Infrastructure for Writing Fork-Join Tests

Prasun Dewan
Department of Computer Science
University of North Carolina
Chapel Hill, North Carolina, USA
dewan@cs.unc.edu

ABSTRACT

We have developed a software infrastructure for testing multi-
threaded programs that implement the fork-join concurrency
model. The infrastructure employs several key ideas: The student
solutions use print statements to trace the execution of the fork-join
phases. The test writer provides a high-level specification of the
problem-specific aspects of the traces, which is used by the
infrastructure to handle the problem-independent and low-level
details of processing the traces. During performance testing, trace
output is disabled automatically. During functionality testing, fine-
grained feedback is provided to identify the correct and incorrect
implementation of the various fork-join phases. Tests written using
our infrastructure have been used in an instructor-training
workshop as an instructor agent clarifying requirements and
checking in-progress work. The size of the code to check the
concurrency correctness of final and intermediate results was far
smaller than the code to check the serial correctness of such results.

CCS CONCEPTS

¢ Parallel Computing Methodologies ¢ Software Notation and
Tools

KEYWORDS

Software Testing, Concurrency, Education, Fork, Join, Awareness,
Intelligent Tutor Systems

1 Introduction

Most of the research on HPC (High-Performance Computing) has
focused on identifying concurrency concepts, pedagogical models,
worked examples, and assignments in various kinds of
undergraduate courses. Our work addresses a different but related

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org

SC-W 2023, November 12-17, 2023, Denver, CO, USA

© 2023 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 979-8-4007-0785-8/23/11...815.00

https://doi.org/10.1145/3624062.3624098

topic - techniques for automatically testing multi-threaded
programming assignments.

Such tests can, of course, automate grading, making education
more scalable and, hence efficient. Relatedly, they can provide
quicker feedback than manual grading, which is important in short-
duration training sessions - such as the instructor-training sessions
supported by NSF’s Center for Parallel and Distributed Computing
Curriculum Development and Educational Resources (CDER)[1].

More important, trainees can run tests on in-progress code to
clarify requirements, determine if they are on the right track, and if
not, how to get back on track. Thus, the tests can take the form of
an always-available instructor agent who clarifies requirements,
checks partial work, and gives directions for the next phase of work.
Such help is particularly important for multi-threaded programs,
which are notoriously difficult to write and debug.

Tests run on in-progress work can give valuable feedback also
to instructors. The logged results of these tests can provide
instructors with awareness of unseen partial work, which can be
used to manually or automatically infer if the assignment is too easy
or difficult, or difficult only for a subset of identified students.
These inferences can, in turn, be used by the instructor to modify
the current or future assignment, and provide unsolicited help to
students who are in apparent difficulty or have taken the wrong
path. Such monitoring is more important in HPC education because
of the relative infancy of this area.

Traditional software testing, however, is at odds with the notion
of using concurrency to improve performance. The reason is that
such testing gives feedback based on the relationship between the
input and output of the tested code, and performance improvements
do not change this relationship. Two approaches have been used so
far to address these limitations of traditional testing.

The first is to use performance rather than input/output
relationships to test concurrent code [2]. While such an approach
could offer the advantage of scalable quick grading, it cannot
provide feedback that pinpoints problems in the failed code.

The second is to assume that multi-threading is used, not for
high-performance computing, but to visually create concurrent
animations [3]. These animation actions are observed by testing
code to check them for correctness. This approach, of course, works
only for assignments that create such visual animations. Moreover,
as there is no common model followed by such animations, low-
level testing details cannot be automated.

We have developed a software infrastructure to address these
limitations of existing work. An overview of an earlier version of

mailto:Permissions@acm.org

HPC’23, November, 2023, Denver, Colorado USA

the infrastructure, and how it was used for training has been
published previously [4]. In this paper, we focus in-depth on the
infrastructure, describing it from the perspective of a test writer.
Section 2 lists the set of requirements it was designed to meet.
Section 3 identifies the key concepts to meet these requirements.
Section 4 describes various aspects of the infrastructure that
implements these concepts. Section 5 evaluates our infrastructure.
Finally, Section 6 gives conclusions and directions for future work.

2 Requirements

As mentioned in the introduction, two approaches to concurrency
testing have been used before — performance testing and
functionality testing of observable animation events.

The former is suitable for programs that meet two conditions.
First, their threading level can be increased dynamically. Second,
increasing the threading level when idle cores are available
improves performance. It has the advantage that no problem-
specific testing code has to be written as no problem-specific
requirement is checked as long as these two conditions are met.

The latter is suitable for a different class of concurrent programs
— those that use threads to create concurrent animations in the user-
interface using animation events that can be observed by arbitrary
observer objects. We refer to these as observable animations. The
level of multi-threading does not have to be changeable. This
approach requires low-level problem-specific testing code to be
written. This code can identify to what degree a solution meets each
requirement and thus, in comparison to the former, can help the
programmer better pinpoint problems.

Based on this discussion, we can identify our requirements.

e The infrastructure should support both performance
checking and functional testing of observable animations
so that it subsumes rather than replaces the features of the
state-of-the-art.

e It should allow functionality testing of programs that use
multi-threading to increase performance rather than
implement concurrent animations.

e Itshould provide high-level support for writing code to test
these programs. Ideally, the test code should be responsible
only for specifying the problem requirements - how these
requirements are checked should be the responsibility of
the underlying testing infrastructure.

e Such higher-level support, ideally, should also be layered
above lower-level support implementing observable
concurrent animations,

e A functionality-testing approach that does not pinpoint the
problems in an erroneous solution is no better than a
performance-testing approach. Therefore, we require that
the infrastructure provide fine-grained checking and
reporting of errors — in particular, it should check the
correctness of final and intermediate results.

3 Key Ideas

In the discussion below, we motivate and highlight our key ideas.

