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Abstract— Today, AI tools are generally considered as 

education disrupters.  In this paper, we put them in context with 

more traditional tools, showing how they complement the 

pedagogical potential of the former. We motivate a set of specific 

novel ways in which state-of-the-art tools, individually and 

together, can influence the teaching of concurrency. The pedagogy 

tasks we consider are illustrating concepts, creating motivating 

and debuggable assignments, assessing the runtime behavior and 

source code of solutions manually and automatically, generating 

model solutions for code and essay questions, discussing 

conceptual questions in class, and being aware of in-progress 

work. We use examples from past courses and training sessions in 

which we have been involved to illustrate the potential and actual 

influence of tools on these tasks. Some of the tools we consider are 

popular tools such as interactive programming environments and 

chat tools - we show novel uses of them.  Some of the others such 

as testing and visualization tools are in-use novel tools - we discuss 

how they been used. The final group consists of AI tools such as 

ChatGPT 3.5 and 4.0 - we discuss their potential and how they can 

be integrated with traditional tools to realize this potential.  We 

also show that version 4.0 has a better understanding of advanced 

concepts in synchronization and coordination than version 3.5, 

and both have a remarkable ability to understand concepts in 

concurrency, which can be expected to grow with advances in AI. 
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I. INTRODUCTION 

The teaching of programming inherently involves the use of 
tools – to edit, compile, and run the worked instructor examples 
and student assignment solutions. Several other general-purpose 
popular tools supplement the programming environment. These 
include forums such as Piazza, testing frameworks such as 
JUnit, grading servers such as Gradescope [1], presentation-
creation tools such as PowerPoint, and presentation-sharing and 
chat tools such as Zoom. 

When a set of entities works well, it is attractive to consider 
adding more variety to it. Several kinds of niche tools have been 
explored for teaching programming such as user-interface 
generators [2] and difficulty-detection tools [3]. These are 
niche/novel tools in that they are not mainstream but have been 
used effectively by a relatively small subset of teachers – 
sometimes only the inventors of these tools. 

The recent release of ChatGPT has furthered interest in tool-
based pedagogy. It has been shown that ChatGPT can solve 
many introductory problems [4], leading to fears of plagiarism  
- not from humans but from AI tools. On the positive side, 

ChatGPT’s potential to aid pedagogy is attracting increasing 
interest. Examples of such interest include explaining error 
messages [5] and creating programming exercises [6].   

In this paper, we focus on concurrent programming. We 
motivate a set of specific novel ways in which state-of-the-art 
tools, individually and together, can influence the teaching of 
concurrency. We use examples from past courses and training 
sessions in which we have been involved to illustrate the 
potential and actual influence of tools on these tasks.  

All of these examples involve the use of Java thread 
mechanisms to teach concurrency. Moreover, all of the 
educational tools developed by us that are discussed here are 
implemented in Java. However, the nature of these examples and 
tools is not Java-specific. Therefore, we try to keep most of this 
discussion at an abstract, language-independent level. 

The pedagogy tasks we consider are illustrating concepts, 
creating motivating and debuggable assignments, assessing the 
runtime behavior and source code of solutions manually and 
automatically, generating model solutions for code and essay 
questions, discussing conceptual questions in class, and being 
aware of in-progress work.    

Some of the tools we consider are popular tools such as 
interactive programming and chat tools - we show novel uses of 
them.  Some of the others such as testing and visualization tools 
are in-use novel tools (for teaching concurrency) - we discuss 
how they been used. The final group consists of AI tools such as 
ChatGPT - we discuss their potential. 

Many of the individual novel uses of the traditional tools 
have been discussed in previous papers [7-10]. The contribution 
of this paper is a tool-based focus that puts a diverse set of tools 
relevant to concurrency in context, showing the way they relate 
to each other. In the rest of the paper, we discuss these tools and 
the roles they can play in teaching concurrency. 

II. PHYSICAL WORLD SIMULATIONS  

Our work on concurrency has focused on three kinds of 
concepts; concurrent thread execution, thread synchronization, 
and thread coordination. Concurrent thread execution is creation 
of independent thread stacks, and executing the root procedures 
of the stacks. Thread coordination is the ability of threads to wait 
until they are signaled by other threads.  The signal may be 
broadcast to all threads waiting in a queue or sent only to the 
thread at the front of the queue. Thread synchronization ensures 
that shared resources are locked when threads manipulate them. 
Low-level thread coordination mechanisms such as semaphores 
can be used to also implement synchronization. In modern 
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object-oriented languages such as Java, Python, and C#, higher-
level mechanisms are provided to lock selected instance or static 
methods of a class.  

