
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Traditional and AI Tools for Teaching Concurrency

Prasun Dewan

Department of Computer Science

University of North Carolina

Chapel Hill, USA

dewan@cs.unc.edu

Abstract— Today, AI tools are generally considered as

education disrupters. In this paper, we put them in context with

more traditional tools, showing how they complement the

pedagogical potential of the former. We motivate a set of specific

novel ways in which state-of-the-art tools, individually and

together, can influence the teaching of concurrency. The pedagogy

tasks we consider are illustrating concepts, creating motivating

and debuggable assignments, assessing the runtime behavior and

source code of solutions manually and automatically, generating

model solutions for code and essay questions, discussing

conceptual questions in class, and being aware of in-progress

work. We use examples from past courses and training sessions in

which we have been involved to illustrate the potential and actual

influence of tools on these tasks. Some of the tools we consider are

popular tools such as interactive programming environments and

chat tools - we show novel uses of them. Some of the others such

as testing and visualization tools are in-use novel tools - we discuss

how they been used. The final group consists of AI tools such as

ChatGPT 3.5 and 4.0 - we discuss their potential and how they can

be integrated with traditional tools to realize this potential. We

also show that version 4.0 has a better understanding of advanced

concepts in synchronization and coordination than version 3.5,

and both have a remarkable ability to understand concepts in

concurrency, which can be expected to grow with advances in AI.

 Keywords— concurrency, visualization, automatic

assessment, student progress, clicker system, ChatGPT

I. INTRODUCTION

The teaching of programming inherently involves the use of
tools – to edit, compile, and run the worked instructor examples
and student assignment solutions. Several other general-purpose
popular tools supplement the programming environment. These
include forums such as Piazza, testing frameworks such as
JUnit, grading servers such as Gradescope [1], presentation-
creation tools such as PowerPoint, and presentation-sharing and
chat tools such as Zoom.

When a set of entities works well, it is attractive to consider
adding more variety to it. Several kinds of niche tools have been
explored for teaching programming such as user-interface
generators [2] and difficulty-detection tools [3]. These are
niche/novel tools in that they are not mainstream but have been
used effectively by a relatively small subset of teachers –
sometimes only the inventors of these tools.

The recent release of ChatGPT has furthered interest in tool-
based pedagogy. It has been shown that ChatGPT can solve
many introductory problems [4], leading to fears of plagiarism
- not from humans but from AI tools. On the positive side,

ChatGPT’s potential to aid pedagogy is attracting increasing
interest. Examples of such interest include explaining error
messages [5] and creating programming exercises [6].

In this paper, we focus on concurrent programming. We
motivate a set of specific novel ways in which state-of-the-art
tools, individually and together, can influence the teaching of
concurrency. We use examples from past courses and training
sessions in which we have been involved to illustrate the
potential and actual influence of tools on these tasks.

All of these examples involve the use of Java thread
mechanisms to teach concurrency. Moreover, all of the
educational tools developed by us that are discussed here are
implemented in Java. However, the nature of these examples and
tools is not Java-specific. Therefore, we try to keep most of this
discussion at an abstract, language-independent level.

The pedagogy tasks we consider are illustrating concepts,
creating motivating and debuggable assignments, assessing the
runtime behavior and source code of solutions manually and
automatically, generating model solutions for code and essay
questions, discussing conceptual questions in class, and being
aware of in-progress work.

Some of the tools we consider are popular tools such as
interactive programming and chat tools - we show novel uses of
them. Some of the others such as testing and visualization tools
are in-use novel tools (for teaching concurrency) - we discuss
how they been used. The final group consists of AI tools such as
ChatGPT - we discuss their potential.

Many of the individual novel uses of the traditional tools
have been discussed in previous papers [7-10]. The contribution
of this paper is a tool-based focus that puts a diverse set of tools
relevant to concurrency in context, showing the way they relate
to each other. In the rest of the paper, we discuss these tools and
the roles they can play in teaching concurrency.

II. PHYSICAL WORLD SIMULATIONS

Our work on concurrency has focused on three kinds of
concepts; concurrent thread execution, thread synchronization,
and thread coordination. Concurrent thread execution is creation
of independent thread stacks, and executing the root procedures
of the stacks. Thread coordination is the ability of threads to wait
until they are signaled by other threads. The signal may be
broadcast to all threads waiting in a queue or sent only to the
thread at the front of the queue. Thread synchronization ensures
that shared resources are locked when threads manipulate them.
Low-level thread coordination mechanisms such as semaphores
can be used to also implement synchronization. In modern

This work was funded in part by NSF awards OAC 1829752 and 1924059.

