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Stability to Deformations of Manifold Filters and
Manifold Neural Networks
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Abstract—The paper defines and studies manifold (M) con-
volutional filters and neural networks (NNs). Manifold filters
and MNNs are defined in terms of the Laplace-Beltrami op-
erator exponential and are such that graph (G) filters and
neural networks (NNs) are recovered as discrete approximations
when the manifold is sampled. These filters admit a spectral
representation which is a generalization of both the spectral
representation of graph filters and the frequency response of
standard convolutional filters in continuous time. The main
technical contribution of the paper is to analyze the stability
of manifold filters and MNNs to smooth deformations of the
manifold. This analysis generalizes known stability properties of
graph filters and GNNs and it is also a generalization of known
stability properties of standard convolutional filters and neural
networks in continuous time. The most important observation
that follows from this analysis is that manifold filters, same as
graph filters and standard continuous time filters, have difficulty
discriminating high frequency components in the presence of
deformations. This is a challenge that can be ameliorated with
the use of manifold, graph, or continuous time neural networks.
The most important practical consequence of this analysis is to
shed light on the behavior of graph filters and GNNs in large
scale graphs.

Index Terms—Graph signal processing, graph neural networks,
manifolds, manifold filters, manifold neural networks, manifold
deformations, operator stability.
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I. INTRODUCTION

RAPH convolutional filters [4], [5], [6] and graph neural
Gnetworks (GNNs) [7], [8], [9] have become the tool of
choice for signal and information processing on graphs, e.g.,
[10], [11], [12], [13]. In several applications, graphs can be
considered as samples of a manifold. This is sometimes quite
explicit as in the case of, e.g., point clouds [14], [15] and
sometimes somewhat implicit as in the case of, e.g., wireless
communication networks [10], [11]. In this context we can think
of convolutions on graphs and GNNss as discretizations of their
manifold counterparts. This is important because one can often
gain valuable insights about discrete (graph) signal processing
by studying continuous (manifold) signal processing.

The main technical contribution of this paper is analyzing
the stability of manifold filters and manifold neural networks
(MNNSs) to smooth deformations of the manifold. Prior to de-
veloping stability analyses we define manifold convolutional
filters and frequency responses that are consistent with graph
convolutional filters and frequency responses.

Manifold Filters. Consider a manifold with Laplace-Beltrami
(LB) operator £ and formulate the corresponding manifold
diffusion equation with respect to an auxiliary time variable
t. For initial condition f(z), manifold diffusions generate the
time varying manifold function u(z,t) = e~ f(z) in which
et~ is the LB operator exponential (Section II-A). A manifold
convolutional filter /(¢) then acts on the function f(z) as the
integral over time of the product of h(t) with the diffusion
sequence u(x,t) (Section II-B),

g(z) = (bf)(x) = / TRt @a W

A manifold convolutional filter is such that we can re-
cover graph filters through discretization of the manifold and
discretization of the auxiliary time variable ¢ (Section VI).
The reason for this connection is that graph filters are linear
combinations of the elements of the graph diffusion sequence
[4], [16], [17] and (1) defines manifold filters as linear com-
binations of the elements of the manifold diffusion sequence.
Manifold filters are also generalizations of standard time con-
volutions. This requires consideration of the wave equation on
the real line so that the exponential of the derivative operator
e t9/9% appears in (1) (Appendix F).
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Frequency Response of Manifold Filters We define a filter’s
frequency response as

h(\) = /ODO h(t)e ™ dt. 2)

This definition is motivated by the fact that manifold convo-
lutions can be decomposed on separate spectral components
(Section II-C). Indeed, let ¢; be an eigenfunction of the LB
operator associated with eigenvalue X;. If [f]; = (f, ;) L2 (M)
and [g]; = (g, @;) >(nm) are projections of the functions f and

g in (1) on this eigenfunction, [§]; depends only on [f]; and can
be written as [§]; = h(\;)[f]; (Proposition 1).

This definition of the frequency response of a manifold filter
generalizes the frequency response of a standard time filter.
This is because the definition in (2) is a Laplace transform,
which reduces to the Fourier transform of a filter’s impulse
response when restricted to the imaginary axis A = jw. It is
also a generalization of the frequency response of a graph filter,
which is a z-transform [18].

Stability to Deformations. We establish stability of manifold
filters and MNNSs with respect to domain deformations formally
defined as manifold diffeomorphisms. We consider a signal f
defined on a manifold M and the signal f o 7 made up of the
composition of f with a diffeomorphism. The signals f and
f o are passed through the same MNN @. In this paper we
prove that if 7 is e-small and e-smooth the respective MNN
outputs satisfy

[®(fo1)—@(f)ll2m) = O fllL2(Mm), (3)

provided that the manifold filters in the layers of the MNN
satisfy certain spectral properties (Sections III and IV).

The bound in (3) is a generalization of the standard convo-
lutional neural network (CNN) bound in [19], which studies
diffeomorphisms of the real line and its effect on convolu-
tional filter banks and CNNs. The bound is also a limit version
of the GNN bounds of [20] and related literature [21], [22],
[23], [24], [25]. As is the case of [19], [20], [21], [22], [23],
[24], [25] the bound in (3) holds when the frequency response
h(\) of the filters that make up the layers of the MNN have
decreasing variability with increasing A (Section III). Thus,
stability requires layers with limited ability to discriminate high
frequency components and implies that one may expect multi-
layered MINNS to outperform filters in learning tasks in which
high frequency components are important (Section V).

Related Work and Significance. We focus on the stability
analysis of MNNs — the limit version of GNNs — because all
of the existing GNN stability results have bounds that grow
with the number of nodes in the graph [21], [24]. To overcome
this limitation, many works have studied neural networks on
graphons [25], [26], [27] and more general graph models with
variable sparsity [28]. Results in these settings are independent
of graph size — same as the results for a limit object presented
here. Manifolds can provide limit models for relatively sparse
graphs, i.e. e-graphs and k-NN graphs [29]. Even if there ex-
ist other random graph models allowing to model moderately
sparse graphs (e.g., [28]), these models do not have the physical
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interpretation of a manifold, which is often a better descriptor
of real-world domains. Of particular relevance to our paper is
the work on GNN transferability for graphs that are sampled
from a general topological space [30].

Organization. Section II introduces preliminary definitions
(Section II-A), defines manifold convolutions (Section II-B),
and introduces the spectral domain representation of manifold
filters (Section II-C). Section III studies the stability of manifold
filters to manifold deformations. It shows that a diffeomorphism
results in a perturbation of the LB operator that involves additive
and multiplicative terms (Theorem 1). It then goes on to study
the effect on manifold filters of additive (Section III-A) and
multiplicative (Section III-B) perturbations of the LB operator.
Section IV extends the analysis of manifold filter stability to
manifold neural networks and Section V discusses the implica-
tions of the results derived in Sections III and IV. Section VI
explains how to recover graph filters and GNNs from the dis-
cretization of a manifold. Section VII illustrates the results
of Sections III and IV with numerical examples. Section VIII
concludes the paper. Proofs are deferred to appendices and
supplementary material.

II. MANIFOLD CONVOLUTIONAL FILTERS

Consider a compact, smooth and differentiable d-dimen-
sional submanifold M C RN. For simplicity, in this paper we
use the words submanifold and manifold interchangeably, as-
suming the manifold M to always be embedded in RN. This
embedding induces a Riemannian structure [31]. In turn, the
Riemannian structure allows defining a measure p over the
manifold as well as a notion of length for smooth curves on
M. Given two points x,y € M, the length of the shortest curve
between = and y is denoted dist(x,y) and called the geodesic
distance between these points.

We consider the manifold M to be the support of data that we
represent as smooth real scalar functions f: M — R. We call
these scalar functions manifold signals. We focus on manifold
signals that have finite energy, such that f € L?(M). Since
L?(M) is a Hilbert space, it is equipped with an inner product
given by

(9 ren = /M f(2)g(x)dp(z) 4

where du(z) is the d-dimensional volume element correspond-
ing to measure ;. Thus, the energy of the signal f is given by

||fH2L2(M) =(f, 2wy

A. Laplace-Beltrami Operator

On manifolds, differentiation is implemented by the intrinsic
gradient — a local operator acting on a neighborhood of each
point on the manifold that is homeomorphic to a d-dimensional
Euclidean space. This neighborhood contains all the vectors
tangent to M at x, which is called the tangent space of x € M
and is denoted as 7, M. The disjoint union of all tangent
spaces on M is defined as the tangent bundle 7"M. Formally,
the intrinsic gradient is the operator V : L2(M) — L?(T M)
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mapping scalar functions f € L?(M) to tangent vector func-
tions Vf € L>(T M), where L?(T M) is the Hilbert space of
vector fields over the manifold M. The tangent vector function
V f(z) € T, M indicates the direction of the fastest change of
manifold signal f at point z. The adjoint of the intrinsic gra-
dient is the intrinsic divergence, defined as div : L*(T M) —
L?(M). Interpreting the tangent vector field as the velocity field
of a fluid, the intrinsic divergence can be seen as a measure of
the net motion of the fluid [14].

