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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Shotgun metagenomics was employed 
to investigate the impact of litter appli
cation on adjacent soils and downstream 
creek waters from poultry farms in 
Southeast US. 

• Shifts in the microbial diversity, func
tional gene content and antibiotic resis
tance genes (ARGs) in litter-receiving 
soils were assessed against adjacent 
control samples (no litter application). 

• Litter-associated microorganisms or 
ARGs were not detectable at the detec
tion limit of our metagenomic 
sequencing effort in any of the soils or 
nearby waterways after a couple months 
of litter application. 

• Our findings highlight the high resil
ience of natural microbial communities 
to litter perturbations.  
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A B S T R A C T   

In recent decades, human food consumption has led to an increased demand for animal-based foods, particularly 
chicken meat production. The state of Georgia, USA is one of the top broiler chicken producers in the United 
States, where animals are raised in Concentrated Animal Feeding Operations (CAFOs). Without proper man
agement, CAFOs could negatively impact the environment and become a public health risk as a source of water 
and air pollution and/or by spreading antimicrobial resistance genes. In this study, we used metagenome 
sequencing to investigate the impact of the application of the CAFO's litter on adjacent soils and downstream 
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creek waters in terms of microbial diversity and antimicrobial resistance profile changes. Our data indicate that 
while a few microbial groups increased in abundance within a short period of time after litter application, these 
populations subsequently decreased to levels similar to those found prior to the litter application or to below the 
detection limit of our metagenome sequencing effort. Microbial taxonomic composition analyses, relative 
abundance of Metagenome-Assembled Genomes (MAGs) and detection of Antimicrobial Resistance Genes (ARGs) 
allow us to conclude that this practice of litter application had a negligible effect on the microbiome or resistome 
profile of these soils and nearby waterways, likely due to its dilution in the field and/or outcompetition by 
indigenous microbes, revealing a minimal impact of these poultry facilities on the natural microbial 
communities.   

1. Introduction 

Human food consumption has experienced important changes over 
the past decades, with the demand for foods of animal origin, including 
milk and dairy products, eggs and meat growing significantly (Henchion 
et al., 2021). Chicken meat production, in particular, has increased 
worldwide by over ten-fold since the 1960s (Ritchie et al., 2017). A 
direct consequence of this growth in poultry consumption is the 
resulting increase in litter production, defined as the mixture of poultry 
manure with spilled feed, feathers and bedding materials. Concentrated 
Animal Feeding Operations (CAFOs) are agricultural facilities where a 
large number of animals (n > 1000) are confined indoors with feeding 
operations lasting for at least 45 days at a time and no plant crops sus
tained within the facility (U.S. Environmental Protection Agency, 2001). 
CAFOs raising chickens are prevalent throughout the United States, 
especially in the Southern states (Georgia, Alabama, Arkansas, North 
Carolina and Mississippi), and are the major source of poultry meat sold 
at markets across the country (National Chicken Council, 2021). Ac
cording to the United States Department of Agriculture (USDA), the 
number of broilers chickens produced in the state of Georgia alone 
reached the number of ~1.3 billion heads in 2021, representing ~14 % 
of the total broiler chicken production in the United States (National 
Agricultural Statistics Service, 2022). 

CAFOs produce large quantities of animal waste within very small 
areas which can contribute to problems of water and air pollution (e.g., 
odorous gases such as ammonia or uncontrolled greenhouse gas emis
sions). These issues of CAFO driven environmental pollution are exac
erbated by variable waste management practices such as, for example, 
the direct application of waste to agricultural land as fertilizer (Bolan 
et al., 2010; Mallin and McIver, 2018). Thus, several environmental and 
human health risks are frequently associated with CAFO facilities 
(Ayala-Ramirez et al., 2023). Other potential threats to public health 
include the widely extended practice of antibiotic use in animal agri
culture for prophylaxis, therapy, and growth promotion (Van Boeckel 
et al., 2015). There are growing concerns about antimicrobial resistance 
(AMR) development within CAFOs and its spread into the nearby 
environment and associated bacterial communities (Hu et al., 2016; 
Wang et al., 2012). Studies have shown that AMR genes may enter the 
environment through runoff, leaching, or application of animal waste as 
manure to land, all of particular concern in poultry operations (Chee- 
Sanford et al., 2009; Martinez, 2009; Zhang et al., 2009). Nevertheless, 
due to the yet-limited number of available studies, there is a need to 
understand and quantify to what extent the microbiota from the animal 
wastes and the antimicrobial resistance genes (ARGs) are transferred to 
the adjacent natural microbial communities and downstream waters as a 
consequence of different waste management practices. The limited 
number of studies available to date have mainly focused on the impact of 
manure application on land through 16S rRNA gene (or simply 16S) 
amplicon sequencing or quantitative PCR approaches (Liu et al., 2020; 
Riber et al., 2014; Xie et al., 2018). However, very few studies have 
focused specifically on litter, investigated the impact of animal waste in 
nearby waterways, or used metagenomic techniques. Moreover, in situ 
studies are rare, with several relying on ex-situ experiments (Han et al., 
2018; Wang et al., 2017; Zhang et al., 2017). 

The purpose of this study was to evaluate, using a culture- 
independent metagenomic approach, the effect of several CAFOs facil
ities on adjacent natural soil and water microbial communities, 
including in their resistome, by following the microbial community 
composition in these systems over time after receiving the litter appli
cation. We also investigated whether or not the microbial communities 
recovered to the pre-application state in terms of community ecology 
and ARG prevalence. To the best of our knowledge, this is one of the first 
studies to examine the impact of CAFO litter on the adjacent soil and 
water microbial communities in-situ via metagenomic techniques 
following application of chicken litter to land. 

