
Infrastructure for Writing Fork-Join Tests 

Prasun Dewan 
 Department of Computer Science 

 University of North Carolina 

 Chapel Hill, North Carolina, USA 

 dewan@cs.unc.edu 

 

ABSTRACT 

We have developed a software infrastructure for testing multi-

threaded programs that implement the fork-join concurrency 

model. The infrastructure employs several key ideas: The student 

solutions use print statements to trace the execution of the fork-join 

phases. The test writer provides a high-level specification of the 

problem-specific aspects of the traces, which is used by the 

infrastructure to handle the problem-independent and low-level 

details of processing the traces. During performance testing, trace 

output is disabled automatically. During functionality testing, fine-

grained feedback is provided to identify the correct and incorrect 

implementation of the various fork-join phases. Tests written using 

our infrastructure have been used in an instructor-training 

workshop as an instructor agent clarifying requirements and 

checking in-progress work. The size of the code to check the 

concurrency correctness of final and intermediate results was far 

smaller than the code to check the serial correctness of such results.  

CCS CONCEPTS 

• Parallel Computing Methodologies • Software Notation and 

Tools   

KEYWORDS 

Software Testing, Concurrency, Education, Fork, Join, Awareness, 

Intelligent Tutor Systems 

1 Introduction 

Most of the research on HPC (High-Performance Computing) has 

focused on identifying concurrency concepts, pedagogical models, 

worked examples, and assignments in various kinds of 

undergraduate courses. Our work addresses a different but related 

topic - techniques for automatically testing multi-threaded 

programming assignments. 

Such tests can, of course, automate grading, making education 

more scalable and, hence efficient. Relatedly, they can provide 

quicker feedback than manual grading, which is important in short-

duration training sessions - such as the instructor-training sessions 

supported by NSF’s Center for Parallel and Distributed Computing 

Curriculum Development and Educational Resources (CDER)[1]. 

More important, trainees can run tests on in-progress code to 

clarify requirements, determine if they are on the right track, and if 

not, how to get back on track. Thus, the tests can take the form of 

an always-available instructor agent who clarifies requirements, 

checks partial work, and gives directions for the next phase of work. 

Such help is particularly important for multi-threaded programs, 

which are notoriously difficult to write and debug.  

Tests run on in-progress work can give valuable feedback also 

to instructors. The logged results of these tests can provide 

instructors with awareness of unseen partial work, which can be 

used to manually or automatically infer if the assignment is too easy 

or difficult, or difficult only for a subset of identified students. 

These inferences can, in turn, be used by the instructor to modify 

the current or future assignment, and provide unsolicited help to 

students who are in apparent difficulty or have taken the wrong 

path. Such monitoring is more important in HPC education because 

of the relative infancy of this area. 

Traditional software testing, however, is at odds with the notion 

of using concurrency to improve performance. The reason is that 

such testing gives feedback based on the relationship between the 

input and output of the tested code, and performance improvements 

do not change this relationship. Two approaches have been used so 

far to address these limitations of traditional testing.  

The first is to use performance rather than input/output 

relationships to test concurrent code [2]. While such an approach 

could offer the advantage of scalable quick grading, it cannot 

provide feedback that pinpoints problems in the failed code. 

The second is to assume that multi-threading is used, not for 

high-performance computing, but to visually create concurrent 

animations [3]. These animation actions are observed by testing 

code to check them for correctness. This approach, of course, works 

only for assignments that create such visual animations. Moreover, 

as there is no common model followed by such animations, low-

level testing details cannot be automated. 

We have developed a software infrastructure to address these 

limitations of existing work. An overview of an earlier version of 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this notice and the full citation on 

the first page. Copyrights for components of this work owned by others than the 

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior specific permission 

and/or a fee. Request permissions from Permissions@acm.org 

 

SC-W 2023, November 12–17, 2023, Denver, CO, USA 

© 2023 Copyright is held by the owner/author(s). Publication rights licensed to ACM. 

ACM 979-8-4007-0785-8/23/11…$15.00 

https://doi.org/10.1145/3624062.3624098 

mailto:Permissions@acm.org


HPC’23, November, 2023, Denver, Colorado USA P. Dewan 

 

 

 

the infrastructure, and how it was used for training has been 

published previously [4].  In this paper, we focus in-depth on the 

infrastructure, describing it from the perspective of a test writer. 

Section 2 lists the set of requirements it was designed to meet. 

Section 3 identifies the key concepts to meet these requirements. 

Section 4 describes various aspects of the infrastructure that 

implements these concepts. Section 5 evaluates our infrastructure. 

Finally, Section 6 gives conclusions and directions for future work.  

2 Requirements 

As mentioned in the introduction, two approaches to concurrency 

testing have been used before – performance testing and 

functionality testing of observable animation events.  

The former is suitable for programs that meet two conditions. 

First, their threading level can be increased dynamically. Second, 

increasing the threading level when idle cores are available 

improves performance. It has the advantage that no problem-

specific testing code has to be written as no problem-specific 

requirement is checked as long as these two conditions are met.  

The latter is suitable for a different class of concurrent programs 

– those that use threads to create concurrent animations in the user-

interface using animation events that can be observed by arbitrary 

observer objects. We refer to these as observable animations. The 

level of multi-threading does not have to be changeable. This 

approach requires low-level problem-specific testing code to be 

written. This code can identify to what degree a solution meets each 

requirement and thus, in comparison to the former, can help the 

programmer better pinpoint problems.   