The physical world, consisting of a variety of concurrent 
actors, provides analogies to illustrate these fundamental 
concepts.  In a virtual simulation of this world, concurrent actors 
would correspond directly to concurrent threads. The actors 
taking turns to access shared resources such as a traffic 
intersection or coordinating with each other to perform a group 
task such as running a relay correspond to threads synchronizing 
and coordinating, respectively. As a result, well-understood 
aspects of the physical world can be used to understand 
analogous concepts in program multithreading. 

In a worked example used by us, we made two different 
threads animate two different shuttles concurrently, thereby 
visually illustrating concurrency. To illustrate synchronization, 
we created two threads that animate a single shuttle, which 
corresponds to two different pilots flying the same shuttle. When 
the threads are synchronized, they take turns animating the 
shuttle, with one thread’s animation following the other thread’s 
animation. When they are not synchronized, the shuttle 
oscillates between the points in the trajectories computed by the 
two animation loops. In a third variation of this example, 
multiple threads, controlling different shuttles, coordinate with 
each other.  A thread that starts its animation sends a signal to 
any waiting thread when the shuttle reaches a certain height.  A 
later thread waits until such a signal is received by it before 
starting its animation. The internal queue kept by the underlying 
waiting and signaling mechanisms is used to determine which 
thread receives a signal from another thread. 

III. UI GENERATOR  

It is possible, of course, to build custom special-purpose, 
shuttle-specific, tools to create the above animations. It is more 
attractive, however, to create a general framework to create 
arbitrary concurrent animations. Such a framework could be 
used by students to implement assignments that create such 
simulations. 

Such animations not only illustrate concurrency concepts but 
also provide real-world motivations for them. In some of our 
course offerings, students implemented a series of layered 
assignments that. together, simulated the bridge scene from the 
movie Monty Python and the Holy Grail. Assignments 1 to 9 
implemented the static scene shown in Fig. 1. Assignment 10 
forked threads that made avatars of Arthur, Galahad, Robin, and 
Lancelot move independently. To exercise synchronization, in 
Assignment 11, they synchronized accesses by multiple threads 
that manipulate the same knight. To exercise thread 
coordination, in Assignment 12, they created threads that made 
the knights march to a beat set by the guard, using coordination 
mechanisms Animating threads were also created by some 
students (for no credit) to make the knights fall into the gorge on 
failing to answer a question.  

These animations are also excellent debugging and manual 
assessment tools - errors in thread behavior are reflected in the 
simulations. For example, the knights in Fig. 1 would not move 
at the same time if the corresponding threads do not execute 
concurrently to animate them. Similarly, the knight threads 

would not march to the beat set by the guard thread if they did 
not wait for broadcasting signals from the latter. 

We have used a user-interface generator developed by us, 
called ObjectEditor (used also to teach sequential concepts [2]) 
as a framework to easily create such simulations in concurrency-
based assignments. Given an arbitrary observable object, 
ObjectEditor automatically displays the object, and keeps its 
visual representation consistent with its internal state. (An 
observable object [11] calls notification methods in registered 
observer objects whenever the state of the object changes.) For 
example, given an observable object representing the shuttle, 
ObjectEditor automatically moves the image when notification 
methods invoked in it indicate that the coordinates of the 
underlying object have changed. Similarly, given a set of 
observable objects representing the bridge scene, ObjectEditor 
automatically animates them in response to state-change 
notifications. In addition to creating up-to-date visual 
representations of objects, ObjectEditor also provides menus 
and buttons to invoke methods in the object – a feature we see 
in the two sections below. 

In [7], we give examples of several other motivating layered 
concurrent assignments students have implemented using 
ObjectEditor, which include simulating Halloween and a scene 
from the The Wizard of Oz 

 

Fig. 1. Holy Grail Bridge Project 

IV. INTERNAL THREAD-BASED STRUCTURES 

Simulations visualize the behavior of thread-based 
operations, but not the underlying data structures that define the 
behavior. Two important such data structures are the stack 
associated with each thread, and the queues in which waiting 
threads are put. 