2. Materials and methods 

2.1. Sample collection 

Six litter samples were collected across six CAFO sites at 1–2 sam
pling events per site (Table S1). Litter sample collection days occurred 
within 24 h after birds were vacated from the house. For each sample, 10 
litter samples were collected along the length of drinker lines inside 
grow houses and treated as one composite sample. Sampling dates were 
determined by growers and dependent on flock grow out dates. In total, 
21 land-applied soil samples receiving litter from the CAFO were taken 
across six CAFOs at two sampling events per location (Table S1). Litter 
was applied to the sampled land by the growers using a “manure 
spreader”. Three soil samples were taken at each sampling event at a 
depth of 0–15 cm and on a 10 × 10 cm grid and treated as individual 
samples (not a composite). Litter handling practices varied between 
individual farms, making it difficult to control for the imprecise and 
varied methodologies used in situ. For example, most operations stored 
spent litter in sheds for different amounts of time before land applica
tion, making it difficult to determine the exact age of litter actively being 
land applied. Nonetheless, when possible, soil samples were collected at 
the uphill, mid-hill, and downhill boundaries of the land-applied areas 
feeding into a receiving stream. The time between sample collection 
and, the most recent land application event varied between 21 days and 
365 day with an average of 109 days. Access to facilities and land and 
the schedule of growers performing land application were not such that 
regular intervals of sampling could be obtained. Soil samples with no 
history of litter application were also collected and used as negative 
controls. In addition to soil samples, 21 water samples were taken in 
receiving waters downstream of six CAFOs at two sampling events per 
location where land-applied litter and contaminants may have been 
mobilized via runoff or subsurface transfer into receiving waters 
(Table S1). Three samples (50-mL/each) were collected at each sam
pling event using hollow-filter dead-end ultrafiltration (DEUF) for re
covery of enteric pathogens (Mull and Hill, 2012). When possible, 
samples were collected at the point of discharge, ~1 km downstream of 
the point of discharge, and 1–5 km further downstream. Water samples 
were also collected downstream from the soil control sites and used as 
controls. The most upstream samples were located between 0.5 km and 
1 km from land-applied soil sampling sites. Receiving waters were 
streams located on or directly adjacent to the farm property that fed into 
a river. 
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2.2. DNA extraction 

DNA extraction was performed on litter and soil samples with 
0.2–0.5 g of litter or 10 g of soil, using Qiagen's PowerFecal kit and 
Qiagen's PowerMax Soil kit, respectively. For the water samples, DNA 
extraction was performed with 75–750 μL of resuspended PEG pellet 
using Qiagen's PowerFecal kit, following the manufacturer's protocol 
with a modified 30-second bead-beating lysis step. DNA concentration 
was measured using a Qubit™ 3.0 Fluorometer and purity was deter
mined by measuring the absorbance ratios at 260/280 and 260/230 
using a Nanodrop 1000 Spectrophotometer. 

2.3. Metagenomic sequencing 

The DNA samples were prepared for sequencing by using the Nextera 
XT DNA library prep kit manufactured by Illumina, San Diego, CA. The 
resulting DNA libraries were sequenced using an Illumina HiSeq 2500 
instrument available at the Georgia Institute of Technology High 
Throughput DNA Sequencing Core. Adapter trimming and demulti
plexing of the samples were carried out on the sequencing instrument. 

2.4. Sequence data analysis 

Raw data were quality assessed and trimmed using FaQCs 2.10 (Lo 
and Chain, 2014). Reads with a quality lower than 15 and shorter than 
50 bp after trimming were removed. The Nonpareil tool 3.401 (Rodri
guez-R and Konstantinidis, 2014) with default parameters was used to 
estimate the microbial community coverage by each metagenomic 
dataset. Overall similarities between metagenomic datasets were 
determined based on Mash distances (Ondov et al., 2016) for the trim
med reads and visualized using a PCoA plot generated with the ggplot2 
package in R (Wickham, 2011). Permutational multivariate analysis of 
variance using distance matrices was performed with the adonis func
tion of the R package vegan (Dixon, 2003). 

Kraken2 was used to assign taxonomy (at the rank of class, order, 
family and genus) against a reference library, including bacteria, 
archaea, viruses, protozoa, human, and fungal reference genomes 
(Wood et al., 2019). The relative abundance of the Kraken2 profiles was 
estimated by Bracken as performed previously (Lu et al., 2017). 

Quality-trimmed reads were assembled independently, de novo with 
Spades 3.15.4 (“-meta”) (Prjibelski et al., 2020) and IDBA-UD 1.1.3 
(Peng et al., 2012) and the generated assemblies were quality checked 
using metaQuast (Mikheenko et al., 2016). Contigs shorter than 5 Kbp 
from both assemblies were removed prior to population genome 
binning, which was performed independently by MaxBin 2.2.7 and 
MetaBAT 2.12.1 with default parameters (Kang et al., 2019; Wu et al., 
2016). All resulting Metagenome-Assembled Genomes (MAGs) from the 
same sample and the different assembly and binning runs were der
eplicated using dRep 3.4.0 (Olm et al., 2017) at ANI 95 %. MAG 
contamination and completeness was assessed with CheckM 1.1.2 (Parks 
et al., 2015). MAG quality was calculated as “Quality = Completeness −
(5 × Contamination)”, and only medium-to-high-quality MAGs (quality 
score ≥ 50) were used for further analysis. To assign the taxonomy to the 
generated MAGs the toolkits GTDB-Tk v2.2.6 and GTDB r207_v2 
(Chaumeil et al., 2020), and Microbial Genome Atlas (MiGA) v1.3.8.3 
and TypeMat databases (Rodriguez-R et al., 2018) were used. This 
process resulted in 31 medium-to-high-quality MAGs (Table S3) for the 
litter samples that represented the genome diversity recovered in each 
sample. Dereplication across litter samples using the same 95 % ANI cut- 
off resulted in 13 MAGs representing the species-level diversity recov
ered in the samples. 

