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Abstract—The paper defines and studies manifold (M) con-
volutional filters and neural networks (NNs). Manifold filters
and MNNs are defined in terms of the Laplace-Beltrami op-
erator exponential and are such that graph (G) filters and
neural networks (NNs) are recovered as discrete approximations
when the manifold is sampled. These filters admit a spectral
representation which is a generalization of both the spectral
representation of graph filters and the frequency response of
standard convolutional filters in continuous time. The main
technical contribution of the paper is to analyze the stability
of manifold filters and MNNs to smooth deformations of the
manifold. This analysis generalizes known stability properties of
graph filters and GNNs and it is also a generalization of known
stability properties of standard convolutional filters and neural
networks in continuous time. The most important observation
that follows from this analysis is that manifold filters, same as
graph filters and standard continuous time filters, have difficulty
discriminating high frequency components in the presence of
deformations. This is a challenge that can be ameliorated with
the use of manifold, graph, or continuous time neural networks.
The most important practical consequence of this analysis is to
shed light on the behavior of graph filters and GNNs in large
scale graphs.
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manifolds, manifold filters, manifold neural networks, manifold
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author: Zhiyang Wang.)

Zhiyang Wang and Alejandro Ribeiro are with the Department of Electrical
and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
USA (e-mail: zhiyangw@seas.upenn.edu; aribeiro@seas.upenn.edu).

Luana Ruiz is with the Department of Applied Mathematics and
Statistics, Johns Hopkins University, Baltimore, MD 21211 USA (e-mail:
lrubini1@jhu.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSP.2024.3378379, provided by the authors.

Digital Object Identifier 10.1109/TSP.2024.3378379

I. INTRODUCTION

G
RAPH convolutional filters [4], [5], [6] and graph neural

networks (GNNs) [7], [8], [9] have become the tool of

choice for signal and information processing on graphs, e.g.,

[10], [11], [12], [13]. In several applications, graphs can be

considered as samples of a manifold. This is sometimes quite

explicit as in the case of, e.g., point clouds [14], [15] and

sometimes somewhat implicit as in the case of, e.g., wireless

communication networks [10], [11]. In this context we can think

of convolutions on graphs and GNNs as discretizations of their

manifold counterparts. This is important because one can often

gain valuable insights about discrete (graph) signal processing

by studying continuous (manifold) signal processing.

The main technical contribution of this paper is analyzing

the stability of manifold filters and manifold neural networks

(MNNs) to smooth deformations of the manifold. Prior to de-

veloping stability analyses we define manifold convolutional

filters and frequency responses that are consistent with graph

convolutional filters and frequency responses.

Manifold Filters. Consider a manifold with Laplace-Beltrami

(LB) operator L and formulate the corresponding manifold

diffusion equation with respect to an auxiliary time variable

t. For initial condition f(x), manifold diffusions generate the

time varying manifold function u(x, t) = e−tLf(x) in which

e−tL is the LB operator exponential (Section II-A). A manifold

convolutional filter h̃(t) then acts on the function f(x) as the

integral over time of the product of h̃(t) with the diffusion

sequence u(x, t) (Section II-B),

g(x) = (hf)(x) =

∫ ∞

0

h̃(t)e−tLf(x)dt. (1)

A manifold convolutional filter is such that we can re-

cover graph filters through discretization of the manifold and

discretization of the auxiliary time variable t (Section VI).

The reason for this connection is that graph filters are linear

combinations of the elements of the graph diffusion sequence

[4], [16], [17] and (1) defines manifold filters as linear com-

binations of the elements of the manifold diffusion sequence.

Manifold filters are also generalizations of standard time con-

volutions. This requires consideration of the wave equation on

the real line so that the exponential of the derivative operator

e−t∂/∂x appears in (1) (Appendix F).
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Frequency Response of Manifold Filters We define a filter’s

frequency response as

ĥ(λ) =

∫ ∞

0

h̃(t)e−tλdt. (2)

This definition is motivated by the fact that manifold convo-

lutions can be decomposed on separate spectral components

(Section II-C). Indeed, let φi be an eigenfunction of the LB

operator associated with eigenvalue λi. If [f̂ ]i = 〈f,φi〉L2(M)

and [ĝ]i = 〈g,φi〉L2(M) are projections of the functions f and

g in (1) on this eigenfunction, [ĝ]i depends only on [f̂ ]i and can

be written as [ĝ]i = ĥ(λi)[f̂ ]i (Proposition 1).

This definition of the frequency response of a manifold filter

generalizes the frequency response of a standard time filter.

This is because the definition in (2) is a Laplace transform,

which reduces to the Fourier transform of a filter’s impulse

response when restricted to the imaginary axis λ= jω. It is

also a generalization of the frequency response of a graph filter,

which is a z-transform [18].

Stability to Deformations. We establish stability of manifold

filters and MNNs with respect to domain deformations formally

defined as manifold diffeomorphisms. We consider a signal f
defined on a manifold M and the signal f ◦ τ made up of the

composition of f with a diffeomorphism. The signals f and

f ◦ τ are passed through the same MNN Φ. In this paper we

prove that if τ is ε-small and ε-smooth the respective MNN

outputs satisfy

‖Φ(f ◦ τ)−Φ(f)‖L2(M) =O(ε)‖f‖L2(M), (3)

provided that the manifold filters in the layers of the MNN

satisfy certain spectral properties (Sections III and IV).

The bound in (3) is a generalization of the standard convo-

lutional neural network (CNN) bound in [19], which studies

diffeomorphisms of the real line and its effect on convolu-

tional filter banks and CNNs. The bound is also a limit version

of the GNN bounds of [20] and related literature [21], [22],

[23], [24], [25]. As is the case of [19], [20], [21], [22], [23],

[24], [25] the bound in (3) holds when the frequency response

ĥ(λ) of the filters that make up the layers of the MNN have

decreasing variability with increasing λ (Section III). Thus,

stability requires layers with limited ability to discriminate high

frequency components and implies that one may expect multi-

layered MNNs to outperform filters in learning tasks in which

high frequency components are important (Section V).

Related Work and Significance. We focus on the stability

analysis of MNNs – the limit version of GNNs – because all

of the existing GNN stability results have bounds that grow

with the number of nodes in the graph [21], [24]. To overcome

this limitation, many works have studied neural networks on

graphons [25], [26], [27] and more general graph models with

variable sparsity [28]. Results in these settings are independent

of graph size – same as the results for a limit object presented

here. Manifolds can provide limit models for relatively sparse

graphs, i.e. ε-graphs and k-NN graphs [29]. Even if there ex-

ist other random graph models allowing to model moderately

sparse graphs (e.g., [28]), these models do not have the physical

interpretation of a manifold, which is often a better descriptor

of real-world domains. Of particular relevance to our paper is

the work on GNN transferability for graphs that are sampled

from a general topological space [30].

Organization. Section II introduces preliminary definitions

(Section II-A), defines manifold convolutions (Section II-B),

and introduces the spectral domain representation of manifold

filters (Section II-C). Section III studies the stability of manifold

filters to manifold deformations. It shows that a diffeomorphism

results in a perturbation of the LB operator that involves additive

and multiplicative terms (Theorem 1). It then goes on to study

the effect on manifold filters of additive (Section III-A) and

multiplicative (Section III-B) perturbations of the LB operator.

Section IV extends the analysis of manifold filter stability to

manifold neural networks and Section V discusses the implica-

tions of the results derived in Sections III and IV. Section VI

explains how to recover graph filters and GNNs from the dis-

cretization of a manifold. Section VII illustrates the results

of Sections III and IV with numerical examples. Section VIII

concludes the paper. Proofs are deferred to appendices and

supplementary material.

II. MANIFOLD CONVOLUTIONAL FILTERS

Consider a compact, smooth and differentiable d-dimen-

sional submanifold M⊂ R
N. For simplicity, in this paper we

use the words submanifold and manifold interchangeably, as-

suming the manifold M to always be embedded in R
N. This

embedding induces a Riemannian structure [31]. In turn, the

Riemannian structure allows defining a measure μ over the

manifold as well as a notion of length for smooth curves on

M. Given two points x, y ∈M, the length of the shortest curve

between x and y is denoted dist(x,y) and called the geodesic

distance between these points.

We consider the manifold M to be the support of data that we

represent as smooth real scalar functions f :M→ R. We call

these scalar functions manifold signals. We focus on manifold

signals that have finite energy, such that f ∈ L2(M). Since

L2(M) is a Hilbert space, it is equipped with an inner product

given by

〈f, g〉L2(M) =

∫

M

f(x)g(x)dμ(x) (4)

where dμ(x) is the d-dimensional volume element correspond-

ing to measure μ. Thus, the energy of the signal f is given by

‖f‖2L2(M) = 〈f, f〉L2(M).