Fortunately, modern interactive environments visualize 
stacks. By asking students to put appropriate breakpoints, we 
have allowed them to see that each thread is associated with its 
own stack and program counter, as illustrated in Fig. 2. In this 
Java-based example, they can see that the root procedure of the 
stack of each thread forked by them is the Java run() method. 

To visualize queues, we have developed our own tool, which 
provides a Proceed button to signal any thread in the visualized 
queue. Fig. 3 illustrates how the tool can be used to understand 
waiting and signaling.  The simulation starts with two threads, 
animating independent shuttles, in the displayed queue. This 
state simulates two physical shuttles queued to enter a physical 
launching pad. When the Proceed button is pressed, the first 

  



thread is removed from the queue and starts animating its 
shuttle. Clicking the Proceed button, of course, corresponds to 
an air traffic controller giving clearance to the next waiting 
shuttle to take off.  

 

Fig. 2. Multiple Stacks Shown for Different Threads 

 

Fig. 3. Interactive Queue Manipulation and Visualization  

This tool is layered on top of ObectEditor in that it uses the 
latter to visualize the queue and invoke the signaling method in 
response to pressing of the Proceed button. 

V. ACTIVE GRADING MANAGEMENT  MANUAL ASSESMENT 

As mentioned above, animating simulations can be used by 
a human grader to assess solutions to concurrency assignments, 
as bugs in the use of these mechanisms are reflected in the 
simulations. Thus, if the simulations are correct, the code is 
likely to be correct and does not need to be examined. If they are 
incorrect, then the code can be studied to identify the errors. As 
students themselves can detect such errors by viewing the 
simulations, it should be rare for the concurrency semantics of 
the assignments to be not correct. 

 Web-based systems such as Gradescope [1] have shown that 
manual assessment can be speeded by a grading management 
system that automates rubric management and navigation to the 
student submissions. However, because they are web-based, 
they cannot directly run interactive programs that create 
simulations to be examined by the human grader. 

Using ObjectEditor, we have developed a grading 
management [10]  that can directly execute assignment code. 
While our grading management system was developed 
independently of Gradescope, it offers similar features to 
automate rubric management and navigate among student 
submissions. Fig. 4 shows parts of it being used to manually 
grade the concurrency features (4-7) of an assignment, which 
also included non-concurrency features (1-3). 

 

Fig. 4. Interactive Submisson Assesment 

Unlike Gradescope, our system is specialized for program 
grading and is not web-based. This allows us to make it “active” 
by providing a Run command, which can be invoked by a human 
grader to execute the graded submission and interact with it. Fig. 
1 shows the result of invoking this command from the user 
interface of Fig. 4. This command is, of course, crucial to grade 
visualized concurrency. 

VI. OBERVERVING TESTS  

If concurrency is visualized and all visible state changes are 
observable, then it should be possible to write test cases that 
automatically check consistency constraints.  These tests can 
observe all state change notifications, and based on their order 
and the threads that sent them, determine if some or all 
concurrency requirements are met. For instance, if: 

 (a) all notifications are sent by a single thread, then a test 
processing them can flag a lack of concurrency, 

 (b) notifications by different threads about changes to a 
shared object are interleaved, then the test can indicate lack of 
synchronization,  

(c) notifications by different coordinating threads are not in 
the expected order, then the test can assume coordination 
mistakes. 

Based on this key idea, we have developed an extension of 
the JUnit framework that can test visualized observable 
concurrency, which is discussed in depth in [10].  We have used 
these tests to check the concurrency requirements of a variety of 
assignments. 

These tests can be loaded into the Gradescope server to 
support automatic grading of final solutions (Fig. 5 (b)). More 
important, they can be executed locally by students on partial 
solutions, using an interactive tool developed by us, called 
LocalChecks (Fig. 5(a)). Again, this tool uses ObjectEditor to 
create its user-interface. Students have used this tool as an 
instructor agent that checks which requirements have been met, 
and gives hints, through appropriate error messages, on how the 
unmet requirements should be satisfied. 

 

 

 
 

 

 



 

Fig. 5. Executing Tests Locally and on Server 

If a test were to directly observe changes, then it would be 
multithreaded, as a call to a notification method could be 
executed by one of many threads is the tested program. Multi- 
threaded programs are, in general, more complicated than 
single-threaded ones. Therefore, we have developed the 
abstraction of a problem-independent event management system 
to allow problem-dependent tests to be single-threaded. The 
system itself is multi-threaded, and stores the streams of 
notifications received from different threads in a data structure, 
which can be queried by single-threaded tests to check problem-
specific requirements. 