The Laplace-Beltrami (LB) operator of a manifold M is de-
fined as the operator £ : L?(M) — L?(M) given by the func-
tion composition of the intrinsic divergence and the intrinsic
gradient. When considered in the local coordinates supported
on T, M [32], the LB operator can be written as

Lf=—divoVf=-V V] (5)

Much like the Laplace operator in Euclidean domains (or the
Laplacian matrix, in the case of graphs [33]), the LB operator
measures the total variation of function f, i.e., how much the
value of f at a point deviates from local average of the values
of f in its surroundings [14]. Since the LB operator L, like
the gradient V, is a local operator depending on the tangent
space T, M of each point z € M, in the following we omit
this dependence for the ease of presentation by writing £ = L,
and V =V,.

The LB operator plays an important role in partial differential
equations (PDEs), as it governs the dynamics of the diffusion
of heat over manifolds as given by the heat equation

ou(z,t)

T + Eu(x, t) =0. (6)

If u € L? (M) measures the temperature over the manifold with
u(x,t) representing the temperature of point x € M at time
t € R, equation (6) can be interpreted to mean that, at point
on manifold M, the rate at which the manifold “cools down”
is proportional to the difference between the temperature of
2 and the local average of the temperature of the points in
its neighborhood. With initial condition u(z,0) = f(z) for all
x € M, the solution to this equation is given by

u(z,t) =e " f(), 7

which is the key support to implement the LB operator in the
definitions proposed later.

The LB operator L is self-adjoint and positive-semidefinite.
Considering that M is compact, the LB operator £ has a real
positive eigenvalue spectrum {\; }$°; satisfying

Lo =Nid; ®)

where ¢, is the eigenfunction associated with eigenvalue ;.
The indices ¢ are such that the eigenvalues are ordered in in-
creasing order as 0 < A\; < Ay < A3 < ... repeated according to
their multiplicity. In particular, for a d-dimensional manifold,
we have that \; < i2/% as a consequence of Weyl’s law [34],
[35]. The eigenfunctions ¢, are orthonormal and form a gen-
eralized eigenbasis of L?(M) in the intrinsic sense. Since £ is
a total variation operator, the eigenvalues \; can be interpreted
as the canonical frequencies and the eigenfunctions ¢, as the
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canonical oscillation modes of M. This further allows us to
implement operator £ in the spectral domain.

B. Manifold Filters

Time signals are processed by filters which compute the
continuous time convolution of the input signal and the filter
impulse response [18]; images and high-dimensional Euclidean
signals are processed by filters implementing multidimensional
convolutions [36]; and graph signals are filtered by computing
graph convolutions [6]. In this paper, we define a manifold filter
as the convolution of the filter impulse response il(t) and the
manifold signal f. Note that the definition of the convolution
operation, denoted as %, leverages the heat diffusion dynam-
ics described in (7).

Definition 1 (Manifold filter): Let h: RT — R and let f €
L?(M) be a manifold signal. The manifold filter with impulse
response h, denoted as h, is given by

o) = (hf) (@) = (hrxpd f() = / TRz, 0t ©)

where hxrq f is the manifold convolution of h and f, and
u(x,t) is the solution of the heat equation (6) with the initial
condition u(z,0) = f(x).

In a slight abuse of nomenclature, in the following we will
use the terms manifold filter and manifold convolution inter-
changeably.

From Definition 1, we see that the manifold filter operates
on manifold signals f by (i) scaling the diffusion process (7)
starting at f by h and (ii) aggregating the outcome of the scaled
diffusion process from ¢t = 0 to ¢ = co.

Substituting (6) into the convolution definition in (9) yields

o) = (b)) = [ e @t =hD)f @) (10)

0

This alternative form uncovers the fact that the manifold convo-
lution is a map from functions f to functions g that is parametric
on the Laplacian £ —i.e., manifold convolutions are completely
determined by the LB operator of the manifold. The exponential
term e~ ** can be seen as a diffusion or shift operation akin to
a time delay in a linear time-invariant (LTT) filter [18], or as the
graph shift operator in a linear shift-invariant (LSI) graph filter
[6]. Indeed, if we consider the manifold M to be the real line,
the manifold filter defined in (10) recovers a LTI filter. If we
consider it to be a set of points connected by a geometric graph,
(10) recovers an LSI graph filter. We discuss these special cases
in detail in Appendix F and Section VI.

C. Frequency Representation of Manifold Filters

A manifold signal f € L*(M) can be represented in the
frequency domain of the manifold by projecting f onto the LB
operator eigenbasis (8) as

Fli= U b 2wy = /M f@)d(@du(z). A1)

where we claim that f is the frequency representation of the
corresponding signal with f =>""7, [f]; ;.
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Frequency representations are useful because they help un-
derstand the frequency behavior of the manifold filter h(L).
To see this, we consider the frequency representation of the
manifold filter output g in (10), which is

ql; = “i e Y f(x (x ).
6] = /M / R(t)e " f(o)dty (2) (). (12)

Rearranging the integrals and substituting e~**¢; = e~ i ¢,
we can get
[g]: = / h(t)e M dt[f];. (13)
0

The expression relating g and f is called the frequency response
of the filter h(£).

Definition 2 (Frequency response): The frequency response
of manifold filter h(£) is given by

h(\) = / h(t)e~dt, X € (0, 00). (14)
0

An important consequence of Definition 2 is that, since fL()\)
is parametric on )\, the manifold filter is pointwise in the fre-
quency domain. This can be seen by plugging (14) into (13),
and is stated explicitly in Proposition 1.

Proposition 1: Manifold filter h(£) is pointwise in the fre-
quency domain, which is written as

[9]: = h(Ni)[flir i € NT (15)

Definition 2 also emphasizes that the frequency response of a
manifold filter is independent of the underlying manifold. Note
that, in (14), iL()\) is a function of an arbitrary scalar variable
A. To obtain the frequency behavior of this filter on a given
manifold M, we need to evaluate h at the corresponding LB
operator eigenvalues \; [cf. (8)]. If the manifold changes (or if
we want to deploy the same filter on a different manifold M),
it suffices to reevaluate / at AL, i.e., at the eigenvalues of the
new LB operator £'.

III. STABILITY OF MANIFOLD FILTERS WITH RESPECT TO
MANIFOLD DEFORMATIONS

On the manifold M, we define a deformation as function
7: M — M and the curvature distance between x and the
displaced 7(x) dist(z, 7(x)) is upper bounded, i.e., 7(x) is a
displaced point in the neighborhood of =z, which holds for
all x € M. The deformation 7 induces a corresponding tan-
gent map Ty : T M — T, ;)M which is a linear map be-
tween the tangent spaces [37]. With the coordinate description
of tangent map, the tangent map 7., can be exactly repre-
sented by the Jacobian matrix J, (7). When dist(x, 7(x)) is
bounded, the Frobenius norm of J,(7) — I can also be upper
bounded, and these bounds are used to measure the size of the
deformation 7.

Let f: M — R be a manifold signal. Because M is the
codomain of 7, g = f o 7 maps points 7(x) € M to f(7(z)) €
R, so that the effect of a manifold deformation on the signal f
is a signal perturbation leading to a new signal g supported on
the same manifold. To understand the effect of this deformation
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on the LB operator, let p = Lg. Since p is also a signal on M,
we may define an operator £’ mapping f directly into p,

p(x) = L' f(z) = Lg(x) = Lf(7(x)).

The operator £’ is the perturbed LB operator, which is ef-
fectively the new LB operator resulting from the deformation
7. Assuming that the gradient field is smooth, the difference
between £’ and £ is given by the following theorem. The proof
is deferred to Appendix A.

Theorem 1: Let L be the LB operator of manifold M. Let 7 :
M — M be a manifold perturbation such that dist(x, 7(z)) <
eand J, (1) =1+ A, with [|[A,]|r <€ for all z € M. If the
gradient field is smooth, it holds that

L—-L' =EL+ A,

where E and A satisty ||E|| = O(¢) and || A||,, = O(e).

Therefore, the perturbation of the LB operator incurred by
a manifold deformation 7 is a combination of an absolute
perturbation A [cf. Definition 3] and a relative perturbation
EL [cf. Definition 7]. This largely simplifies our analysis of
stability. Since manifold filters are parametric on L [cf. Propo-
sition 1], itis sufficient to characterize their stability to deforma-
tions of the manifold by analyzing their behavior in the presence
of absolute and relative LB perturbations. This is what we do
in Sections III-A and III-B.

(16)

a7

A. Stability of Manifold Filters to Absolute Perturbations

We start by analyzing the stability of manifold filters to
absolute perturbations of the LB operator, which are introduced
in Definition 3.