Based on this discussion, we can identify our requirements. 

 The infrastructure should support both performance 

checking and functional testing of observable animations 

so that it subsumes rather than replaces the features of the 

state-of-the-art. 

 It should allow functionality testing of programs that use 

multi-threading to increase performance rather than 

implement concurrent animations. 

 It should provide high-level support for writing code to test 

these programs. Ideally, the test code should be responsible 

only for specifying the problem requirements - how these 

requirements are checked should be the responsibility of 

the underlying testing infrastructure.  

 Such higher-level support, ideally, should also be layered 

above lower-level support implementing observable 

concurrent animations, 

 A functionality-testing approach that does not pinpoint the 

problems in an erroneous solution is no better than a 

performance-testing approach. Therefore, we require that 

the infrastructure provide fine-grained checking and 

reporting of errors – in particular, it should check the 

correctness of final and intermediate results.  

3 Key Ideas 

In the discussion below, we motivate and highlight our key ideas. 

To provide high-level support for testing the functionality of 

concurrent programs, the testing infrastructure must be based on a 

high-level model of concurrent programming so that it can 

automate testing of those aspects that are common to programs that 

follow the model, leaving problem-specific aspects to the test code.  

We provide testing support for the fork-join model defined as 

follows: The main or root thread forks zero or more multiple worker 

threads to do different parts of a problem and makes a blocking call 

to join the worker threads. Each worker thread executes a loop with 

zero or more iterations to compute zero or more results and then 

makes these results accessible to the root thread. When all worker 

threads have terminated, the join call unblocks the root thread, 

which can then print the combined results of the worker threads. 

This is a practical model as it covers many worked examples and 

assignments used in undergraduate courses.  

As mentioned in the introduction, a major hurdle to testing HPC 

parallel programs is that parallelization does not change the user-

interface. To illustrate, consider Fig. 1, which shows the Hello 

World program from an online chapter introducing C++ 

concurrency [5]. 

void hello() { 

    std::cout<<”Hello Concurrent World\n”; 

} 

int main() { 

     std::thread t (hello); 

     t.join(); 

} 

Fig. 1.  C++ Program Producing Concurrency-Unaware Output 

In this program, the thread that executes the main method forks 

a new child thread, t, and then makes the blocking join call. The 

child thread prints “Hello Concurrent World”, and then terminates, 

which causes the main thread to unblock from the join call and 

terminate. This output does not indicate the presence of multi-

threading – the main method could have directly printed it without 

forking and joining a child thread. Thus, a testing program cannot 

tell, by looking at only the output, that a fork and join occurred. The 

reason is that the output is concurrency-unaware – it gives no 

indication that multiple threads were involved in its creation. 

A possible solution is suggested by an OMP variation [6] of this 

example shown in Fig. 2. The figure has an OMP pragma to create 

multiple threads to execute the print call, which displays the text 

“Hello World” along with the id of the thread that executes this call. 

As a result, the output is concurrency-aware – it shows that 

concurrent threads were involved in its creation. In this example, 

the reason for creating concurrency-aware output was pedagogical 

– the person running this code is made aware of multithreading and 

the role of each thread.  

Concurrency-aware output can also be used to create test code 

that checks that multithreading occurred. In the above example, the 

test code can parse the output to determine the number of different 

threads created. Therefore, another important concept in our design 

is the ability to associate the output of a testable concurrent 

program with the thread that produced the output (without 

necessarily displaying the thread information in the output). 
 



Infrastructure for Writing Fork-Join Tests HPC’23, November, 2023, Denver, Colorado USA 

 

 

#pragma omp parallel 

{ 

   printf(“Hello World… from thread =  %id\n”, 

       omp_get_thread_num()); 

} 

(a) OMP Concurrent Progam 

Hello World… from thread = 1 

Hello World… from thread = 0 

Hello World… from thread = 4 

… 

(b) Concurrency-Aware Output 

Fig. 2. OMP Concurrent Progam with Concurrency-Aware Output 

Consider a variation of the two programs above in which the 

forked threads do not directly produce their output. Instead, they 

write it to some data structure shared with the main thread, which 

then combines and prints the results from all threads to the console. 

This is how a large variety of concurrent fork-join programs work. 

In this case, the output is printed by the root thread, making it 

concurrency-unaware. Fig. 3 shows the output of a program that 

determines the number of primes in a set of random numbers. The 

root thread prints the set of random numbers it computes, asks 

different worker threads to determine the number of primes in 

different subsets of this set, and after unblocking, prints the sum of 

the computed numbers. Both the input (random numbers) and final 

output (number of primes) are printed by the root thread. 

To address this problem, we require the threads in the tested 

concurrent programs to produce intermediate output tracing the 

steps they perform to process their part of the problem. The exact 

nature of the steps is problem-specific and determined by the test 

writer. As with the final output, our design allows testing code 

processing the output to determine which thread created it. Fig. 4 

shows part of the intermediate output produced by one of the 

worker threads in the prime example. As we see here, the id of the 

worker thread is different from that of the root thread. 

Thread 23->Random Numbers:  

[509, 578, 796, 129, 272, 594, 714 

Thread 23->Total Num Primes:1  

Fig. 3. Root Thread Printing its Input and Final Output 

Thread 24->Index:0 

Thread 24->Number:509  

Thread 24->Is Prime:true 

Fig. 4. Example Intermediate Output of Worker Thread 

Not all solutions to a problem – concurrent or serial – will 

produce the same sequence or even set of prints. For example, 

different solutions to the prime number example of Fig. 3 and 4 will 

work on different sets of random numbers, and thus, produce 

different outputs. Thus, the testing program must extract 

relationships between the prints rather than their exact content. 