.

object-oriented languages such as Java, Python, and C#, higher-
level mechanisms are provided to lock selected instance or static
methods of a class.

The physical world, consisting of a variety of concurrent
actors, provides analogies to illustrate these fundamental
concepts. In a virtual simulation of this world, concurrent actors
would correspond directly to concurrent threads. The actors
taking turns to access shared resources such as a traffic
intersection or coordinating with each other to perform a group
task such as running a relay correspond to threads synchronizing
and coordinating, respectively. As a result, well-understood
aspects of the physical world can be used to understand
analogous concepts in program multithreading.

In a worked example used by us, we made two different
threads animate two different shuttles concurrently, thereby
visually illustrating concurrency. To illustrate synchronization,
we created two threads that animate a single shuttle, which
corresponds to two different pilots flying the same shuttle. When
the threads are synchronized, they take turns animating the
shuttle, with one thread’s animation following the other thread’s
animation. When they are not synchronized, the shuttle
oscillates between the points in the trajectories computed by the
two animation loops. In a third variation of this example,
multiple threads, controlling different shuttles, coordinate with
each other. A thread that starts its animation sends a signal to
any waiting thread when the shuttle reaches a certain height. A
later thread waits until such a signal is received by it before
starting its animation. The internal queue kept by the underlying
waiting and signaling mechanisms is used to determine which
thread receives a signal from another thread.

III. UI GENERATOR

It is possible, of course, to build custom special-purpose,
shuttle-specific, tools to create the above animations. It is more
attractive, however, to create a general framework to create
arbitrary concurrent animations. Such a framework could be
used by students to implement assignments that create such
simulations.

Such animations not only illustrate concurrency concepts but
also provide real-world motivations for them. In some of our
course offerings, students implemented a series of layered
assignments that. together, simulated the bridge scene from the
movie Monty Python and the Holy Grail. Assignments 1 to 9
implemented the static scene shown in Fig. 1. Assignment 10
forked threads that made avatars of Arthur, Galahad, Robin, and
Lancelot move independently. To exercise synchronization, in
Assignment 11, they synchronized accesses by multiple threads
that manipulate the same knight. To exercise thread
coordination, in Assignment 12, they created threads that made
the knights march to a beat set by the guard, using coordination
mechanisms Animating threads were also created by some
students (for no credit) to make the knights fall into the gorge on
failing to answer a question.

These animations are also excellent debugging and manual
assessment tools - errors in thread behavior are reflected in the
simulations. For example, the knights in Fig. 1 would not move
at the same time if the corresponding threads do not execute
concurrently to animate them. Similarly, the knight threads

would not march to the beat set by the guard thread if they did
not wait for broadcasting signals from the latter.

We have used a user-interface generator developed by us,
called ObjectEditor (used also to teach sequential concepts [2])
as a framework to easily create such simulations in concurrency-
based assignments. Given an arbitrary observable object,
ObjectEditor automatically displays the object, and keeps its
visual representation consistent with its internal state. (An
observable object [11] calls notification methods in registered
observer objects whenever the state of the object changes.) For
example, given an observable object representing the shuttle,
ObjectEditor automatically moves the image when notification
methods invoked in it indicate that the coordinates of the
underlying object have changed. Similarly, given a set of
observable objects representing the bridge scene, ObjectEditor
automatically animates them in response to state-change
notifications. In addition to creating up-to-date visual
representations of objects, ObjectEditor also provides menus
and buttons to invoke methods in the object – a feature we see
in the two sections below.

In [7], we give examples of several other motivating layered
concurrent assignments students have implemented using
ObjectEditor, which include simulating Halloween and a scene
from the The Wizard of Oz

Fig. 1. Holy Grail Bridge Project

IV. INTERNAL THREAD-BASED STRUCTURES

Simulations visualize the behavior of thread-based
operations, but not the underlying data structures that define the
behavior. Two important such data structures are the stack
associated with each thread, and the queues in which waiting
threads are put.

Fortunately, modern interactive environments visualize
stacks. By asking students to put appropriate breakpoints, we
have allowed them to see that each thread is associated with its
own stack and program counter, as illustrated in Fig. 2. In this
Java-based example, they can see that the root procedure of the
stack of each thread forked by them is the Java run() method.

To visualize queues, we have developed our own tool, which
provides a Proceed button to signal any thread in the visualized
queue. Fig. 3 illustrates how the tool can be used to understand
waiting and signaling. The simulation starts with two threads,
animating independent shuttles, in the displayed queue. This
state simulates two physical shuttles queued to enter a physical
launching pad. When the Proceed button is pressed, the first

thread is removed from the queue and starts animating its
shuttle. Clicking the Proceed button, of course, corresponds to
an air traffic controller giving clearance to the next waiting
shuttle to take off.