Definition 3 (Absolute perturbations): Let L be the LB
operator of manifold M. An absolute perturbation of L is
defined as

L —L=A, (18)

where the absolute perturbation operator A is self-adjoint.
Like L, the operator £ resulting from the absolute pertur-
bation of L is self-adjoint due to the symmetry of .4. Hence,
it admits an eigendecomposition similar to (5). When the filter
coefficients are fixed, the frequency response of the manifold
filter (15) can be obtained by evaluating /() at each \;. Thus,
to understand the effect of the perturbation on the filter we need
to look at how the perturbation of the LB operator changes the
eigenvalues \;. The challenge in this case is that the spectrum
of L is infinite-dimensional, i.e., there is an infinite (though
countable) number of eigenvalue perturbations that need to
be taken into account, which leads to an untractable infinite
summation. As demonstrated by Proposition 2, however, large
eigenvalues of £ tend to accumulate in certain parts of the real
line. This suggests a strategy to partition the spectrum into finite
number of partitions, by treating the eigenvalues in the same
partition similarly, we can turn to analyze the stability under
the perturbations on these finite number of partitions with the
discriminability of certain frequency components sacrificed.
Proposition 2: Consider a d-dimensional compact mani-
fold M C RN and let £ be its LB operator with eigenvalues
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{6 }72,. Let Cp be an arbitrary constant, Ky (Cy) some finite
constant depends on Cy and Cy; the volume of the d-dimensional
unit ball. Let Vol(M) denote the volume of manifold M. For
any o > 0 and d > 2, there exists Ny,

ad \e0 2/(2-d)
Ny = [ <C047r2) (CaVol(M)) w (19)

such that, for all k£ > max{N;y, Ky(Cy)},
A1 — A Lo

Proof: This is a direct consequence of Weyl’s law [38,
Chapter 1], [35], See Section A in supplementary material. [
Given this asymptotic behavior, we can divide the eigenval-
ues into a finite number of partitions by placing eigenvalues
that are less than o > 0 apart from each other in groups. This
spectrum separation strategy is described in Definition 4. To
achieve it, we will need a specific type of manifold filter called
Frequency Difference Threshold (FDT) filter as introduced
in Definition 5.
Definition 4 (a-separated spectrum): An a-separated spec-
trum of a LB operator £ is defined as a partition Ay (o) U ... U
An(a) such that all \; € Ag(a) and \j € Aj(av), k # 1, satisfy

‘)\Z _)‘j‘ > . (20)

Definition 5 (a-FDT filter): An a-frequency difference
threshold (a-FDT) filter is defined as a filter h(L£) whose fre-
quency response satisfies

|h(\i) — h(\;)| < 0y for all Ay, \j € Ag(a)

with 0y < fork=1,...,N.

In an «-separated spectrum, eigenvalues \; € Ag(a) and
Aj € Ai() in different sets (k # 1) are at least o away from
each other. Conversely, eigenvalues \;, \; € Ay («) are no more
than «v apart. This partitioning creates several eigenvalue groups
spaced by at least «v. Note that the sets A («) can have any size
and, in particular, they can be singletons.

The partitioning of the spectrum described in Definition 4 is
achieved by an a-FDT filter. This filter separates the spectrum
of the manifold by assigning similar frequency responses—that
deviate no more than ¢y, from each other—to eigenvalues \; €
Ag(a), 1 <k < N. In other words, an o-FDT filter does not
discriminate between eigenvalues \;, \; € Ay (). Importantly,
the 0y in Definition 4 are finite, so that they can be bounded
by some 9.

To obtain manifold filters that are stable to absolute perturba-
tions of £, we also need these filters to be Lipschitz continuous
as shown in Definition 6.

Definition 6 (Lipschitz filter): A filter is Aj-Lispchitz if
its frequency response is Lipschitz continuous with Lipschitz
constant Ay, i.e,

2D

\h(a) — h(b)| < Apla —b| for all a,b € (0,00).  (22)

Between the eigenvalue groups, the filters that we consider
are assumed to be Ap-Lipschitz continuous. This means that,
in regions of the spectrum where the Ay («) are singletons, the
filter can vary with slope at most Aj as shown in Fig. 1. Note
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0 Al A2 A3 A4 AS

Fig. 1.  Tllustration of an «-FDT filter. The z-axis stands for the spectrum
with each sample representing an eigenvalue. The gray shaded areas show the
grouping of the eigenvalues according to Definition 4. The red lines show a
set of a-FDT filters that can discriminate each eigenvalue group.

that we can always construct convolutional filters (14) that are
both Lipschitz continuous and a-FDT.

Under mild assumptions on the amplitude of the frequency
response h (Assumption 1), it can be shown that Lipschitz
continuous «-FDT filters are stable to absolute perturbations
of the LB operator. This result is stated in Theorem 2.

Assumption 1 (Non-amplifying filters): The filter frequency
response h:RT > Ris non-amplifying. Le., for all A € (0, 00),
h satisfies [A(\)] < 1.

Note that this assumption is rather reasonable, because the
filter frequency response ;L()\) can always be normalized.

Theorem 2 (Manifold filter stability to absolute pertur-
bations): Consider a manifold M with LB operator £. Let
h(£) be an -FDT manifold filter [cf. Definition 5] and Ap-
Lipschitz [cf. Definition 6]. Consider an absolute perturbation
L' =L+ A of the LB operator £ [cf. Definition 3] where
lA|| < e < . Then, under Assumption 1 it holds that

IR(C)f—B(L) fllionn) <
Ny
(” €+Ahe+2(NNS)5) o, @3

o — €

where N is the size of the «-separated spectrum partition
[cf. Definition 4] and Ny is the number of singletons.
Proof: See Appendix C. |

Provided that € < o, FDT filters are thus stable to absolute
perturbations of the LB operator £. The stability bound depends
on (i) the continuity of the FDT filter as measured by the
Lipschitz constant Aj, and (ii) its frequency difference threshold
«, which affects the bound directly as well as indirectly through
the number of partitions N. Note that this bound consists of
three terms. The first corresponds to the difference between the
eigenfunctions of £ and £’, which affects the stability bound by
changing projection directions. The second stems from the dis-
tance between the original and perturbed eigenvalues. Finally,
the third reflects the bounded fluctuation of the filter frequency
response within the same eigenvalue group.

The bound in Theorem 2 can be simplified by setting § =
me/(2a0 — 2€) as in Corollary 1.

Corollary 1: Setting § = me/(2a — 2¢), under the same as-
sumptions of Theorem 2 it holds that

N
(0N = B(E) ann < (T2 + s ) el
24
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0 A1 A2 A3 A4 A5 A6

Fig. 2. Tllustration of a v-FRT filter. The x-axis stands for the spectrum
with each sample representing an eigenvalue. The gray shaded area shows the
grouping of the eigenvalues according to Definition 8. The red lines show a
set of a-FDT filters that can discriminate each eigenvalue group.

A particular case of Theorem 2, the simplified stability bound
in Corollary 1 is helpful to understand the effect of the filter
spectrum on stability as well as of the size of the perturbation.
In particular, from Corollary 1 we can tell that the filter is more
stable if the Lipschitz constant Ay is small and the frequency
difference threshold « is large. On the other hand, small A4,
and large o mean that the filter is less discriminative. This re-
veals a stability-discriminability trade-off where discriminabil-
ity should be understood as the ability to tell frequencies apart.
In other words, we propose a-FDT filter to maintain the stability
by trying to discriminate only eigenvalue groups instead of
every single eigenvalue. Importantly, this trade-off is not related
to the magnitude of the frequencies that the filters amplify (as is
the case in, e.g., [20], [39]).We will keep observing this trade-
off throughout the stability analysis of both manifold filters and
MNNSs. More details about this characteristic will be discussed
in Section V.

B. Stability of Manifold Filters to Relative Perturbations

Relative perturbations of the LB operator are defined simi-
larly as follows.

Definition 7 (Relative perturbations): Let L be the LB
operator of manifold M. A relative perturbation of L is
defined as

L —L=EL, (25)
where the relative perturbation term EL is self-adjoint.

Like absolute perturbations, relative perturbations also per-
turb the eigenvalues and eigenfunctions of £. However, in the
case of relative perturbations, the perturbations to the eigen-
values are proportional to their absolute values [cf. Lemma 3
in Appendix B]. Relative perturbations thus require a different
spectrum separation strategy to guarantee stability. With relative
perturbations, larger eigenvalues are impacted with larger per-
turbation values, which can send eigenvalues originally a--close
to each other to different groups as Fig. 2 shows. Therefore,
we will need a different type of filter implementing a different
type of spectrum separation. Our strategy is inspired by Propo-
sition 3, which is another variation of Weyl’s law.

Proposition 3: Let M be a d-dimensional compact embedded
manifold in RN with LB operator £, and let {\;}°, denote
the eigenvalues of L. Let Cjy denote an arbitrary constant and
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Ko(Cp) some finite constant depends on Cy. For any ~ > 0,
there exists Ny given by

Nz = [(((y+1)/Co)"? = 1)7"]
such that, for all k£ > max{N, Ky(Cp)}, it holds that

(26)

A1 — A YAk

Proof: This is a direct consequence of Weyl’s law [38,
Chapter 1], [35]. See Section A in supplementary material. [
Hence, to enforce stability we need to separate the spectrum
relatively to the ratio between neighboring eigenvalues. This
partitioning is called v-separated spectrum and formalized in
Definition 8. A vy-separated spectrum is achieved by a so-called
Frequency Ratio Threshold (FRT) filters. We introduce them
in Definition 9.

Definition 8 (~y-separated spectrum): A -y-separated spec-
trum of a LB operator £ is defined as a partition A1 () U... U
Aps(7y) such that all \; € Ag(7y) and A; € Ay(7), k # 1, satisfy
Ai
N 1‘ > 7.