 These relationships have to do with state changes the parallel 

program makes to logical variables – these are conceptual 

variables associated with all expected solutions to the problem and 

may not translate directly to internal variables. The testing program 

should work in terms of these logical state changes directly without 

having to parse the output. This principle implies that a testable 

program should use a standard method for printing logical variables 

and the testing infrastructure should parse the output for the testing 

program. Fig. 3 and 4 show the nature of such parsable output. In 

Fig. 3, the root thread prints the values of two logical variables: the 

set of random numbers and the total number of primes. In Fig. 4, a 

worker thread working on the 0th prime number prints the value of 

three logical variables: the index of the number in the input array, 

the number itself, and whether it is a prime or not. All solutions to 

the problem must use the same names for these logical variables, 

which become part of the assignment requirement.  

To support the existing technique of performance-based testing, 

we require the tested programs to provide a main argument that 

allows the number of threads in the program to be varied – the 

exact form of this argument is decided by the associated test. 

Producing intermediate output for functionality testing is at 

odds with performance-based testing of parallel programs. Multi-

threading has an impact on performance only when the number of 

iterative steps performed by the worker thread is large. To ensure 

that the loads of worker threads are balanced, each iterative step 

would have to produce some output (Fig. 4) so that the number of 

outputs/steps can be compared. A program written for functionality 

testing would be artificially slowed down and unnecessarily clutter 

output (possibly using all the heap space if output is stored) when 

used for performance testing. Our solution is a mechanism to 

dynamically turn off all prints for performance testing. To layer our 

fork-join infrastructure support on top of existing work on testing 

observable animations, we make the intercepted prints observable 

by arbitrary observer objects. 

4 Testing Infrastructure 

We have implemented these key ideas in a testing infrastructure 

written in Java that expects the testing and tested programs to also 

be written in Java. It is layered on top of our previous Java 

infrastructure for testing observable concurrent animations, which 

in turn, is layered on top of the Java Junit testing infrastructure. In 

this section, we overview the main components of our 

infrastructure: (i) the user-interface provided to programmers of the 

tested code; (ii) the programming-interface provided to 

programmers of the tested code; (iii) the programming-interface 

provided to programmers of the testing code; and (iv) and how our 

new infrastructure support is layered on top of our existing layers. 

4.1 User-Interface of Instructor Agent 

Programming environments such as Eclipse and IntelliJ provide 

facilities to allow users to run JUnit tests interactively. We have 

developed an additional user-interface for such interactive testing 

that adds two features to JUnit. First, it is independent of the 

programming environment and can be created from the command 

line. Second, it displays the score assigned to each test by the 

testing program along with the error message. 

JUnit provides programmers of tested code the ability to group 

tests into suites. To create our user-interface, the user simply runs 

the suite created for the problem being tested. Fig. 5 shows the user-

interface created when the suite for the primed number problem is 



HPC’23, November, 2023, Denver, Colorado USA P. Dewan 

 

 

 

run. This suite consists of two tests, one for functionality and 

another for performance. The figure shows the result of double-

clicking on the functionality test to run it. The user-interface 

displays a score of 32 out of 40 for this test along with a message 

(not shown completely) indicating which requirements were met 

and not met.   

 

Fig. 5. Plugin Independent Testing User-Interface  

This user-interface is optional in that students who are confident 

that they have met all requirements can simply submit their solution 

to Gradescope for grading. It is necessary only for students wishing 

to use the tests to iteratively refine their solution. 

JUnit has been used earlier [7] to test the correctness of parts of 

a complete concurrency assignment such as a shared counter object. 

In our work, we use JUnit to test the complete assignment by 

always calling the main method, and letting it run to full completion 

before analyzing its output. As a result, unlike the previous work, 

we do not need to directly catch exceptions and other intermediate 

errors created by the tested parts – these are expected to be 

manifested as incorrect traced final output. 

4.2 Programming Interface for Tested Program 

Our infrastructure provides tested programs with a special method, 

printProperty(String, Object),  to output changes to 

logical variables in a standard form. Fig. 6 shows its use in the loop 

executed by a worker thread to identify prime numbers in the input 

array. The method takes two arguments, the name of the logical 

variable and its current value. It prints the current thread id along 

with its arguments. Thus, the three calls to this method in Fig. 6 

(lines 9, 11, and 16) output the three lines, respectively, shown in 

Fig. 4. Logical variables in our implementation correspond to 

JavaBean properties, so we use the term property and logical 

variable interchangeably 

In this example, problem-independent code prints the index of 

the list of items processed, along with the number at that index, and 

problem-specific code traces the computation done with this 

number. Tracing the computation performed by each iteration 

allows the intermediate results produced by the iteration to be 

checked by testing code, as we see later. 

A tested program can use a Java print method to print an object 

O of type T directly. Our infrastructure intercepts such a print, does 

not change its output, but internally stores it as the setting of a 

logical variable named T whose value is O. Our implementation of 

the fork-join Hello World uses a Java print call: 
System.out.println(“Hello Concurrent World”); 

resulting in the output: 
Hello Concurrent World 

This call internally results in a trace of a logical variable named 

“String” being set to “Hello Concurrent World”. Even though no 

thread id is output, internally, a thread object is kept with this trace. 