The abundance and presence of recovered MAGs was assessed by 
read recruitment. For this, individual MAG sequences were mapped 
against all metagenomic reads from each dataset using stand-alone 
BLASTn (best match when better than 95 % nucleotide identity and 
70 % of read length were used to identify mapped reads). Read 

recruitment plots were obtained using the enveomics collection 
(Rodriguez-R and Konstantinidis, 2016) and visually inspected for 
presence/absence. Alternatively, the 80 % truncated average 
sequencing depth (TAD80) of each MAG in each sample was estimated 
using coverM 0.4.0 (https://github.com/wwood/CoverM) with the 
following arguments: coverm genome -p bwa-mem –min-read-percent- 
identity 95 –min-read-aligned-percent 75 –trim-max 90 –trim-min 10 -m 
trimmed_mean. TAD80 values were further normalized by the genome 
equivalent (GEQ) of each metagenome using MicrobeCensus (Nayfach 
and Pollard, 2015), which represents a more accurate metric of abun
dances that accounts for average genome size differences among meta
genomes. The normalized abundances were represented by heatmap 
using the ggplot2 package in R (Wickham, 2011). To predict the esti
mated theoretical limit of detection (thLOD) of the microbial pop
ulations, the methodology previously described by Castro et al., 2018 
and Lindner et al., 2022 was followed under the assumption of 1 × 108 

cells per gram and 1 × 106 cells per milliliter for soil and water samples, 
respectively (Grenni et al., 2014; Lopes et al., 2011). That is, the target 
populations must be present in an abundance higher than the estimated 
thLOD in order to be detected by our sequencing effort. 

The functional diversity of the metagenomes under study was 
assessed as follows: genes were predicted on assembled contigs using 
Prodigal v2.6.3 (Hyatt et al., 2010), followed by gene clustering using 
MMseqs2 v13.45111 (Steinegger and Söding, 2017) at 90 % amino acid 
sequence identity. The resulting gene clusters were subsequently an
notated using the eggNOG-mapper v2.1.12 and the eggNOG 5.0.2 
database (Cantalapiedra et al., 2021; Huerta-Cepas et al., 2019). The 
gene diversity was assessed based on the fraction of total genes assigned 
to each functional category. 

2.5. Detection and quantification of antimicrobial resistance genes 
(ARGs) 

The detection of ARGs was performed using the tool ResFinder 
(Florensa et al., 2022) based on the metagenomic reads BLASTn map
ping against the “Acquired antimicrobial resistance genes” database, 
with the following arguments: minimum identity 90 % and minimum 
read coverage length 60 %. The relative abundance of each gene was 
calculated by normalizing the average sequencing depth of each gene to 
the GEQ estimate of each metagenome. Results were represented by 
bubble charts using the ggplot2 package in R (Wickham, 2011). 

Alternatively, to estimate the abundance of β-lactamase and tetra
cycline encoding genes in the metagenomic datasets under study, short 
reads were mapped against the reference gene sequences of precompiled 
150 bp β-lactamase and tetracycline ROCker models (Suttner et al., 
2020; Zhang et al., 2022) by using the software DIAMOND 2.0.1 (blastx 
–ultra-sensitive) (Buchfink et al., 2015). Mapped reads were selected for 
best bit-score alignment and subsequently filtered by ROCker v1.5.2 as 
described previously (Orellana et al., 2016). The relative abundance of 
each ARG class was calculated by normalizing the average sequencing 
depth of each gene to the GEQ of the corresponding metagenome and 
summing across each class. Results were visualized as a heatmap using 
the ggplot2 package in R (Wickham, 2011). 

3. Results 

3.1. Description of sampling locations 

Six different CAFOs raising broiler chickens located in the north of 
the state of Georgia were sampled in this study. A total of 58 samples 
were collected: six from the deep litter from the different CAFOs, 21 
from soils receiving land application of spent litter, and 21 from water 
sources located downhill of the CAFO or land application site (Table S1). 
At each CAFO, soil and water samples were taken at two different time 
points after litter application on land, hereafter designated as visit 1 (T1) 
and visit 2 (T2) (Table S1). Dates elapsed between the litter application 
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on land and sampling ranged from 21 days up to 365 days (Table S1). 
Additionally, for comparison, 12 control samples were also collected 
(Table S1). These samples (six from soils and six from water) represented 
six different locations with downhill water sources where no litter was 
applied on soils. Note that while six (different) sites were sampled for 
litter (sites 1, 3, 4, 5, 7, and 8), companion soil and water samples were 
collected for only three of the sites (1, 3, and 5) and one additional 
fourth site (9), which was not sampled for litter, due to restricted access 
during field work (see Table S1 for details). 

3.2. Bacterial community structure in CAFO samples and effects of litter 
application at the whole-community level 

A total of 58 metagenomes were obtained from the six CAFOs, 
ranging in size between 6.89 and 33.9 million Illumina short-read se
quences (0.89 to 5.1 Gbp) after trimming (Table S2). For these samples, 
an average of 84.7 %, 17 % and 24.3 % of the total community for litter, 
soil, and water, respectively, was recovered by our sequencing effort 
based on Nonpareil analysis (Table S2). Of note, to be able to recover 95 
% of the total community in soil and water, ~250 Gbp and ~150 Gbp of 
short-read sequencing would be needed, respectively. Consequently, the 
assembly of the litter metagenomes was more successful than those from 
soil and water, which is also consistent with the higher diversity ex
pected in the latter two habitats. Consistently, Nonpareil sequence di
versity (Nd) values showed that the soil and water samples were more 
diverse than the litter samples (Fig. 1A). On the other hand, the level of 
diversity of the soil and water samples as well as diversity patterns over 
time (T1 and T2) did not differ from those of the soil and water control 
samples, respectively (Fig. 1A). 

Observations of beta diversity among samples revealed a clear 

clustering of samples based on their nature (litter, water or soil; p-value: 
0.001) (Fig. 1B). Similarly, no significant differences were observed in 
terms of beta-diversity at time-points (T1 and T2; p-value: 0.872) after 
the litter application on soils (Fig. 1C). Notably, water samples showed a 
clear clustering pattern based on the sampling site (p-value: 0.001), a 
pattern that was not observed for soil sites (Fig. 1C and D). 