Fig. 2. Multiple Stacks Shown for Different Threads

Fig. 3. Interactive Queue Manipulation and Visualization

This tool is layered on top of ObectEditor in that it uses the
latter to visualize the queue and invoke the signaling method in
response to pressing of the Proceed button.

V. ACTIVE GRADING MANAGEMENT  MANUAL ASSESMENT

As mentioned above, animating simulations can be used by
a human grader to assess solutions to concurrency assignments,
as bugs in the use of these mechanisms are reflected in the
simulations. Thus, if the simulations are correct, the code is
likely to be correct and does not need to be examined. If they are
incorrect, then the code can be studied to identify the errors. As
students themselves can detect such errors by viewing the
simulations, it should be rare for the concurrency semantics of
the assignments to be not correct.

 Web-based systems such as Gradescope [1] have shown that
manual assessment can be speeded by a grading management
system that automates rubric management and navigation to the
student submissions. However, because they are web-based,
they cannot directly run interactive programs that create
simulations to be examined by the human grader.

Using ObjectEditor, we have developed a grading
management [10] that can directly execute assignment code.
While our grading management system was developed
independently of Gradescope, it offers similar features to
automate rubric management and navigate among student
submissions. Fig. 4 shows parts of it being used to manually
grade the concurrency features (4-7) of an assignment, which
also included non-concurrency features (1-3).

Fig. 4. Interactive Submisson Assesment

Unlike Gradescope, our system is specialized for program
grading and is not web-based. This allows us to make it “active”
by providing a Run command, which can be invoked by a human
grader to execute the graded submission and interact with it. Fig.
1 shows the result of invoking this command from the user
interface of Fig. 4. This command is, of course, crucial to grade
visualized concurrency.

VI. OBERVERVING TESTS

If concurrency is visualized and all visible state changes are
observable, then it should be possible to write test cases that
automatically check consistency constraints. These tests can
observe all state change notifications, and based on their order
and the threads that sent them, determine if some or all
concurrency requirements are met. For instance, if:

 (a) all notifications are sent by a single thread, then a test
processing them can flag a lack of concurrency,

 (b) notifications by different threads about changes to a
shared object are interleaved, then the test can indicate lack of
synchronization,

(c) notifications by different coordinating threads are not in
the expected order, then the test can assume coordination
mistakes.

Based on this key idea, we have developed an extension of
the JUnit framework that can test visualized observable
concurrency, which is discussed in depth in [10]. We have used
these tests to check the concurrency requirements of a variety of
assignments.

These tests can be loaded into the Gradescope server to
support automatic grading of final solutions (Fig. 5 (b)). More
important, they can be executed locally by students on partial
solutions, using an interactive tool developed by us, called
LocalChecks (Fig. 5(a)). Again, this tool uses ObjectEditor to
create its user-interface. Students have used this tool as an
instructor agent that checks which requirements have been met,
and gives hints, through appropriate error messages, on how the
unmet requirements should be satisfied.

Fig. 5. Executing Tests Locally and on Server

If a test were to directly observe changes, then it would be
multithreaded, as a call to a notification method could be
executed by one of many threads is the tested program. Multi-
threaded programs are, in general, more complicated than
single-threaded ones. Therefore, we have developed the
abstraction of a problem-independent event management system
to allow problem-dependent tests to be single-threaded. The
system itself is multi-threaded, and stores the streams of
notifications received from different threads in a data structure,
which can be queried by single-threaded tests to check problem-
specific requirements.

Before we built our testing framework, we used our
interactive active grading management system to test all
concurrency requirements of simulations. After building our
testing framework, we wrote tests for all of these requirements.
However, we continued to use the active grading management
system to (a) check the tests for false positives and negatives, (b)
evaluate the quality of the animations, and (c) ensure that
students had written code that demonstrated that the
concurrency (and other) requirements had been met. We do not
have tests for checking their demonstration code.

Our grader management system can, like Gradescope, run
the tests also, and allow the human grader to override test results,
if necessary. These tests, however, are run on the computer of
the human grader when they do the grading, and not on a server
when the students submit their code for grading. We used to also
have the ability to run the tests in our server, but ensuring this
server can handle the load and is always available was a
problem. Hence, currently, the tests are all run on Gradescope.

VII. OBSERVABLE PRINTS

The approach of observer tests assumes concurrent
manipulation of observable objects. Thus, this approach will not
work when the assignment solution is not coded in an object-
oriented language or when the manipulated data are not
observable objects.