A corollary of this discussion is that a test program that tries to print 

the wrong thread id cannot fool the infrastructure as it internally 

keeps the object associated with the printing thread. 

Both the tested and testing programs can invoke the 

infrastructure-provided method, setHideRedirectedPrints 

(boolean). It is used to disable and enable the intercepted prints 

when doing performance and functionality testing, respectively. A 

disabled print produces no output and makes no changes to the trace 

kept by the infrastructure. 

 

Fig. 6. Typical Use of printProperty 

4.3 Programming Interface for Testing Program 

Recall that our goal is to make the testing program responsible for 

specifying the “what” of testing, leaving the “how” to the 

infrastructure. Fig. 7 illustrates how we achieve this goal for 

performance testing. It gives the full code of the test program 

written for a solution to the prime number problem that takes two 

main arguments: the number of random numbers to be generated 

and the number of threads to be created to process these numbers.  

In our implementation, each testing program is a subclass of a 

predefined abstract infrastructure class. A performance-testing 

program is a subclass of the predefined class 

AbstractConcurrencyPerformanceChecker (lines 2 and 3, 

Fig. 7). The testing program overrides concrete methods in the class 

to specify the testing requirements (lines 10-23, Fig. 7). It uses the 

predefined annotation MaxValue to specify the score assigned to 

the test (line 1, Fig. 7). In this paper, the annotation, @Override, is 

not used to label overridden methods for space reasons. All 

methods given here are overriding methods. 

The overridden methods in this example are parameter methods 

as they specify infrastructure-defined parameters of testing. Such a 

method has the form: 

protected T p() { return v} 

It tells the infrastructure that the infrastructure-defined parameter 

of type T has value v. To do performance testing, the tested 

program must be executed with different arguments specifying low 

and high numbers of forked threads. These are specified through 



Infrastructure for Writing Fork-Join Tests HPC’23, November, 2023, Denver, Colorado USA 

 

 

the string-array parameters lowThreadArgs (lines 13-16, Fig. 7) 

and highThreadArgs (lines 17-20, Fig. 7), respectively. The 

name of the testable program is given by the parameter 

mainClassIdentifier (lines 10-12, Fig. 7).  

 

Fig. 7. Prime Performance Tester 

The code in Fig. 7 is a formalization of the performance and 

testing requirements of the expected solution. The former 

requirements indicate that the solution must vary the number of 

random numbers and threads based on its performance and provide 

a speedup of at least 1.5. The latter indicate that the program must 

have the standard name, ConcurrentPrimeNumbers. The testing 

requirements would not be needed if the solution were not to be 

automatically assessed, so they represent the testing overhead on 

the programmer. Arguably, this overhead is small for performance. 

Our infrastructure processes this specification as follows: It runs 

the named program with lowThreadArgs and highThreadArgs 

a default number of times (10), which can be changed by overriding 

another parameter method. Based on the total times taken in these 

two cases, it computes the speedup, and gives full points if it is 

more than MINIMUM_SPEEDUP and 0 pts if it does not. In 

general, when it deducts points, it gives the reason for it – in this 

case, it indicates the difference between the expected and actual 

speedups. Thus, we see here how the testing program and 

infrastructure are responsible for the “what” and “how” of testing. 

These two tasks are relatively simple for performance testing.  

They are more complicated for functional testing. This is 

because the testing program must specify the nature of a correct 

trace. Such a trace has three aspects: static syntax, dynamic syntax, 

and semantics.  

Static syntax determines the syntax of print lines, which, in turn, 

is determined by the names and types of the logical variables to be 

printed by the tested program. For example, in the traces of Fig. 3 

and 4, it specifies the names of the logical variables and the types 

of values that follow these names.  

Dynamic syntax determines the order and number of each kind 

of logical variable traced. For the prime number problem, it 

specifies the number of triples of Fig. 4 output in the iterative phase, 

and the order of the triples relative to other traces of the program.  

Semantics can be broken into serial and concurrency semantics. 

The former check whether the expected final result is computed 

(e.g. number of primes) and would be relevant even if the problem 

was solved using a single thread. The latter check multi-thread 

requirements (e.g. correct number of interleaved threads were 

forked). To help pinpoint problems, our tests check intermediate 

results for both kinds of correctness (e.g. does each iteration 

compute the correct prime; were the number of primes computed 

by different threads summed up correctly without race conditions). 

Thus, both kinds of semantics can be subdivided into final and 

intermediate semantics.  

Based on the discussion above, a trace corresponds to a 

programming language (associated with syntax and semantics) and 

a testing program corresponds to a programming language 

translator. It is, of course, possible to use general-purpose program 

translation tools to check traces, but they can be expected to be 

more cumbersome to use than necessary because of their generality.  

Therefore, our infrastructure offers more specialized and hence 

higher-level support that leverages three important properties of our 

traces: (a) they consist of prints of logical variables of different 

types, which can be processed by regular expressions rather than 

grammars; (b) their order is determined implicitly by the phases of 

the fork-join model, so no explicit ordering constructs are required; 

(c) only the iteration phase requires a dynamic number of prints, 

which depends on the number of expected iterations specified by 

the testing program.  

For static and dynamic syntax, our infrastructure provides 

parameters to specify (a) the names and types of logical variables 

to be output in each of the predefined fork-join phases, (b) the total 

number of iterations to be processed, and (c) the number of threads 

to be forked to process these iterations. For semantics, it provides 

callbacks defined through overridden methods in the testing 

program. 