P. Dewan

To provide high-level support for testing the functionality of
concurrent programs, the testing infrastructure must be based on a
high-level model of concurrent programming so that it can
automate testing of those aspects that are common to programs that
follow the model, leaving problem-specific aspects to the test code.

We provide testing support for the fork-join model defined as
follows: The main or root thread forks zero or more multiple worker
threads to do different parts of a problem and makes a blocking call
to join the worker threads. Each worker thread executes a loop with
zero or more iterations to compute zero or more results and then
makes these results accessible to the root thread. When all worker
threads have terminated, the join call unblocks the root thread,
which can then print the combined results of the worker threads.
This is a practical model as it covers many worked examples and
assignments used in undergraduate courses.

As mentioned in the introduction, a major hurdle to testing HPC
parallel programs is that parallelization does not change the user-
interface. To illustrate, consider Fig. 1, which shows the Hello
World program from an online chapter introducing C++
concurrency [5].

void hello () {

std::cout<<”Hello Concurrent World\n”;
}
int main() {

std::thread t (hello);

t.join();
}

Fig. 1. C++ Program Producing Concurrency-Unaware Output

In this program, the thread that executes the main method forks
a new child thread, t, and then makes the blocking join call. The
child thread prints “Hello Concurrent World”, and then terminates,
which causes the main thread to unblock from the join call and
terminate. This output does not indicate the presence of multi-
threading — the main method could have directly printed it without
forking and joining a child thread. Thus, a testing program cannot
tell, by looking at only the output, that a fork and join occurred. The
reason is that the output is concurrency-unaware — it gives no
indication that multiple threads were involved in its creation.

A possible solution is suggested by an OMP variation [6] of this
example shown in Fig. 2. The figure has an OMP pragma to create
multiple threads to execute the print call, which displays the text
“Hello World” along with the id of the thread that executes this call.
As a result, the output is concurrency-aware — it shows that
concurrent threads were involved in its creation. In this example,
the reason for creating concurrency-aware output was pedagogical
— the person running this code is made aware of multithreading and
the role of each thread.

Concurrency-aware output can also be used to create test code
that checks that multithreading occurred. In the above example, the
test code can parse the output to determine the number of different
threads created. Therefore, another important concept in our design
is the ability to associate the output of a testable concurrent
program with the thread that produced the output (without
necessarily displaying the thread information in the output).

Infrastructure for Writing Fork-Join Tests

#pragma omp parallel
{
printf (“Hello World.. from thread = %id\n”,
omp get thread num());

(a) OMP Concurrent Progam
Hello World.. from thread =1
Hello World.. from thread = 0
Hello World.. from thread 4

(b) Concurrency-Aware Output

Fig. 2. OMP Concurrent Progam with Concurrency-Aware Output

Consider a variation of the two programs above in which the
forked threads do not directly produce their output. Instead, they
write it to some data structure shared with the main thread, which
then combines and prints the results from all threads to the console.
This is how a large variety of concurrent fork-join programs work.
In this case, the output is printed by the root thread, making it
concurrency-unaware. Fig. 3 shows the output of a program that
determines the number of primes in a set of random numbers. The
root thread prints the set of random numbers it computes, asks
different worker threads to determine the number of primes in
different subsets of this set, and after unblocking, prints the sum of
the computed numbers. Both the input (random numbers) and final
output (number of primes) are printed by the root thread.

To address this problem, we require the threads in the tested
concurrent programs to produce intermediate output tracing the
steps they perform to process their part of the problem. The exact
nature of the steps is problem-specific and determined by the test
writer. As with the final output, our design allows testing code
processing the output to determine which thread created it. Fig. 4
shows part of the intermediate output produced by one of the
worker threads in the prime example. As we see here, the id of the
worker thread is different from that of the root thread.

Thread 23->Random Numbers:

[509, 578, 796, 129, 272, 594, 714
Thread 23->Total Num Primes:1

Fig. 3. Root Thread Printing its Input and Final Output

Thread 24->Index:0
Thread 24->Number:509
Thread 24->Is Prime:true

Fig. 4. Example Intermediate Output of Worker Thread

Not all solutions to a problem — concurrent or serial — will
produce the same sequence or even set of prints. For example,
different solutions to the prime number example of Fig. 3 and 4 will
work on different sets of random numbers, and thus, produce
different outputs. Thus, the testing program must extract
relationships between the prints rather than their exact content.

These relationships have to do with state changes the parallel
program makes to logical variables — these are conceptual
variables associated with all expected solutions to the problem and
may not translate directly to internal variables. The testing program
should work in terms of these logical state changes directly without
having to parse the output. This principle implies that a testable

HPC’23, November, 2023, Denver, Colorado USA

program should use a standard method for printing logical variables
and the testing infrastructure should parse the output for the testing
program. Fig. 3 and 4 show the nature of such parsable output. In
Fig. 3, the root thread prints the values of two logical variables: the
set of random numbers and the total number of primes. In Fig. 4, a
worker thread working on the 0% prime number prints the value of
three logical variables: the index of the number in the input array,
the number itself, and whether it is a prime or not. All solutions to
the problem must use the same names for these logical variables,
which become part of the assignment requirement.

To support the existing technique of performance-based testing,
we require the tested programs to provide a main argument that
allows the number of threads in the program to be varied — the
exact form of this argument is decided by the associated test.

Producing intermediate output for functionality testing is at
odds with performance-based testing of parallel programs. Multi-
threading has an impact on performance only when the number of
iterative steps performed by the worker thread is large. To ensure
that the loads of worker threads are balanced, each iterative step
would have to produce some output (Fig. 4) so that the number of
outputs/steps can be compared. A program written for functionality
testing would be artificially slowed down and unnecessarily clutter
output (possibly using all the heap space if output is stored) when
used for performance testing. Our solution is a mechanism to
dynamically turn off all prints for performance testing. To layer our
fork-join infrastructure support on top of existing work on testing
observable animations, we make the intercepted prints observable
by arbitrary observer objects.