To explore the microbial diversity of the different CAFO samples at 
the individual taxon level, the community composition of the generated 
datasets was characterized using a k-mer based approach as imple
mented in the Kraken2 software followed by Bracken. In soil commu
nities, Streptomycetaceae (5.8–8.4 %), Nitrobacteraceae (4.6–11.3 %), 
Comamonadaceae (3.6–6.6 %), Burkholderiaceae (3.5–5.6 %) and Sphin
gomonadaceae (2.9–5.9 %) were the most abundant families, whereas in 
litter communities, and consistent with previous literature (Cressman 
et al., 2010; De Cesare et al., 2019; Wang et al., 2016), Brevibacteraceae 
(5.6–38.36 %), Corynebacteriaceae (8.3–37.7 %), Dermabacteraceae 
(7.6–15.5 %), Staphylococcaceae (3.5–15.7 %) and Lactobacillaceae 
(1.4–6.5 %) were dominant. In water, the most abundant bacterial 
communities at the family level were Comamonadaceae (4.1–40.2 %), 
Pseudomonadaceae (2.0–16.5 %) and Burkholderiaceae (3.2–10.2 %) 
(Fig. 2). No differences were observed between the different time points. 

3.3. Tracing litter-derived microorganisms in soils 

The presence and differential abundance analysis over the time of 
specific litter-associated taxa over time was examined in more detail, 
based on the Kraken and Bracken results, to assess their persistence in 
the environment and detect any finer impacts of litter application. The 
average relative abundance of the 10 most abundant genera in the litter 
samples showed that they were practically absent in the soil samples 

Fig. 1. Nonpareil diversity (Nd) and mash distance comparison of the samples used in this study. (A) Nd values for litter and soil samples (upper plot) and litter and 
water samples (lower plot) are shown. The error bars represent the standard deviation within each group of samples. (B) Principal coordinate analysis (PCoA) based 
on mash distances illustrating the clustering of samples by source (litter, soil, water), (C) by CAFOs and sampling time-point for soil, and (D) water samples. Sites 
refer to the different CAFOs where the samples were collected, T1 indicates visit 1, T2 indicates visit 2, and C indicates control. Days elapsed between the different 
visits and litter application on land for each site were: 88 days (T1) and 162 days (T2) (Site 1); 35 days (T1) and 56 days (T2) (Site 3); 365 days (T1) and 21 days (T2) 
(Site 5); 41 days (T1) (Site 9). 
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with relative abundances ranging from 0.001 % up to 0.8 % (Fig. 3A), 
with the sole exception of the genus Streptomyces, a well-known group of 
soil microorganisms. Indeed, the average relative abundance of Strep
tomyces in litter was 2 % contrasting with an average of 6.8 % and 6.2 % 
in land-applied soils and controls, respectively. Similar patterns were 
observed in the water samples (Fig. 3B). 

Notably, certain litter-associated taxa such as Staphylococcus and 
Nocardiopsis (average relative abundances in litter of 5.7 % and 1.7 %, 
respectively) were detectable in samples taken shortly after litter 

application, e.g. 21 days after land application (Site 5), with relative 
abundances up to 0.7 % and 0.2 %, respectively; decreasing to values 
around 0.12 % and 0.17 % respectively, at the following time-point, e.g. 
35 days (Site 3) (Fig. 3A). In contrast, soil controls exhibited average 
values of 0.11 % and 0.14 %, for Staphylococcus and Nocardiopsis, 
respectively. Thus, these data indicated that the indigenous microbial 
community is indeed affected by the litter application in the short term, 
but it is able to recover to the pre-application state after about a couple 
months. 

Fig. 2. Relative abundance of the top ten most abundant bacterial families in litter (A), soil (B) and water (C) metagenomic samples. The underlying data are 
metagenomic short read annotated by Kraken/Bracken. The X axis depicts the different CAFOs (sites) where the samples were collected, T1 indicates visit 1, T2 
indicates visit 2, and C indicates control. Days elapsed between the different visits and litter application on land for each site were: 88 days (T1) and 162 days (T2) 
(Site 1); 35 days (T1) and 56 days (T2) (Site 3); 365 days (T1) and 21 days (T2) (Site 5); 41 days (T1) (Site 9). 

Fig. 3. Average relative abundance of the top ten most abundant genera from litter (according to Kraken) in litter and soil samples (A), and in litter and water 
samples (B). The underlying data are metagenomic short read annotated by Kraken/Bracken. The colors in the legend depict the different CAFOs (sites) where the 
samples were collected, T1 indicates visit 1, T2 indicates visit 2, and C indicates control. Days elapsed between the different visits and litter application on land for 
each site were: 88 days (T1) and 162 days (T2) (Site 1); 35 days (T1) and 56 days (T2) (Site 3); 365 days (T1) and 21 days (T2) (Site 5); 41 days (T1) (Site 9). 
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Likewise, the overall relative abundance of groups such as Escherichia 
or Corynebacterium (1 % and 23.4 % average relative abundances in 
litter, respectively) was higher in soils (with relative abundances on 
average of 0.3 % and 0.5 %, respectively) compared to the other litter- 
associated taxa analyzed (average abundances for those groups ranging 
from 0.001 to 0.18 %) (Fig. 3A), suggesting that these genera might be 
more resistant to soil conditions, and thus persist in the environment for 
a longer period of time. However, these two genera exhibited similar 
relative abundances in both amended and control soils, suggesting that 
their native populations in these soils might be responsible for the re
sults obtained, especially in later sampling time points, rather than the 
effect of the litter application. For the remaining five genera, no changes 
were observed along the different time-points, remaining non-detectable 
in all environmental samples. Nevertheless, for more accurate estima
tions about the litter impact in soils we investigated at the MAGs level. 