Definition 9 (v-FRT filter): A vy-frequency ratio threshold (-
FRT) filter is defined as a filter h(L£) whose frequency response
satisfies

27

|h(Ai) — h(\;)] < 0, forall A;, A; € Ag(7)

with §, <o fork=1,2..., M.

In a «y-separated spectrum, the sets A (+y) are built based on
eigenvalue distances relative to the eigenvalues’ magnitudes and
weighted by the parameter +. Eigenvalues A\; € Ay (y) and \; €
A;(7y) in different groups (i.e., k # 1) are at least y min(\;, A;)
apart from each other. This means that, for A\;, A\;11 € Ag(7),
Aig1 — X <A

A 7-FRT filter achieves a spectrum separation in Definition 8
by giving eigenvalues A;, A; € Ay (y) very similar frequency re-
sponses differing by at most plus or minus ¢ < §. Meanwhile,
eigenvalues belonging to different sets Ag () and A;(v), k # 1,
are treated independently, and their frequency responses can
vary a lot.

To make a manifold filter stable to relative perturbations of
the LB operator, we need a further restriction on their continuity.
Lipschitz continuity [cf. Definition 6] is not enough because
for a Lipschitz filter the difference in frequency response for
a perturbed eigenvalue grows with the eigenvalue magnitude,
since the eigenvalue perturbation is relative. Therefore, we need
our filters to be integral Lipschitz continuous as is described
in Definition 10.

Definition 10 (Integral Lipschitz filter): A filter is integral
Lipschitz continuous with constant By, if its frequency res-
ponse satisfies

(28)

- - Bpla —b)
h(a) — h(b)| < ————— forall a,b € (0, ).
() —hO) < (0, )
Integral Lipschitz filters can be seen as Lipschitz filters with
variable Lipschitz constant, which decreases with \. E.g., on the
interval (a, b), the filter in Definition 10 behaves as a Lipschitz

filter with Lipschitz constant 2B}, /(a + b). When a and b are

(29)
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close, this condition can be approximated by |ak’(a)| < By, for
all a € (0,00). This implies that the filter function flattens for
high-frequency eigenvalues as shown in Fig. 2.

Under Assumption 1, integral Lipschitz v-FRT filters are
stable to relative perturbations as stated in Theorem 3.

Theorem 3 (Manifold filter stability to relative perturba-
tions): Consider a manifold M with LB operator £. Leth(L£) be
a v-FRT filter with § = me/ (27 — 2¢ + 27y¢) [cf. Definition 9]
and Bj-integral Lipschitz [cf. Definition 10]. Consider a rela-
tive perturbation £’ = £ + EL of the LB operator £ [cf. Def-
inition 7] where |E|| < e <~. Then, under Assumption 1 it
holds that

mMe 2By e

()7 -h(L) lazqan < (o 4 32

) T
(30)

where M is the size of the ~y-separated spectrum partition
[cf. Definition 8].
Proof: See Appendix E. |

When e is sufficiently small (¢ < min(~,2), which is typ-
ically the case with deformations such as the one in Theo-
rem 1), the denominators on the right hand side of (30) are
approximately equal to v and 2 respectively. Hence, y-FRT
integral Lipschitz filters are stable to relative perturbations of
the LB operator. Besides appearing in the bound in Theorem 3),
the frequency ratio threshold y also affects stability indirectly
through the partition size M. With a larger -, fewer eigenvalues
will be in singleton sets, thus decreasing M and improving
stability. A smaller integral Lipschitz constant By, also increases
stability. However, small B;, and large v make for smoother
filters which in turn lead to a less discriminative manifold filter.
Therefore, integral Lipschitz v-FRT filters also exhibit a trade-
off between discriminality and stability.

Remark 1: By comparing the illustrations of a-FDT filter
(Definition 5) and ~-FRT filter (Definition 9) in Fig. 1 and
Fig. 2, we see that in practice these filters have a similar fre-
quency behavior because, due to Weyl’s law [cf. Proposition 2
and 3], high frequency components will eventually be grouped
in the same group and thus share similar frequency responses.
Therefore, the main difference between these filters is their
effects on the low-frequency components. In the low frequency
spectrum, the eigengaps \; 11 — A\; may be smaller than the dif-
ference threshold «, but larger than the relative ratio threshold
vA; due to \; being small. However, for appropriate values
of v a filter may be both FDT and FRT. This will be shown
in Section IV.

IV. STABILITY OF MANIFOLD NEURAL NETWORKS

Manifold neural networks (MNNs) are deep convolutional
architectures comprised of L layers, where each layer consists
of two components: a convolutional filter bank and a pointwise
nonlinearity. At each layer [ =1,2,..., L, the convolutional
filters map the incoming Fj_; features from layer [ — 1 into
F} intermediate linear features given by

Fi1
Z hpq

L) (), €1V}
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where h}?(L) is the filter mapping the g-th feature from layer
[ — 1 to the p-th feature of layer [ as in (15), for 1 < ¢ < Fj_4
and 1 <p < F;. The intermediate features are then processed
by a pointwise nonlinearity 0 : R — R as

fi(@) =0 (yf ().

The nonlinearity o processes each feature individually and we
further make an assumption on its continuity as follows.

Assumption 2 (Normalized Lipschitz activation functions):
The activation function o is normalized Lipschitz continous,
ie., |o(a) —o(b)| <|a— b, with (0) = 0.

Note that this assumption is rather reasonable, since most
common activation functions (e.g., the ReLU, the modulus and
the sigmoid) are normalized Lipschitz by design.

At the first layer of the MNN, the input features are the
input data f¢ for 1 < ¢ < Fj. At the output of the MNN, the
output features are given by the outputs of the L-th layer, i.e.,
ff for 1 < p < F. To represent the MNN more succinctly, we
may gather the impulse responses of the manifold convolutional
filters hf ? across all layers in a function set H, and define the
MNN map ®(H, L, f). This map emphasizes that the MNN is
parameterized by both the filter functions and the LB operator
L. We next will analyze the stability of ®(H, L, f) with respect
to perturbations on the underlying manifold.

(32)

A. Stability of MNNs to LB Operator Perturbations

MNNSs inherit stability to perturbations of the LB operator
from the manifold filters that compose the filterbanks in each
one of their layers. This result is stated in general form—
encompassing both absolute and relative perturbations—in the
following theorem.

Theorem 4 (MNN stability): Consider a compact embedded
manifold M with LB operator £. Let ®(H, £, f) be an L-layer
MNN on M (32) with Fy = F, = 1 input and output features
and Fj=F,l=1,2,...,L — 1 features per layer. The filters
h(£) and nonlinearity functions satisfy Assumptions 1 and 2 re-
spectively. Let £’ be the perturbed LB operator [cf. Definition 3
or Definition 7] with max{«, 2, |y/1 — |} > €. If the manifold
filters satisfy [[h(L)f —h(L')fllL2(am) < Cperell fllL2m)s it

holds that
1®(H, L, f)~ @8, L', f)llL2m) < LEY ™ Cperel| fll 221
Proof: See Appendix D. |

Theorem 4 reflects that the stability of the MNN is affected
by the hyperparameters of the MNN architecture and the sta-
bility constant of the manifold filters C),,.. More explicitly, the
stability bound grows linearly with the number of layers L and
exponentially with the number of features F' where the rate is
determined by L. This stability result also shows that there is
a linear dependence on the stability constant Cy,, of manifold
filters h(£) and the perturbation size e. As we have shown in
Section III-A and III-B, the stability constant is determined by
the form of the perturbations (Definition 3 or Definition 7) as
well as the spectrum separation achieved by the specific man-
ifold filters (Definition 5 or Definition 9) with corresponding
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Lipschitz conditions (Definition 6 or Definition 10). We address
the specific cases as follows.
Proposition 4: With the same conditions as Theorem 4,
consider the following perturbation models.
1) If the perturbed LB operator £’ is an absolute perturba-
tion, i.e., L' = £ + A [cf. Definition 3] with || A|| < e and
the manifold filters h(L£) are o-FDT [cf. Definition 5]
with a > € and Ajy-Lipschitz continuous [Definition 6]
with 6 = me/(2a), we have

TN

Cper = 7 + Ah7 (33)

where N is the size of the a-separated spectrum partition
[cf. Definition 4].

2) If the perturbed LB operator £’ is a relative perturbation,
ie. L/ =L+ EL [cf. Definition 7] with ||E| <e, and
the manifold filters h(£) are v-FRT [cf. Definition 9]
with 7/(1 — ) > ¢ and Bj-integral Lipschitz continu-
ous [Definition 10] with § = 7e/(27), we have

M
Cper =—+ Bh;
v

(34)
where M is the size of the y-separated spectrum partition
[cf. Definition 8].