A. Laplace-Beltrami Operator

On manifolds, differentiation is implemented by the intrinsic

gradient – a local operator acting on a neighborhood of each

point on the manifold that is homeomorphic to a d-dimensional

Euclidean space. This neighborhood contains all the vectors

tangent to M at x, which is called the tangent space of x ∈M
and is denoted as TxM. The disjoint union of all tangent

spaces on M is defined as the tangent bundle TM. Formally,

the intrinsic gradient is the operator ∇ : L2(M)→ L2(TM)
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mapping scalar functions f ∈ L2(M) to tangent vector func-

tions ∇f ∈ L2(TM), where L2(TM) is the Hilbert space of

vector fields over the manifold M. The tangent vector function

∇f(x) ∈ TxM indicates the direction of the fastest change of

manifold signal f at point x. The adjoint of the intrinsic gra-

dient is the intrinsic divergence, defined as div : L2(TM)→
L2(M). Interpreting the tangent vector field as the velocity field

of a fluid, the intrinsic divergence can be seen as a measure of

the net motion of the fluid [14].

The Laplace-Beltrami (LB) operator of a manifold M is de-

fined as the operator L : L2(M)→ L2(M) given by the func-

tion composition of the intrinsic divergence and the intrinsic

gradient. When considered in the local coordinates supported

on TxM [32], the LB operator can be written as

Lf =−div ◦ ∇f =−∇ · ∇f. (5)

Much like the Laplace operator in Euclidean domains (or the

Laplacian matrix, in the case of graphs [33]), the LB operator

measures the total variation of function f , i.e., how much the

value of f at a point deviates from local average of the values

of f in its surroundings [14]. Since the LB operator L, like

the gradient ∇, is a local operator depending on the tangent

space TxM of each point x ∈M, in the following we omit

this dependence for the ease of presentation by writing L= Lx

and ∇=∇x.

The LB operator plays an important role in partial differential

equations (PDEs), as it governs the dynamics of the diffusion

of heat over manifolds as given by the heat equation

∂u(x, t)

∂t
+ Lu(x, t) = 0. (6)

If u ∈ L2(M) measures the temperature over the manifold with

u(x, t) representing the temperature of point x ∈M at time

t ∈ R
+, equation (6) can be interpreted to mean that, at point x

on manifold M, the rate at which the manifold “cools down”

is proportional to the difference between the temperature of

x and the local average of the temperature of the points in

its neighborhood. With initial condition u(x, 0) = f(x) for all

x ∈M, the solution to this equation is given by

u(x, t) = e−tLf(x), (7)

which is the key support to implement the LB operator in the

definitions proposed later.

The LB operator L is self-adjoint and positive-semidefinite.

Considering that M is compact, the LB operator L has a real

positive eigenvalue spectrum {λi}∞i=1 satisfying

Lφi = λiφi (8)

where φi is the eigenfunction associated with eigenvalue λi.

The indices i are such that the eigenvalues are ordered in in-

creasing order as 0< λ1 ≤ λ2 ≤ λ3 ≤ . . . repeated according to

their multiplicity. In particular, for a d-dimensional manifold,

we have that λi ∝ i2/d as a consequence of Weyl’s law [34],

[35]. The eigenfunctions φi are orthonormal and form a gen-

eralized eigenbasis of L2(M) in the intrinsic sense. Since L is

a total variation operator, the eigenvalues λi can be interpreted

as the canonical frequencies and the eigenfunctions φi as the

canonical oscillation modes of M. This further allows us to

implement operator L in the spectral domain.

B. Manifold Filters

Time signals are processed by filters which compute the

continuous time convolution of the input signal and the filter

impulse response [18]; images and high-dimensional Euclidean

signals are processed by filters implementing multidimensional

convolutions [36]; and graph signals are filtered by computing

graph convolutions [6]. In this paper, we define a manifold filter

as the convolution of the filter impulse response h̃(t) and the

manifold signal f . Note that the definition of the convolution

operation, denoted as �M, leverages the heat diffusion dynam-

ics described in (7).

Definition 1 (Manifold filter): Let h̃ : R+ → R and let f ∈
L2(M) be a manifold signal. The manifold filter with impulse

response h̃, denoted as h, is given by

g(x) = (hf)(x) := (h̃ �M f)(x) :=

∫ ∞

0

h̃(t)u(x, t)dt, (9)

where h̃ �M f is the manifold convolution of h̃ and f , and

u(x, t) is the solution of the heat equation (6) with the initial

condition u(x, 0) = f(x).
In a slight abuse of nomenclature, in the following we will

use the terms manifold filter and manifold convolution inter-

changeably.

From Definition 1, we see that the manifold filter operates

on manifold signals f by (i) scaling the diffusion process (7)

starting at f by h̃ and (ii) aggregating the outcome of the scaled

diffusion process from t= 0 to t=∞.

Substituting (6) into the convolution definition in (9) yields

g(x) = (hf)(x) =

∫ ∞

0

h̃(t)e−tLf(x)dt= h(L)f(x). (10)

This alternative form uncovers the fact that the manifold convo-

lution is a map from functions f to functions g that is parametric

on the Laplacian L – i.e., manifold convolutions are completely

determined by the LB operator of the manifold. The exponential

term e−tL can be seen as a diffusion or shift operation akin to

a time delay in a linear time-invariant (LTI) filter [18], or as the

graph shift operator in a linear shift-invariant (LSI) graph filter

[6]. Indeed, if we consider the manifold M to be the real line,

the manifold filter defined in (10) recovers a LTI filter. If we

consider it to be a set of points connected by a geometric graph,

(10) recovers an LSI graph filter. We discuss these special cases

in detail in Appendix F and Section VI.

C. Frequency Representation of Manifold Filters

A manifold signal f ∈ L2(M) can be represented in the

frequency domain of the manifold by projecting f onto the LB

operator eigenbasis (8) as

[f̂ ]i = 〈f,φi〉L2(M) =

∫

M

f(x)φi(x)dμ(x), (11)

where we claim that f̂ is the frequency representation of the

corresponding signal with f =
∑∞

i=1[f̂ ]iφi.
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Frequency representations are useful because they help un-

derstand the frequency behavior of the manifold filter h(L).
To see this, we consider the frequency representation of the

manifold filter output g in (10), which is

[ĝ]i =

∫

M

∫ ∞

0

h̃(t)e−tLf(x)dtφi(x)dμ(x). (12)

Rearranging the integrals and substituting e−tLφi = e−tλiφi,

we can get

[ĝ]i =

∫ ∞

0

h̃(t)e−tλidt[f̂ ]i. (13)

The expression relating ĝ and f̂ is called the frequency response

of the filter h(L).
Definition 2 (Frequency response): The frequency response

of manifold filter h(L) is given by

ĥ(λ) =

∫ ∞

0

h̃(t)e−tλdt, λ ∈ (0,∞). (14)

An important consequence of Definition 2 is that, since ĥ(λ)
is parametric on λ, the manifold filter is pointwise in the fre-

quency domain. This can be seen by plugging (14) into (13),

and is stated explicitly in Proposition 1.

Proposition 1: Manifold filter h(L) is pointwise in the fre-

quency domain, which is written as

[ĝ]i = ĥ(λi)[f̂ ]i, i ∈ N
+ (15)

Definition 2 also emphasizes that the frequency response of a

manifold filter is independent of the underlying manifold. Note

that, in (14), ĥ(λ) is a function of an arbitrary scalar variable

λ. To obtain the frequency behavior of this filter on a given

manifold M, we need to evaluate ĥ at the corresponding LB

operator eigenvalues λi [cf. (8)]. If the manifold changes (or if

we want to deploy the same filter on a different manifold M′),

it suffices to reevaluate ĥ at λ′
i, i.e., at the eigenvalues of the

new LB operator L′.

III. STABILITY OF MANIFOLD FILTERS WITH RESPECT TO

MANIFOLD DEFORMATIONS

On the manifold M, we define a deformation as function

τ :M→M and the curvature distance between x and the

displaced τ(x) dist(x, τ(x)) is upper bounded, i.e., τ(x) is a

displaced point in the neighborhood of x, which holds for

all x ∈M. The deformation τ induces a corresponding tan-

gent map τ∗,x : TxM→ Tτ(x)M which is a linear map be-

tween the tangent spaces [37]. With the coordinate description

of tangent map, the tangent map τ∗,x can be exactly repre-

sented by the Jacobian matrix Jx(τ). When dist(x, τ(x)) is

bounded, the Frobenius norm of Jx(τ)− I can also be upper

bounded, and these bounds are used to measure the size of the

deformation τ .