Before we built our testing framework, we used our 
interactive active grading management system to test all 
concurrency requirements of simulations. After building our 
testing framework, we wrote tests for all of these requirements. 
However, we continued to use the active grading management 
system to (a) check the tests for false positives and negatives, (b) 
evaluate the quality of the animations, and (c) ensure that 
students had written code that demonstrated that the 
concurrency (and other) requirements had been met. We do not 
have tests for checking their demonstration code. 

Our grader management system can, like Gradescope, run 
the tests also, and allow the human grader to override test results, 
if necessary. These tests, however, are run on the computer of 
the human grader when they do the grading, and not on a server 
when the students submit their code for grading. We used to also 
have the ability to run the tests in our server, but ensuring this 
server can handle the load and is always available was a 
problem. Hence, currently, the tests are all run on Gradescope. 

VII. OBSERVABLE PRINTS  

The approach of observer tests assumes concurrent 
manipulation of observable objects. Thus, this approach will not 
work when the assignment solution is not coded in an object-
oriented language or when the manipulated data are not 
observable objects.  

To overcome these limitations, we have added a layer above 
our event management system for testing programs that follow 
the fork-join model [12]. In this model, a dispatcher thread 
distributes its work to a set of worker threads it forks, which 
deposit their results in a data structure shared with the 
dispatcher. The dispatcher waits for them to finish, and then 
collects and prints the results. Typically, the input and output 
data are stored in arrays, which are not observable objects in any 
language with which we are familiar. Moreover, the dispatcher 
thread receives all input and produces all output. In a correct 
implementation of this model, the relationship between the 
output and input is independent of the number of threads forked. 
Thus, the traditional approach of using this relationship to test a 
program cannot be used to check concurrency requirements. 

Our layer for testing such programs is based on two main 
ideas. First, we intercept the prints using a custom observable 
object, which can be observed by our event management system. 
Second, we require each worker thread to print intermediate 
results. As a result, the event management system can store 
concurrency-related notifications from all threads, which can 
then be queried by problem-specific tests to check the 
concurrency requirements. By providing appropriate abstract 
classes for implementing these tests, we ensure that the tests are 
responsible only for the “what” of fork-join testing – the “how” 
is taken care of by the abstract classes and the event management 
system. 

The fork-join framework and the problems it has been used 
to test are described in depth in [12]. Fig. 6 shows some of the 
error messages produced by tests written using this framework. 
These tests check if a program correctly uses the fork-join model 
to find odd numbers in a set of random numbers. 

 

a) Fork-Join Problem 

     

b) Imbalanced Load Problem 

 

(c) Race Condition Problem 

Fig. 6. Error Messages Identifying Problems with Concurrent Program 

We see here how tests can act as instructor agents, clarifying 
requirements, identifying bugs, and giving hints on how to fix 
them. The three messages indicate, respectively, that the 
programmer is expected to create worker threads that execute 
concurrently, ensure that the load of worker threads is balanced, 
and of course, compute the correct number. They also indicate 
that if the programmer has tried to meet these three 
requirements, then the program has bugs. The second message 
indicates that fairness can be achieved by ensuring that the 
difference between the maximum and minimum load is <=1. 
The third message indicates that race conditions may have 

 

(a)  LocalChecks User Interface 

 

(b) Some Results from Running Tests on Server 

 

Forked threads do not execute concurrently. 
Between the first and last output of each forked 
thread, there is no other thread output. 

Imbalanced thread load: Max thread iterations(4) 
- min thread iterations(1) = 3. It should be <= 1  

 

Computed total number of odd numbers 1 != expected total 3. 
You may have race conditions. 

 



caused the final result to be wrong. It is up to the programmer of 
the checks to generate only those hints that are expected to 
contribute to learning. 

VIII. PROBLEM-SPECIFIC SOURCE CHECKERS  

There could be several causes for the fork-join problem 
above (Fig. 6(a)). For instance, the programmer (a) may not have 
forked the threads, or (b) joined each forked thread before 
forking the next thread. A check that looks only at the runtime 
input/output of a program cannot determine which of many 
problems in the source cause unexpected runtime behavior. 
Even the hints in the race condition problem (Fig 6(c)) is a guess 
of the test writer. Therefore, it is attractive to build a tool that 
examines the source code to identify potential problems. 