4 Testing Infrastructure

We have implemented these key ideas in a testing infrastructure
written in Java that expects the testing and tested programs to also
be written in Java. It is layered on top of our previous Java
infrastructure for testing observable concurrent animations, which
in turn, is layered on top of the Java Junit testing infrastructure. In
this section, we overview the main components of our
infrastructure: (i) the user-interface provided to programmers of the
tested code; (ii)) the programming-interface provided to
programmers of the tested code; (iii) the programming-interface
provided to programmers of the testing code; and (iv) and how our
new infrastructure support is layered on top of our existing layers.

4.1 User-Interface of Instructor Agent

Programming environments such as Eclipse and Intelli] provide
facilities to allow users to run JUnit tests interactively. We have
developed an additional user-interface for such interactive testing
that adds two features to JUnit. First, it is independent of the
programming environment and can be created from the command
line. Second, it displays the score assigned to each test by the
testing program along with the error message.

JUnit provides programmers of tested code the ability to group
tests into suites. To create our user-interface, the user simply runs
the suite created for the problem being tested. Fig. 5 shows the user-
interface created when the suite for the primed number problem is

HPC’23, November, 2023, Denver, Colorado USA

run. This suite consists of two tests, one for functionality and
another for performance. The figure shows the result of double-
clicking on the functionality test to run it. The user-interface
displays a score of 32 out of 40 for this test along with a message
(not shown completely) indicating which requirements were met
and not met.

=7 [50.0pts |
D Scere:32.0
|
[score:32.0
D Message:Pre fork cutput correct Post fork output
E] Computed Max Score:40.0
&= [PrimesPerformance[10.0 pts]

Fig. 5. Plugin Independent Testing User-Interface

This user-interface is optional in that students who are confident
that they have met all requirements can simply submit their solution
to Gradescope for grading. It is necessary only for students wishing
to use the tests to iteratively refine their solution.

JUnit has been used earlier [7] to test the correctness of parts of
a complete concurrency assignment such as a shared counter object.
In our work, we use JUnit to test the complete assignment by
always calling the main method, and letting it run to full completion
before analyzing its output. As a result, unlike the previous work,
we do not need to directly catch exceptions and other intermediate
errors created by the tested parts — these are expected to be
manifested as incorrect traced final output.

4.2 Programming Interface for Tested Program

Our infrastructure provides tested programs with a special method,
printProperty(String, Object), to output changes to
logical variables in a standard form. Fig. 6 shows its use in the loop
executed by a worker thread to identify prime numbers in the input
array. The method takes two arguments, the name of the logical
variable and its current value. It prints the current thread id along
with its arguments. Thus, the three calls to this method in Fig. 6
(lines 9, 11, and 16) output the three lines, respectively, shown in
Fig. 4. Logical variables in our implementation correspond to
JavaBean properties, so we use the term property and logical
variable interchangeably

In this example, problem-independent code prints the index of
the list of items processed, along with the number at that index, and
problem-specific code traces the computation done with this
number. Tracing the computation performed by each iteration
allows the intermediate results produced by the iteration to be
checked by testing code, as we see later.

A tested program can use a Java print method to print an object
O of type T directly. Our infrastructure intercepts such a print, does
not change its output, but internally stores it as the setting of a
logical variable named T whose value is O. Our implementation of

the fork-join Hello World uses a Java print call:
System.out.println(“Hello Concurrent World”);

resulting in the output:
Hello Concurrent World

P. Dewan

This call internally results in a trace of a logical variable named
“String” being set to “Hello Concurrent World”. Even though no
thread id is output, internally, a thread object is kept with this trace.
A corollary of this discussion is that a test program that tries to print
the wrong thread id cannot fool the infrastructure as it internally
keeps the object associated with the printing thread.

Both the tested and testing programs can invoke the
infrastructure-provided method, setHideRedirectedPrints

(boolean). It is used to disable and enable the intercepted prints
when doing performance and functionality testing, respectively. A
disabled print produces no output and makes no changes to the trace
kept by the infrastructure.

1 public static void fillPrimeNumbers (
2 int[] aNumbers,
3 int aStartIndex, int aStopIndex) {
4 int aNumberOfPrimeNumbers = 0;
3 for (int index = aStartIndex;
index <« aStopIndex;
index++) {
// Start of typical iteration code
c printProperty("Index", index);
10 int aNumber = alumbers[index];
11 printProperty("Number"”, alNumber);
11 // End of typical iteration code

14 // Start of problem-specific iteration code
15 boolean isPrime = isPrime (alumber);

16 printProperty("Is Prime", isPrime);

1 if (isPrime) {alumberCfPrimeNumbers++;}

18 // End of problem-specific iteration code

Fig. 6. Typical Use of printProperty

4.3 Programming Interface for Testing Program

Recall that our goal is to make the testing program responsible for
specifying the “what” of testing, leaving the “how” to the
infrastructure. Fig. 7 illustrates how we achieve this goal for
performance testing. It gives the full code of the test program
written for a solution to the prime number problem that takes two
main arguments: the number of random numbers to be generated
and the number of threads to be created to process these numbers.

In our implementation, each testing program is a subclass of a
predefined abstract infrastructure class. A performance-testing
program is a subclass of the predefined class
AbstractConcurrencyPerformanceChecker (lines 2 and 3,
Fig. 7). The testing program overrides concrete methods in the class
to specify the testing requirements (lines 10-23, Fig. 7). It uses the
predefined annotation MaxValue to specify the score assigned to
the test (line 1, Fig. 7). In this paper, the annotation, @Override, is
not used to label overridden methods for space reasons. All
methods given here are overriding methods.