Fig 8. Illustrates these concepts for the iteration phase using our 

running example. Lines 1 to 4 declare an array that specifies the 

names and types of the properties to be output in each iteration, that 

is, the static syntax of this phase. This array is returned by the 

parameter method, iterationPropertyNamesAndType. 

The dynamic syntax is specified by the parameter method 

totalIterations, which returns the total number of iterations 

performed by all threads, together, and hence the total number of 

times the three iteration logical variables are to be output. In this 

problem, one iteration is performed for each random number, so the 

total number of iterations is the same as the total number of random 

numbers to be generated. 

The iteration semantics is specified by the semantics check 

method, iterationEventsMessage. It is called for each set of 

trace outputs in an iteration. Its first argument is the thread that did 

the output and the second is a Map giving the names and values of 

the iteration properties traced in the iteration. A semantics check 

method can perform arbitrary checks based on its parameters and 

the global state created by previous invocations of semantics check 

methods. In this example, the code checks if the value of the 

“Number” property output in this iteration is consistent with the “Is 

Prime” property output in this iteration. To do so, it calls the custom 

function isPrime(int), which is expected to correctly determine 

if a number is prime or not. 



HPC’23, November, 2023, Denver, Colorado USA P. Dewan 

 

 

 

 

Fig. 8. Prime Iteration Functionality Tester 

A test program can similarly specify the properties and 

semantics checks for the three other fork-join phases: pre-fork, 

post-iteration, and post-join. The appendix gives the complete code 

of the program for testing the functionality of our prime example. 

Fig. 9 gives part of the traces of a correct implementation of the 

prime example, that is, one whose traces are found correct by the 

test program. It is embellished with comments to delineate the 

various fork-join phases. In addition to the three iteration properties 

discussed above, to be printed by each forked worker thread, the 

complete implementation specifies: 

(a) one pre-fork property, “Random Numbers”, to be printed by 

the main root thread, which is the array of random numbers 

created by the tested program (lines 2-3, Fig 9.);  

(b) one post-join property, “Total Num Primes”, again to be 

printed by the main thread,  which is the number of primes in 

this array found by the tested program (line 39, Fig. 9),  

(c) one post-iteration property, “Num Primes”, to be printed by 

each forked worker thread, which is the number of primes it 

found in its iterations (lines 28, 30, 34, 37, Fig. 9). 

Because of interleaving, the iteration and post-iteration phases 

of the threads are mixed in the output. The program correctly 

processes the required number of random numbers, 7, specified in 

the testing program (lines 11-12, Fig. 8). Four worker threads are 

involved in the fork phase (iteration + post-iteration), which is the 

number expected by the test program (lines 32-34, Fig. 8). These 

threads interleave their output, so have to address any 

synchronization conditions this concurrency causes. Moreover, the 

load is as balanced as it can be: each thread except Thread 27 

processes two numbers, with Thread 27 processing one number 

(This cannot be verified in Fig. 9 as some of the iterations have 

been cropped out). Each iteration of a thread correctly determines 

if the indexed number is a prime. The number of primes reported 

by each thread in its post-iteration phase is consistent with the 

primes it found, which is verified by the semantic post-iteration 

check given in the appendix. In addition, the total number of primes 

reported by the root thread (line 39, Fig. 9) in the post-join phase is 

the sum of the number of primes reported by each thread, which is 

verified by the post-join check given in the appendix. Hence, the 

test gives full points out of the maximum (line 1, Fig. 8), that is, 

100 % (line 41, Fig. 9). This trace demonstrates to both the test 

program and the end-user viewing it that each phase is correct. 

Arguably, to the end-user, it also illustrates how concurrency in 

general and fork-join in particular work, and thus serves a useful 

pedagogical purpose even if automating assessment was not a goal. 

                  

                  

Fig. 9. Traces Showing Correct Concurrency at Work 

Traces are even more useful if they can be used to manually or 

automatically identify mistakes. Figures 10 and 11 identify 

potential mistakes identified automatically.  

In Fig. 10 (which also has cropped parts), the trace has two 

semantic problems. First, the execution of the threads is serialized 

in the order of their thread number, thereby avoiding the 

synchronization problems that arise in combining their results, 

which the test program is expected to overcome. Second, the load 

is imbalanced - each thread except Thread 24 performs one iteration 

(lines 24-27, Fig. 10), with Thread 24 performing four (lines 3-15, 

Fig, 10). Both mistakes are pointed out by running the test code 

(lines 26-39, Fig. 10). The test run also indicates all aspects of the 

test program that are correct (lines 30-35, Fig. 10). Thus, it helps 

pinpoint the problems with the code. Based on the requirements 

correctly and incorrectly met, a score of 80% is assigned. 

The trace syntax is correct in Fig. 10. The trace in Fig. 11 (again 

partly cropped) has two different syntax errors. First, the pre-fork 

property is named “Randoms” (line 1, Fig. 11) rather than “Random 

Numbers”, as indicated by the first error message (lines 23-25, Fig. 

11). In addition, the fork output (consisting of iteration and post-

iteration output) does not match the 25 regular expressions 

expected for 7 random numbers (3 iteration outputs for each of the 

7 random numbers plus 1 post-iteration output for each of the 4 

threads) – due to a loop error it has only 17 outputs. This error is 

pointed out in lines 28-32 Fig. 11. Because of these syntax errors, 



Infrastructure for Writing Fork-Join Tests HPC’23, November, 2023, Denver, Colorado USA 

 

 

no semantic checks are run, and the tested program earns a score of 

10% (line 21, Fig. 11). 

