)
N=26

Fig. 1. Nonpareil diversity (N4) and mash distance comparison of the samples used in this study. (A) Nq values for litter and soil samples (upper plot) and litter and
water samples (lower plot) are shown. The error bars represent the standard deviation within each group of samples. (B) Principal coordinate analysis (PCoA) based
on mash distances illustrating the clustering of samples by source (litter, soil, water), (C) by CAFOs and sampling time-point for soil, and (D) water samples. Sites
refer to the different CAFOs where the samples were collected, T1 indicates visit 1, T2 indicates visit 2, and C indicates control. Days elapsed between the different
visits and litter application on land for each site were: 88 days (T1) and 162 days (T2) (Site 1); 35 days (T1) and 56 days (T2) (Site 3); 365 days (T1) and 21 days (T2)

(Site 5); 41 days (T1) (Site 9).
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with relative abundances ranging from 0.001 % up to 0.8 % (Fig. 3A), application, e.g. 21 days after land application (Site 5), with relative

with the sole exception of the genus Streptomyces, a well-known group of abundances up to 0.7 % and 0.2 %, respectively; decreasing to values
soil microorganisms. Indeed, the average relative abundance of Strep- around 0.12 % and 0.17 % respectively, at the following time-point, e.g.
tomyces in litter was 2 % contrasting with an average of 6.8 % and 6.2 % 35 days (Site 3) (Fig. 3A). In contrast, soil controls exhibited average
in land-applied soils and controls, respectively. Similar patterns were values of 0.11 % and 0.14 %, for Staphylococcus and Nocardiopsis,
observed in the water samples (Fig. 3B). respectively. Thus, these data indicated that the indigenous microbial
Notably, certain litter-associated taxa such as Staphylococcus and community is indeed affected by the litter application in the short term,
Nocardiopsis (average relative abundances in litter of 5.7 % and 1.7 %, but it is able to recover to the pre-application state after about a couple
respectively) were detectable in samples taken shortly after litter months.
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Likewise, the overall relative abundance of groups such as Escherichia
or Corynebacterium (1 % and 23.4 % average relative abundances in
litter, respectively) was higher in soils (with relative abundances on
average of 0.3 % and 0.5 %, respectively) compared to the other litter-
associated taxa analyzed (average abundances for those groups ranging
from 0.001 to 0.18 %) (Fig. 3A), suggesting that these genera might be
more resistant to soil conditions, and thus persist in the environment for
a longer period of time. However, these two genera exhibited similar
relative abundances in both amended and control soils, suggesting that
their native populations in these soils might be responsible for the re-
sults obtained, especially in later sampling time points, rather than the
effect of the litter application. For the remaining five genera, no changes
were observed along the different time-points, remaining non-detectable
in all environmental samples. Nevertheless, for more accurate estima-
tions about the litter impact in soils we investigated at the MAGs level.

3.4. Metagenome-assembled genomes (MAGs) of litter

A total of 334 MAGs were recovered from binning of the six litter
sample assemblies (samples were binned individually), resulting in a
selection of 13 medium-to-high-quality (completeness — [5*contamina-
tion] > 50) MAGs after dereplication across the litter samples at the ANI
> 95 % level (31 MAGs before dereplication across samples). The
genome size of the selected MAGs ranged from 1.3 to 4.1 Mbp, while
their G + C% content ranged from 33.0 to 71.8 mol% (Table S3).
Comparison of the selected MAGs against the GTDB-tk database
revealed matches to previously described taxa at the species level (>95
% ANI) for the majority of MAGs, while one and five MAGs potentially
represented a novel genus of a matching family (Jiangellaceae), and a
novel species of a matching genus (Brachybacterium, Corynebacterium,
Nocardiopsis, and Oceanisphaera), respectively (Table S3). These results
were further confirmed by searching against MiGA's TypeMat database
(Rodriguez-R et al., 2018), and the only differences observed were the
species names recently proposed by Gilroy et al. (2021) that have not
been validated yet by the International Code of Nomenclature of Pro-
karyotes (Table S3). The MAGs were assignable to three different phyla,
Actinobacteriota, Firmicutes and Proteobacteria, which are commonly
found in the chicken gut microbiome as the predominant phyla (Glen-
dinning et al., 2020; Segura-Wang et al., 2021; Xiao et al., 2017; Yang
et al., 2022). These findings are also consistent with the microbiota of
chickens from other parts of the globe such as Europe and China (Feng
et al., 2021; Yang et al., 2022), indicating that the results reported here
on the chicken commensal gut microbiota may apply more broadly, at
this (the phylum) level.