The overridden methods in this example are parameter methods
as they specify infrastructure-defined parameters of testing. Such a
method has the form:

protected T p() { return v}
It tells the infrastructure that the infrastructure-defined parameter
of type T has value v. To do performance testing, the tested
program must be executed with different arguments specifying low
and high numbers of forked threads. These are specified through

Infrastructure for Writing Fork-Join Tests

the string-array parameters lowThreadArgs (lines 13-16, Fig. 7)
and highThreadargs (lines 17-20, Fig. 7), respectively. The
name of the testable program is given by the parameter
mainClassIdentifier (lines 10-12, Fig. 7).

1 @Maxvalue (10)

2 public class PrimesPerformance extends

3 AbstractConcurrencyPerformanceChecker {

4 final String TESTED CLASS_ NAME =

5 "ConcurrentPrimeNumbers™;

6 final String NUM_RANDOMS = "100";

7 final double MINIMUM_ SPEEDUP = 1.5;
final String MIN THREADS = "1";

£ final String MAX THREADS = "4";

10 protected String mainClassIdentifier() {

11 return TESTED_CLASS_NAME;

12 }

13 protected String[] lowThreadArgs () {

14 return new String[] {

15 NUM_RANDOMS, MIN THREADS};

16 }

17 protected String[] highThreadArgs() {

18 return new String[] {

18 NUM RANDOMS, MAX THREADS};

20 1

21 protected double expectedMinimumSpeedup () {

22 return MINIMUM SPEEDUP;

2z }

Fig. 7. Prime Performance Tester

The code in Fig. 7 is a formalization of the performance and
testing requirements of the expected solution. The former
requirements indicate that the solution must vary the number of
random numbers and threads based on its performance and provide
a speedup of at least 1.5. The latter indicate that the program must
have the standard name, ConcurrentPrimeNumbers. The testing
requirements would not be needed if the solution were not to be
automatically assessed, so they represent the testing overhead on
the programmer. Arguably, this overhead is small for performance.

Our infrastructure processes this specification as follows: It runs
the named program with 1owThreadArgs and highThreadArgs
a default number of times (10), which can be changed by overriding
another parameter method. Based on the total times taken in these
two cases, it computes the speedup, and gives full points if it is
more than MINIMUM_SPEEDUP and 0 pts if it does not. In
general, when it deducts points, it gives the reason for it — in this
case, it indicates the difference between the expected and actual
speedups. Thus, we see here how the testing program and
infrastructure are responsible for the “what” and “how” of testing.
These two tasks are relatively simple for performance testing.

They are more complicated for functional testing. This is
because the testing program must specify the nature of a correct
trace. Such a trace has three aspects: static syntax, dynamic syntax,
and semantics.

Static syntax determines the syntax of print lines, which, in turn,
is determined by the names and types of the logical variables to be
printed by the tested program. For example, in the traces of Fig. 3
and 4, it specifies the names of the logical variables and the types
of values that follow these names.

Dynamic syntax determines the order and number of each kind
of logical variable traced. For the prime number problem, it
specifies the number of triples of Fig. 4 output in the iterative phase,
and the order of the triples relative to other traces of the program.

Semantics can be broken into serial and concurrency semantics.
The former check whether the expected final result is computed

HPC’23, November, 2023, Denver, Colorado USA

(e.g. number of primes) and would be relevant even if the problem
was solved using a single thread. The latter check multi-thread
requirements (e.g. correct number of interleaved threads were
forked). To help pinpoint problems, our tests check intermediate
results for both kinds of correctness (e.g. does each iteration
compute the correct prime; were the number of primes computed
by different threads summed up correctly without race conditions).
Thus, both kinds of semantics can be subdivided into final and
intermediate semantics.

Based on the discussion above, a trace corresponds to a
programming language (associated with syntax and semantics) and
a testing program corresponds to a programming language
translator. It is, of course, possible to use general-purpose program
translation tools to check traces, but they can be expected to be
more cumbersome to use than necessary because of their generality.

Therefore, our infrastructure offers more specialized and hence
higher-level support that leverages three important properties of our
traces: (a) they consist of prints of logical variables of different
types, which can be processed by regular expressions rather than
grammars; (b) their order is determined implicitly by the phases of
the fork-join model, so no explicit ordering constructs are required;
(c) only the iteration phase requires a dynamic number of prints,
which depends on the number of expected iterations specified by
the testing program.

For static and dynamic syntax, our infrastructure provides
parameters to specify (a) the names and types of logical variables
to be output in each of the predefined fork-join phases, (b) the total
number of iterations to be processed, and (c) the number of threads
to be forked to process these iterations. For semantics, it provides
callbacks defined through overridden methods in the testing
program.

Fig 8. Illustrates these concepts for the iteration phase using our
running example. Lines 1 to 4 declare an array that specifies the
names and types of the properties to be output in each iteration, that
is, the static syntax of this phase. This array is returned by the
parameter method, iterationPropertyNamesAndType.

The dynamic syntax is specified by the parameter method
totalIterations, which returns the total number of iterations
performed by all threads, together, and hence the total number of
times the three iteration logical variables are to be output. In this
problem, one iteration is performed for each random number, so the
total number of iterations is the same as the total number of random
numbers to be generated.

The iteration semantics is specified by the semantics check
method, iterationEventsMessage. It is called for each set of
trace outputs in an iteration. Its first argument is the thread that did
the output and the second is a Map giving the names and values of
the iteration properties traced in the iteration. A semantics check
method can perform arbitrary checks based on its parameters and
the global state created by previous invocations of semantics check
methods. In this example, the code checks if the value of the
“Number” property output in this iteration is consistent with the “Is
Prime” property output in this iteration. To do so, it calls the custom
function isPrime (int), which is expected to correctly determine
if a number is prime or not.