                              

                              

Fig. 10. Trace with Semantic Errors 

                 

                 

Fig. 11. Trace with Syntax Errors 

Not all examples will have properties and semantic checks 

associated with each of the fork-join phases. This is shown in Fig. 

12(a), which has the complete test code for a Java version of the 

C++ fork-join Hello World example of Fig. 1. Recall that in this 

example, the root thread forks a single worker thread to print the 

greeting. There is no pre-fork or post-fork output. The iteration and 

post-iteration steps are not distinguished during the fork as there is 

no loop - only one step. No data are manipulated by the program, 

so there is no property to be printed. The exact text printed for the 

greeting does not matter, so there is no semantics check.  

There are only two checks overall that need to be performed – a 

single thread was forked and it printed something. Hence, the test 

program consists of three parameter methods, giving the name of 

the test program (lines 4-6, Fig. 12(a))), the number of expected 

threads (lines 7-9, Fig. 12(a))), and the credit allocated to forking 

exactly one thread (lines 10-12, Fig. 12(a)). The infrastructure-

provided defaults for allocating credit do not work, hence the 

overridden parameter method. threadCountCredit. It allocates 

80% for having the right number of threads, leaving the other 20% 

for creating one or more threads. Fig. 12(b) shows the result of 

running this test on a program in which the root thread prints the 

greeting directly, without forking any worker thread. The exact 

problem is identified in an error message (line 3). 

The test code for the primes problem (see appendix) is larger 

and more complicated than the one for the Hello World program 

for two reasons: First, it checks both serial and concurrency 

semantics. Second, it checks all intermediate results. A version of 

the test code that checks only concurrency correctness would 

require only three parameter methods: (a) One to specify the name 

of the tested program; (b) another to specify the two arguments of 

the program; and (c) the final one to specify the number of threads.  

As with performance testing, we see in function testing that the 

testing program is concerned with only the “what” of traces – (a) 

the arguments of the program, (b) the names and types of the 

properties to be printed in each phase, (c) the relationships among 

the property values, (d) the total number of iterations, (d) the 

number of threads to be forked to perform these iterations, and (e) 

optionally, the partial credit associated with the syntax and 

semantics of each phase.  

 
(a) Hello World Test Program 

 
(b) Serial Program Test Results 

Fig. 12. Concurrent Hello World Test  

The infrastructure is responsible for the “how” of trace 

processing – (a) invoking the program, (b) collecting the traces, (c) 

checking the syntax and semantics of each phase based on the test 

program specifications, (d) checking that the correct number of 

threads were forked and their load was balanced, (e) checking that 

their prints were interleaved, (f) allocating default credit to each 

independent aspect of the trace, and (g) outputting error messages. 

4.4 Infrastructure Layers 

Both the function and performance testing abstract classes in our 

infrastructure use a common program-execution layer to run a 

program with specified input and arguments, and collect its output. 

In our previous work on testing of concurrent animations, we built, 

above this program-execution layer, a higher event-database layer. 

This layer (a) observed all events announced by observable objects 

in the tested program, (b) stored each event in a database along with 

the Thread object that announced it, and (c) allowed a testing 



HPC’23, November, 2023, Denver, Colorado USA P. Dewan 

 

 

 

program to determine how many threads made the announcements 

(during a selected event range), and whether the announcements of 

these threads were interleaved. 

Our implementation for the fork-join model leverages the event-

database layer. The testing abstract classes replace the predefined 

Java System.out (used to print output on the console) with a 

custom observable object that (a) asks the predefined Java object to 

print objects when such printing is enabled, and (b) converts the 

print to an event observable by the database. The function testing 

abstract class retrieves the traced output to do syntax checking and 

the stored print events in the database to do semantic checking, 

calling overriding methods in the testing programs to do so. 

5 Evaluation 

As discussed in Section 4 above, our infrastructure meets all of our 

qualitative requirements listed in Section 2. We evaluate it 

quantitatively below based on our experience using it to write tests. 

In particular, we compare the efforts required to check (a) serial and 

concurrency requirements, and (b) final and intermediate results 

We used this infrastructure to write programs for testing 

concurrency code written by fourteen participants in a test-based 

session in an NSF-supported workshop on training faculty 

members in concurrency [4]. The session involved three problems. 

One of them was a slight simplification of the primes example here 

in which a fixed rather than variable number of threads were used 

to find primes in a list with a variable number of random numbers. 

The second computed the value of PI concurrently using the Monte 

Carlo method, again using a fixed number of threads and a variable 

number of iterations. These two exercises, given to the attendees, 

were designed by the author’s collaborators at Tennessee Tech 

University. To demonstrate Java concurrency primitives, the author 

developed a worked example that used a fixed number of threads 

to concurrently find odd numbers in a list with a variable number 

of random numbers. For functional correctness, the total number of 

iterations performed by all threads together is small (we used 27 in 

our workshop examples), allowing the tests to finish quickly. 