To overcome these limitations, we have added a layer above
our event management system for testing programs that follow
the fork-join model [12]. In this model, a dispatcher thread
distributes its work to a set of worker threads it forks, which
deposit their results in a data structure shared with the
dispatcher. The dispatcher waits for them to finish, and then
collects and prints the results. Typically, the input and output
data are stored in arrays, which are not observable objects in any
language with which we are familiar. Moreover, the dispatcher
thread receives all input and produces all output. In a correct
implementation of this model, the relationship between the
output and input is independent of the number of threads forked.
Thus, the traditional approach of using this relationship to test a
program cannot be used to check concurrency requirements.

Our layer for testing such programs is based on two main
ideas. First, we intercept the prints using a custom observable
object, which can be observed by our event management system.
Second, we require each worker thread to print intermediate
results. As a result, the event management system can store
concurrency-related notifications from all threads, which can
then be queried by problem-specific tests to check the
concurrency requirements. By providing appropriate abstract
classes for implementing these tests, we ensure that the tests are
responsible only for the “what” of fork-join testing – the “how”
is taken care of by the abstract classes and the event management
system.

The fork-join framework and the problems it has been used
to test are described in depth in [12]. Fig. 6 shows some of the
error messages produced by tests written using this framework.
These tests check if a program correctly uses the fork-join model
to find odd numbers in a set of random numbers.

a) Fork-Join Problem

b) Imbalanced Load Problem

(c) Race Condition Problem

Fig. 6. Error Messages Identifying Problems with Concurrent Program

We see here how tests can act as instructor agents, clarifying
requirements, identifying bugs, and giving hints on how to fix
them. The three messages indicate, respectively, that the
programmer is expected to create worker threads that execute
concurrently, ensure that the load of worker threads is balanced,
and of course, compute the correct number. They also indicate
that if the programmer has tried to meet these three
requirements, then the program has bugs. The second message
indicates that fairness can be achieved by ensuring that the
difference between the maximum and minimum load is <=1.
The third message indicates that race conditions may have

(a) LocalChecks User Interface

(b) Some Results from Running Tests on Server

Forked threads do not execute concurrently.
Between the first and last output of each forked
thread, there is no other thread output.

Imbalanced thread load: Max thread iterations(4)
- min thread iterations(1) = 3. It should be <= 1

Computed total number of odd numbers 1 != expected total 3.
You may have race conditions.

caused the final result to be wrong. It is up to the programmer of
the checks to generate only those hints that are expected to
contribute to learning.

VIII. PROBLEM-SPECIFIC SOURCE CHECKERS

There could be several causes for the fork-join problem
above (Fig. 6(a)). For instance, the programmer (a) may not have
forked the threads, or (b) joined each forked thread before
forking the next thread. A check that looks only at the runtime
input/output of a program cannot determine which of many
problems in the source cause unexpected runtime behavior.
Even the hints in the race condition problem (Fig 6(c)) is a guess
of the test writer. Therefore, it is attractive to build a tool that
examines the source code to identify potential problems.

One example of such a tool is Checkstyle [13] - an Eclipse
plugin that finds problem-independent Java style violations. We
have created an extension of this plugin, called Hermes, to find
coding issues based on a problem-dependent specification of the
expected code structure. Our extended plugin can check if a
class or a method instantiates a particular class or calls a method
in a particular class. In addition, it can check if a class
implements a particular interface. The plugin, like Checksyle,
gives error messages as source code is edited. In addition, it
writes the error messages to a file that can be read by our JUnit
tests. As a result, these tests can check both runtime behavior
(Fig. 6) and also source (Fig. 7).

Fig. 7. Source Check Results on Given Worked Example

Often students given a programming assignment say they do
not know where to start or ask an instructor if they are on the
right path. The source checks give them an idea of the code that
must be included in a correct solution. The names of the tests in
Fig. 7 are mostly self-explanatory. They indicate source-code
milestones that must be met to solve the problem.

As we see from the names, some of these checks test if
certain classes are instantiated. Most of the checks test if calls to
certain methods are included in the code. They provide class-
level and method-level source granularity based on whether they
specify the class or method that makes the call. A check is green
or red based on whether it passed or not. These tests check both
that (a) correctness constraints are met (e.g. the call to Thread
start to start threads), and (b) tracing constraints are met (e.g.
the call to printProperty to print intermediate results).

IX. AI TOOLS FOR CODE QUESTIONS

Hermes cannot check the logic embedded in the source code.
This is consistent with all algorithmic source-code checkers
such as compilers, interpreters, and style checkers. The reason
is that the halting problem says that it is impossible to even
determine if a program halts – checking if it halts with the
correct solution is a more difficult problem.