The most dominant phylum was Actinomycetota (comprising 61.3 %
of the total 31 MAGs obtained, n = 19) with genome representatives
from five different genera (Brevibacterium, Brachybacterium, Yaniella,
Corynebacterium, and Nocardiopsis), followed by Bacillota (35.5 % of the
total MAGs, n = 11) with genome representatives from four different
genera (Atopostipes, Jeotgalicoccus, Salinicoccus, and Staphylococcus)
(Table S3). For the phylum Pseudomonadota there was only one MAG
belonging to the genus Oceanisphaera (Table S3). Indeed, most of these
genera correspond to the most abundant groups identified by Kraken2
on unassembled metagenome reads of our litter samples, as shown
above.

3.5. Fate of litter MAGs in soils and water

To further corroborate the whole-community results reported above
and obtain finer resolution regarding the fate of litter-associated pop-
ulations in the natural environment, the relative abundance of the
recovered litter MAGs was estimated using read recruitment, followed
by normalization of the resulting relative abundance by the TAD80
metric (to avoid spurious matches) and GEQ (to provide a normalized
estimate of abundance in terms of fraction of total detected genomes) for
more accurate estimates. Competitive read mapping of the litter reads
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against a total of 13 recovered medium-to-high-quality MAGs resulted in
49.4 % reads recruited per litter metagenome, on average, supporting
that our collection of MAGs robustly represents a high percentage of the
litter diversity.

Litter-associated MAGs were absent, at the limit of our sequencing
effort, in all soil and water datasets (Fig. 4), and thus were exclusively
present in the litter metagenomes with a relative individual abundance
in the litter metagenomes ranging from 0.0043 % to 7 % of the total
(Fig. 4). All litter assembled contigs were also searched against the soil
and water metagenomic reads in case any litter-associated members not
represented by our MAGs were detectable in these samples. Similar re-
sults to those observed with the MAGs were obtained, i.e., no litter
contigs were detectable in soil or water (data not shown). Consistently,
no overlapping contigs between litter and soil metagenomes that had
>99 % identity and >1Kbp long overlap were detectable, whereas litter
metagenomes shared about ~50 % of their total contigs in comparison.
The average estimated theoretical limit of detection (thLOD) in our
metagenomic datasets was estimated to be 2.42E+04 + 5.75E+03
(cells/g) and 4.28E+02 + 1.35E+02 (cells/mL) in soil and water,
respectively (for key assumptions, see the Materials and methods sec-
tion). Therefore, our target MAG populations from litter, if present in the
sampled soils or waters, should be at abundances lower than 2E+04
cells/g and 4E+02 cells/mL, respectively.

On the other hand, the most abundant MAGs in the litter samples
were Brevibacterium intestinavium, Atopostipes pullistercoris, Brachybacte-
rium merdavium, and Yaniella excrementigallinarum being especially
prevalent at the CAFOs from the Sites 1, 5 and 7; Site 3; Sites 1, 4 and 8;
and Sites 1, 4, 7 and 8; respectively (Fig. 4). Interestingly, these four
species have been recently proposed as novel members of the chicken
gut microbiome based on a culture-independent study (Gilroy et al.,
2021), but studies reporting on their prevalence in the chicken gut
microbiome and litter have been limited to date.