3.4. Metagenome-assembled genomes (MAGs) of litter 

A total of 334 MAGs were recovered from binning of the six litter 
sample assemblies (samples were binned individually), resulting in a 
selection of 13 medium-to-high-quality (completeness – [5*contamina
tion] ≥ 50) MAGs after dereplication across the litter samples at the ANI 
≥ 95 % level (31 MAGs before dereplication across samples). The 
genome size of the selected MAGs ranged from 1.3 to 4.1 Mbp, while 
their G + C% content ranged from 33.0 to 71.8 mol% (Table S3). 
Comparison of the selected MAGs against the GTDB-tk database 
revealed matches to previously described taxa at the species level (>95 
% ANI) for the majority of MAGs, while one and five MAGs potentially 
represented a novel genus of a matching family (Jiangellaceae), and a 
novel species of a matching genus (Brachybacterium, Corynebacterium, 
Nocardiopsis, and Oceanisphaera), respectively (Table S3). These results 
were further confirmed by searching against MiGA's TypeMat database 
(Rodriguez-R et al., 2018), and the only differences observed were the 
species names recently proposed by Gilroy et al. (2021) that have not 
been validated yet by the International Code of Nomenclature of Pro
karyotes (Table S3). The MAGs were assignable to three different phyla, 
Actinobacteriota, Firmicutes and Proteobacteria, which are commonly 
found in the chicken gut microbiome as the predominant phyla (Glen
dinning et al., 2020; Segura-Wang et al., 2021; Xiao et al., 2017; Yang 
et al., 2022). These findings are also consistent with the microbiota of 
chickens from other parts of the globe such as Europe and China (Feng 
et al., 2021; Yang et al., 2022), indicating that the results reported here 
on the chicken commensal gut microbiota may apply more broadly, at 
this (the phylum) level. 

The most dominant phylum was Actinomycetota (comprising 61.3 % 
of the total 31 MAGs obtained, n = 19) with genome representatives 
from five different genera (Brevibacterium, Brachybacterium, Yaniella, 
Corynebacterium, and Nocardiopsis), followed by Bacillota (35.5 % of the 
total MAGs, n = 11) with genome representatives from four different 
genera (Atopostipes, Jeotgalicoccus, Salinicoccus, and Staphylococcus) 
(Table S3). For the phylum Pseudomonadota there was only one MAG 
belonging to the genus Oceanisphaera (Table S3). Indeed, most of these 
genera correspond to the most abundant groups identified by Kraken2 
on unassembled metagenome reads of our litter samples, as shown 
above. 

3.5. Fate of litter MAGs in soils and water 

To further corroborate the whole-community results reported above 
and obtain finer resolution regarding the fate of litter-associated pop
ulations in the natural environment, the relative abundance of the 
recovered litter MAGs was estimated using read recruitment, followed 
by normalization of the resulting relative abundance by the TAD80 
metric (to avoid spurious matches) and GEQ (to provide a normalized 
estimate of abundance in terms of fraction of total detected genomes) for 
more accurate estimates. Competitive read mapping of the litter reads 

against a total of 13 recovered medium-to-high-quality MAGs resulted in 
49.4 % reads recruited per litter metagenome, on average, supporting 
that our collection of MAGs robustly represents a high percentage of the 
litter diversity. 

Litter-associated MAGs were absent, at the limit of our sequencing 
effort, in all soil and water datasets (Fig. 4), and thus were exclusively 
present in the litter metagenomes with a relative individual abundance 
in the litter metagenomes ranging from 0.0043 % to 7 % of the total 
(Fig. 4). All litter assembled contigs were also searched against the soil 
and water metagenomic reads in case any litter-associated members not 
represented by our MAGs were detectable in these samples. Similar re
sults to those observed with the MAGs were obtained, i.e., no litter 
contigs were detectable in soil or water (data not shown). Consistently, 
no overlapping contigs between litter and soil metagenomes that had 
>99 % identity and >1Kbp long overlap were detectable, whereas litter 
metagenomes shared about ~50 % of their total contigs in comparison. 
The average estimated theoretical limit of detection (thLOD) in our 
metagenomic datasets was estimated to be 2.42E+04 ± 5.75E+03 
(cells/g) and 4.28E+02 ± 1.35E+02 (cells/mL) in soil and water, 
respectively (for key assumptions, see the Materials and methods sec
tion). Therefore, our target MAG populations from litter, if present in the 
sampled soils or waters, should be at abundances lower than 2E+04 
cells/g and 4E+02 cells/mL, respectively. 

On the other hand, the most abundant MAGs in the litter samples 
were Brevibacterium intestinavium, Atopostipes pullistercoris, Brachybacte
rium merdavium, and Yaniella excrementigallinarum being especially 
prevalent at the CAFOs from the Sites 1, 5 and 7; Site 3; Sites 1, 4 and 8; 
and Sites 1, 4, 7 and 8; respectively (Fig. 4). Interestingly, these four 
species have been recently proposed as novel members of the chicken 
gut microbiome based on a culture-independent study (Gilroy et al., 
2021), but studies reporting on their prevalence in the chicken gut 
microbiome and litter have been limited to date. 

3.6. Metabolic pathway abundance and diversity in soils after litter 
application 

We also examined if the application of litter had any effects in terms 
of broad functional gene content on the soils that received it by 
comparing the relative abundance of major metabolic pathways related 
to carbon and nitrogen cycling and energy generation between these 
soils and their controls. We found limited differences overall between 
the two groups, e.g., most metabolic pathways showed similar abun
dances between the two groups. A few significant differences were noted 
such as a higher abundance of methanogenesis genes in the litter-applied 
soils vs. controls (e.g., 14 % vs. 11 % of the total genes annotated; 
Fig. S1), which was consistent with the addition of extra carbon to the 
soil as an effect of the litter application. Overall, however, the effects of 
litter on metabolic pathways were rather limited, consistent with our 
results reported above showing that litter-associated genes and genomes 
did not survive more than a couple months in the soil. 