AI tools, on the other hand, can make inferences that are not
guaranteed to be correct. ChatGPT is arguably the most
attractive of such tools, and therefore, has been used to
investigate its potential for understanding the logic of sample
sequential assignments [4]. Therefore, it is attractive to
determine its potential for finding problems with concurrency
logic.

Today, ChatGPT comes in two versions, 3.5 and 4.0. We
gave both the source code of an erroneous program for
concurrently finding odd numbers in a set of random numbers.
This program had comments describing what the program
should do. We asked both versions to correct it. In an in-class
exercise reported in [14], students were given the same task. We
will refer to this program as the erroneous odd number program.

ChatGPT 3.5 found two of the three errors in the program,
as shown by excerpts of its response given below:

Bug in fairThreadRemainderSize method: This method

is intended to distribute the remainder of work among the

threads fairly. The current implementation only assigns work to

the first thread (aThreadIndex == 0). This is incorrect. To

distribute the work fairly, you should use the following code: ….

Bug in incrementTotalOddNumbers method: The issue

here is that multiple threads can read

totalNumberOddNumbers at the same time, and they may all

increment it and then write it back, resulting in some updates

being lost. To fix this, you need to make this method

synchronized. Uncomment the synchronized keyword in the

method signature like this: …

ChatGPT 4.0 found also the third bug, indicated by the
following excerpt:

forkAndJoinThreads: Separated the forking and joining

of threads into two loops to ensure that all threads start before

they are joined. This allows them to run concurrently, which is the

intended behavior of fork-join concurrency.

ChatGPT 3.5 was also able to find this bug, but only after it
was explicitly given the prompt: “There is also a bug in
forkAndJoinThreads(). Do you see it?” The comments in the
program did identify all procedures with the bugs – version 3.5
however did not find them sufficient to identify the third bug.

To further test ChatGPT’s ability to understand and compose
concurrent programs, we gave version 3.5 a program that
sequentially computes prime numbers, and has no concurrency
code. We asked it to make it concurrent. It correctly performed
this task, reusing the sequential code as much as was possible.
In an exercise reported in [8], trainees were given the same task.

The success of ChatGPT with these two concurrency-based
training problems should not be surprising, at least in retrospect.

Usually, the declarative mechanisms of OpenMP are sufficient
to code concurrency in such problems, and these mechanisms
are used in very stylized ways in these problems. As a result, the
concurrency semantics of these problems vary less than their
sequential semantics. Thus, given enough training examples, AI
tools should be able to fix, compose, and evaluate concurrency
aspects of these problems more easily than sequential semantics.
The fact that version 4.0 was more successful than 3.5 indicates
that the number of concurrency problems fed to AI tools has
recently increased, and we can expect this trend to continue with
the increase in importance of concurrent programming.

This is a serious issue if students use AI to solve the
problems. On the other hand, if they do not directly use AI to
do so – which can be the results of following an honor code or
doing the problem in class under supervision – then these
examples also show the potential of AI to generate model
solutions and give automatic hints to the students. Moreover,
like the hand-crafted runtime and source checks mentioned
above, they can be used to grade solutions based on the bugs
they find. They are an attractive alternative to the former as they
do not require problem-specific test code to be written. An
additional advantage is that, unlike the fork-join tests discussed
above, they do not require students to put tracing prints in their
code.

Current AI tools such as ChatGPT can be directly used by
instructors to generate model solutions, after students have
submitted their work. It is not clear, however, how they should
be used to give hints or grade solutions. If students directly use
them, then they may get hints together with the fixes. One
solution is to integrate AI tools with hand-crafted tests. These
tests can use the API provided by an AI tool try and filter out the
hints from the AI tool’s response, before giving them to the
students. Such filtering can also be used for grading.

A fundamental problem with these uses is the lack of
reliability of AI tools. On the other hand, we can expect finding
and fixing bugs in generated model solutions takes less time than
generating the code and associated explanations from scratch.
Judging the correctness of hints can be the responsibility of the
students, or these hints can be mediated through the instructors.
Again, validating and correcting hints can be expected to take
less work than generating them, with explanations, from scratch.
False positives in grading errors are not that serious as regrade
requests, which can be expected to be rare, can be handled
manually. False negatives are the main problem. If the
alternative is manual grading, then we expect AI assignment
grading to be less error-prone and result in fewer false negatives.
Problem-specific hand-crafted tests, though requiring more
work, can always be expected to be preferable to AI assignment
grading.