Let f :M→ R be a manifold signal. Because M is the

codomain of τ , g = f ◦ τ maps points τ(x) ∈M to f(τ(x)) ∈
R, so that the effect of a manifold deformation on the signal f
is a signal perturbation leading to a new signal g supported on

the same manifold. To understand the effect of this deformation

on the LB operator, let p= Lg. Since p is also a signal on M,

we may define an operator L′ mapping f directly into p,

p(x) = L′f(x) = Lg(x) = Lf(τ(x)). (16)

The operator L′ is the perturbed LB operator, which is ef-

fectively the new LB operator resulting from the deformation

τ . Assuming that the gradient field is smooth, the difference

between L′ and L is given by the following theorem. The proof

is deferred to Appendix A.

Theorem 1: Let L be the LB operator of manifold M. Let τ :
M→M be a manifold perturbation such that dist(x, τ(x))≤
ε and Jx(τ) = I +Δx with ‖Δx‖F ≤ ε for all x ∈M. If the

gradient field is smooth, it holds that

L − L′ =EL+A, (17)

where E and A satisfy ‖E‖=O(ε) and ‖A‖op =O(ε).
Therefore, the perturbation of the LB operator incurred by

a manifold deformation τ is a combination of an absolute

perturbation A [cf. Definition 3] and a relative perturbation

EL [cf. Definition 7]. This largely simplifies our analysis of

stability. Since manifold filters are parametric on L [cf. Propo-

sition 1], it is sufficient to characterize their stability to deforma-

tions of the manifold by analyzing their behavior in the presence

of absolute and relative LB perturbations. This is what we do

in Sections III-A and III-B.

A. Stability of Manifold Filters to Absolute Perturbations

We start by analyzing the stability of manifold filters to

absolute perturbations of the LB operator, which are introduced

in Definition 3.

Definition 3 (Absolute perturbations): Let L be the LB

operator of manifold M. An absolute perturbation of L is

defined as

L′ − L=A, (18)

where the absolute perturbation operator A is self-adjoint.

Like L, the operator L′ resulting from the absolute pertur-

bation of L is self-adjoint due to the symmetry of A. Hence,

it admits an eigendecomposition similar to (5). When the filter

coefficients are fixed, the frequency response of the manifold

filter (15) can be obtained by evaluating ĥ(λ) at each λi. Thus,

to understand the effect of the perturbation on the filter we need

to look at how the perturbation of the LB operator changes the

eigenvalues λi. The challenge in this case is that the spectrum

of L is infinite-dimensional, i.e., there is an infinite (though

countable) number of eigenvalue perturbations that need to

be taken into account, which leads to an untractable infinite

summation. As demonstrated by Proposition 2, however, large

eigenvalues of L tend to accumulate in certain parts of the real

line. This suggests a strategy to partition the spectrum into finite

number of partitions, by treating the eigenvalues in the same

partition similarly, we can turn to analyze the stability under

the perturbations on these finite number of partitions with the

discriminability of certain frequency components sacrificed.

Proposition 2: Consider a d-dimensional compact mani-

fold M⊂ R
N and let L be its LB operator with eigenvalues
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{λk}∞k=1. Let C0 be an arbitrary constant, K0(C0) some finite

constant depends onC0 andCd the volume of the d-dimensional

unit ball. Let Vol(M) denote the volume of manifold M. For

any α > 0 and d > 2, there exists N1,

N1 =
⌈

(

αd

C04π2

)d/(2−d)

(CdVol(M))2/(2−d)
⌉

(19)

such that, for all k >max{N1,K0(C0)},

λk+1 − λk ≤ α

Proof: This is a direct consequence of Weyl’s law [38,

Chapter 1], [35], See Section A in supplementary material.

Given this asymptotic behavior, we can divide the eigenval-

ues into a finite number of partitions by placing eigenvalues

that are less than α > 0 apart from each other in groups. This

spectrum separation strategy is described in Definition 4. To

achieve it, we will need a specific type of manifold filter called

Frequency Difference Threshold (FDT) filter as introduced

in Definition 5.

Definition 4 (α-separated spectrum): An α-separated spec-

trum of a LB operator L is defined as a partition Λ1(α) ∪ . . . ∪
ΛN (α) such that all λi ∈ Λk(α) and λj ∈ Λl(α), k �= l, satisfy

|λi − λj |> α. (20)

Definition 5 (α-FDT filter): An α-frequency difference

threshold (α-FDT) filter is defined as a filter h(L) whose fre-

quency response satisfies

|ĥ(λi)− ĥ(λj)| ≤ δk for all λi, λj ∈ Λk(α) (21)

with δk ≤ δ for k = 1, . . . , N .

In an α-separated spectrum, eigenvalues λi ∈ Λk(α) and

λj ∈ Λl(α) in different sets (k �= l) are at least α away from

each other. Conversely, eigenvalues λi, λj ∈ Λk(α) are no more

than α apart. This partitioning creates several eigenvalue groups

spaced by at least α. Note that the sets Λk(α) can have any size

and, in particular, they can be singletons.

The partitioning of the spectrum described in Definition 4 is

achieved by an α-FDT filter. This filter separates the spectrum

of the manifold by assigning similar frequency responses—that

deviate no more than δk from each other—to eigenvalues λi ∈
Λk(α), 1≤ k ≤N . In other words, an α-FDT filter does not

discriminate between eigenvalues λi, λj ∈ Λk(α). Importantly,

the δk in Definition 4 are finite, so that they can be bounded

by some δ.

To obtain manifold filters that are stable to absolute perturba-

tions of L, we also need these filters to be Lipschitz continuous

as shown in Definition 6.

Definition 6 (Lipschitz filter): A filter is Ah-Lispchitz if

its frequency response is Lipschitz continuous with Lipschitz

constant Ah, i.e,

|ĥ(a)− ĥ(b)| ≤Ah|a− b| for all a, b ∈ (0,∞). (22)

Between the eigenvalue groups, the filters that we consider

are assumed to be Ah-Lipschitz continuous. This means that,

in regions of the spectrum where the Λk(α) are singletons, the

filter can vary with slope at most Ah as shown in Fig. 1. Note

Fig. 1. Illustration of an α-FDT filter. The x-axis stands for the spectrum
with each sample representing an eigenvalue. The gray shaded areas show the
grouping of the eigenvalues according to Definition 4. The red lines show a
set of α-FDT filters that can discriminate each eigenvalue group.

that we can always construct convolutional filters (14) that are

both Lipschitz continuous and α-FDT.

Under mild assumptions on the amplitude of the frequency

response ĥ (Assumption 1), it can be shown that Lipschitz

continuous α-FDT filters are stable to absolute perturbations

of the LB operator. This result is stated in Theorem 2.

Assumption 1 (Non-amplifying filters): The filter frequency

response ĥ : R+ → R is non-amplifying. I.e., for all λ ∈ (0,∞),
ĥ satisfies |ĥ(λ)| ≤ 1.

Note that this assumption is rather reasonable, because the

filter frequency response ĥ(λ) can always be normalized.

Theorem 2 (Manifold filter stability to absolute pertur-

bations): Consider a manifold M with LB operator L. Let

h(L) be an α-FDT manifold filter [cf. Definition 5] and Ah-

Lipschitz [cf. Definition 6]. Consider an absolute perturbation

L′ = L+A of the LB operator L [cf. Definition 3] where

‖A‖ ≤ ε < α. Then, under Assumption 1 it holds that

‖h(L)f−h(L′)f‖L2(M) ≤
(

πNsε

α− ε
+Ahε+ 2(N −Ns)δ

)

‖f‖L2(M), (23)

where N is the size of the α-separated spectrum partition

[cf. Definition 4] and Ns is the number of singletons.

Proof: See Appendix C.

Provided that ε� α, FDT filters are thus stable to absolute

perturbations of the LB operator L. The stability bound depends

on (i) the continuity of the FDT filter as measured by the

Lipschitz constant Ah and (ii) its frequency difference threshold

α, which affects the bound directly as well as indirectly through

the number of partitions N . Note that this bound consists of

three terms. The first corresponds to the difference between the

eigenfunctions of L and L′, which affects the stability bound by

changing projection directions. The second stems from the dis-

tance between the original and perturbed eigenvalues. Finally,

the third reflects the bounded fluctuation of the filter frequency

response within the same eigenvalue group.

The bound in Theorem 2 can be simplified by setting δ =
πε/(2α− 2ε) as in Corollary 1.