HPC’23, November, 2023, Denver, Colorado USA

1 final Object[][] ITERATION PROPERTIES = {
2 {"Index", Number.class},

3 {"Number", Number.class},

4 {"Is Prime", Boolean.class}

5 i

6 final int NUM THREADS = 4;

7 final int NUM_RANDOMS = 7;
protected Object[][] iterationPropertyNamesAndType () {
9 return ITERATION_PROPERTIES;
LO }
11 protected int totalIterations() {
L2 return NUM RANDOMS;
13 }
L4 protected String iterationEventsMessage (
L5 Thread aThread,
L6 Map<String, Object> aNameValuePairs) {
17 boolean isPrime =
L5 (boolean) aNameValuePairs.get ("Is Prime");
19 if (isPrime) {
20 numPrimesFoundByCurrentThread++;
21 }

22 int aNumber =
(Integer) aNameValuePairs.get ("Number");
4 boolean isActualPrime = isPrime (aNumber) ;

if (isPrime != isActualPrime) {
return "Is Prime output as " +
isPrime + " for number " + aNumber +

" but should be " + isActualPrime;

1

30 return null;

31 1

32 protected int numExpectedForkedThreads () {
33 return NUM THREARDS;

34 3

Fig. 8. Prime Iteration Functionality Tester

A test program can similarly specify the properties and
semantics checks for the three other fork-join phases: pre-fork,
post-iteration, and post-join. The appendix gives the complete code
of the program for testing the functionality of our prime example.

Fig. 9 gives part of the traces of a correct implementation of the
prime example, that is, one whose traces are found correct by the
test program. It is embellished with comments to delineate the
various fork-join phases. In addition to the three iteration properties
discussed above, to be printed by each forked worker thread, the
complete implementation specifies:

(a) one pre-fork property, “Random Numbers”, to be printed by
the main root thread, which is the array of random numbers
created by the tested program (lines 2-3, Fig 9.);

(b) one post-join property, “Total Num Primes”, again to be
printed by the main thread, which is the number of primes in
this array found by the tested program (line 39, Fig. 9),

(c) one post-iteration property, “Num Primes”, to be printed by
each forked worker thread, which is the number of primes it
found in its iterations (lines 28, 30, 34, 37, Fig. 9).

Because of interleaving, the iteration and post-iteration phases
of the threads are mixed in the output. The program correctly
processes the required number of random numbers, 7, specified in
the testing program (lines 11-12, Fig. 8). Four worker threads are
involved in the fork phase (iteration + post-iteration), which is the
number expected by the test program (lines 32-34, Fig. 8). These
threads interleave their output, so have to address any
synchronization conditions this concurrency causes. Moreover, the
load is as balanced as it can be: each thread except Thread 27
processes two numbers, with Thread 27 processing one number
(This cannot be verified in Fig. 9 as some of the iterations have
been cropped out). Each iteration of a thread correctly determines
if the indexed number is a prime. The number of primes reported
by each thread in its post-iteration phase is consistent with the

P. Dewan

primes it found, which is verified by the semantic post-iteration
check given in the appendix. In addition, the total number of primes
reported by the root thread (line 39, Fig. 9) in the post-join phase is
the sum of the number of primes reported by each thread, which is
verified by the post-join check given in the appendix. Hence, the
test gives full points out of the maximum (line 1, Fig. 8), that is,
100 % (line 41, Fig. 9). This trace demonstrates to both the test
program and the end-user viewing it that each phase is correct.
Arguably, to the end-user, it also illustrates how concurrency in
general and fork-join in particular work, and thus serves a useful
pedagogical purpose even if automating assessment was not a goal.

1 //start pre-fork

2 Thread 23->Random Numbers:

3 [le6, €34, 795, 571, 894, 5009, 51]

4 //start fork

5 /fstart, Thread 24 iteration

6 Thread Z4->Index:(

i Thread 24->Number:lee

B Thread 24->Is Prime:false

//start, Thread 2€ iteration

10 Thread 26->Index:4
11 /fstart, Thread 25 iteration
1 Thread 25->Index:2

2 //start, Thread 25 pest—iteration
28 Thread 25->Num Primes:1l

2 //start, Thread 27 post-iteration
0 Thread 27->Num Primes:0

31 Thread 26->Index:5

23 Thread 26->Number:509

33 f/start, Thread 24 post-iteration
Thread 24->Num Primes:0

Thread 26->Is Prime:true

//start, Thread 2& post-iteration
Thread 26->Num Primes:l

f/start post-join

Thread 23->Total Num Primes:2
//test output

Test Result:100.0% 30.0,30.0.

Fig. 9. Traces Showing Correct Concurrency at Work

Traces are even more useful if they can be used to manually or
automatically identify mistakes. Figures 10 and 11 identify
potential mistakes identified automatically.

In Fig. 10 (which also has cropped parts), the trace has two
semantic problems. First, the execution of the threads is serialized
in the order of their thread number, thereby avoiding the
synchronization problems that arise in combining their results,
which the test program is expected to overcome. Second, the load
is imbalanced - each thread except Thread 24 performs one iteration
(lines 24-27, Fig. 10), with Thread 24 performing four (lines 3-15,
Fig, 10). Both mistakes are pointed out by running the test code
(lines 26-39, Fig. 10). The test run also indicates all aspects of the
test program that are correct (lines 30-35, Fig. 10). Thus, it helps
pinpoint the problems with the code. Based on the requirements
correctly and incorrectly met, a score of 80% is assigned.

The trace syntax is correct in Fig. 10. The trace in Fig. 11 (again
partly cropped) has two different syntax errors. First, the pre-fork
property is named “Randoms” (line 1, Fig. 11) rather than “Random
Numbers”, as indicated by the first error message (lines 23-25, Fig.
11). In addition, the fork output (consisting of iteration and post-
iteration output) does not match the 25 regular expressions
expected for 7 random numbers (3 iteration outputs for each of the
7 random numbers plus 1 post-iteration output for each of the 4
threads) — due to a loop error it has only 17 outputs. This error is
pointed out in lines 28-32 Fig. 11. Because of these syntax errors,

Infrastructure for Writing Fork-Join Tests

no semantic checks are run, and the tested program earns a score of
10% (line 21, Fig. 11).