A secondary issue arises from the fact that there is, currently,
a monetary cost associated with the use of ChatGPT. Other
competing AI tools can be expected to also charge for API use.
If the checks are executed on a commercial sever such as
Gradescope, it is not clear how to pay for this cost. If these are
executed on the computer of the students or the graders, then the
students and graders would have to incur this cost, which they
are likely to accept. Thus, we are considering changes to our
testing infrastructure that use AI tools when the tests are run

locally, as part of LocalChecks (Fig. 6(a)), or our active grading
management system (Fig. 7), but not when they are run on
Gradescope (Fig. 6(b)).

The sample problems we gave to ChatGPT were small – the
solutions fit in one Java file. It is unlikely for AI tools to be able
to handle layered assignments such as the Holy Grail problem,
as each of the assignment descriptions refers to and builds on the
ones before it. If AI-based plagiarism is an issue, then such
layered assignments become attractive. However, such
assignments also may not benefit from the pedagogical potential
of AI.

X. AI TOOLS FOR CONCEPTUAL QUESTIONS

In the exercise reported in [14], students were asked to not
only correct the erroneous odd number program, but also answer
quiz questions on it. Given the ability of ChatGPT to provide
natural language descriptions of concurrent programs, the bugs
in them, and the fixes it makes to them, it is attractive to consider
its potential to answer and grade quiz questions about a program.

Three of the quiz questions asked the influence on the output
of the three fixes, individually and collectively. They did not ask
for the exact output, but only an abstract description of how it
would change. Version 3.5 gave correct answers to all of them
without giving the exact output. One quiz question tested if the
answerer knew that synchronizing the only caller, A, of method
B, is equivalent to synchronizing B, when A and B are static
methods. Version 3.5 got that correct also. The last question
checked if the answerer understood that if A and B are instance
and static methods, respectively, then synchronizing B is not
equivalent to synchronizing A. The reason is that calling a static
synchronized method on a class locks all synchronized static
methods of the class, while calling a synchronized instance
method on an object locks all synchronized instance methods of
the instance. Version 3.5 got that wrong. It did, however, get the
right answer when it was asked if it had considered the fact that
A and B were instance and static methods, respectively. Version
4.0 got all questions correct without additional prompts.

Students who did the exercise of fixing the buggy odd
numbers problem were also given a similar exam question. Two
of the parts of the questions asked students to give an exact
output when a method manipulating a shared variable was
synchronized and when it was not. Amazingly, version 3.5 was
able to compute an exact output from the source code for not
only the synchronized version but also the unsynchronized one
(Fig, 8), which requires considering race conditions.

 Synchronized Output Unsynchronized Output

Fig. 8. Output with and without synchronization

A third question required, like the analogous quiz question,
the understanding that synchronizations of static and instance

Initial:0

Loaded:0
Saved:1

Loaded:1

Saved:2

Final:2

Initial:0

Loaded:0
Loaded:0

Saved:1

Saved:1

Final:1

methods are different. Not surprisingly, again, 3.5 got this
question wrong and 4.0 got it right, showing at least consistency.

The last question involved synchronizing two mutually
dependent methods, which caused a deadlock. Version 3.5 did
not see the deadlock, and neither did version 4.0. When 4.0 was
told that there would be a deadlock, it agreed, gave the correct
reason for it, and computed the correct output. Version 3.5 did
not agree at first, and repeated its initial answer. When told again
that there was a deadlock, it agreed, but gave the wrong reason,
and did not give the output. When asked again for the output, it
said it could not compute it. Only one student answered the
deadlock question correctly in the exam, which can be explained
by the fact that students had not seen this concept explicitly
before, even though they were told how synchronized methods
work. Version 3.5 seems to be like most students.

This example shows the ability of ChatGPT to generate
model answers to essay questions. We gave version 3.5 also
some correct and incorrect answers to the questions above, and
asked it to grade them. It found fewer mistakes with
incorrect/irrelevant answers than the human grader. But with
advances, AI tools can be expected to generate model essay
answers more correctly as well as grade them more critically.
Given that the instructor – the author - did not make an effort to
generate model answers for the quiz/exam questions, and took a
whole day to grade the 40 quiz/exam submissions, both
capabilities would be extremely useful.

XI. CHAT + DISCUSSION MODEL ACTIVE LEARNING

Conceptual questions can be asked not only in quizzes and
exams, but also during lectures, as a form of active learning.
Several clicker systems are used today to help gather multiple-
choice answers from students. We have coupled Zoom chats
with an innovative discussion model to create a new form of a
clicker system for essay answers. In this model, the instructor
first poses the question to the whole class. Students are asked to
compose their answers by writing a chat message. When they
are finished, they are asked to raise their hands, but not post the
message until the instructor asks them to do so. The instructor
waits for a certain number of raised hands before asking them to
commit their answers, and then discusses each answer.