Corollary 1: Setting δ = πε/(2α− 2ε), under the same as-

sumptions of Theorem 2 it holds that

‖h(L)f − h(L′)f‖L2(M) ≤
(

πN

α− ε
+Ah

)

ε‖f‖L2(M).

(24)
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Fig. 2. Illustration of a γ-FRT filter. The x-axis stands for the spectrum
with each sample representing an eigenvalue. The gray shaded area shows the
grouping of the eigenvalues according to Definition 8. The red lines show a
set of α-FDT filters that can discriminate each eigenvalue group.

A particular case of Theorem 2, the simplified stability bound

in Corollary 1 is helpful to understand the effect of the filter

spectrum on stability as well as of the size of the perturbation.

In particular, from Corollary 1 we can tell that the filter is more

stable if the Lipschitz constant Ah is small and the frequency

difference threshold α is large. On the other hand, small Ah

and large α mean that the filter is less discriminative. This re-

veals a stability-discriminability trade-off where discriminabil-

ity should be understood as the ability to tell frequencies apart.

In other words, we proposeα-FDT filter to maintain the stability

by trying to discriminate only eigenvalue groups instead of

every single eigenvalue. Importantly, this trade-off is not related

to the magnitude of the frequencies that the filters amplify (as is

the case in, e.g., [20], [39]).We will keep observing this trade-

off throughout the stability analysis of both manifold filters and

MNNs. More details about this characteristic will be discussed

in Section V.

B. Stability of Manifold Filters to Relative Perturbations

Relative perturbations of the LB operator are defined simi-

larly as follows.

Definition 7 (Relative perturbations): Let L be the LB

operator of manifold M. A relative perturbation of L is

defined as

L′ − L=EL, (25)

where the relative perturbation term EL is self-adjoint.

Like absolute perturbations, relative perturbations also per-

turb the eigenvalues and eigenfunctions of L. However, in the

case of relative perturbations, the perturbations to the eigen-

values are proportional to their absolute values [cf. Lemma 3

in Appendix B]. Relative perturbations thus require a different

spectrum separation strategy to guarantee stability. With relative

perturbations, larger eigenvalues are impacted with larger per-

turbation values, which can send eigenvalues originally α-close

to each other to different groups as Fig. 2 shows. Therefore,

we will need a different type of filter implementing a different

type of spectrum separation. Our strategy is inspired by Propo-

sition 3, which is another variation of Weyl’s law.

Proposition 3: LetM be a d-dimensional compact embedded

manifold in R
N with LB operator L, and let {λk}∞k=1 denote

the eigenvalues of L. Let C0 denote an arbitrary constant and

K0(C0) some finite constant depends on C0. For any γ > 0,

there exists N2 given by

N2 = �(((γ + 1)/C0)
d/2 − 1)−1� (26)

such that, for all k >max{N2,K0(C0)}, it holds that

λk+1 − λk ≤ γλk.

Proof: This is a direct consequence of Weyl’s law [38,

Chapter 1], [35]. See Section A in supplementary material.

Hence, to enforce stability we need to separate the spectrum

relatively to the ratio between neighboring eigenvalues. This

partitioning is called γ-separated spectrum and formalized in

Definition 8. A γ-separated spectrum is achieved by a so-called

Frequency Ratio Threshold (FRT) filters. We introduce them

in Definition 9.

Definition 8 (γ-separated spectrum): A γ-separated spec-

trum of a LB operator L is defined as a partition Λ1(γ) ∪ . . . ∪
ΛM (γ) such that all λi ∈ Λk(γ) and λj ∈ Λl(γ), k �= l, satisfy

∣

∣

∣

∣

λi

λj
− 1

∣

∣

∣

∣

> γ. (27)

Definition 9 (γ-FRT filter): A γ-frequency ratio threshold (γ-

FRT) filter is defined as a filter h(L) whose frequency response

satisfies

|ĥ(λi)− ĥ(λj)| ≤ δk, for all λi, λj ∈ Λk(γ) (28)

with δk ≤ δ for k = 1, 2 . . . ,M .

In a γ-separated spectrum, the sets Λk(γ) are built based on

eigenvalue distances relative to the eigenvalues’magnitudes and

weighted by the parameter γ. Eigenvalues λj ∈ Λk(γ) and λi ∈
Λl(γ) in different groups (i.e., k �= l) are at least γmin(λi, λj)
apart from each other. This means that, for λi, λi+1 ∈ Λk(γ),
λi+1 − λi ≤ γλi.

A γ-FRT filter achieves a spectrum separation in Definition 8

by giving eigenvalues λi, λj ∈ Λk(γ) very similar frequency re-

sponses differing by at most plus or minus δk ≤ δ. Meanwhile,

eigenvalues belonging to different sets Λk(γ) and Λl(γ), k �= l,
are treated independently, and their frequency responses can

vary a lot.

To make a manifold filter stable to relative perturbations of

the LB operator, we need a further restriction on their continuity.

Lipschitz continuity [cf. Definition 6] is not enough because

for a Lipschitz filter the difference in frequency response for

a perturbed eigenvalue grows with the eigenvalue magnitude,

since the eigenvalue perturbation is relative. Therefore, we need

our filters to be integral Lipschitz continuous as is described

in Definition 10.

Definition 10 (Integral Lipschitz filter): A filter is integral

Lipschitz continuous with constant Bh if its frequency res-

ponse satisfies

|ĥ(a)− ĥ(b)| ≤ Bh|a− b|
(a+ b)/2

for all a, b ∈ (0,∞). (29)

Integral Lipschitz filters can be seen as Lipschitz filters with

variable Lipschitz constant, which decreases with λ. E.g., on the

interval (a, b), the filter in Definition 10 behaves as a Lipschitz

filter with Lipschitz constant 2Bh/(a+ b). When a and b are
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close, this condition can be approximated by |aĥ′(a)| ≤Bh for

all a ∈ (0,∞). This implies that the filter function flattens for

high-frequency eigenvalues as shown in Fig. 2.

Under Assumption 1, integral Lipschitz γ-FRT filters are

stable to relative perturbations as stated in Theorem 3.

Theorem 3 (Manifold filter stability to relative perturba-

tions): Consider a manifoldMwith LB operatorL. Leth(L) be

a γ-FRT filter with δ = πε/(2γ − 2ε+ 2γε) [cf. Definition 9]

and Bh-integral Lipschitz [cf. Definition 10]. Consider a rela-

tive perturbation L′ = L+EL of the LB operator L [cf. Def-

inition 7] where ‖E‖ ≤ ε < γ. Then, under Assumption 1 it

holds that

‖h(L)f−h(L′)f‖L2(M) ≤
(

πMε

γ − ε+ γε
+

2Bhε

2− ε

)

‖f‖L2(M)

(30)

where M is the size of the γ-separated spectrum partition

[cf. Definition 8].

Proof: See Appendix E.

When ε is sufficiently small (ε�min(γ, 2), which is typ-

ically the case with deformations such as the one in Theo-

rem 1), the denominators on the right hand side of (30) are

approximately equal to γ and 2 respectively. Hence, γ-FRT

integral Lipschitz filters are stable to relative perturbations of

the LB operator. Besides appearing in the bound in Theorem 3),

the frequency ratio threshold γ also affects stability indirectly

through the partition size M . With a larger γ, fewer eigenvalues

will be in singleton sets, thus decreasing M and improving

stability. A smaller integral Lipschitz constantBh also increases

stability. However, small Bh and large γ make for smoother

filters which in turn lead to a less discriminative manifold filter.

Therefore, integral Lipschitz γ-FRT filters also exhibit a trade-

off between discriminality and stability.

Remark 1: By comparing the illustrations of α-FDT filter

(Definition 5) and γ-FRT filter (Definition 9) in Fig. 1 and

Fig. 2, we see that in practice these filters have a similar fre-

quency behavior because, due to Weyl’s law [cf. Proposition 2

and 3], high frequency components will eventually be grouped

in the same group and thus share similar frequency responses.

Therefore, the main difference between these filters is their

effects on the low-frequency components. In the low frequency

spectrum, the eigengaps λi+1 − λi may be smaller than the dif-

ference threshold α, but larger than the relative ratio threshold

γλi due to λi being small. However, for appropriate values

of γ a filter may be both FDT and FRT. This will be shown

in Section IV.