Proof: The conclusions follow directly from Theorem 4
combined with Theorem 2 or Theorem 3 under the correspond-
ing assumptions. U

Combining Theorem 4 with Proposition 4, we observe that o~
FDT manifold filters with Lipschitz continuity can be composed
to construct MNNs which are stable to absolute perturbations;
while «-FRT manifold filters with integral Lipschitz continuity
can be composed to construct MNNs which are stable rela-
tive perturbations of the LB operator. Explicitly, by inserting
the stability constant C)., in (23), we see that other than the
perturbation size ¢, there are three terms that determine the
stability of MNNs. The first term is LF' L=1" which, as we
have already discussed, is decided by the number of layers
and filters in the MNN architecture. This term arises due to
the propagation of the underlying operator perturbations across
all the manifold filters in all layers of the MNN. The second
term is 7N/« or wM /7, which results from the deviations
of the eigenfunctions as well as from the frequency response
variations within the same eigenvalue partition. Finally, the
third term, A, or By, is given by the Lipschitz or integral
Lipschitz constants which are decided during the filter design
or the training process. It is important to note that the stability
constant C),., brings along the trade-oft between stability and
discriminability. However, unlike manifold filters, MNNs can
be both stable and discriminative. This arises from the effects
of nonlinear activation functions, as we discuss in further detail
in Section V.

B. Stability of MNNs to Manifold Deformations

In Theorem 4 and Proposition 4, we established the con-
ditions under which MNNs are stable to either absolute or
relative perturbations of the LB operator as defined in Defi-
nitions 3 and 7. Since a manifold deformation 7: M — M,
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with dist(x, 7(x)) <e€ and ||J.(7) — I||r <€ for all x € M,
translates into both an absolute and a relative perturbation of
the Laplace-Beltrami operator, MNNs composed of manifold
filters meeting all of these conditions in items 1 and 2 of
Proposition 4, i.e., the manifold filters are a-FDT and ~-FRT,
and both Lipschitz continuous and integral Lipschitz continu-
ous, can be proved to be stable under the manifold deforma-
tion. The spectrum can be made to be both a-separated and
v-separated by making sure the eigenvalues in different par-
titions satisfy both (20) and (27). Assuming that all of these
conditions are met, we can state our main result—that MNNs
are stable to deformations of the manifold—as follows.

Theorem 5: Let M be a compact embedded manifold with
LB operator £ and f be a manifold signal. We construct
®(H, L, f) as a MNN on M (32) where the filters h(L)
are a-FDT [cf. Definition 5], «/A1-FRT [cf. Definition 9],
Aj-Lipschitz [cf. Definition 6] and Bj-integral Lipschitz
[cf. Definition 10]. Consider a deformation on M as 7:
M — M where dist(z,7(x)) <€ and Jy(7) =1+ A, with
ALl <e€ for all x € M and € < min(a/A1, ,2). Under
Assumptions 1 and 2 it holds that

|®(H, L, f) = (M, L', f)llL2(r) = O fllL2(m)- (35)

Together, Theorem 1 and Theorem 4 imply that MNNs are
stable to the manifold deformations v introduced in the be-
ginning of this section. This is because these deformations
spawn a perturbation of the LB operator that consists of both
an absolute and a relative perturbation. For stability to hold,
the filters that make up the layers of the MNN need to be
a-FDT [cf. Definition 5], 7-FRT [cf. Definition 9], Lipschitz
[cf. Definition 6] and integral Lipschitz [cf. Definition 10].
We can propose an easier special case to relate « and 7 by
utilizing the spectrum property of LB operator. By setting the
a-FDT filter with a =\, eigenvalues \;, Aiy1 € Ag(a)
would lead to A;, i1 € A;(7) due to the fact that

Aiv1 — N Sa=9A <A, (36)

with A; indexed as the smallest eigenvalue in the spectrum.
The requirement that the filter be a-FDT can be removed as
long as A\; > 0 and o = Ay, since a y-FRT filter is always y\; -
FDT, i.e. a-FDT.

V. DISCUSSION

Stability vs. discriminability tradeoff. In both stability the-
orems for manifold filters (Theorems 2, 3) and in the stability
theorem for MNNs (Theorem 4), the stability bounds depend
on the frequency partition threshold (« or 7), the number of
total partitions (N or M) and the Lipschitz continuity con-
stant (A, or By). The frequency partition threshold and the
number of partitions have a combined effect on stability. As
indicated by Definitions 4 and 8, a larger frequency threshold
leads to a smaller number of singletons, as eigenvalues that
would otherwise be separated for small thresholds end up being
grouped when the threshold is large. While a large frequency
threshold results in a larger number of partitions that contain
more than one eigenvalue, the total number of partitions (/V
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or M) either stays the same or decreases because the number
of eigenvalues does not exceed the number of partitions [cf.
Proposition 2 or 3]. Thus, a larger frequency threshold and a
smaller number of partitions both lead to a smaller stability
bound. Simultaneously, a large frequency threshold makes the
spectrum separated more sparsely. Therefore, a large number
of eigenvalues are amplified in a similar manner, which makes
the filter function less discriminative. Considering in the limit, if
the frequency threshold goes to infinity, all the eigenvalues tend
to be grouped and the filter would not discriminate the whole
spectrum. This would lead to a very stable filter but there is
no discriminability at all. The Lipschitz constant (A, or By,)
affects stability and discriminability in similar ways. Smaller
Lipschitz constants decrease the stability bound, but lead to
smoother filter functions giving similar frequency responses to
different eigenvalues. Hence, in both manifold filters and MNNs
we observe a trade-off between stability and discriminability.
Nevertheless, in MNNSs this trade-off is alleviated due to the
presence of nonlinearities as discussed below.

Pointwise nonlinearity. As demonstrated by Propositions 2
and 3, large eigenvalues of LB operator tend to be grouped
together in one large group and share similar frequency re-
sponses. This is part of the reason why manifold filters have
a stability-discriminability tradeoff, which implies that they
cannot be stable and discriminative at the same time. However,
in MNNs this problem is circumvented with the addition of
nonlinearities. Nonlinearities have the effect of scattering the
spectral components all over the eigenvalue spectrum. In the
MNN, they mix the frequency components by spilling spectral
components associated with the large eigenvalues that tend to
be very close onto the smaller eigenvalues that could be more
separated, where they can then be discriminated by the manifold
filters in the following layer. This is consistent with the role of
nonlinear activation functions in graph neural networks (GNN5s)
[20], which can be see as instantiations of MNNs on discrete
samples of the manifold as further discussed in Section VI.

Comparison with graphons. The graphon is another infinite-
dimensional model that can represent the limit of convergent
sequences of graphs, and a series of works have proved sta-
bility of graphon neural networks and the transferability of
GNNs sampled from them [24], [26], [27], [28], [39]. Manifolds
can represent the limits of relatively sparse graphs including
e-graphs and k-NN graphs [29]. While graphons can also be
seen as the limit model of relatively sparse graphs [28], em-
bedded manifolds in high-dimensional spaces are more realistic
geometric models with physical interpretations in a number
of application scenarios, such as point clouds, 3D shape seg-
mentation and classification. Other important differences are
that (i) the stability analysis on graphon models in [25], [39]
focuses on deformations to the adjacency matrix of the graph,
which can be translated directly as perturbations of the graphon
operator, and that (ii) in the case of graphons, only an absolute
perturbation model makes sense since given that the graphon
spectrum is bounded a relative perturbation can always be
bounded by an absolute perturbation. Meanwhile, deformations
to the manifold domain translate into a combination of absolute
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and relative perturbations of the LB operator, and the fact that
the LB operator spectrum is unbounded makes the effects of ab-
solute and relative perturbations distinct, especially in the high-
frequency domain.

VI. FROM MANIFOLD NEURAL NETWORKS TO GRAPH
NEURAL NETWORKS

MNNss are built from manifold convolutional filters (Defini-
tion 1) operating on a continuous manifold and over an infinite
time horizon. This makes it impractical to implement directly
the architecture described by (32) in applications. In this sec-
tion, we discuss how MNNSs are implemented in practice over a
set of discrete samples from the manifold in a finite and discrete
time frame.

A. Discretization in the Space Domain

In practice, the explicit form of the manifold and of its LB
operator are unknown. What we typically have access to is
a point cloud representation of the manifold, i.e., a discrete
set of sampling points. From these points’ coordinates, the
structure of the manifold is approximated by a geometric or a
nearest neighbor graph [29], [40], [41]. The LB operator is then
approximated by the graph Laplacian, which can be shown to
converge to the LB operator as the number of sampling points
grows [29], [40].