One example of such a tool is Checkstyle [13] - an Eclipse 
plugin that finds problem-independent Java style violations. We 
have created an extension of this plugin, called Hermes, to find 
coding issues based on a problem-dependent specification of the 
expected code structure. Our extended plugin can check if a 
class or a method instantiates a particular class or calls a method 
in a particular class. In addition, it can check if a class 
implements a particular interface. The plugin, like Checksyle, 
gives error messages as source code is edited. In addition, it 
writes the error messages to a file that can be read by our JUnit 
tests. As a result, these tests can check both runtime behavior 
(Fig. 6) and also source (Fig. 7). 

 

Fig. 7. Source Check Results on Given Worked Example 

Often students given a programming assignment say they do 
not know where to start or ask an instructor if they are on the 
right path. The source checks give them an idea of the code that 
must be included in a correct solution. The names of the tests in 
Fig. 7 are mostly self-explanatory. They indicate source-code 
milestones that must be met to solve the problem.  

As we see from the names, some of these checks test if 
certain classes are instantiated. Most of the checks test if calls to 
certain methods are included in the code. They provide class-
level and method-level source granularity based on whether they 
specify the class or method that makes the call. A check is green 
or red based on whether it passed or not. These tests check both 
that (a) correctness constraints are met (e.g. the call to Thread 
start to start threads), and (b) tracing constraints are met (e.g. 
the call to printProperty to print intermediate results). 

IX. AI TOOLS FOR CODE QUESTIONS 

Hermes cannot check the logic embedded in the source code. 
This is consistent with all algorithmic source-code checkers 
such as compilers, interpreters, and style checkers. The reason 
is that the halting problem says that it is impossible to even 
determine if a program halts – checking if it halts with the 
correct solution is a more difficult problem. 

AI tools, on the other hand, can make inferences that are not 
guaranteed to be correct. ChatGPT is arguably the most 
attractive of such tools, and therefore, has been used to 
investigate its potential for understanding the logic of sample 
sequential assignments [4]. Therefore, it is attractive to 
determine its potential for finding problems with concurrency 
logic. 

Today, ChatGPT comes in two versions, 3.5 and 4.0. We 
gave both the source code of an erroneous program for 
concurrently finding odd numbers in a set of random numbers. 
This program had comments describing what the program 
should do. We asked both versions to correct it. In an in-class 
exercise reported in [14], students were given the same task. We 
will refer to this program as the erroneous odd number program. 

ChatGPT 3.5 found two of the three errors in the program, 
as shown by excerpts of its response given below: 

Bug in fairThreadRemainderSize method: This method 

is intended to distribute the remainder of work among the 

threads fairly. The current implementation only assigns work to 

the first thread (aThreadIndex == 0). This is incorrect. To 

distribute the work fairly, you should use the following code: ….  

Bug in incrementTotalOddNumbers method: The issue 

here is that multiple threads can read 

totalNumberOddNumbers at the same time, and they may all 

increment it and then write it back, resulting in some updates 

being lost. To fix this, you need to make this method 

synchronized. Uncomment the synchronized keyword in the 

method signature like this: … 

ChatGPT 4.0 found also the third bug, indicated by the 
following excerpt: 

forkAndJoinThreads: Separated the forking and joining 

of threads into two loops to ensure that all threads start before 

they are joined. This allows them to run concurrently, which is the 

intended behavior of fork-join concurrency. 

ChatGPT 3.5 was also able to find this bug, but only after it 
was explicitly given the prompt: “There is also a bug in 
forkAndJoinThreads(). Do you see it?” The comments in the 
program did identify all procedures with the bugs – version 3.5 
however did not find them sufficient to identify the third bug. 

To further test ChatGPT’s ability to understand and compose 
concurrent programs, we gave version 3.5 a program that 
sequentially computes prime numbers, and has no concurrency 
code. We asked it to make it concurrent. It correctly performed 
this task, reusing the sequential code as much as was possible. 
In an exercise reported in [8], trainees were given the same task. 

The success of ChatGPT with these two concurrency-based 
training problems should not be surprising, at least in retrospect. 