Fig. 9 illustrates this approach by showing some of the
answers to the following concurrency-based question posed in a
class on PDC (Parallel and Distributed Computing):

What are the reasons for making a server multi-threaded?
Why is this particularly important for a compute-intensive
task such as determining prime factors?

We tried this strategy by accident during the Covid pandemic
when the instructor’s audio connection to the students became
unusable in one class. Today, even in in-person classes, we
prefer this approach to the traditional approach of receiving
audio answers from students who have volunteered to answer
the question by physically raising their hands. There are several
reasons for this preference:

1. There is a written record of who tried to answer a
question, which is used to give them class participation
points. They receive a fixed number of points as long as
they try to answer the question – the quality of the

answer does not matter. The written record of questions
and corresponding answers can also be used to quickly
review the material before an exam or assignment.

2. We have found that there is less participation in audio-
based interaction. Many more students will enter chat
answers than volunteer to raise their hands, especially
when points will be awarded for trying to answer the
question. Usually, at most 10 percent of the class raises
hands, while about 75% of the class enters chat answers.

3. It is possible to know how many students are thinking
of the same answer. In the traditional approach, students
will lower their hands or not raise their hands after
another student gives an answer similar to what they are
thinking.

4. Students have more time to think of answers, which
increases both the answer quality and number.

Fig. 9. Chat-Based Class Discussion

A main disadvantage of this approach is that interaction is
less fluid as only the instructor speaks – while posing the
question and discussing the answers. Another problem is
scalability – in a class with more than 40 students, it has not been
possible to discuss the answer of each student.

 A solution to this problem is suggested by the example
interaction shown in Fig 9. There are several duplicate answers
– for instance, many of them say that the performance of the
server can increase by processing concurrent requests on
multiple processors concurrently. This duplication makes it
attractive to use an AI tool to cluster answers and discuss a
representative from each cluster. The ability of ChatGPT to
grade some of the quiz answers gives us hope that such
clustering may be possible.

XII. LOGGING AND IN-PROGRESS AWARENENESS

Our runtime and source checks log actions taken by the
students to run them. This information can be used to provide

12:38:59: Multiple threads are created for different clients because
clients are independent from each other. Multiple threads avoid the
impacts of one client on the other.

12:39:00: Multiple threads can help a server parallelize computation
from multiple clients. This could speed up task completion.

12:39:00: Dividing up tasks into discrete threads allows the server to
have more control over the requests and the resource usage involved with
processing said requests. Threads could be controlled using facilities
provided by the OS to ensure that particularly resource-intensive tasks do
not choke the system.

12:39:01: Multiple threads allow for parallelization, which can
massively speed up tasks such as prime factorization and prevent any
single client from blocking you if you end up waiting on them.

12:39:01: So it doesn’t have to wait for the previous request from the
first client to work on the request of the second client. If it has to execute
one after the other, with a time intensive task, clients are going to have to
wait longer for their information which isn’t good. What client 2 is
requesting shouldnt have any impact on the time it takes client 1 to get
their information..

12:39:03: You need multiple threads with multiple clients so that one
client isn’t blocked by the other during processing

instructors with awareness of in-progress work of students [7-
9]. This information, in turn, can be used by instructors to
determine the inherent difficulty of a problem, whether some
students are having more than usual difficulty with some
problems, and whether lack of progress of some students is due
to not having spent enough time on the problem.

Fig. 10 shows a visualization of the logs from three classes
that did the Holy Grail layered assignments. It divides all the
tests into four categories: Threads, Synchronization,
Coordination, and Other, based on which aspect of the problem
they were checking. It shows the distribution of the number of
attempts (test executions) [7] required to pass tests in the four
compared categories. Given a point in the X axis, representing a
certain number of attempts, the bar on the Y axis indicates the
number of students who made that many attempts in each of the
four categories. The figure graphically shows, that concurrency
topics resulted in more high numbers (> 4), and the highest
numbers were associated with coordination and
synchronization. Thus, it gives the instructor an idea of the
relative difficulty of these topics and the fraction of students
facing each level of difficulty.

Fig. 10. Distribution of Test Attempts, 2016-2018

 This graph was created after all three classes had finished
their work. We are currently building a tool that allows log
visualization to be created in real-time. Such a visualization
could be used, for instance, to give unsolicited help to the
students on the bottom right facing more than usual difficulty
with coordination and synchronization. One hurdle to achieving
this goal is that the logs, by default, do not give the identity of
the students. Instead a unique “fake name” is used for each
student, which the student can customize. One solution is to
broadcast a message to the whole class indicating the
willingness of the instructor to help students with certain fake
names with specified tests. Students with these names
encountering difficulty with that check can then solicit help.