IV. STABILITY OF MANIFOLD NEURAL NETWORKS

Manifold neural networks (MNNs) are deep convolutional

architectures comprised of L layers, where each layer consists

of two components: a convolutional filter bank and a pointwise

nonlinearity. At each layer l = 1, 2, . . . , L, the convolutional

filters map the incoming Fl−1 features from layer l − 1 into

Fl intermediate linear features given by

ypl (x) =

Fl−1
∑

q=1

h
pq
l (L)fq

l−1(x), (31)

where h
pq
l (L) is the filter mapping the q-th feature from layer

l − 1 to the p-th feature of layer l as in (15), for 1≤ q ≤ Fl−1

and 1≤ p≤ Fl. The intermediate features are then processed

by a pointwise nonlinearity σ : R→ R as

fp
l (x) = σ (ypl (x)) . (32)

The nonlinearity σ processes each feature individually and we

further make an assumption on its continuity as follows.

Assumption 2 (Normalized Lipschitz activation functions):

The activation function σ is normalized Lipschitz continous,

i.e., |σ(a)− σ(b)| ≤ |a− b|, with σ(0) = 0.

Note that this assumption is rather reasonable, since most

common activation functions (e.g., the ReLU, the modulus and

the sigmoid) are normalized Lipschitz by design.

At the first layer of the MNN, the input features are the

input data fq for 1≤ q ≤ F0. At the output of the MNN, the

output features are given by the outputs of the L-th layer, i.e.,

fp
L for 1≤ p≤ FL. To represent the MNN more succinctly, we

may gather the impulse responses of the manifold convolutional

filters h
pq
l across all layers in a function set H, and define the

MNN map Φ(H,L, f). This map emphasizes that the MNN is

parameterized by both the filter functions and the LB operator

L. We next will analyze the stability of Φ(H,L, f) with respect

to perturbations on the underlying manifold.

A. Stability of MNNs to LB Operator Perturbations

MNNs inherit stability to perturbations of the LB operator

from the manifold filters that compose the filterbanks in each

one of their layers. This result is stated in general form—

encompassing both absolute and relative perturbations—in the

following theorem.

Theorem 4 (MNN stability): Consider a compact embedded

manifold M with LB operator L. Let Φ(H,L, f) be an L-layer

MNN on M (32) with F0 = FL = 1 input and output features

and Fl = F, l = 1, 2, . . . , L− 1 features per layer. The filters

h(L) and nonlinearity functions satisfy Assumptions 1 and 2 re-

spectively. Let L′ be the perturbed LB operator [cf. Definition 3

or Definition 7] withmax{α, 2, |γ/1− γ|} � ε. If the manifold

filters satisfy ‖h(L)f − h(L′)f‖L2(M) ≤ Cperε‖f‖L2(M), it

holds that

‖Φ(H,L, f)−Φ(H,L′, f)‖L2(M) ≤ LFL−1Cperε‖f‖L2(M).

Proof: See Appendix D.

Theorem 4 reflects that the stability of the MNN is affected

by the hyperparameters of the MNN architecture and the sta-

bility constant of the manifold filters Cper. More explicitly, the

stability bound grows linearly with the number of layers L and

exponentially with the number of features F where the rate is

determined by L. This stability result also shows that there is

a linear dependence on the stability constant Cper of manifold

filters h(L) and the perturbation size ε. As we have shown in

Section III-A and III-B, the stability constant is determined by

the form of the perturbations (Definition 3 or Definition 7) as

well as the spectrum separation achieved by the specific man-

ifold filters (Definition 5 or Definition 9) with corresponding
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Lipschitz conditions (Definition 6 or Definition 10). We address

the specific cases as follows.

Proposition 4: With the same conditions as Theorem 4,

consider the following perturbation models.

1) If the perturbed LB operator L′ is an absolute perturba-

tion, i.e., L′ = L+A [cf. Definition 3] with ‖A‖ ≤ ε and

the manifold filters h(L) are α-FDT [cf. Definition 5]

with α� ε and Ah-Lipschitz continuous [Definition 6]

with δ = πε/(2α), we have

Cper =
πN

α
+Ah, (33)

where N is the size of the α-separated spectrum partition

[cf. Definition 4].

2) If the perturbed LB operator L′ is a relative perturbation,

i.e. L′ = L+EL [cf. Definition 7] with ‖E‖ ≤ ε, and

the manifold filters h(L) are γ-FRT [cf. Definition 9]

with γ/(1− γ)� ε and Bh-integral Lipschitz continu-

ous [Definition 10] with δ = πε/(2γ), we have

Cper =
πM

γ
+Bh, (34)

where M is the size of the γ-separated spectrum partition

[cf. Definition 8].

Proof: The conclusions follow directly from Theorem 4

combined with Theorem 2 or Theorem 3 under the correspond-

ing assumptions.

Combining Theorem 4 with Proposition 4, we observe that α-

FDT manifold filters with Lipschitz continuity can be composed

to construct MNNs which are stable to absolute perturbations;

while γ-FRT manifold filters with integral Lipschitz continuity

can be composed to construct MNNs which are stable rela-

tive perturbations of the LB operator. Explicitly, by inserting

the stability constant Cper in (23), we see that other than the

perturbation size ε, there are three terms that determine the

stability of MNNs. The first term is LFL−1, which, as we

have already discussed, is decided by the number of layers

and filters in the MNN architecture. This term arises due to

the propagation of the underlying operator perturbations across

all the manifold filters in all layers of the MNN. The second

term is πN/α or πM/γ, which results from the deviations

of the eigenfunctions as well as from the frequency response

variations within the same eigenvalue partition. Finally, the

third term, Ah or Bh, is given by the Lipschitz or integral

Lipschitz constants which are decided during the filter design

or the training process. It is important to note that the stability

constant Cper brings along the trade-off between stability and

discriminability. However, unlike manifold filters, MNNs can

be both stable and discriminative. This arises from the effects

of nonlinear activation functions, as we discuss in further detail

in Section V.

B. Stability of MNNs to Manifold Deformations

In Theorem 4 and Proposition 4, we established the con-

ditions under which MNNs are stable to either absolute or

relative perturbations of the LB operator as defined in Defi-

nitions 3 and 7. Since a manifold deformation τ :M→M,

with dist(x, τ(x))≤ ε and ‖Jx(τ)− I‖F ≤ ε for all x ∈M,

translates into both an absolute and a relative perturbation of

the Laplace-Beltrami operator, MNNs composed of manifold

filters meeting all of these conditions in items 1 and 2 of

Proposition 4, i.e., the manifold filters are α-FDT and γ-FRT,

and both Lipschitz continuous and integral Lipschitz continu-

ous, can be proved to be stable under the manifold deforma-

tion. The spectrum can be made to be both α-separated and

γ-separated by making sure the eigenvalues in different par-

titions satisfy both (20) and (27). Assuming that all of these

conditions are met, we can state our main result—that MNNs

are stable to deformations of the manifold—as follows.

Theorem 5: Let M be a compact embedded manifold with

LB operator L and f be a manifold signal. We construct

Φ(H,L, f) as a MNN on M (32) where the filters h(L)
are α-FDT [cf. Definition 5], α/λ1-FRT [cf. Definition 9],

Ah-Lipschitz [cf. Definition 6] and Bh-integral Lipschitz

[cf. Definition 10]. Consider a deformation on M as τ :
M→M where dist(x, τ(x))≤ ε and Jx(τ) = I +Δx with

‖Δx‖F ≤ ε for all x ∈M and ε�min(α/λ1, α, 2). Under

Assumptions 1 and 2 it holds that

‖Φ(H,L, f)−Φ(H,L′, f)‖L2(M) =O(ε)‖f‖L2(M). (35)

Together, Theorem 1 and Theorem 4 imply that MNNs are

stable to the manifold deformations υ introduced in the be-

ginning of this section. This is because these deformations

spawn a perturbation of the LB operator that consists of both

an absolute and a relative perturbation. For stability to hold,

the filters that make up the layers of the MNN need to be

α-FDT [cf. Definition 5], γ-FRT [cf. Definition 9], Lipschitz

[cf. Definition 6] and integral Lipschitz [cf. Definition 10].

We can propose an easier special case to relate α and γ by

utilizing the spectrum property of LB operator. By setting the

α-FDT filter with α= γλ1, eigenvalues λi, λi+1 ∈ Λk(α)
would lead to λi, λi+1 ∈ Λl(γ) due to the fact that

λi+1 − λi ≤ α= γλ1 ≤ γλi, (36)

with λ1 indexed as the smallest eigenvalue in the spectrum.

The requirement that the filter be α-FDT can be removed as

long as λ1 > 0 and α= γλ1, since a γ-FRT filter is always γλ1-

FDT, i.e. α-FDT.