3.6. Metabolic pathway abundance and diversity in soils after litter
application

We also examined if the application of litter had any effects in terms
of broad functional gene content on the soils that received it by
comparing the relative abundance of major metabolic pathways related
to carbon and nitrogen cycling and energy generation between these
soils and their controls. We found limited differences overall between
the two groups, e.g., most metabolic pathways showed similar abun-
dances between the two groups. A few significant differences were noted
such as a higher abundance of methanogenesis genes in the litter-applied
soils vs. controls (e.g., 14 % vs. 11 % of the total genes annotated;
Fig. S1), which was consistent with the addition of extra carbon to the
soil as an effect of the litter application. Overall, however, the effects of
litter on metabolic pathways were rather limited, consistent with our
results reported above showing that litter-associated genes and genomes
did not survive more than a couple months in the soil.

3.7. Antibiotic resistance gene (ARG) abundance in litter and fate in
adjacent soil and water

Reads were screened for the presence of ARGs to assess the fate of
these genes due to their relevance for public health. In total, genes
coding for 46 subtypes, belonging to 9 different ARG types or families,
were found, according to Resfinder (nucleotide level), in at least one of
the six litter samples studied, with relative abundances ranging from
0.0016 to 0.4 copies/GEQ (Table S4). None of these ARGs were found in
any of the soil samples using the same criteria for presence, while only a
couple of ARGs (blaACC-3, InuC, tetA, tetQ), with relatively low abun-
dances (0.005 to 0.15 copies/GEQ), were identifiable in a few of the
water samples, including controls (Table S4). The latter ARGs were
absent in any of the litter samples, suggesting that their presence in
water was likely independent of the litter application on adjacent soils.
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MAG 24_Staphylococcus nepalensis -

MAG 1_Nocardiopsis sp. -

MAG 28_Salinicoccus stercoripuflorum -

MAG 16_Brachybacterium sp. -

MAG 15_Jeotgalicoccus aerolatus -

MAG 7_Corynebacteriurm sp. -

MAG 10 Oceanisphaera sp. -

MAG 17_uiangaceliae sp. -

MAG 30_Atopostipes pullistercoris -

MAG 25_Salinicoccus merdavium -

MAG 12_Yaniolla oxcromentigallinarum -

MAG 5_Brachybacterium merdavium -

MAG 4_Brevibacterium intestinavium -
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Fig. 4. Relative abundance of the litter MAGs in the different metagenomic datasets from litter, soil and water. Abundance was estimated based on the TAD80 metric
normalized by GEQ and represented as a heatmap. Relative abundance values were multiplied by 100 to be expressed in percentages as shown in the legend. The X
axis depicts the different CAFOs (sites) where the samples from litter, soil and water were collected, T1 indicates visit 1, T2 indicates visit 2, and C indicates control.
Days elapsed between the different visits and litter application on land for each site were: 88 days (T1) and 162 days (T2) (Site 1); 35 days (T1) and 56 days (T2) (Site

3); 365 days (T1) and 21 days (T2) (Site 5); 41 days (T1) (Site 9).

The genes detected in the litter samples encoded resistance to tet-
racyclines, macrolides, aminoglycosides, sulphonamides, trimethoprim,
fosfomycin, lincosamide and phenicol. Overall, resistance genes to
trimethoprim, sulphonamides, macrolides and tetracyclines were the
most abundant (Fig. 5), with the top five abundant ARG subtypes being
ermC, dfrD, tetK, tetL and sull (Fig. S2), consistent with previous studies
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of the chicken gut resistome (Feng et al., 2021; Qu et al., 2008; Yang
et al., 2022). In terms of ARG type diversity, the aminoglycosides, tet-
racyclines and macrolides were the most diverse groups considering the
number of different subtype genes recovered for each of these families
(Fig. 5). The most prevalent ARG subtypes that were commonly found in
all analyzed litter samples were aadA9, dfrD, erm36, ermC, ermX, InuA,
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Fig. 5. Relative abundance of each ARG family and the number of ARG subtypes found under each ARG type category in the litter metagenomic samples. The
abundance of each ARG type or family represents the sum of the relative abundances (copies/GEQ) of each ARG subtype gene, normalized by the number of genes
under that type. The X axis depicts the different CAFOs (sites) where the samples were collected.
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InuG, sull, tet33, tetL, tetM and tetZ (Fig. S2).