 



Usually, the declarative mechanisms of OpenMP are sufficient 
to code concurrency in such problems, and these mechanisms 
are used in very stylized ways in these problems. As a result, the 
concurrency semantics of these problems vary less than their 
sequential semantics. Thus, given enough training examples, AI 
tools should be able to fix, compose, and evaluate concurrency 
aspects of these problems more easily than sequential semantics. 
The fact that version 4.0 was more successful than 3.5 indicates 
that the number of concurrency problems fed to AI tools has 
recently increased, and we can expect this trend to continue with 
the increase in importance of concurrent programming. 

This is a serious issue if students use AI to solve the 
problems.  On the other hand, if they do not directly use AI to 
do so – which can be the results of following an honor code or 
doing the problem in class under supervision – then these 
examples also show the potential of AI to generate model 
solutions and give automatic hints to the students. Moreover, 
like the hand-crafted runtime and source checks mentioned 
above, they can be used to grade solutions based on the bugs 
they find. They are an attractive alternative to the former as they 
do not require problem-specific test code to be written. An 
additional advantage is that, unlike the fork-join tests discussed 
above, they do not require students to put tracing prints in their 
code. 

Current AI tools such as ChatGPT can be directly used by 
instructors to generate model solutions, after students have 
submitted their work.  It is not clear, however, how they should 
be used to give hints or grade solutions. If students directly use 
them, then they may get hints together with the fixes. One 
solution is to integrate AI tools with hand-crafted tests. These 
tests can use the API provided by an AI tool try and filter out the 
hints from the AI tool’s response, before giving them to the 
students. Such filtering can also be used for grading. 

A fundamental problem with these uses is the lack of 
reliability of AI tools. On the other hand, we can expect finding 
and fixing bugs in generated model solutions takes less time than 
generating the code and associated explanations from scratch. 
Judging the correctness of hints can be the responsibility of the 
students, or these hints can be mediated through the instructors. 
Again, validating and correcting hints can be expected to take 
less work than generating them, with explanations, from scratch. 
False positives in grading errors are not that serious as regrade 
requests, which can be expected to be rare, can be handled 
manually. False negatives are the main problem. If the 
alternative is manual grading, then we expect AI assignment 
grading to be less error-prone and result in fewer false negatives. 
Problem-specific hand-crafted tests, though requiring more 
work, can always be expected to be preferable to AI assignment 
grading.  

A secondary issue arises from the fact that there is, currently, 
a monetary cost associated with the use of ChatGPT. Other 
competing AI tools can be expected to also charge for API use. 
If the checks are executed on a commercial sever such as 
Gradescope, it is not clear how to pay for this cost. If these are 
executed on the computer of the students or the graders, then the 
students and graders would have to incur this cost, which they 
are likely to accept. Thus, we are considering changes to our 
testing infrastructure that use AI tools when the tests are run 

locally, as part of LocalChecks (Fig. 6(a)), or our active grading 
management system (Fig. 7), but not when they are run on 
Gradescope (Fig. 6(b)). 

The sample problems we gave to ChatGPT were small – the 
solutions fit in one Java file. It is unlikely for AI tools to be able 
to handle layered assignments such as the Holy Grail problem, 
as each of the assignment descriptions refers to and builds on the 
ones before it. If AI-based plagiarism is an issue, then such 
layered assignments become attractive. However, such 
assignments also may not benefit from the pedagogical potential 
of AI. 

X. AI TOOLS FOR CONCEPTUAL QUESTIONS 

In the exercise reported in [14], students were asked to not 
only correct the erroneous odd number program, but also answer 
quiz questions on it. Given the ability of ChatGPT to provide 
natural language descriptions of concurrent programs, the bugs 
in them, and the fixes it makes to them, it is attractive to consider 
its potential to answer and grade quiz questions about a program. 

Three of the quiz questions asked the influence on the output 
of the three fixes, individually and collectively. They did not ask 
for the exact output, but only an abstract description of how it 
would change. Version 3.5 gave correct answers to all of them 
without giving the exact output. One quiz question tested if the 
answerer knew that synchronizing the only caller, A, of method 
B, is equivalent to synchronizing B, when A and B are static 
methods. Version 3.5 got that correct also. The last question 
checked if the answerer understood that if A and B are instance 
and static methods, respectively, then synchronizing B is not 
equivalent to synchronizing A. The reason is that calling a static 
synchronized method on a class locks all synchronized static 
methods of the class, while calling a synchronized instance 
method on an object locks all synchronized instance methods of 
the instance. Version 3.5 got that wrong. It did, however, get the 
right answer when it was asked if it had considered the fact that 
A and B were instance and static methods, respectively. Version 
4.0 got all questions correct without additional prompts. 