1 Thread 23->Random Numbers:

2 [509, 578, 7%¢, 128, 272, 554, 714]
3 Thread 24->Tndex:0

4 Thread 24->Number:509

5 Thread 24->Is Prime:true

2 Thread 24->Index:1l
7 Thread 24->Number:578
s Thread 24->Is Prime:false
9 Thread 24->Tndex:2
10 Thread 24->Number:796
11 Thread 24->Is Prime:false
12 Thread 24->Index:3
13 Thread 24->Number:129
14 Thread 24->Is Prime:false
15 Thread 24->Num Primes:1
16 Thread 25->Index:4

23 Thread 26->Num Primes:0

24 Thread 27->Index:6

Thread 27->Number:714

Thread 27->Is Prime:false
Thread 27->Num Primes:0
Thread 23->Total Num Primes:1
Test Result:80.0%,24.0,30.0
Pre fork output correct

Post fork output correct

Post Jjoin output correct
Number of forked threads correct
Pre fork events correct
Correct number of iterations
Imbalanced thread load:

Max thread iterations:4 -
min thread iterations = 3

3 No interleaving during fork
40 Post join events correct

Fig. 10. Trace with Semantic Errors

i Thread 24->Randoms:
2 Sz8, 85, 384, 616,704, €58, 77]
3 Thread 25->Index:0
a2 Thread 25->Number:928
5 Thread 27->Index:6€
Thread 27->Number:77

Lliicau Lo—enwn ELiuss.u
Thread 26->Num Primes:0

Thread 24->Total Num Primes:0

Test Result:10.0%,3.0,30.0

Event tests will not be run until cutput fixed
Pre fork cutput did not completely match the 1
regular expressions in:

[.*Thread.*->Random Numbers:.*\[.*\].*]

Post fork output did not completely match the 25
27 regular expressions in:

g [.*Thread.*->Index:.*\d.*.*,
.*Thread.*->Number:.*\d.*.*,

.*Thread.*->Is Prime:.* (true|false).*,

// remaining expressions omitted

32 1

Post join syntax correct

Fig. 11. Trace with Syntax Errors

Not all examples will have properties and semantic checks
associated with each of the fork-join phases. This is shown in Fig.
12(a), which has the complete test code for a Java version of the
C++ fork-join Hello World example of Fig. 1. Recall that in this
example, the root thread forks a single worker thread to print the
greeting. There is no pre-fork or post-fork output. The iteration and
post-iteration steps are not distinguished during the fork as there is
no loop - only one step. No data are manipulated by the program,
so there is no property to be printed. The exact text printed for the
greeting does not matter, so there is no semantics check.

There are only two checks overall that need to be performed —a
single thread was forked and it printed something. Hence, the test
program consists of three parameter methods, giving the name of
the test program (lines 4-6, Fig. 12(a))), the number of expected
threads (lines 7-9, Fig. 12(a))), and the credit allocated to forking
exactly one thread (lines 10-12, Fig. 12(a)). The infrastructure-

HPC’23, November, 2023, Denver, Colorado USA

provided defaults for allocating credit do not work, hence the
overridden parameter method. threadCountCredit. It allocates
80% for having the right number of threads, leaving the other 20%
for creating one or more threads. Fig. 12(b) shows the result of
running this test on a program in which the root thread prints the
greeting directly, without forking any worker thread. The exact
problem is identified in an error message (line 3).

The test code for the primes problem (see appendix) is larger
and more complicated than the one for the Hello World program
for two reasons: First, it checks both serial and concurrency
semantics. Second, it checks all intermediate results. A version of
the test code that checks only concurrency correctness would
require only three parameter methods: (a) One to specify the name
of the tested program; (b) another to specify the two arguments of
the program; and (c) the final one to specify the number of threads.

As with performance testing, we see in function testing that the
testing program is concerned with only the “what” of traces — (a)
the arguments of the program, (b) the names and types of the
properties to be printed in each phase, (c) the relationships among
the property values, (d) the total number of iterations, (d) the
number of threads to be forked to perform these iterations, and (e)
optionally, the partial credit associated with the syntax and
semantics of each phase.

@MaxValue (10)
public class HelloForkJoinTest extends
BbstractForkJoinChecker |
protected String mainClassIdentifier() {
5 return "HelloForkJoin";
}
protected int numExpectedForkedThreads (
return 1;

T

9 }

L0 protected double threadCountCredit () {
L1 return 0.8;

L2 }

(a) Hello World Test Program

1 Hello Concurrent World
2 Test Result:0.0%,0.0,10.0
Num threads created 0 != num expected threads 1

(b) Serial Program Test Results
Fig. 12. Concurrent Hello World Test

The infrastructure is responsible for the “how” of trace
processing — (a) invoking the program, (b) collecting the traces, (c)
checking the syntax and semantics of each phase based on the test
program specifications, (d) checking that the correct number of
threads were forked and their load was balanced, (e) checking that
their prints were interleaved, (f) allocating default credit to each
independent aspect of the trace, and (g) outputting error messages.

4.4 Infrastructure Layers

Both the function and performance testing abstract classes in our
infrastructure use a common program-execution layer to run a
program with specified input and arguments, and collect its output.
In our previous work on testing of concurrent animations, we built,
above this program-execution layer, a higher event-database layer.
This layer (a) observed all events announced by observable objects
in the tested program, (b) stored each event in a database along with
the Thread object that announced it, and (c) allowed a testing

HPC’23, November, 2023, Denver, Colorado USA

program to determine how many threads made the announcements
(during a selected event range), and whether the announcements of
these threads were interleaved.