Since genes coding for tetracycline resistance were among the most
abundant and frequent ARG subtypes found in the litter samples, we
wanted to investigate their distribution in our samples in more detail.
For this purpose, we used the previously built ROCker models for
tetracycline (tetM) and beta-lactamase (blaA, blaC, MBL and OXA) class
genes, an accurate approach to find and type metagenomic reads con-
taining a target gene of interest that avoids spurious matches. With
respect to the tetracycline tetM gene, and consistent with the ARGs re-
sults mentioned above (Table S4), litter samples had the highest relative
abundance of this gene (up to 0.13 copies/GEQ) (Fig. S3). The relative
abundance of tetM in soil and water samples was notably lower than in
litter (ranging from 0.007 to 0.07 copies/GEQ), and exhibited similar
relative abundance in the soil and water control samples (from 0.004 to
0.05 copies/GEQ) (Fig. S3), suggesting that its presence in the envi-
ronment might be independent of litter application and most likely part
of the natural soil resistome. On the contrary, the relative abundance of
beta-lactamase genes was higher in soil and water metagenomes
(ranging from 0.005 up to 0.2 copies/GEQ, and 0.0008 up to 0.07
copies/GEQ; respectively) than in litter metagenomes (from 0.0002 to
0.03 copies/GEQ) (Fig. S3). The similar relative abundances values in
soil and water samples with respect to their controls (relative abun-
dances ranging from 0.003 to 0.17 copies/GEQ, and 0.004 to 0.08
copies/GEQ; respectively) further supporting their source being inde-
pendent from litter. The beta-lactamase gene with the highest relative
abundance was the MBL class, especially in soil, while the OXA class,
blaA and blaC genes showed similar abundances within the samples
(Fig. S3). The fact that ROCker uses a more sensitive approach and might
detect more distant homologs likely explains why those genes were not
detected by Resfinder.

4. Discussion

Our study examined the changes to the soil and downstream water
microbial community composition and antibiotic resistance profiles as
an effect of litter application at six CAFOs in Georgia (USA) based on
metagenomic sequencing. The chicken gut microbiome is a well-
appreciated reservoir of ARGs, and the practice of direct application of
the chicken litter to adjacent agricultural lands might be associated with
potential environmental and human health threats from spreading ARGs
and microbial pathogens. Our data based on a robust abundance esti-
mation metric (TAD80/GEQ) revealed that none of the litter-associated
MAG representatives were detected, at the theoretical limit of detection
(thLOD) of our sequencing effort, in any of the soil or water datasets a
month or longer after litter application. Considering that our collection
of MAGs represented well the microbial litter community, these findings
indicate that litter application on soils may not introduce persistent
microbial populations, possibly due to dilution in the field and/or that
the litter-associated taxa do not sustain large populations in the extra-
intestinal environment for more than a few days. This hypothesis is
consistent with previous studies suggesting that litter-derived bacteria
are not well adapted to survive in the extra-intestinal environment
(Jechalke et al., 2014). Similarly, no significant changes were observed
on the Nj and beta diversity in soil and water samples across the
different time-points, and with respect to the controls, further corrob-
orating that the overall microbial composition is not substantially
affected by the litter application on soils. These results are consistent
with similar studies in which animal manure was applied to soils
(Macedo et al., 2021; Poulsen et al., 2013; Riber et al., 2014), suggesting
that the higher microbial diversity observed in soils compared to litter
and/or the robustness of the indigenous soil microbial community
against amendments with exogenous microbes are likely responsible for
our findings. Note, however, that litter-associated taxa could survive in
the extra-intestinal environment as part of the rare biosphere or resting
cells (Gonzales-Siles and Sjoling, 2016; Kreling et al., 2020; Lynch and
Neufeld, 2015), which our study's methods could not assess.
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Moreover, our data from the metagenomic short read annotation by
Kraken/Bracken suggests that, after a short period of time (e.g., less than
one month), the relative abundance of specific litter-associated taxa in
soils may have increased slightly but, after a couple months, the mi-
crobial communities recovered to the composition prior to litter appli-
cation. This result indicates that variations in the soil microbiome may
be transient and microbial communities are resilient, as also has been
previously observed by other studies (Lopatto et al., 2019; Rieke et al.,
2018). Moreover, additional analyses and sampling are needed to
confirm that the increase in the abundance of litter-associated taxa
observed (Kraken/Bracken results) is simply not attributable to the
growth of close relatives that are indigenous in soils and apparently
favored by litter application (but to organisms in the litter themselves).
Consistent with this interpretation, the MAG abundance data did not
indicate persistence of litter-associated taxa in soils or water samples at
detectable levels. It should also be noted that the decay patterns of litter-
associated taxa and the response of soil microorganisms to litter appli-
cation are, in general, challenging to infer from time points (more
frequent sampling will be required for this), and may also depend on
environmental factors (e.g. intrinsic soil properties or weather and
seasonal conditions, among others). Our sampling took place during the
months of May-June, which are characterized by warm temperatures
(20-30 °C) and frequent rain in the state of Georgia. Thus, weather
conditions were highly favorable for (fast) microbial growth upon
addition of exogenous carbon (litter) at our sampling sites, in general.