3.7. Antibiotic resistance gene (ARG) abundance in litter and fate in 
adjacent soil and water 

Reads were screened for the presence of ARGs to assess the fate of 
these genes due to their relevance for public health. In total, genes 
coding for 46 subtypes, belonging to 9 different ARG types or families, 
were found, according to Resfinder (nucleotide level), in at least one of 
the six litter samples studied, with relative abundances ranging from 
0.0016 to 0.4 copies/GEQ (Table S4). None of these ARGs were found in 
any of the soil samples using the same criteria for presence, while only a 
couple of ARGs (blaACC-3, lnuC, tetA, tetQ), with relatively low abun
dances (0.005 to 0.15 copies/GEQ), were identifiable in a few of the 
water samples, including controls (Table S4). The latter ARGs were 
absent in any of the litter samples, suggesting that their presence in 
water was likely independent of the litter application on adjacent soils. 
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The genes detected in the litter samples encoded resistance to tet
racyclines, macrolides, aminoglycosides, sulphonamides, trimethoprim, 
fosfomycin, lincosamide and phenicol. Overall, resistance genes to 
trimethoprim, sulphonamides, macrolides and tetracyclines were the 
most abundant (Fig. 5), with the top five abundant ARG subtypes being 
ermC, dfrD, tetK, tetL and sul1 (Fig. S2), consistent with previous studies 

of the chicken gut resistome (Feng et al., 2021; Qu et al., 2008; Yang 
et al., 2022). In terms of ARG type diversity, the aminoglycosides, tet
racyclines and macrolides were the most diverse groups considering the 
number of different subtype genes recovered for each of these families 
(Fig. 5). The most prevalent ARG subtypes that were commonly found in 
all analyzed litter samples were aadA9, dfrD, erm36, ermC, ermX, lnuA, 

Fig. 4. Relative abundance of the litter MAGs in the different metagenomic datasets from litter, soil and water. Abundance was estimated based on the TAD80 metric 
normalized by GEQ and represented as a heatmap. Relative abundance values were multiplied by 100 to be expressed in percentages as shown in the legend. The X 
axis depicts the different CAFOs (sites) where the samples from litter, soil and water were collected, T1 indicates visit 1, T2 indicates visit 2, and C indicates control. 
Days elapsed between the different visits and litter application on land for each site were: 88 days (T1) and 162 days (T2) (Site 1); 35 days (T1) and 56 days (T2) (Site 
3); 365 days (T1) and 21 days (T2) (Site 5); 41 days (T1) (Site 9). 

Fig. 5. Relative abundance of each ARG family and the number of ARG subtypes found under each ARG type category in the litter metagenomic samples. The 
abundance of each ARG type or family represents the sum of the relative abundances (copies/GEQ) of each ARG subtype gene, normalized by the number of genes 
under that type. The X axis depicts the different CAFOs (sites) where the samples were collected. 

A. Durán-Viseras et al.                                                                                                                                                                                                                        



Science of the Total Environment 920 (2024) 170772

8

lnuG, sul1, tet33, tetL, tetM and tetZ (Fig. S2). 
Since genes coding for tetracycline resistance were among the most 

abundant and frequent ARG subtypes found in the litter samples, we 
wanted to investigate their distribution in our samples in more detail. 
For this purpose, we used the previously built ROCker models for 
tetracycline (tetM) and beta-lactamase (blaA, blaC, MBL and OXA) class 
genes, an accurate approach to find and type metagenomic reads con
taining a target gene of interest that avoids spurious matches. With 
respect to the tetracycline tetM gene, and consistent with the ARGs re
sults mentioned above (Table S4), litter samples had the highest relative 
abundance of this gene (up to 0.13 copies/GEQ) (Fig. S3). The relative 
abundance of tetM in soil and water samples was notably lower than in 
litter (ranging from 0.007 to 0.07 copies/GEQ), and exhibited similar 
relative abundance in the soil and water control samples (from 0.004 to 
0.05 copies/GEQ) (Fig. S3), suggesting that its presence in the envi
ronment might be independent of litter application and most likely part 
of the natural soil resistome. On the contrary, the relative abundance of 
beta-lactamase genes was higher in soil and water metagenomes 
(ranging from 0.005 up to 0.2 copies/GEQ, and 0.0008 up to 0.07 
copies/GEQ; respectively) than in litter metagenomes (from 0.0002 to 
0.03 copies/GEQ) (Fig. S3). The similar relative abundances values in 
soil and water samples with respect to their controls (relative abun
dances ranging from 0.003 to 0.17 copies/GEQ, and 0.004 to 0.08 
copies/GEQ; respectively) further supporting their source being inde
pendent from litter. The beta-lactamase gene with the highest relative 
abundance was the MBL class, especially in soil, while the OXA class, 
blaA and blaC genes showed similar abundances within the samples 
(Fig. S3). The fact that ROCker uses a more sensitive approach and might 
detect more distant homologs likely explains why those genes were not 
detected by Resfinder. 