V. DISCUSSION

Stability vs. discriminability tradeoff. In both stability the-

orems for manifold filters (Theorems 2, 3) and in the stability

theorem for MNNs (Theorem 4), the stability bounds depend

on the frequency partition threshold (α or γ), the number of

total partitions (N or M ) and the Lipschitz continuity con-

stant (Ah or Bh). The frequency partition threshold and the

number of partitions have a combined effect on stability. As

indicated by Definitions 4 and 8, a larger frequency threshold

leads to a smaller number of singletons, as eigenvalues that

would otherwise be separated for small thresholds end up being

grouped when the threshold is large. While a large frequency

threshold results in a larger number of partitions that contain

more than one eigenvalue, the total number of partitions (N
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or M ) either stays the same or decreases because the number

of eigenvalues does not exceed the number of partitions [cf.

Proposition 2 or 3]. Thus, a larger frequency threshold and a

smaller number of partitions both lead to a smaller stability

bound. Simultaneously, a large frequency threshold makes the

spectrum separated more sparsely. Therefore, a large number

of eigenvalues are amplified in a similar manner, which makes

the filter function less discriminative. Considering in the limit, if

the frequency threshold goes to infinity, all the eigenvalues tend

to be grouped and the filter would not discriminate the whole

spectrum. This would lead to a very stable filter but there is

no discriminability at all. The Lipschitz constant (Ah or Bh)

affects stability and discriminability in similar ways. Smaller

Lipschitz constants decrease the stability bound, but lead to

smoother filter functions giving similar frequency responses to

different eigenvalues. Hence, in both manifold filters and MNNs

we observe a trade-off between stability and discriminability.

Nevertheless, in MNNs this trade-off is alleviated due to the

presence of nonlinearities as discussed below.

Pointwise nonlinearity. As demonstrated by Propositions 2

and 3, large eigenvalues of LB operator tend to be grouped

together in one large group and share similar frequency re-

sponses. This is part of the reason why manifold filters have

a stability-discriminability tradeoff, which implies that they

cannot be stable and discriminative at the same time. However,

in MNNs this problem is circumvented with the addition of

nonlinearities. Nonlinearities have the effect of scattering the

spectral components all over the eigenvalue spectrum. In the

MNN, they mix the frequency components by spilling spectral

components associated with the large eigenvalues that tend to

be very close onto the smaller eigenvalues that could be more

separated, where they can then be discriminated by the manifold

filters in the following layer. This is consistent with the role of

nonlinear activation functions in graph neural networks (GNNs)

[20], which can be see as instantiations of MNNs on discrete

samples of the manifold as further discussed in Section VI.

Comparison with graphons. The graphon is another infinite-

dimensional model that can represent the limit of convergent

sequences of graphs, and a series of works have proved sta-

bility of graphon neural networks and the transferability of

GNNs sampled from them [24], [26], [27], [28], [39]. Manifolds

can represent the limits of relatively sparse graphs including

ε-graphs and k-NN graphs [29]. While graphons can also be

seen as the limit model of relatively sparse graphs [28], em-

bedded manifolds in high-dimensional spaces are more realistic

geometric models with physical interpretations in a number

of application scenarios, such as point clouds, 3D shape seg-

mentation and classification. Other important differences are

that (i) the stability analysis on graphon models in [25], [39]

focuses on deformations to the adjacency matrix of the graph,

which can be translated directly as perturbations of the graphon

operator, and that (ii) in the case of graphons, only an absolute

perturbation model makes sense since given that the graphon

spectrum is bounded a relative perturbation can always be

bounded by an absolute perturbation. Meanwhile, deformations

to the manifold domain translate into a combination of absolute

and relative perturbations of the LB operator, and the fact that

the LB operator spectrum is unbounded makes the effects of ab-

solute and relative perturbations distinct, especially in the high-

frequency domain.

VI. FROM MANIFOLD NEURAL NETWORKS TO GRAPH

NEURAL NETWORKS

MNNs are built from manifold convolutional filters (Defini-

tion 1) operating on a continuous manifold and over an infinite

time horizon. This makes it impractical to implement directly

the architecture described by (32) in applications. In this sec-

tion, we discuss how MNNs are implemented in practice over a

set of discrete samples from the manifold in a finite and discrete

time frame.

A. Discretization in the Space Domain

In practice, the explicit form of the manifold and of its LB

operator are unknown. What we typically have access to is

a point cloud representation of the manifold, i.e., a discrete

set of sampling points. From these points’ coordinates, the

structure of the manifold is approximated by a geometric or a

nearest neighbor graph [29], [40], [41]. The LB operator is then

approximated by the graph Laplacian, which can be shown to

converge to the LB operator as the number of sampling points

grows [29], [40].

Explicitly, suppose that X = {x1, x2, . . . , xn} is a set of n
points sampled i.i.d. from measure μ of manifold M, which

is embedded in R
N. We can construct a complete weighted

symmetric graph Gn by taking the sampled points to be the

vertices of the graph and setting the edge weights based on

the Euclidean distance between pairs of points. Specifically, the

weight wij associated with edge (i, j) is given by

wij =
1

n

1

tn(4πtn)k/2
exp

(

−‖xi − xj‖2
4tn

)

, (37)

where ‖xi − xj‖ is the Euclidean distance between points xi

and xj while tn is a parameter associated with the chosen

Gaussian kernel [41]. The adjacency matrix An ∈ R
n×n is thus

defined as [An]ij = wij for 1≤ i, j ≤ n and the corresponding

graph Laplacian matrix Ln [42] is given by

Ln = diag(An1)−An. (38)

We interpret Ln the Laplacian operator of the constructed

graph Gn. Similarly, we define a uniform sampling operator

Pn : L2(M)→ L2(Gn) to sample manifold signals. Given a

manifold signal f , we can use operator Pn to sample graph

signals xn ∈ R
n as

xn =Pnf with [xn]i = f(xi), xi ∈X, (39)

where the i-th entry of the graph signal xn is the manifold signal

f evaluated at the sample point xi.

In Section II-B, we have shown that the manifold filter h

is parametric with the LB operator L. Therefore, we can also
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parameterize h with the discrete graph Laplacian operator Ln,

which is written as,

zn =

∫ ∞

0

h̃(t)e−tLndtxn = h(Ln)xn, xn, zn ∈ R
n, (40)

where zn, the output of the filter, is now a discrete graph

signal. By cascading these discrete filters operated on graph

Gn and pointwise nonlinearities layer after layer, we can then

approximate the MNN on Gn as

x
p
l = σ

⎛

⎝

Fl−1
∑

q=1

h
pq
l (Ln)x

q
l−1

⎞

⎠ , (41)

where h
pq
l (Ln) maps the q-th feature in the l − 1-th layer to

the p-th feature in the l-th layer, 1≤ q ≤ Fl−1 and 1≤ p≤ Fl,

and Fl denotes the number of features in the l-th layer (we have

dropped the subscript n in x
p
l and x

q
l−1 for simplicity). After

gathering the filter functions in the set H, this neural network

can be represented more succinctly as Φ(H,Ln,x).
Equation (41) is a consistent approximation of the MNN

because, as n goes to infinity, the discrete graph Laplacian

operator Ln of the graph Gn converges to the LB operator L
of the manifold M, and the sampled graph signal xn converges

to the manifold signal f [41]. These facts combinely imply that

the output of the neural network on the graph Gn converges to

the output of the neural network on the continuous manifold as

stated in the following.

Proposition 5: Let X = {x1, x2, ...xn} be n points sampled

i.i.d. from measure μ of d-dimensional manifold M⊂ R
N, with

corresponding sampling operator Pn (39). Let Gn be a discrete

graph approximation of M constructed from X as in (37) with

tn = n−1/(d+2+a) and a > 0. Let Φ(H, ·, ·) be a neural network

parameterized either by the LB operator L of the manifold M
or the graph Laplacian operator Ln of Gn with the filters in H

satisfying Definition 5 and 6. It holds that

lim
n→∞

‖Φ(H,Ln,Pnf)−PnΦ(H,L, f)‖L2(Gn) = 0, (42)

with the limit taken in probability.

Proof: See Section B in supplementary material.

This proposition provides theoretical support to state that

neural networks constructed from the discrete Laplacian Ln

converge to MNN and thus can inherit the stability properties

of the MNN.

B. Discretization in the Time Domain

In order to learn an MNN (32), we need to learn the manifold

convolutional filters h
pq
l . This means that we need to learn

the impulse responses h̃(t) in Definition 1. However, learning

continuous functions h̃ is computationally infeasible, so we

sample h̃ over fixed intervals of duration Ts and parameterize

the filter with coefficients hk = h̃(kTs), k = 0, 1, 2 . . . . Setting

the sampling interval to Ts = 1 for simplicity, the discrete-time

manifold convolution can be written as

h(L)f(x) =
∞
∑

k=0

hke
−kLf(x) (43)

where {hk}∞k=0 are called the filter coefficients or taps.