With respect to the antimicrobial resistance detection, independently
of the approach used, no changes in the resistome of the amended soils
and nearby watercourses could be identified by our study that could be
associated to the impact of litter application. Although the MBL class of
beta-lactamase genes was identified in notable abundance in the
amended soils based on the ROCker model estimation, no pronounced
differences were observed between these soils and the control soils.
Therefore, the presence of MBL might be related to the indigenous
resistome in soils rather than to the litter application itself (D'Costa
et al., 2006; Wang et al., 2018). Congruent with this interpretation,
other studies identified low ARG abundances or an insignificant increase
in ARG concentrations in amended soils after short- and long-term litter
application (Liu et al., 2021; Lopatto et al., 2019; Wang et al., 2018).
However, there are several other studies whose findings contrast with
those reported here and suggest that manure application on soils can
introduce external ARGs and significantly increase their relative abun-
dance in the soil environment (Han et al., 2018; Macedo et al., 2021; Xie
et al., 2018; Zhang et al., 2017). Besides the increase, it has been sug-
gested that the ARGs derived from manure do not persist for prolonged
periods in the environment, likely due to the shift in the niche envi-
ronment and competition by the indigenous microorganisms (Macedo
et al., 2021; Tien et al., 2017; Zhang et al., 2017). Therefore, the longer
time frames considered in the present study could account for the dif-
ferences observed, and justify why only a few ARGs could be detected in
our soil and water samples (see Table S4). Along the same line, the
indigenous soil microbial diversity has also been suggested as an
important source of resistance for invading bacterial pathogens carrying
ARGs (Han et al., 2018), although further studies on the frequency that
this occurs are still needed.

Overall, the discrepancies between our data and previous studies
may be attributed to differences in the methodology, varying experi-
mental designs with different time frames, intrinsic soil properties (e.g.,
physicochemical characteristics or complexity), and divergent seasonal
or weather conditions. In this sense, future studies could include deeper
sequencing of soil and water samples (allowing for higher community
coverage and lower detection limits); shorter sampling time-frames after
litter application in order to derive more robust decay curves; sampling
of deeper soil layers in order to assess potential shifts in the deeper,
anaerobic microbial communities; or the combined use of metagenomics
with more sensitive techniques (e.g. ddPCR and isolation, allowing for
lower detection limits and more precise counts). It is worth mentioning
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that at the time the study was designed there was a lack of similar studies
in the literature, and hence, limited information on the appropriate
sampling time-frame to use. It is also important to note that our study
did not assess chemical pollutants, possible effects at different depths,
and the likelihood that chicken-derived taxa may persist at low abun-
dances (rare biosphere) and/or as resting cells is possible. Therefore, our
study cannot offer definitive conclusions about the overall safety of litter
application. Despite these limitations, however, our findings are robust
enough to suggest that at the studied CAFOs and weather conditions,
litter application might represent a minimal impact on the microbiome
and resistome of the natural soil and water microbial communities. The
negligible effect on the microbiome or resistome profiles is probably due
to the litter dilution in the field, and the recovery of the indigenous
microbial community composition after a short-period of time, con-
firming the high resilience of natural microbial communities to
perturbations.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2024.170772.
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