Table 1 compares the relative effort required to write testing 

code that checks serial and concurrency requirements. It performs 

the comparison based on the number of lines in the test programs 

after comments and imports were removed from them. The 

numbers in parentheses give the number of lines of code that had 

to be written to check intermediate results. Thus, the entry 78 (14) 

in the top-left cell indicates that 78 lines of code were written to 

check serial requirements and 14 of them were used to pinpoint 

problems with intermediate results that would be computed in both 

the serial and concurrency cases. The PI computation is such that 

the only way to check final serial correctness is to check the 

correctness of intermediate serial results – hence 0 lines of code are 

assigned to serial intermediate. 

If intermediate results related to concurrency are not to be 

checked, only three lines of code need to be written – to specify the 

number of expected forked threads (Fig. 12(a), lines 7-9). Even 

when intermediate results are checked, the code required for 

concurrency checks is small in absolute and relative terms. This is 

a strong case for traces, as, without them, functional concurrency 

correctness and serial intermediate results could not be checked. 

With them, our infrastructure requires very few lines of code to be 

written, as the specification of the concurrency requirements is 

small compared to the specification of serial ones.  

TABLE I.  TEST CODE SIZE 

Problem Serial (Intermediate) Concurrency (Intermediate) 

Odd 78  (14) 25 (22) 

Prime 86 (14) 25 (22) 

PI 95 (0) 21 (18) 

5 Conclusions and Future Work 

Our contributions include not only the Java-based infrastructure we 

have developed for Java procedural programming but also the 

requirements and key insights we have identified. Future work is 

required to translate these concepts to other languages such as C 

and Python and declarative programming such as in C/OpenMP 

and Java/Pyjama. It would also be useful to automatically generate 

these traces by instrumenting compiled code, thereby reducing 

testing requirements students must follow while writing their code. 

More experience is also needed with our current implementation 

for training both students and teachers. Tracing additional classes 

of concurrent programs is another avenue for future work.  It would 

also be useful to incorporate techniques for influencing thread 

scheduling to catch synchronization bugs [8]. 

This paper provides a basis for carrying out such work. 

ACKNOWLEDGMENTS 

This work was funded in part by NSF award OAC 1924059. 

REFERENCES 
[1] Prasad, S.K., A. Gupta, A. Rosenberg, A. Sussman, and C. Weems. 

CDER Center | NSF/IEEE-TCPP Curriculum Initiative,” NSF/IEEE-
TCPP Curriculum Initiative. 2017; Available from: 
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21183. 

[2] Aziz, M., H. Chi, A. Tibrewal, M. Grossman, and V. Sarkar, Auto-
grading for parallel programs, in Proceedings of the Workshop on 
Education for High-Performance Computing. 2015, ACM:. p. 1-8. 

[3] Dewan, P., A. Wortas, Z. Liu, S. George, B. Gu, and H. Wang. 
Automating Testing of Visual Observed Concurrency. in 2021 
IEEE/ACM Ninth Workshop on Education for High Performance 
Computing (EduHPC). 2021. IEEE. 

[4] Dewan, P., A. Worley, S. George, F. Yanaga, A. Wortas, J. Juschuk, 
M. Rogers, and S.K. Ghafoor, Hands-On, Instructor-Light, Checked 
and Tracked Training of Trainers in Java Fork-Join Abstractions., in 
HiPCW. 2022, IEEE. p. 28-35. 

[5] Williams, A., Chapter 1. Hello, world of concurrency in C++!, in C++ 
Concurrency in Action 2022, Manning 
(https://livebook.manning.com/book/c-plus-plus-concurrency-in-
action/chapter-1/1). 

[6] Akbar, B. OpenMP | Hello World program. 2023; Available from: 
https://www.geeksforgeeks.org/openmp-hello-world-program/#. 

[7] Ricken, M. and R. Cartwright. Test-First Java Concurrency for the 
Classroom. in Proceedings of ACM SIGCSE. 2010. 

[8] Musuvathi, M., S. Qadeer, and T. Ball, Chess: A systematic testing 
tool for concurrent software. 2007, Technical Report MSR-TR-2007-
149. 

https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21183
https://livebook.manning.com/book/c-plus-plus-concurrency-in-action/chapter-1/1
https://livebook.manning.com/book/c-plus-plus-concurrency-in-action/chapter-1/1
https://www.geeksforgeeks.org/openmp-hello-world-program/


Infrastructure for Writing Fork-Join Tests HPC’23, November, 2023, Denver, Colorado USA 

 

 

 

ARTIFACT DESCRIPTION (AD) APPENDIX 
This commented test code example explains how the described artifact - our testing infrastructure - works and should be used. Some of the 

lines have been reformatted from the original code and some, as described below, have been omitted. Thus, a count of the lines here will not 

correspond to the count reported in Table I. 

 
package gradingTools.javaThreads.primes.execution; 
// imports and annotations omitted 
MaxValue(40) 
public class PrimesFunctionality extends AbstractForkJoinChecker { 
    // Start tested-program invocation data 
    final String TESTED_CLASS_NAME = "ConcurrentPrimeNumbers"; 
    final int NUM_THREADS = 4; 
    final int NUM_RANDOMS = 7;  
    // End tested-program invocation data 
    // Start tested-program invocation overridden methods 
    protected String mainClassIdentifier() { return TESTED_CLASS_NAME ;} 
    protected int totalIterations() {return NUM_RANDOMS; }// one iteration for each random number 
    protected int numExpectedForkedThreads() {return NUM_THREADS;} }// used for concurrency correctness 
    protected String[] args() { 
      return new String[] {     