4. Discussion 

Our study examined the changes to the soil and downstream water 
microbial community composition and antibiotic resistance profiles as 
an effect of litter application at six CAFOs in Georgia (USA) based on 
metagenomic sequencing. The chicken gut microbiome is a well- 
appreciated reservoir of ARGs, and the practice of direct application of 
the chicken litter to adjacent agricultural lands might be associated with 
potential environmental and human health threats from spreading ARGs 
and microbial pathogens. Our data based on a robust abundance esti
mation metric (TAD80/GEQ) revealed that none of the litter-associated 
MAG representatives were detected, at the theoretical limit of detection 
(thLOD) of our sequencing effort, in any of the soil or water datasets a 
month or longer after litter application. Considering that our collection 
of MAGs represented well the microbial litter community, these findings 
indicate that litter application on soils may not introduce persistent 
microbial populations, possibly due to dilution in the field and/or that 
the litter-associated taxa do not sustain large populations in the extra- 
intestinal environment for more than a few days. This hypothesis is 
consistent with previous studies suggesting that litter-derived bacteria 
are not well adapted to survive in the extra-intestinal environment 
(Jechalke et al., 2014). Similarly, no significant changes were observed 
on the Nd and beta diversity in soil and water samples across the 
different time-points, and with respect to the controls, further corrob
orating that the overall microbial composition is not substantially 
affected by the litter application on soils. These results are consistent 
with similar studies in which animal manure was applied to soils 
(Macedo et al., 2021; Poulsen et al., 2013; Riber et al., 2014), suggesting 
that the higher microbial diversity observed in soils compared to litter 
and/or the robustness of the indigenous soil microbial community 
against amendments with exogenous microbes are likely responsible for 
our findings. Note, however, that litter-associated taxa could survive in 
the extra-intestinal environment as part of the rare biosphere or resting 
cells (Gonzales-Siles and Sjöling, 2016; Kreling et al., 2020; Lynch and 
Neufeld, 2015), which our study's methods could not assess. 

Moreover, our data from the metagenomic short read annotation by 
Kraken/Bracken suggests that, after a short period of time (e.g., less than 
one month), the relative abundance of specific litter-associated taxa in 
soils may have increased slightly but, after a couple months, the mi
crobial communities recovered to the composition prior to litter appli
cation. This result indicates that variations in the soil microbiome may 
be transient and microbial communities are resilient, as also has been 
previously observed by other studies (Lopatto et al., 2019; Rieke et al., 
2018). Moreover, additional analyses and sampling are needed to 
confirm that the increase in the abundance of litter-associated taxa 
observed (Kraken/Bracken results) is simply not attributable to the 
growth of close relatives that are indigenous in soils and apparently 
favored by litter application (but to organisms in the litter themselves). 
Consistent with this interpretation, the MAG abundance data did not 
indicate persistence of litter-associated taxa in soils or water samples at 
detectable levels. It should also be noted that the decay patterns of litter- 
associated taxa and the response of soil microorganisms to litter appli
cation are, in general, challenging to infer from time points (more 
frequent sampling will be required for this), and may also depend on 
environmental factors (e.g. intrinsic soil properties or weather and 
seasonal conditions, among others). Our sampling took place during the 
months of May–June, which are characterized by warm temperatures 
(20–30 ◦C) and frequent rain in the state of Georgia. Thus, weather 
conditions were highly favorable for (fast) microbial growth upon 
addition of exogenous carbon (litter) at our sampling sites, in general. 

With respect to the antimicrobial resistance detection, independently 
of the approach used, no changes in the resistome of the amended soils 
and nearby watercourses could be identified by our study that could be 
associated to the impact of litter application. Although the MBL class of 
beta-lactamase genes was identified in notable abundance in the 
amended soils based on the ROCker model estimation, no pronounced 
differences were observed between these soils and the control soils. 
Therefore, the presence of MBL might be related to the indigenous 
resistome in soils rather than to the litter application itself (D'Costa 
et al., 2006; Wang et al., 2018). Congruent with this interpretation, 
other studies identified low ARG abundances or an insignificant increase 
in ARG concentrations in amended soils after short- and long-term litter 
application (Liu et al., 2021; Lopatto et al., 2019; Wang et al., 2018). 
However, there are several other studies whose findings contrast with 
those reported here and suggest that manure application on soils can 
introduce external ARGs and significantly increase their relative abun
dance in the soil environment (Han et al., 2018; Macedo et al., 2021; Xie 
et al., 2018; Zhang et al., 2017). Besides the increase, it has been sug
gested that the ARGs derived from manure do not persist for prolonged 
periods in the environment, likely due to the shift in the niche envi
ronment and competition by the indigenous microorganisms (Macedo 
et al., 2021; Tien et al., 2017; Zhang et al., 2017). Therefore, the longer 
time frames considered in the present study could account for the dif
ferences observed, and justify why only a few ARGs could be detected in 
our soil and water samples (see Table S4). Along the same line, the 
indigenous soil microbial diversity has also been suggested as an 
important source of resistance for invading bacterial pathogens carrying 
ARGs (Han et al., 2018), although further studies on the frequency that 
this occurs are still needed. 

Overall, the discrepancies between our data and previous studies 
may be attributed to differences in the methodology, varying experi
mental designs with different time frames, intrinsic soil properties (e.g., 
physicochemical characteristics or complexity), and divergent seasonal 
or weather conditions. In this sense, future studies could include deeper 
sequencing of soil and water samples (allowing for higher community 
coverage and lower detection limits); shorter sampling time-frames after 
litter application in order to derive more robust decay curves; sampling 
of deeper soil layers in order to assess potential shifts in the deeper, 
anaerobic microbial communities; or the combined use of metagenomics 
with more sensitive techniques (e.g. ddPCR and isolation, allowing for 
lower detection limits and more precise counts). It is worth mentioning 
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that at the time the study was designed there was a lack of similar studies 
in the literature, and hence, limited information on the appropriate 
sampling time-frame to use. It is also important to note that our study 
did not assess chemical pollutants, possible effects at different depths, 
and the likelihood that chicken-derived taxa may persist at low abun
dances (rare biosphere) and/or as resting cells is possible. Therefore, our 
study cannot offer definitive conclusions about the overall safety of litter 
application. Despite these limitations, however, our findings are robust 
enough to suggest that at the studied CAFOs and weather conditions, 
litter application might represent a minimal impact on the microbiome 
and resistome of the natural soil and water microbial communities. The 
negligible effect on the microbiome or resistome profiles is probably due 
to the litter dilution in the field, and the recovery of the indigenous 
microbial community composition after a short-period of time, con
firming the high resilience of natural microbial communities to 
perturbations. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2024.170772. 
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Gonzales-Siles, L., Sjöling, Å., 2016. The different ecological niches of enterotoxigenic 
Escherichia coli. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13106. 