Students who did the exercise of fixing the buggy odd 
numbers problem were also given a similar exam question. Two 
of the parts of the questions asked students to give an exact 
output when a method manipulating a shared variable was 
synchronized and when it was not. Amazingly, version 3.5 was 
able to compute an exact output from the source code for not 
only the synchronized version but also the unsynchronized one 
(Fig, 8), which requires considering race conditions. 

                               

           Synchronized Output            Unsynchronized Output 

Fig. 8.   Output with and without synchronization 

A third question required, like the analogous quiz question, 
the understanding that synchronizations of static and instance 
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methods are different. Not surprisingly, again, 3.5 got this 
question wrong and 4.0 got it right, showing at least consistency. 

The last question involved synchronizing two mutually 
dependent methods, which caused a deadlock. Version 3.5 did 
not see the deadlock, and neither did version 4.0. When 4.0 was 
told that there would be a deadlock, it agreed, gave the correct 
reason for it, and computed the correct output. Version 3.5 did 
not agree at first, and repeated its initial answer. When told again 
that there was a deadlock, it agreed, but gave the wrong reason, 
and did not give the output. When asked again for the output, it 
said it could not compute it. Only one student answered the 
deadlock question correctly in the exam, which can be explained 
by the fact that students had not seen this concept explicitly 
before, even though they were told how synchronized methods 
work. Version 3.5 seems to be like most students. 

This example shows the ability of ChatGPT to generate 
model answers to essay questions. We gave version 3.5 also 
some correct and incorrect answers to the questions above, and 
asked it to grade them. It found fewer mistakes with 
incorrect/irrelevant answers than the human grader. But with 
advances, AI tools can be expected to generate model essay 
answers more correctly as well as grade them more critically. 
Given that the instructor – the author - did not make an effort to 
generate model answers for the quiz/exam questions, and took a 
whole day to grade the 40 quiz/exam submissions, both 
capabilities would be extremely useful. 

XI. CHAT + DISCUSSION MODEL ACTIVE LEARNING 

Conceptual questions can be asked not only in quizzes and 
exams, but also during lectures, as a form of active learning. 
Several clicker systems are used today to help gather multiple- 
choice answers from students. We have coupled Zoom chats 
with an innovative discussion model to create a new form of a 
clicker system for essay answers. In this model, the instructor 
first poses the question to the whole class. Students are asked to 
compose their answers by writing a chat message. When they 
are finished, they are asked to raise their hands, but not post the 
message until the instructor asks them to do so. The instructor 
waits for a certain number of raised hands before asking them to 
commit their answers, and then discusses each answer.  

Fig. 9 illustrates this approach by showing some of the 
answers to the following concurrency-based question posed in a 
class on PDC (Parallel and Distributed Computing):  

What are the reasons for making a server multi-threaded? 
Why is this particularly important for a compute-intensive 
task such as determining prime factors? 

We tried this strategy by accident during the Covid pandemic 
when the instructor’s audio connection to the students became 
unusable in one class. Today, even in in-person classes, we 
prefer this approach to the traditional approach of receiving 
audio answers from students who have volunteered to answer 
the question by physically raising their hands. There are several 
reasons for this preference: 

1. There is a written record of who tried to answer a 
question, which is used to give them class participation 
points. They receive a fixed number of points as long as 
they try to answer the question – the quality of the 

answer does not matter. The written record of questions 
and corresponding answers can also be used to quickly 
review the material before an exam or assignment.  

2. We have found that there is less participation in audio-
based interaction. Many more students will enter chat 
answers than volunteer to raise their hands, especially 
when points will be awarded for trying to answer the 
question. Usually, at most 10 percent of the class raises 
hands, while about 75% of the class enters chat answers. 

3. It is possible to know how many students are thinking 
of the same answer. In the traditional approach, students 
will lower their hands or not raise their hands after 
another student gives an answer similar to what they are 
thinking. 

4. Students have more time to think of answers, which 
increases both the answer quality and number. 

 

Fig. 9. Chat-Based Class Discussion 

A main disadvantage of this approach is that interaction is 
less fluid as only the instructor speaks – while posing the 
question and discussing the answers. Another problem is 
scalability – in a class with more than 40 students, it has not been 
possible to discuss the answer of each student.  