Our implementation for the fork-join model leverages the event-
database layer. The testing abstract classes replace the predefined
Java System.out (used to print output on the console) with a
custom observable object that (a) asks the predefined Java object to
print objects when such printing is enabled, and (b) converts the
print to an event observable by the database. The function testing
abstract class retrieves the traced output to do syntax checking and
the stored print events in the database to do semantic checking,
calling overriding methods in the testing programs to do so.

5 Evaluation

As discussed in Section 4 above, our infrastructure meets all of our
qualitative requirements listed in Section 2. We evaluate it
quantitatively below based on our experience using it to write tests.
In particular, we compare the efforts required to check (a) serial and
concurrency requirements, and (b) final and intermediate results

We used this infrastructure to write programs for testing
concurrency code written by fourteen participants in a test-based
session in an NSF-supported workshop on training faculty
members in concurrency [4]. The session involved three problems.
One of them was a slight simplification of the primes example here
in which a fixed rather than variable number of threads were used
to find primes in a list with a variable number of random numbers.
The second computed the value of PI concurrently using the Monte
Carlo method, again using a fixed number of threads and a variable
number of iterations. These two exercises, given to the attendees,
were designed by the author’s collaborators at Tennessee Tech
University. To demonstrate Java concurrency primitives, the author
developed a worked example that used a fixed number of threads
to concurrently find odd numbers in a list with a variable number
of random numbers. For functional correctness, the total number of
iterations performed by all threads together is small (we used 27 in
our workshop examples), allowing the tests to finish quickly.

Table 1 compares the relative effort required to write testing
code that checks serial and concurrency requirements. It performs
the comparison based on the number of lines in the test programs
after comments and imports were removed from them. The
numbers in parentheses give the number of lines of code that had
to be written to check intermediate results. Thus, the entry 78 (14)
in the top-left cell indicates that 78 lines of code were written to
check serial requirements and 14 of them were used to pinpoint
problems with intermediate results that would be computed in both
the serial and concurrency cases. The PI computation is such that
the only way to check final serial correctness is to check the
correctness of intermediate serial results — hence 0 lines of code are
assigned to serial intermediate.

If intermediate results related to concurrency are not to be
checked, only three lines of code need to be written — to specify the
number of expected forked threads (Fig. 12(a), lines 7-9). Even
when intermediate results are checked, the code required for
concurrency checks is small in absolute and relative terms. This is

P. Dewan

a strong case for traces, as, without them, functional concurrency
correctness and serial intermediate results could not be checked.
With them, our infrastructure requires very few lines of code to be
written, as the specification of the concurrency requirements is
small compared to the specification of serial ones.

TABLE L TEST CODE SIZE
Problem Serial (Intermediate) | Concurrency (Intermediate)
Odd 78 (14) 25(22)
Prime 86 (14) 25(22)
PI 95 (0) 21 (18)

5 Conclusions and Future Work

Our contributions include not only the Java-based infrastructure we
have developed for Java procedural programming but also the
requirements and key insights we have identified. Future work is
required to translate these concepts to other languages such as C
and Python and declarative programming such as in C/OpenMP
and Java/Pyjama. It would also be useful to automatically generate
these traces by instrumenting compiled code, thereby reducing
testing requirements students must follow while writing their code.
More experience is also needed with our current implementation
for training both students and teachers. Tracing additional classes
of concurrent programs is another avenue for future work. It would
also be useful to incorporate techniques for influencing thread
scheduling to catch synchronization bugs [8].
This paper provides a basis for carrying out such work.

ACKNOWLEDGMENTS
This work was funded in part by NSF award OAC 1924059.

REFERENCES

[1] Prasad, S.K., A. Gupta, A. Rosenberg, A. Sussman, and C. Weems.
CDER Center | NSF/IEEE-TCPP Curriculum Initiative,” NSF/IEEE-
TCPP Curriculum Initiative. 2017 Available from:
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21183.

[2] Aziz, M., H. Chi, A. Tibrewal, M. Grossman, and V. Sarkar, Auto-
grading for parallel programs, in Proceedings of the Workshop on
Education for High-Performance Computing. 2015, ACM:. p. 1-8.

[3] Dewan, P., A. Wortas, Z. Liu, S. George, B. Gu, and H. Wang.
Automating Testing of Visual Observed Concurrency. in 2021
IEEE/ACM Ninth Workshop on Education for High Performance
Computing (EduHPC). 2021. IEEE.

[4] Dewan, P., A. Worley, S. George, F. Yanaga, A. Wortas, J. Juschuk,
M. Rogers, and S.K. Ghafoor, Hands-On, Instructor-Light, Checked
and Tracked Training of Trainers in Java Fork-Join Abstractions., in
HiPCW. 2022, IEEE. p. 28-35.

[5] Williams, A., Chapter 1. Hello, world of concurrency in C++!, in C++
Concurrency in Action 2022, Manning
(https://livebook.manning.com/book/c-plus-plus-concurrency-in-
action/chapter-1/1).

[6] Akbar, B. OpenMP | Hello World program. 2023; Available from:
https://www.geeksforgeeks.org/openmp-hello-world-program/#.

[7] Ricken, M. and R. Cartwright. Test-First Java Concurrency for the
Classroom. in Proceedings of ACM SIGCSE. 2010.