Yet, learning (43) is still impractical because there is an

uncountable number of parameters hk. To address this, we fix

a time horizon of K time steps and rewrite (43) as

h(L)f(x) =
K−1
∑

k=0

hke
−kLf(x) (44)

which can be seen as a finite impulse response (FIR) filter with

shift operator e−L. Indeed, the frequency response of this filter

[cf. Proposition 1] is given by

ĥ(λ) =
K−1
∑

k=0

hke
−kλ. (45)

Combining (40) and (44), we can bring the discretization over

the spatial and time domains together to rewrite the convolution

operation on the discretized manifold and in the discrete-time

domain, explicitly,

zn = h(Ln)xn =

K−1
∑

k=0

hke
−kLnxn. (46)

Equation (46) recovers the definition of the graph convolution

[6] with graph shift operator e−Ln . This means that in prac-

tice we implement MNNs as graph neural networks (GNNs).

Therefore, the stability behavior of the GNN can be seen as a

proxy for the stability behavior of the MNN. We will leverage

this idea in the numerical experiments of Section VII.

Remark 2: We analyze the convergence of GNNs to MNNs

when graphs are constructed based on uniformly sampled points

from the manifold in Proposition 5. The convergence holds

when GNNs and MNNs share the same filter parameters while

the filter functions are continuous in the time domain. We dis-

cuss the discretization of manifold filters in the time domain

from a practical aspect that neural networks are usually trained

and operated in digital systems with digital filters.

VII. NUMERICAL EXPERIMENTS

Dataset. We evaluate our MNN stability results on the Mod-

elNet10 [43] classification problem. The dataset contains 3991

meshed CAD models from 10 categories for training and 908

models for testing. For each model, 300 points are uniformly

randomly sampled from all points of the model to form the

point cloud. Each point is characterized by the 3D coordinates

as features. We formulate the problem by modeling a dense

graph neural network model to approximate MNN. Each node

in the graph can be modeled as the sampling point and each edge

weight is constructed based on the distance between each pair

of nodes. In this work our goal is to identify the CAD model for

chairs as is illustrated in Fig. 3 with the models for chair labeled

as 1 and the others as 0. We deform the underlying manifold

structure by adding random perturbations to the coordinates

of the sampling points. By comparing the differences of the

classification error rates, we aim to show that MNNs with

Lipschitz continuous and integral Lipschitz continuous mani-

fold filters are stable via looking into the performance of the

approximated GNNs.
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Fig. 3. Point cloud models with 300 sampling points in each model. Our goal is to identify chair models from other models such as toilet and table.

TABLE I
CLASSIFICATION ERROR RATES FOR MODEL ‘CHAIR’ IN THE

TEST DATASET. AVERAGE OVER 5 DATA REALIZATIONS.
THE NUMBER OF NODES IS n= 300

Architecture Error Rates

GNN1Ly 8.04%± 0.88%

GNN2Ly 4.30%± 2.64%

GF1Ly 13.77%± 6.87%

GF2Ly 12.22%± 7.89%

Neural network architectures. We build dense graphs to

approximate the point cloud models. We use the coordinates of

each point as node features. By connecting a point with all the

other points in the point cloud, the edge weight is defined based

the distance between every two points and a Gaussian kernel.

The Laplacian matrix is calculated for each input point cloud

model. We implement different architectures, including Graph

Filters (GF) and Graph Neural Networks (GNN) with 1 and

2 layers, to solve the classification problem. The architectures

with a single layer contain F0 = 3 input features which are

the 3d coordinates of each point, F1 = 64 output features and

K = 5 filter taps. While the architectures with 2 layers has

another layer with F2 = 32 features and 5 filter taps. We use

the ReLU as nonlinearity. The learned graph filters are not

regularized in architectures with ‘NoPel’ while graph filters in

the other architectures are both Lipschitz and integral Lipschitz.

We approximate the spectrum partitions with the continuous as-

sumptions of the filter functions. All architectures also include a

linear readout layer mapping the final output features to a binary

scalar that estimates the classification.

Discriminability experiment. We train all the architectures

with an ADAM optimizer [44] with learning rate set as 0.005

and decaying factors as 0.9, 0.999 by minimizing the entropy

loss. The training point cloud models are divided in batches of

10 over 40 epochs. We run 5 random point samplings for all the

architectures and we show the average classification error rates

across these realizations as well as the standard deviation in

Table I. We can observe that with the use of non-linearity, Graph

Neural Networks perform better compared with Graph Filters.

Architectures with more layers learn more accurate models

which also leads to better performances.

Stability experiment. We test the same trained Graph Neural

Networks and Graph Filters with 2 layers on perturbed test point

cloud models with different perturbation levels. We perturb the

test point clouds by adding a Gaussian random variable with

Fig. 4. Difference between error rates on the original test dataset and the
deformed one.

Fig. 5. Difference between error rates on the original test dataset and the
deformed one.

mean ε and variance 2ε to each coordinate of every sampling

point, which can be seen as a deformation of the underlying

manifold. We measure the stability by computing the difference

between the error rates achieved based on the original test point

cloud models and the perturbed ones. In Fig. 5, we see that this

difference increases when the perturbations become larger, but

overall the differences are small. We also observe that Graph

Neural Network is more stable compared with Graph Filters.

Furthermore, the Graph Neural Networks and Graph Filters

with Lipschitz continuous and integral Lipschitz continuous

filters are more stable. Both of these observations validate our

stability results.

To further verify the discriminability under perturbations,

we trained and tested the architectures with perturbed dataset.

We can see from Table II that both GNN and GF can identify

the chair model with small error rates while the error rates grow
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TABLE II
CLASSIFICATION ERROR RATES FOR MODEL ‘CHAIR’ WITH PERTURBED

TRAINING AND TEST DATASET. AVERAGE OVER 5 DATA REALIZATIONS.
THE NUMBER OF NODES IS n= 300

Architecture ε= 0.2 0.4

GNN2Ly 7.37%± 1.43% 7.71%± 3.96%

GF2Ly 13.76%± 6.82% 13.54%± 7.16%

Architecture ε= 0.6 0.8

GNN2Ly 8.04%± 2.83% 11.01%± 6.33%

GF2Ly 14.76%± 5.67% 16.04%± 6.34%

Fig. 6. Difference between error rates on the original test dataset and the
deformed one on growing size of graphs.

slightly with the increase of perturbation levels. GNNs still

outperform GFs in discriminablity with the help of nonlinearity.

We further look into the stability of GNNs with respect to the

size of the graph with different perturbation levels. We study the

stability of a 2-layer GNN with Lipschitz and integral Lipschitz

continuous filters on graphs with a maximum of n= 896 points.

Then we randomly sub-sample to generate graphs with the num-

ber of nodes n= 128, 256, ..., 896. We plot the difference of

the error rates achieved by the GNN between the original point

cloud models and the perturbed point cloud models. The posi-

tion of each point in the perturbed cloud is displaced by ε/ 3
√
n.

Since this is a point cloud in three dimensions, the normaliza-

tion by 1/ 3
√
n is such that the gradient of the deformation stays

constant across different sub-samplings. In Fig. 6, we show the

stability of a 2-layer GNN with Lipschitz and integral Lipschitz

continuous filters as we vary the number of points in the point

cloud. We observe from the figure that the stability bound does

not grow with the number of nodes. This experiment shows

that MNN stability bounds are a more accurate model of the

behavior of GNNs when graphs are sampled from a manifold

while generic stability bounds predict a stability error that can

grow with
√
n [20]. We emphasize that this growing stability

bounds of [20] are due to the fact that the graph and perturba-

tion model are generic. Our bounds are tighter with a specific

assumption on the graph – it is sampled from a manifold – and

the perturbation model – it is a bounded manifold deformation

with bounded gradient norm.

VIII. CONCLUSION

In this paper, we have defined manifold convolutions and

manifold neural networks. We prove that the deformations on

the embedded submanifolds can be represented as a form of

perturbations to the Laplace-Beltrami operator. Considering the

infinite dimensionality of LB operators, we import the definition

of frequency difference threshold filters and frequency ratio

threshold filters to help separate the spectrum. By assigning

similar frequency responses to the eigenvalues that are close

enough, these filters can be proved to be stable under absolute

and relative perturbations to the LB operator respectively with

Lipschitz continuous assumptions. While the manifold filters

need to trade-off between the stability and discriminability.