Explicitly, suppose that X = {x1,23,...,2,} is a set of n
points sampled i.i.d. from measure ;2 of manifold M, which
is embedded in RN. We can construct a complete weighted
symmetric graph G,, by taking the sampled points to be the
vertices of the graph and setting the edge weights based on
the Euclidean distance between pairs of points. Specifically, the
weight w;; associated with edge (4, j) is given by

1 1 e
o (lzzz )

Yt (At )2 it

where ||z; — x| is the Euclidean distance between points x;
and z; while ¢, is a parameter associated with the chosen
Gaussian kernel [41]. The adjacency matrix A,, € R™*"™ is thus
defined as [A,,];; = w;; for 1 <4, j < n and the corresponding
graph Laplacian matrix L,, [42] is given by
L, =diag(A,1) — A,,. (38)
We interpret L,, the Laplacian operator of the constructed
graph G,,. Similarly, we define a uniform sampling operator
P, : L*(M) — L*(G,,) to sample manifold signals. Given a
manifold signal f, we can use operator P,, to sample graph
signals x,, € R" as
x, =P, f with [x,,]; = f(z;), x; €X, 39)
where the i-th entry of the graph signal x,, is the manifold signal
f evaluated at the sample point x;.
In Section II-B, we have shown that the manifold filter h
is parametric with the LB operator £. Therefore, we can also
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parameterize h with the discrete graph Laplacian operator L,,,
which is written as,

Zn :/ iz(t)e_tL“dtxn =h(L,)x,, Xn, 2z, €R", (40)
0

where z,, the output of the filter, is now a discrete graph
signal. By cascading these discrete filters operated on graph
G, and pointwise nonlinearities layer after layer, we can then
approximate the MNN on G, as

Fi1

xP=o [ > hL,)xL, |, 1)
qg=1

where h}“(L,,) maps the ¢-th feature in the [ — 1-th layer to
the p-th feature in the [-th layer, 1 < g < F;_; and 1 <p < F},
and Fj denotes the number of features in the {-th layer (we have
dropped the subscript n in xj and x; ; for simplicity). After
gathering the filter functions in the set H, this neural network
can be represented more succinctly as ®(H, L,,, x).

Equation (41) is a consistent approximation of the MNN
because, as n goes to infinity, the discrete graph Laplacian
operator L,, of the graph G, converges to the LB operator £
of the manifold M, and the sampled graph signal x,, converges
to the manifold signal f [41]. These facts combinely imply that
the output of the neural network on the graph G,, converges to
the output of the neural network on the continuous manifold as
stated in the following.

Proposition 5: Let X = {x1, 23, ...x, } be n points sampled
i.i.d. from measure 1 of d-dimensional manifold M C RN, with
corresponding sampling operator P,, (39). Let G,, be a discrete
graph approximation of M constructed from X as in (37) with
t, =n~ V(4249 and ¢ > 0. Let ®(H, -, -) be a neural network
parameterized either by the LB operator £ of the manifold M
or the graph Laplacian operator L,, of G,, with the filters in H
satisfying Definition 5 and 6. It holds that

'nh~>nc}o ||¢(H7 L7L7 Pn.f) - PTL@(Ha ‘Ca f)HLQ(Gn) = 07 (42)

with the limit taken in probability.
Proof: See Section B in supplementary material. 0
This proposition provides theoretical support to state that
neural networks constructed from the discrete Laplacian L,
converge to MNN and thus can inherit the stability properties
of the MNN.

B. Discretization in the Time Domain

In order to learn an MNN (32), we need to learn the manifold
convolutional filters hf 9. This means that we need to learn

the impulse responses ;L(t) in Definition 1. However, learning
continuous functions h is computationally infeasible, so we
sample h over fixed intervals of duration T and parameterize
the filter with coefficients hy, = h(kTs), k=0,1,2.... Setting
the sampling interval to 75 = 1 for simplicity, the discrete-time
manifold convolution can be written as

h(L)f(x) = hpe * f(x) (43)
k=0
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where {hy}7° , are called the filter coefficients or taps.

Yet, learning (43) is still impractical because there is an
uncountable number of parameters hy. To address this, we fix
a time horizon of K time steps and rewrite (43) as

K—1
h(L)f(x) = hxe * f () (44)
k=0
which can be seen as a finite impulse response (FIR) filter with
shift operator e ~*. Indeed, the frequency response of this filter
[cf. Proposition 1] is given by

R K-—1
h(A) = he .
k=0

Combining (40) and (44), we can bring the discretization over
the spatial and time domains together to rewrite the convolution
operation on the discretized manifold and in the discrete-time
domain, explicitly,

(45)

K-1
z, = h(L,)x, = Z hpe Flnx,,. (46)

k=0
Equation (46) recovers the definition of the graph convolution
[6] with graph shift operator e ~Y». This means that in prac-
tice we implement MNNs as graph neural networks (GNNs).
Therefore, the stability behavior of the GNN can be seen as a
proxy for the stability behavior of the MNN. We will leverage
this idea in the numerical experiments of Section VII.

Remark 2: We analyze the convergence of GNNs to MNN5s

when graphs are constructed based on uniformly sampled points
from the manifold in Proposition 5. The convergence holds
when GNNs and MNNs share the same filter parameters while
the filter functions are continuous in the time domain. We dis-
cuss the discretization of manifold filters in the time domain
from a practical aspect that neural networks are usually trained
and operated in digital systems with digital filters.

VII. NUMERICAL EXPERIMENTS

Dataset. We evaluate our MNN stability results on the Mod-
elNet10 [43] classification problem. The dataset contains 3991
meshed CAD models from 10 categories for training and 908
models for testing. For each model, 300 points are uniformly
randomly sampled from all points of the model to form the
point cloud. Each point is characterized by the 3D coordinates
as features. We formulate the problem by modeling a dense
graph neural network model to approximate MNN. Each node
in the graph can be modeled as the sampling point and each edge
weight is constructed based on the distance between each pair
of nodes. In this work our goal is to identify the CAD model for
chairs as is illustrated in Fig. 3 with the models for chair labeled
as 1 and the others as 0. We deform the underlying manifold
structure by adding random perturbations to the coordinates
of the sampling points. By comparing the differences of the
classification error rates, we aim to show that MNNs with
Lipschitz continuous and integral Lipschitz continuous mani-
fold filters are stable via looking into the performance of the
approximated GNNss.
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Fig. 3.

TABLE 1
CLASSIFICATION ERROR RATES FOR MODEL ‘CHAIR’ IN THE
TEST DATASET. AVERAGE OVER 5 DATA REALIZATIONS.
THE NUMBER OF NODES IS n = 300

Architecture Error Rates

GNNI1Ly 8.04% + 0.88%
GNN2Ly 4.30% + 2.64%
GFILy 13.77% £ 6.87%
GF2Ly 12.22% £ 7.89%

Neural network architectures. We build dense graphs to
approximate the point cloud models. We use the coordinates of
each point as node features. By connecting a point with all the
other points in the point cloud, the edge weight is defined based
the distance between every two points and a Gaussian kernel.
The Laplacian matrix is calculated for each input point cloud
model. We implement different architectures, including Graph
Filters (GF) and Graph Neural Networks (GNN) with 1 and
2 layers, to solve the classification problem. The architectures
with a single layer contain Fjy =3 input features which are
the 3d coordinates of each point, F; = 64 output features and
K =5 filter taps. While the architectures with 2 layers has
another layer with F, = 32 features and 5 filter taps. We use
the ReLU as nonlinearity. The learned graph filters are not
regularized in architectures with ‘NoPel” while graph filters in
the other architectures are both Lipschitz and integral Lipschitz.
We approximate the spectrum partitions with the continuous as-
sumptions of the filter functions. All architectures also include a
linear readout layer mapping the final output features to a binary
scalar that estimates the classification.

Discriminability experiment. We train all the architectures
with an ADAM optimizer [44] with learning rate set as 0.005
and decaying factors as 0.9, 0.999 by minimizing the entropy
loss. The training point cloud models are divided in batches of
10 over 40 epochs. We run 5 random point samplings for all the
architectures and we show the average classification error rates
across these realizations as well as the standard deviation in
Table I. We can observe that with the use of non-linearity, Graph
Neural Networks perform better compared with Graph Filters.
Architectures with more layers learn more accurate models
which also leads to better performances.

Stability experiment. We test the same trained Graph Neural
Networks and Graph Filters with 2 layers on perturbed test point
cloud models with different perturbation levels. We perturb the
test point clouds by adding a Gaussian random variable with
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Point cloud models with 300 sampling points in each model. Our goal is to identify chair models from other models such as toilet and table.

—— GNNeLy
—— GF2Ly

e e e e
=Y =3 > =
= S 2 =3

Difference of Error Rates

e
=
S

Fig. 4.  Difference between error rates on the original test dataset and the
deformed one.

—— GNN2Ly

—}— GNN2LyNoPel
——GraLy
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0.20q
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Difference of Error Rates
=

0.00

0.0 0.1 0.2 0.3 0.4 0.5
€

Fig. 5.  Difference between error rates on the original test dataset and the
deformed one.

mean e and variance 2e to each coordinate of every sampling
point, which can be seen as a deformation of the underlying
manifold. We measure the stability by computing the difference
between the error rates achieved based on the original test point
cloud models and the perturbed ones. In Fig. 5, we see that this
difference increases when the perturbations become larger, but
overall the differences are small. We also observe that Graph
Neural Network is more stable compared with Graph Filters.
Furthermore, the Graph Neural Networks and Graph Filters
with Lipschitz continuous and integral Lipschitz continuous
filters are more stable. Both of these observations validate our
stability results.