  Integer.toString(totalIterations()),Integer.toString(numExpectedForkedThreads())}; 
    } 
    // End tested-program invocation overridden methods 
    // Start syntax data 
    // The public constants are exported to test programs so they can use them in printProperty calls 
    public static final String RANDOM_NUMBERS = "Random Numbers"; 
    public static final String INDEX = "Index"; 
    public static final String NUMBER = "Number"; 
    public static final String IS_PRIME = "Is Prime"; 
    public static final String NUM_PRIMES = "Num Primes"; 
    public static final String TOTAL_NUM_PRIMES = "Total Num Primes"; 
     
    final Object[][] PRE_FORK_PROPERTIES = {    {RANDOM_NUMBERS, Array.class}}; 
    final Object[][] ITERATION_PROPERTIES = { 
            {INDEX, Number.class}, 
            {NUMBER, Number.class}, 
            {IS_PRIME, Boolean.class} 
    }; 
    // End syntax data 
    final Object[][] POST_ITERATION_PROPERTIES = {{NUM_PRIMES, Number.class},}; 
    final Object[][] POST_JOIN_PROPERTIES = {{TOTAL_NUM_PRIMES, Number.class},};  
    // End syntac data 
    // Start syntax overridden methods 
    protected Object[][] preForkPropertyNamesAndType() { 

return PRE_FORK_PROPERTIES;     
    }     
    protected Object[][] iterationPropertyNamesAndType() {return ITERATION_PROPERTIES;}     
    protected Object[][] postIterationPropertyNamesAndType() {return POST_ITERATION_PROPERTIES;}     
    protected Object[][] postJoinPropertyNamesAndType() {return POST_JOIN_PROPERTIES;} 
    // End syntax overridden methods 
 
    // Start semantics data   
    Object[] randomNumbers; 
    int numPrimesInRandomNumbers, numPrimesFoundByCurrentThread; sumPrimesFoundByAllThreads;     
    // End semantics data     
    // Start semantics overridden methods 
    // Each of these semantics methods should return null if there is no error, otherwise 
    // it should return an error message printed by the infrastructure.     
    /** 
     * This is the first semantic method invoked. The first argument is the root thread and the Map 
     * the properties output by it before forking.  */ 



HPC’23, November, 2023, Denver, Colorado USA P. Dewan 

 

 

 

    protected  String preForkEventsMessage(Thread aThread, Map<String, Object> aNameValuePairs) { 
        randomNumbers = (Object[]) aNameValuePairs.get(RANDOM_NUMBERS); 
        return null; 
    }     
    /** This method is invoked as each iteration of a thread is processed */ 
    protected  String iterationEventsMessage(Thread aThread, Map<String, Object> aNameValuePairs) { 
        int anIndex = (int) aNameValuePairs.get(INDEX); 
        int aNumber = (int) aNameValuePairs.get(NUMBER); 
        int anExpectedNumber = (int) randomNumbers[anIndex]; 
        if (aNumber != anExpectedNumber) { 

    return "Number " + aNumber + " output at index " + anIndex + "!= expected number " +  
anExpectedNumber; 

        } 
        boolean isPrime = (boolean) aNameValuePairs.get(IS_PRIME); 
        if (isPrime) { 
            numPrimesFoundByCurrentThread++; 
        } 
        // check if the number is actually a prime 
        boolean isActualPrime = isPrime(aNumber); // implementation of isPrime not given 
        if (isPrime != isActualPrime) { 
            return "Is Prime output as " + isPrime + " for number " + aNumber + " but should be " +  

isActualPrime; 
        }         
        return null; 
    } 
    /** 
     * This method is invoked after all iteration of a thread have been processed, and before the iteration  
     * properties of the next thread have been processed. Threads are ordered arbitrarily. Even though the    
     * property outputs are expected to be interleaved, the testing infrastructure does not interleave the  
     * execution of the two iteration, allowing the testing code to finish processing all properties 
     * output by a thread, before it processes those output by another thread  
     */     
    protected String postIterationEventsMessage(Thread aThread, Map<String, Object> aNameValuePairs) { 
        int aNumNumbersComputed = (int) aNameValuePairs.get(NUM_PRIMES); 
        if (aNumNumbersComputed != numPrimesFoundByCurrentThread) { 
          return "Thread " + aThread.getId() + " found " + numPrimesFoundByCurrentThread +  

" but computed " +  aNumNumbersComputed; 
        } 

sumPrimesFoundByAllThreads += aNumNumbersComputed; 
numPrimesFoundByCurrentThread = 0;// reset the variable for the next thread  

        return null; 
    }     
    protected  String postJoinEventsMessage(Thread aThread, Map<String, Object> aNameValuePairs) { 
        int aComputedFinalNumbers = (int) aNameValuePairs.get(TOTAL_NUM_PRIMES); 
        if (aComputedFinalNumbers != sumPrimesFoundByAllThreads) { 
            return "Num primes with dispatching thread " + aComputedFinalNumbers + " != " +  

"sum of primes found by each thread " + sumPrimesFoundByAllThreads; 
        } 
        int aNumActualPrimes = 0; 
        for (Object aRandom:randomNumbers) { 
            if (isPrime((int) aRandom)) aNumActualPrimes++; 
        } 
        if (aComputedFinalNumbers != aNumActualPrimes) { 
            return "Num computed primes " + aComputedFinalNumbers + " != " + "actual primes " +  

aNumActualPrimes; 
        } 
        return null; 
    } 
    // End semantic checking methods 
    // Implementation of isPrime() omitted     
} 

 
  