[8] Musuvathi, M., S. Qadeer, and T. Ball, Chess: A systematic testing
tool for concurrent software. 2007, Technical Report MSR-TR-2007-
149.

https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21183
https://livebook.manning.com/book/c-plus-plus-concurrency-in-action/chapter-1/1
https://livebook.manning.com/book/c-plus-plus-concurrency-in-action/chapter-1/1
https://www.geeksforgeeks.org/openmp-hello-world-program/

Infrastructure for Writing Fork-Join Tests HPC’23, November, 2023, Denver, Colorado USA

ARTIFACT DESCRIPTION (AD) APPENDIX
This commented test code example explains how the described artifact - our testing infrastructure - works and should be used. Some of the
lines have been reformatted from the original code and some, as described below, have been omitted. Thus, a count of the lines here will not
correspond to the count reported in Table I.

package gradingTools.javaThreads.primes.execution;
// imports and annotations omitted
MaxValue(40)
public class PrimesFunctionality extends AbstractForkJoinChecker {
// Start tested-program invocation data
final String TESTED_CLASS_NAME = "ConcurrentPrimeNumbers";
final int NUM_THREADS = 4;
final int NUM_RANDOMS = 7;
// End tested-program invocation data
// Start tested-program invocation overridden methods
protected String mainClassIdentifier() { return TESTED_CLASS_NAME ;}
protected int totalIterations() {return NUM_RANDOMS; }// one iteration for each random number
protected int numExpectedForkedThreads() {return NUM_THREADS;} }// used for concurrency correctness
protected String[] args() {
return new String[] {
Integer.toString(totalIterations()),Integer.toString(numExpectedForkedThreads())};
}

// End tested-program invocation overridden methods

// Start syntax data

// The public constants are exported to test programs so they can use them in printProperty calls
public static final String RANDOM_NUMBERS = "Random Numbers";

public static final String INDEX = "Index";

public static final String NUMBER = "Number";

public static final String IS_PRIME = "Is Prime";

public static final String NUM_PRIMES = "Num Primes";

public static final String TOTAL_NUM_PRIMES = "Total Num Primes";

final Object[][] PRE_FORK_PROPERTIES = { {RANDOM_NUMBERS, Array.class}};
final Object[][] ITERATION_PROPERTIES = {
{INDEX, Number.class},
{NUMBER, Number.class},
{IS_PRIME, Boolean.class}
s
// End syntax data
final Object[][] POST_ITERATION_PROPERTIES = {{MUM_PRIMES, Number.class},};
final Object[][] POST_JOIN_PROPERTIES = {{TOTAL_NUM_PRIMES, Number.class},};
// End syntac data
// Start syntax overridden methods
protected Object[][] preForkPropertyNamesAndType() {
return PRE_FORK_PROPERTIES;
}
protected Object[][] iterationPropertyNamesAndType() {return ITERATION_PROPERTIES;}
protected Object[][] postIterationPropertyNamesAndType() {return POST_ITERATION_PROPERTIES;}
protected Object[][] postJoinPropertyNamesAndType() {return POST_JOIN_PROPERTIES;}
// End syntax overridden methods

// Start semantics data

Object[] randomNumbers;

int numPrimesInRandomNumbers, numPrimesFoundByCurrentThread; sumPrimesFoundByAllThreads;

// End semantics data

// Start semantics overridden methods

// Each of these semantics methods should return null if there is no error, otherwise

// it should return an error message printed by the infrastructure.

/**
* This is the first semantic method invoked. The first argument is the root thread and the Map
* the properties output by it before forking. */

HPC’23, November, 2023, Denver, Colorado USA P. Dewan

protected String preForkEventsMessage(Thread aThread, Map<String, Object> aNameValuePairs) {
randomNumbers = (Object[]) aNameValuePairs.get(RANDOM_NUMBERS);
return null;

}
/** This method is invoked as each iteration of a thread is processed */
protected String iterationEventsMessage(Thread aThread, Map<String, Object> aNameValuePairs) {
int anIndex = (int) aNameValuePairs.get(INDEX);
int aNumber = (int) aNameValuePairs.get(NUMBER);
int anExpectedNumber = (int) randomNumbers[anIndex];
if (aNumber != anExpectedNumber) {
return "Number " + aNumber + " output at index " + anIndex + "!= expected number
anExpectedNumber;

+

}
boolean isPrime = (boolean) aNameValuePairs.get(IS_PRIME);

if (isPrime) {
numPrimesFoundByCurrentThread++;

// check if the number is actually a prime
boolean isActualPrime = isPrime(aNumber); // implementation of isPrime not given

if (isPrime != isActualPrime) {
return "Is Prime output as " + isPrime + " for number " + aNumber + " but should be " +
isActualPrime;
}
return null;
}
/**

* This method is invoked after all iteration of a thread have been processed, and before the iteration
* properties of the next thread have been processed. Threads are ordered arbitrarily. Even though the
* property outputs are expected to be interleaved, the testing infrastructure does not interleave the
* execution of the two iteration, allowing the testing code to finish processing all properties
* output by a thread, before it processes those output by another thread
*/
protected String postIterationEventsMessage(Thread aThread, Map<String, Object> aNameValuePairs) {
int aNumNumbersComputed = (int) aNameValuePairs.get(NUM_PRIMES);
if (aNumNumbersComputed != numPrimesFoundByCurrentThread) {
return "Thread " + aThread.getId() + " found " + numPrimesFoundByCurrentThread +
" but computed " + aNumNumbersComputed;
}
sumPrimesFoundByAllThreads += aNumNumbersComputed;
numPrimesFoundByCurrentThread = 0;// reset the variable for the next thread
return null;
}
protected String postJoinEventsMessage(Thread aThread, Map<String, Object> aNameValuePairs) {
int aComputedFinalNumbers = (int) aNameValuePairs.get(TOTAL_NUM_PRIMES);
if (aComputedFinalNumbers != sumPrimesFoundByAllThreads) {
return "Num primes with dispatching thread " + aComputedFinalNumbers + =" +
"sum of primes found by each thread " + sumPrimesFoundByAllThreads;

}
int aNumActualPrimes = 9;
for (Object aRandom:randomNumbers) {
if (isPrime((int) aRandom)) aNumActualPrimes++;

if (aComputedFinalNumbers != aNumActualPrimes) {
return "Num computed primes " + aComputedFinalNumbers +
aNumActualPrimes;

+

+ "actual primes

}

return null;

}

// End semantic checking methods
// Implementation of isPrime() omitted