To further verify the discriminability under perturbations,
we trained and tested the architectures with perturbed dataset.
We can see from Table II that both GNN and GF can identify
the chair model with small error rates while the error rates grow
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TABLE II
CLASSIFICATION ERROR RATES FOR MODEL ‘CHAIR’ WITH PERTURBED
TRAINING AND TEST DATASET. AVERAGE OVER 5 DATA REALIZATIONS.
THE NUMBER OF NODES IS n = 300

Architecture e=0.2 0.4
GNN2Ly 7.37% + 1.43% 7.71% + 3.96%
GF2Ly 13.76% + 6.82% 13.54% + 7.16%
Architecture e=0.6 0.8
GNN2Ly 8.04% + 2.83% 11.01% =+ 6.33%
GF2Ly 14.76% + 5.67% 16.04% =+ 6.34%
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o
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Difference of Error Rates

o
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| | | |
I | I I

100 200 300 400 500 600 700 800
Number of Nodes

Fig. 6.  Difference between error rates on the original test dataset and the
deformed one on growing size of graphs.

slightly with the increase of perturbation levels. GNNs still
outperform GFs in discriminablity with the help of nonlinearity.

We further look into the stability of GNNs with respect to the
size of the graph with different perturbation levels. We study the
stability of a 2-layer GNN with Lipschitz and integral Lipschitz
continuous filters on graphs with a maximum of n = 896 points.
Then we randomly sub-sample to generate graphs with the num-
ber of nodes n = 128, 256, ...,896. We plot the difference of
the error rates achieved by the GNN between the original point
cloud models and the perturbed point cloud models. The posi-
tion of each point in the perturbed cloud is displaced by €/ ¢/n.
Since this is a point cloud in three dimensions, the normaliza-
tion by 1//n is such that the gradient of the deformation stays
constant across different sub-samplings. In Fig. 6, we show the
stability of a 2-layer GNN with Lipschitz and integral Lipschitz
continuous filters as we vary the number of points in the point
cloud. We observe from the figure that the stability bound does
not grow with the number of nodes. This experiment shows
that MNN stability bounds are a more accurate model of the
behavior of GNNs when graphs are sampled from a manifold
while generic stability bounds predict a stability error that can
grow with \/n [20]. We emphasize that this growing stability
bounds of [20] are due to the fact that the graph and perturba-
tion model are generic. Our bounds are tighter with a specific
assumption on the graph — it is sampled from a manifold — and
the perturbation model — it is a bounded manifold deformation
with bounded gradient norm.

VIII. CONCLUSION

In this paper, we have defined manifold convolutions and
manifold neural networks. We prove that the deformations on
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the embedded submanifolds can be represented as a form of
perturbations to the Laplace-Beltrami operator. Considering the
infinite dimensionality of LB operators, we import the definition
of frequency difference threshold filters and frequency ratio
threshold filters to help separate the spectrum. By assigning
similar frequency responses to the eigenvalues that are close
enough, these filters can be proved to be stable under absolute
and relative perturbations to the LB operator respectively with
Lipschitz continuous assumptions. While the manifold filters
need to trade-off between the stability and discriminability.
MNNs composed with layers of manifold filters and pointwise
nonlinearities can be proved to be stable to absolute and rel-
ative perturbations to the LB operators. While the frequency
mixing brought by pointwise nonlinearity can help with the
discriminability. We conclude that the MNNs are thus both
stable to deformations and discriminative. We also show the
discretizations of MNNSs in both spatial and time domains to
make our proposed MNNs implementable. We finally verified
our results numerically with a point cloud classification prob-
lem with ModelNet10 dataset.

APPENDIX
A. Proof of Theorem 1

We first introduce the concepts of the tangent map and the
Jacobian matrix [45].

Definition 11: Let M be the manifold and 7 : M — M. For
any x € M, we define the tangent map to be the linear map

T s ToM = Ty M. (47

When 7 is a smooth map and M is an embedded manifold
in RN, for z € M, the tangent space 71, M can be canonically
identified with RN, using the basis

0 0 0
S B . T, M, 48
oxl .’IJ’ 0x2 |z OxN |z < M ( )
similarly the tangent space T’ (,y M is equipped with the basis
0 0 0
a1 ' o AN GTTIM7 (49)
Oyt @) 0y L) Oy by T
and is just the Jacobian matrix J,(7) of T at x,
N .
0 or? 0
T ((“)xl m) j; oxt lx (“)yJ 7(z) (50
where g;J ) is the entry of the Jacobian matrix [J,(7)]; ; and

77 is the j-th component of 7.

With the tangent map 7., as the linear map between the
tangent spaces T, M to T ;)M and based on the definition
of £’ in equation (16) together with the definition of Laplace-
Beltrami operator in (5), the operation carried out on the de-
formed manifold data f can be written as

—L'f(zx) = (V- V)f(r(x))
= (Jo (7)Y, - T (1) V) f(7()).

619}
(52)

The equality in (52) results from the chain rule of gradient oper-
ator where V; is denoted as the intrinsic gradient around 7(z)
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in the tangent space 7T (,,) M. By replacing J(7) = I + A, the

inner product term, (52) can be rewritten as

Jo(T) 'V T ()Y, =V, -V, +2(ATV, - V,)

+ ATy, ATV (53)
With £ = -V, - V., the perturbed operator is
L—L =2ALv,.v,)+Alv, - ATV, (54)

From (54) to (55), we extract the relative term and use A to
represent the compliment terms. This leads to E = ||A,[|% +
2||Az||F, as the relative perturbation term, the norm of which
is bounded by the leading term as O(e). The norm of the
compliment term therefore can be written as

||A|| = HE(VT . VT) - 2(sz7 . v‘r) - Agv‘r . Agvr”
(56)
< H2HA1HF(VT : VT) - 2(AZVT : VT)H

which can be also bounded by the leading terms as O(e) com-
bining with the boundedness of the gradient field.

B. Lemmas

Now we need to include two important lemmas to analyze
the influence on eigenvalues and eigenfunctions caused by
the perturbation.

Lemma 1: [Weyl’s Theorem] The eigenvalues of LB opera-

tors £ and perturbed £ = £ + A satisfy
INi — X < ||A]|, foralli=1,2... (58)

Proof of Lemma 1: The minimax principle asserts that

Ai(£)= max AL, T]= max min  (Lu,u).
codimT=i—1 codimT <i—1weT,|ul|=1
(59)
Then for any 1 < ¢, we have
. / — 3
/\Z <£ ) codigzl%}éi—l ueﬁ\lﬁ\*lqﬁ * A)U7 u> (60)
= 61
... ue%rhlu”— ((Lu,u) + (Au,u))  (61)
>
- (,Odlgll%}él 1 uG’II’an?H 1 <£U, U> + )\I(A)) (62)
=M(A) + codimiSio1 uezrﬂflulﬁ\:1<£u’ u) 63)
=Xi(L) + A1 (A). (64)

Similarly, we can have \; (L’) i (L) + maxy A (A). This

leads to A1 (A) < A\ (L) — X\i(L£) < maxy A (A). This leads to
the conclusion that:

X=Xl < [IA]l- (65)

O

To measure the difference of eigenfunctions, we introduce
the Davis-Kahan sin 6 theorem as follows.
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Lemma 2: [Davis-Kahan sin 6 Theorem] Suppose the spectra
of operators £ and L’ are partitioned as o J¥ and w2
respectively, with o ()X =0 and w (| Q = ). Then we have

I = OFe(o)l  71E - L
| Be (o) - <5
(66)
where d satisfies mingcy yeco |2 — y| > d and minges, yeo, |2—
yl = d.
Proof of Lemma 2: See [46]. O
Lemma 3: The eigenvalues of LB operators £ and perturbed
L' =L+ EL with ||[E|| < e satisfy

—Ep (W) <3

[ANi — X <€\, foralli=1,2... 67)
Proof of Lemma 3: With the assumption that £’ = £ +
EL, we have
N(L+EL) = Codig}%)éi_l ue%ﬁ‘lil“:l((/l +EL)u,u) (68)
- codig}%}éz‘A ueir“1,1|\11?\|=1 ((Cu, u) + (ELu, u))
(69)
=N(L) + min  (ELu,u).
codzmT<1 1uweT,||ul|=1
(70)
For the second term, we have
(ELu, u)| < (|E||L]u,u) < GZ IN(L)]|&]* = e(|L]u, u)
(71)
Therefore, we have
by EL) < \;
(E ™ C) - (ﬁ) R codzrnrmlT<z 1ueT, HuH 1<|£‘U >
= Xi(L) + €[N (L)1, (72)
M(L+EL) >N (L) — el\i(L)], (73)
(L) — el Ni(L)] S M(L+EL) < M(L) + e|Mi(L)], (74)
which concludes the proof. |

C. Proof of Theorem 2

In the following, we denote (-,-)r2(nq) as (-,-) and
| - lz2(aq) as || - || for simplicity. We start by bounding the norm
difference between two outputs of filter functions on operators
L and £ defined in (15) as

[h(£)f = h(£) S| =
DB @ = DR @)

We denote the index of partitions that contain a single eigen-
value as a set Cg andAthe rest as a set KC,,,. We can decompose
the filter function as 2(A) = h(O(X) + 37, hD(A) with

. (75)

h()\) — hC) AeA
h(O)(x\):{ W= & MO Aelbulallec, o0
0 otherwise
}ALA(C) A€ [Ag(a)kek,
KON =¢ A\ AeA(a) 7
0 otherwise
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where C) is some constant in A;(«). We can start by analyzing
the output difference of h(°)(\). With the triangle inequality,
the norm difference can then be written as