 A solution to this problem is suggested by the example 
interaction shown in Fig 9. There are several duplicate answers 
– for instance, many of them say that the performance of the 
server can increase by processing concurrent requests on 
multiple processors concurrently. This duplication makes it 
attractive to use an AI tool to cluster answers and discuss a 
representative from each cluster.  The ability of ChatGPT to 
grade some of the quiz answers gives us hope that such 
clustering may be possible.  

XII. LOGGING AND IN-PROGRESS AWARENENESS  

Our runtime and source checks log actions taken by the 
students to run them. This information can be used to provide 

12:38:59: Multiple threads are created for different clients because 
clients are independent from each other. Multiple threads avoid the 
impacts of one client on the other. 

12:39:00: Multiple threads can help a server parallelize computation 
from multiple clients. This could speed up task completion.  

12:39:00: Dividing up tasks into discrete threads allows the server to 
have more control over the requests and the resource usage involved with 
processing said requests. Threads could be controlled using facilities 
provided by the OS to ensure that particularly resource-intensive tasks do 
not choke the system. 

12:39:01: Multiple threads allow for parallelization, which can 
massively speed up tasks such as prime factorization and prevent any 
single client from blocking you if you end up waiting on them. 

12:39:01: So it doesn’t have to wait for the previous request from the 
first client to work on the request of the second client. If it has to execute 
one after the other, with a time intensive task, clients are going to have to 
wait longer for their information which isn’t good. What client 2 is 
requesting shouldnt have any impact on the time it takes client 1 to get 
their information.. 

12:39:03: You need multiple threads with multiple clients so that one 
client isn’t blocked by the other during processing 

 

 

 



instructors with awareness of in-progress work of students [7-
9]. This information, in turn, can be used by instructors to 
determine the inherent difficulty of a problem, whether some 
students are having more than usual difficulty with some 
problems, and whether lack of progress of some students is due 
to not having spent enough time on the problem. 

Fig. 10 shows a visualization of the logs from three classes 
that did the Holy Grail layered assignments. It divides all the 
tests into four categories: Threads, Synchronization, 
Coordination, and Other, based on which aspect of the problem 
they were checking. It shows the distribution of the number of 
attempts (test executions) [7] required to pass tests in the four 
compared categories. Given a point in the X axis, representing a 
certain number of attempts, the bar on the Y axis indicates the 
number of students who made that many attempts in each of the 
four categories. The figure graphically shows, that concurrency 
topics resulted in more high numbers (> 4), and the highest 
numbers were associated with coordination and 
synchronization. Thus, it gives the instructor an idea of the 
relative difficulty of these topics and the fraction of students 
facing each level of difficulty. 

 

Fig. 10. Distribution of Test Attempts, 2016-2018 

 This graph was created after all three classes had finished 
their work. We are currently building a tool that allows log 
visualization to be created in real-time. Such a visualization 
could be used, for instance, to give unsolicited help to the 
students on the bottom right facing more than usual difficulty 
with coordination and synchronization. One hurdle to achieving 
this goal is that the logs, by default, do not give the identity of 
the students. Instead a unique “fake name” is used for each 
student, which the student can customize. One solution is to 
broadcast a message to the whole class indicating the 
willingness of the instructor to help students with certain fake 
names with specified tests. Students with these names 
encountering difficulty with that check can then solicit help. 

XIII. CONCLUSIONS AND FUTURE WORK 

This paper addresses a variety of pedagogical tasks related 
to concurrency – illustrating concepts, creating motivating and 
debuggable assignments, assessing the runtime behavior and 
source code of solutions manually and automatically, generating 
model solutions for code and essay questions, discussing 
conceptual questions in class, and being aware of in-progress 
work. It shows that these tasks can benefit from a combination 
of AI and a large variety of traditional tools, which include user-
interface generators, programming environments, queue 

visualizers, active grading management systems, automatic 
source and runtime checks, logging and visualization tools, and 
chat systems. 

 Further work is needed for creating traditional automatic 
assessment tools for languages other than Java, integrating them 
with AI tools, developing traditional tools for real-time 
visualization of in-progress work, and developing tools to detect 
difficulty and offer semi-automatic help to students not making 
expected progress. This paper provides a basis for investigating 
these directions. 
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