Grenni, P., Patrolecco, L., Ademollo, N., Di Lenola, M., Barra Caracciolo, A., 2014. 
Capability of the natural microbial community in a river water ecosystem to degrade 
the drug naproxen. Environ. Sci. Pollut. Res. 21, 13470–13479. https://doi.org/ 
10.1007/s11356-014-3276-y. 

Han, X.-M., Hu, H.-W., Chen, Q.-L., Yang, L.-Y., Li, H.-L., Zhu, Y.-G., Li, X.-Z., Ma, Y.-B., 
2018. Antibiotic resistance genes and associated bacterial communities in 
agricultural soils amended with different sources of animal manures. Soil Biol. 
Biochem. 126, 91–102. https://doi.org/10.1016/j.soilbio.2018.08.018. 

Henchion, M., Moloney, A.P., Hyland, J., Zimmermann, J., McCarthy, S., 2021. Review: 
trends for meat, milk and egg consumption for the next decades and the role played 
by livestock systems in the global production of proteins. Animal 15, 100287. 
https://doi.org/10.1016/j.animal.2021.100287. 

Hu, H.-W., Han, X.-M., Shi, X.-Z., Wang, J.-T., Han, L.-L., Chen, D., He, J.-Z., 2016. 
Temporal changes of antibiotic-resistance genes and bacterial communities in two 
contrasting soils treated with cattle manure. FEMS Microbiol. Ecol. 92, fiv169. 
https://doi.org/10.1093/femsec/fiv169. 

Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., 
Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., von Mering, C., Bork, P., 
2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated 
orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 
47, D309–D314. https://doi.org/10.1093/nar/gky1085. 

Hyatt, D., Chen, G.-L., Locascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J., 2010. 
Prodigal: prokaryotic gene recognition and translation initiation site identification. 
BMC Bioinformatics 11, 119. https://doi.org/10.1186/1471-2105-11-119. 

Jechalke, S., Focks, A., Rosendahl, I., Groeneweg, J., Siemens, J., Heuer, H., Smalla, K., 
2014. Structural and functional response of the soil bacterial community to 

A. Durán-Viseras et al.                                                                                                                                                                                                                        

https://doi.org/10.1016/j.scitotenv.2024.170772
https://doi.org/10.1016/j.scitotenv.2024.170772
https://doi.org/10.1016/j.envint.2022.107687
https://doi.org/10.1016/j.envint.2022.107687
https://doi.org/10.1017/S0043933910000656
https://doi.org/10.1017/S0043933910000656
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.7717/peerj.5882
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.2134/jeq2008.0128
https://doi.org/10.1128/AEM.00180-10
https://doi.org/10.1128/AEM.00180-10
https://doi.org/10.1126/science.1120800
https://doi.org/10.1126/science.1120800
https://doi.org/10.3382/ps/pez148
https://doi.org/10.3382/ps/pez148
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1038/s42003-021-02827-2
https://doi.org/10.1038/s42003-021-02827-2
https://doi.org/10.1099/mgen.0.000748
https://doi.org/10.7717/peerj.10941
https://doi.org/10.7717/peerj.10941
https://doi.org/10.1186/s13059-020-1947-1
https://doi.org/10.1111/1462-2920.13106
https://doi.org/10.1007/s11356-014-3276-y
https://doi.org/10.1007/s11356-014-3276-y
https://doi.org/10.1016/j.soilbio.2018.08.018
https://doi.org/10.1016/j.animal.2021.100287
https://doi.org/10.1093/femsec/fiv169
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1186/1471-2105-11-119


Science of the Total Environment 920 (2024) 170772

10

application of manure from difloxacin-treated pigs. FEMS Microbiol. Ecol. 87, 
78–88. https://doi.org/10.1111/1574-6941.12191. 

Kang, D.D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., Wang, Z., 2019. MetaBAT 2: 
an adaptive binning algorithm for robust and efficient genome reconstruction from 
metagenome assemblies. PeerJ 2019, e7359. https://doi.org/10.7717/peerj.7359. 

Kreling, V., Falcone, F.H., Kehrenberg, C., Hensel, A., 2020. Campylobacter sp.: 
pathogenicity factors and prevention methods-new molecular targets for innovative 
antivirulence drugs? Appl. Microbiol. Biotechnol. 104, 10409–10436. https://doi. 
org/10.1007/s00253-020-10974-5/Published. 

Lindner, B.G., Suttner, B., Zhu, K.J., Conrad, R.E., Rodriguez-R, L.M., Hatt, J.K., 
Brown, J., Konstantinidis, K.T., 2022. Toward shotgun metagenomic approaches for 
microbial source tracking sewage spills based on laboratory mesocosms. Water Res. 
210, 117993 https://doi.org/10.1016/j.watres.2021.117993. 

Liu, C., Chen, Y., Li, X., Zhang, Y., Ye, J., Huang, H., Zhu, C., 2020. Temporal effects of 
repeated application of biogas slurry on soil antibiotic resistance genes and their 
potential bacterial hosts. Environ. Pollut. 258, 113652 https://doi.org/10.1016/j. 
envpol.2019.113652. 

Liu, W., Ling, N., Guo, J., Ruan, Y., Wang, M., Shen, Q., Guo, S., 2021. Dynamics of the 
antibiotic resistome in agricultural soils amended with different sources of animal 
manures over three consecutive years. J. Hazard. Mater. 401, 123399 https://doi. 
org/10.1016/j.jhazmat.2020.123399. 

Lo, C.-C., Chain, P.S., 2014. Rapid evaluation and quality control of next generation 
sequencing data with FaQCs. BMC Bioinformatics 15, 366. 

Lopatto, E., Choi, J., Colina, A., Ma, L., Howe, A., Hinsa-Leasure, S., 2019. Characterizing 
the soil microbiome and quantifying antibiotic resistance gene dynamics in 
agricultural soil following swine CAFO manure application. PLoS One 14, e0220770. 
https://doi.org/10.1371/journal.pone.0220770. 
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