O N)(f. di) s — KON, b7 b

i} KOO (f. $:): = KOO (. 6)
+HO ), @)D~ KON, 9 78)
2 WO, @) bs = KOS, )87
* ih(o)(/\iﬂfﬁbtb’ RO N (f, ¢y &, (79)

<[ 2on00) <<f, $i)b; — (f,0:) 0, + ([, )91
— (. ¢ ) Z RO ) = RO N))(f, @)
- (80)
Zh(% i)(@; — 8%)
OO0, i — b7) b
+ Z(hm)m WO f, b7) 8 @1)
i=1

For the first term in (81), we employ Lemma 2 and therefore
we have o = \; and w = AL, for A\; € [Ax(a)]gex. we can have

H¢ ¢H_7T Al WL

—€ 2a-—
Here d can be seen as d = miny, ca, (a),x; €A, () k1 [N — )\;\
Combined with the fact that [A; — \;| >« and [\; — \)| <e
forall \; € Ap(a),\j € Aj(v), k # [, we have d > o — €. With
Cauchy-Schwartz inequality, we have the first term in (81)

(82)

bounded as
SO0 b (¢ — @)
i=1
Z M @l ¢ — @] < )Hfll (83)
The second term in (81) is bounded as
Z WO b — &)
Z B2 )llle; — ilIlf ] < ( ) Sl 84y
These two bounds are obtained by noting that |2(?) (\)| < 1 and

RO (X\) =0 for A € [Ax(@)]rex,, - The number of eigenvalues
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within [A(a)]kek. is denoted as Ns. The third term in (81)
can be bounded by the Lipschitz continuity of h combined
with Lemma 1.

Z (RO(\) = KOS, Dl &,
sZm(O)(A) RO\ 2(f, o0
<ZA NP DR < A2 FI2 (85)

Then we need to analyze the output difference of AV (), we
can bound this as

[00c2)r =m0
((Cy) + 8)f — (W(Cy) —

where h) (£) and h) (£') are manifold filters with filter func-
tion h(Y(\) on the LB operators £ and £’ respectively. Com-
bining the filter functions, we can write

(86)

0)1f|| < 20171,

Ih(L)f —h(L)f|
L)f+ Z hO (L) f =0 @)= h(”(ﬁ’)f‘
ek, ek

(87)

< WL f =n@ L)+ > bV (L) f —n® (LS|

ek,
(83)
N e

—IIf1l+ Anell FIl +2(N = NS £ (89)

which concludes the proof.

D. Proof of Theorem 4

To bound the output difference of MNNs, we need to write
in the form of features of the final layer

||§)(Ha£af) —Q(H,El,f) = (90)

Fr

’

- 1
g=1

The output signal of layer | of MNN ®(H, L, f) can be
written as

i

Z hpq

Similarly, for the perturbed £’ the corresponding MNN is
®(H, L', f) the output signal can be written as

L) fiy oD

Fiy

Z WL f9, (92)
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The difference therefore becomes

(F|
Fi_4 Fi1

=lo{ d_n o)y | o | Do nULH s |-
g=1 q=1

With the assumption that o is normalized Lipschitz, we have

Fi_1
1f7 = £7) < th DR (VAL V0¥ At ()
Fi_y ,
SN | VoV VLIV VAN (RCE)
qg=1

By adding and subtracting h{?(£’) f" , from each term, com-
bined with the triangle inequality we can get

thq (L) iy =By (L) fllq1H
< thq fl 1~ hpq /)flq_lH
+ Hhm )il hfq(ﬁl)fl,le (96)

The first term can be bounded with (89) for absolute
perturbations. The second term can be decomposed by
Cauchy-Schwartz inequality and non-amplifying of the filter
functions as

Zcperenfl 1H+Z‘|fz 1 fl s O

where C)., representing the constant in the stability bound of
manifold filters. To solve this recursion, we need to compute
the bound for | f/||. By normalized Lipschitz continuity of ¢
and the fact that o(0) = 0, we can get

Fi_y Fiy
IPIN< ] wPiL)f, <Z||hpq )AL
q=1

Fiy

-1
< Z A< 11 FvZIIqu

I'=1 qg=1

(98)

Insert this conclusion back to solve the recursion, we can get

-1 Fo
— fi?|| < 1Cpere (H Fz> SoIsl o ©9)
=1 q=1
Replace [ with L we can obtain
|®(H, L, f) — ®(H, L', f)]|
<§:<M%W<IIE>§:WW> (100)
=1

With Fy = F;, =1 and F;
|®(H, L, f) — ®(H, L', f)|| < LE* ' Cperel £,

= Fforl <[<L — 1, then we have
(101)

which concludes the proof.
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E. Proof of Theorem 3

The decomposition follows the same routine as (75) shows.
By decomposing the filter function as (102) and (103), the norm
difference can also be bounded separately.

AN — S A(C) AelA
h(O)()\):{ ) le% (@) A€ [Au(y)]kex. (10
0 otherwise
WC) A e [()lkex,
MO =4 k() Aeh() (103)
0 otherwise

where now h()\) = (O (\) + D lek,, RO () with K, defined
as the group index set of singletons and KC,,, the set of partitions
that contain multiple eigenvalues. For manifold filter h(®) (L)
with filter function A(°)(\), the norm difference can also be
written as

SO, S — ROV S,
=1
< _Z KON, di) (¢ — )

O\, p; — &)

Z (RO (A

The difference of the eigenvalues due to relative perturbations
can be similarly addressed by Lemma 3.

The first two terms of (104) rely on the differences of eigen-
functions, which can be derived with Davis-Kahan Theorem in
Lemma 2, the difference of eigenfunctions can be written as

[ELS; | = [[EAid;[| = Ail[Eg; || < Ai[|El[| ;| < Aie.
(105)

— KON))(f, )¢} (104)

The first term in (104) then can be bounded as

ih(o)()‘
Z RO

¢:)(p; — 1)

Y
s oallle =il < 32 5171 (106)

i€
Because di = min{|\; — N[, [\ — Nica], [N —
Aily [Nix1 — AL|}, with Lemma 3 implied, we have
IAi = N1l = (A = (L4 €)Xzl (107)
A = Ximt| = [(L = A — A1l (108)
N1 = Al > 1(1 = ) Aip1 — A, (109)
Nit1 = Al > i1 = (L + Al (110)

Combine with Lemma 3 and Definition 8, d; > ey + v — €

(1= e)Xiv1 — Nl = [y Ai — eXiga] (111)
B P2 = S Y S P

/\i €
> Xy — €+ 7e) (113)
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This leads to the bound as

i L(0)
i=1

The second term in (104) can also be bounded as

Z h(O)
< Z RO W —ct9

which similarly results from the fact that |h(®)(\)| < 1 and
RO (X) =0 for A € [Ax(7)]kex,, - The number of eigenvalues
within [Ax(7)]kek, is denoted as M.

The third term in (104) is:

f.oi)(é; — #7)

Mre
<5 171 114

v — €+ 7€)

)f i — b0

Mme

Dlie: — illllfll <

If1l, (115)

0o 2

> (O ) = KOS )

i=1

> 2
Z( ABfB%Iﬁ) (f, #1)? < @B’LE) I£1I%, (116)

with the use of Lemma 3 and Definition 10.
Then we need to analyze the output difference of 2() ().

Hh(l) (L) f_h(l)(ﬁl)fH
<||ic) + 011 = (e - o)1 < 2011511

Combine the filter function, we could get

(117)

Ih(L)f —h(L')f]|
=|p L) f+ > n(©L)F-nO (L) =D nOL)f
lekm lekm
(118)
< [hOL) =L £+ D WO L) F-h D (L) |
K
' (119)
Mme QBhe
< s M+ Sl 200 = M)al Al (120)

which concludes the proof.

FE. Definition 1 and Convolutional Filters in Continuous Time

The manifold convolution in Definition 1 can also be mo-
tivated with a connection to linear time invariant filters. This
requires that we consider the differential equation

L’“(;t’ 2 = %u(m,t).
This is a one-sided wave equation and it is therefore not an
exact analogous of the diffusion equation in (6) — this would
require that the second derivative be used in the right of (121).
The important observation to make here is that the exponen-
tial of the derivative operator is a time shift so that we can
write u(z,t) = e!9/9% f(2) = f(x —t). This is true because
e!9/92 f(g) and f(x — t) are both solutions of (121). It then

(121)
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follows that Definition 1 particularized to (121) yields the con-
volution definition

glz) = /OO h(t)et?/9% f(x) dt. = /OO h(t)f(z — t)dt.
’ ’ (122)

This is the standard definition of time convolutions.

The frequency representation result in Proposition 1 holds
for (122) and it implies that standard convolutional filters in
continuous time are completely characterized by the frequency
response in Definition 2. The more standard definition of a fil-
ter’s frequency response as the Fourier transform of the impulse
response iz(t) — as opposed to the Laplace transform we use in
Definition 2 — suffices because complex exponentials ¢/* are an
orthonormal basis of eigenfunctions of the derivative operator
with associated eigenvalues jw.
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