XIII. CONCLUSIONS AND FUTURE WORK

This paper addresses a variety of pedagogical tasks related
to concurrency – illustrating concepts, creating motivating and
debuggable assignments, assessing the runtime behavior and
source code of solutions manually and automatically, generating
model solutions for code and essay questions, discussing
conceptual questions in class, and being aware of in-progress
work. It shows that these tasks can benefit from a combination
of AI and a large variety of traditional tools, which include user-
interface generators, programming environments, queue

visualizers, active grading management systems, automatic
source and runtime checks, logging and visualization tools, and
chat systems.

 Further work is needed for creating traditional automatic
assessment tools for languages other than Java, integrating them
with AI tools, developing traditional tools for real-time
visualization of in-progress work, and developing tools to detect
difficulty and offer semi-automatic help to students not making
expected progress. This paper provides a basis for investigating
these directions.

ACKNOWLEDGMENT

Thanks to Sheikh Ghafoor for inviting the author to write
this paper for the EduHIPC’23 workshop.

REFERENCES

[1] Arjun Singh, S.K., Kevin Gutowski, Pieter Abbeel. Gradescope: A Fast,
Flexible, and Fair System for Scalable Assessment of Handwritten Work.
in Proceedings of the Fourth (2017) ACM Conference on Learning @
Scale. 2017. ACM.

[2] Dewan, P. How a Language-based GUI Generator Can Influence the
Teaching of Object-Oriented Programming. in Proc. ACM SIGCSE.
2012.

[3] Carter, J., P. Dewan, and M. Pichilinani. Towards Incremental Separation
of Surmountable and Insurmountable Programming Difficulties. in Proc.
SIGCSE. 2015. ACM.

[4] Finnie-Ansley, J., P. Denny, B.A. Becker, A. Luxton-Reilly, and J.
Prather. The robots are coming: Exploring the implications of openai
codex on introductory programming. in Proceedings of the 24th
Australasian Computing Education Conference. 2022.

[5] Leinonen, J., A. Hellas, S. Sarsa, B. Reeves, P. Denny, J. Prather, and
B.A. Becker. Using large language models to enhance programming error
messages. in Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1. 2023.

[6] Sarsa, S., P. Denny, A. Hellas, and J. Leinonen. Automatic generation of
programming exercises and code explanations using large language
models. in Proceedings of the 2022 ACM Conference on International
Computing Education Research-Volume 1. 2022.

[7] Dewan, P., S. George, A. Wortas, and J. Do, Techniques and Tools for
Visually Introducing Freshmen to Object-Based Thread Abstractions
Journal of Parallel and Distributed Computing, 2021. 157.

[8] Dewan, P., A. Worley, S. George, F. Yanaga, A. Wortas, J. Juschuk, M.
Rogers, and S.K. Ghafoor, Hands-On, Instructor-Light, Checked and
Tracked Training of Trainers in Java Fork-Join Abstractions., in IEEE
29th International Conference on High Performance Computing, Data and
Analytics Workshop (HiPCW). 2022, IEEE. p. 28-35.

[9] Dewan, P., S. George, B. Gu, Z. Liu, H. Wang, and A. Wortas. Broad
Awareness of Unseen Work on a Concurrency-Based Assignment. in
2021 IEEE 28th International Conference on High Performance
Computing, Data and Analytics Workshop (HiPCW). 2021. IEEE.

[10] Dewan, P., A. Wortas, Z. Liu, S. George, B. Gu, and H. Wang.
Automating Testing of Visual Observed Concurrency. in 2021
IEEE/ACM Ninth Workshop on Education for High Performance
Computing (EduHPC). 2021. IEEE.

[11] Gamma, E., R. Helm, R. Johnson, and J. Vlissedes, Design Patterns,
Elements of Object-Oriented Software. 1995, Reading, MA.: Addison
Wesley, 1995.

[12] Dewan, P. Infrastructure for Writing Fork-Join Tests. in Proceedings of
the SC'23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis. 2023.

[13] Checkstyle, C. Checkstyle. 2015; Available from:
http://checkstyle.sourceforge.net/.

[14] Dewan, P., Lecture-less Java-Threads Training in an Hour? , in IEEE 30th
International Conference on High Performance Computing, Data and
Analytics Workshop (HiPCW).. 2023, IEEE.

http://checkstyle.sourceforge.net/