MNNs composed with layers of manifold filters and pointwise

nonlinearities can be proved to be stable to absolute and rel-

ative perturbations to the LB operators. While the frequency

mixing brought by pointwise nonlinearity can help with the

discriminability. We conclude that the MNNs are thus both

stable to deformations and discriminative. We also show the

discretizations of MNNs in both spatial and time domains to

make our proposed MNNs implementable. We finally verified

our results numerically with a point cloud classification prob-

lem with ModelNet10 dataset.

APPENDIX

A. Proof of Theorem 1

We first introduce the concepts of the tangent map and the

Jacobian matrix [45].

Definition 11: Let M be the manifold and τ :M→M. For

any x ∈M, we define the tangent map to be the linear map

τ∗,x : TxM→ Tτ(x)M. (47)

When τ is a smooth map and M is an embedded manifold

in R
N, for x ∈M, the tangent space TxM can be canonically

identified with R
N, using the basis

∂

∂x1

∣

∣

∣

x
,

∂

∂x2

∣

∣

∣

x
· · · ∂

∂xN

∣

∣

∣

x
∈ TxM, (48)

similarly the tangent space Tτ(x)M is equipped with the basis

∂

∂y1

∣

∣

∣

τ(x)
,

∂

∂y2

∣

∣

∣

τ(x)
· · · ∂

∂yN

∣

∣

∣

τ(x)
∈ Tτ(x)M, (49)

and is just the Jacobian matrix Jx(τ) of τ at x,

τ∗

(

∂

∂xi

∣

∣

∣

x

)

=

N
∑

j=1

∂τ j

∂xi

∣

∣

∣

x
· ∂

∂yj

∣

∣

∣

τ(x)
, (50)

where ∂τj

∂xi

∣

∣

∣

x
is the entry of the Jacobian matrix [Jx(τ)]i,j and

τ j is the j-th component of τ .

With the tangent map τ∗,x as the linear map between the

tangent spaces TxM to Tτ(x)M and based on the definition

of L′ in equation (16) together with the definition of Laplace-

Beltrami operator in (5), the operation carried out on the de-

formed manifold data f can be written as

−L′f(x) = (∇ · ∇)f(τ(x)) (51)

= (Jx(τ)
T∇τ · Jx(τ)T∇τ )f(τ(x)). (52)

The equality in (52) results from the chain rule of gradient oper-

ator where ∇τ is denoted as the intrinsic gradient around τ(x)
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in the tangent space Tτ(x)M. By replacing Jx(τ) = I +Δx the

inner product term, (52) can be rewritten as

Jx(τ)
T∇τ · Jx(τ)T∇τ =∇τ · ∇τ + 2(ΔT

x∇τ · ∇τ )

+ ΔT
x∇τ ·ΔT

x∇τ . (53)

With L=−∇τ · ∇τ , the perturbed operator is

L − L′ = 2(ΔT
x∇τ · ∇τ ) + ΔT

x∇τ ·ΔT
x∇τ (54)

= 2‖Δx‖F (∇τ · ∇τ ) + ‖Δx‖2F (∇τ · ∇τ ) +A. (55)

From (54) to (55), we extract the relative term and use A to

represent the compliment terms. This leads to E= ‖Δx‖2F +
2‖Δx‖F , as the relative perturbation term, the norm of which

is bounded by the leading term as O(ε). The norm of the

compliment term therefore can be written as

‖A‖= ‖E(∇τ · ∇τ )− 2(ΔT
x∇τ · ∇τ )−ΔT

x∇τ ·ΔT
x∇τ‖

(56)

≤
∥

∥2‖Δx‖F (∇τ · ∇τ )− 2(ΔT
x∇τ · ∇τ )

∥

∥

+
∥

∥‖Δx‖2F (∇τ · ∇τ )−ΔT
x∇τ ·ΔT

x∇τ

∥

∥ , (57)

which can be also bounded by the leading terms as O(ε) com-

bining with the boundedness of the gradient field.

B. Lemmas

Now we need to include two important lemmas to analyze

the influence on eigenvalues and eigenfunctions caused by

the perturbation.

Lemma 1: [Weyl’s Theorem] The eigenvalues of LB opera-

tors L and perturbed L′ = L+A satisfy

|λi − λ′
i| ≤ ‖A‖, for all i= 1, 2 . . . (58)

Proof of Lemma 1: The minimax principle asserts that

λi(L) = max
codimT=i−1

λ[L, T ] = max
codimT≤i−1

min
u∈T,‖u‖=1

〈Lu, u〉.
(59)

Then for any 1≤ i, we have

λi(L′) = max
codimT≤i−1

min
u∈T,‖u‖=1

〈(L+A)u, u〉 (60)

= max
codimT≤i−1

min
u∈T,‖u‖=1

(〈(Lu, u〉+ 〈Au, u〉) (61)

≥ max
codimT≤i−1

min
u∈T,‖u‖=1

〈Lu, u〉+ λ1(A)) (62)

= λ1(A) + max
codimT≤i−1

min
u∈T,‖u‖=1

〈Lu, u〉 (63)

= λi(L) + λ1(A). (64)

Similarly, we can have λi(L′)≤ λi(L) + maxk λk(A). This

leads to λ1(A)≤ λi(L′)− λi(L)≤maxk λk(A). This leads to

the conclusion that:

|λ′
i − λi| ≤ ‖A‖. (65)

To measure the difference of eigenfunctions, we introduce

the Davis-Kahan sin θ theorem as follows.

Lemma 2: [Davis-Kahan sin θ Theorem] Suppose the spectra

of operators L and L′ are partitioned as σ
⋃

Σ and ω
⋃

Ω
respectively, with σ

⋂

Σ= ∅ and ω
⋂

Ω= ∅. Then we have

‖EL(σ)− EL′(ω)‖ ≤ π

2

‖(L′ − L)EL(σ)‖
d

≤ π

2

‖L′ − L‖
d

,

(66)

where d satisfies minx∈σ,y∈Ω |x− y| ≥ d and minx∈Σ,y∈ω |x−
y| ≥ d.

Proof of Lemma 2: See [46].

Lemma 3: The eigenvalues of LB operators L and perturbed

L′ = L+EL with ‖E‖ ≤ ε satisfy

|λi − λ′
i| ≤ ε|λi|, for all i= 1, 2 . . . (67)

Proof of Lemma 3: With the assumption that L′ = L+
EL, we have

λi(L+EL) = max
codimT≤i−1

min
u∈T,‖u‖=1

〈(L+EL)u, u〉 (68)

= max
codimT≤i−1

min
u∈T,‖u‖=1

(〈Lu, u〉+ 〈ELu, u〉)
(69)

= λi(L) + max
codimT≤i−1

min
u∈T,‖u‖=1

〈ELu, u〉.
(70)

For the second term, we have

|〈ELu, u〉| ≤ 〈|E||L|u, u〉 ≤ ε
∑

i

|λi(L)||ξi|2 = ε〈|L|u, u〉

(71)

Therefore, we have

λi(L+EL)≤ λi(L) + ε max
codimT≤i−1

min
u∈T,‖u‖=1

〈|L|u, u〉

= λi(L) + ε|λi(L)|, (72)

λi(L+EL)≥ λi(L)− ε|λi(L)|, (73)

λi(L)− ε|λi(L)| ≤ λi(L+EL)≤ λi(L) + ε|λi(L)|, (74)

which concludes the proof.

C. Proof of Theorem 2

In the following, we denote 〈·, ·〉L2(M) as 〈·, ·〉 and

‖ · ‖L2(M) as ‖ · ‖ for simplicity. We start by bounding the norm

difference between two outputs of filter functions on operators

L and L′ defined in (15) as

‖h(L)f − h(L′)f‖=
∥

∥

∥

∥

∥

∞
∑

i=1

ĥ(λi)〈f,φi〉φi −
∞
∑

i=1

ĥ(λ′
i)〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

. (75)

We denote the index of partitions that contain a single eigen-

value as a set Ks and the rest as a set Km. We can decompose

the filter function as ĥ(λ) = h(0)(λ) +
∑

l∈Km
h(l)(λ) with

h(0)(λ) =

{

ĥ(λ)− ∑

l∈Km

ĥ(Cl) λ ∈ [Λk(α)]k∈Ks

0 otherwise
(76)

h(l)(λ) =

⎧

⎨

⎩

ĥ(Cl) λ ∈ [Λk(α)]k∈Ks

ĥ(λ) λ ∈ Λl(α)
0 otherwise

(77)
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where Cl is some constant in Λl(α). We can start by analyzing

the output difference of h(0)(λ). With the triangle inequality,

the norm difference can then be written as
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉φi − h(0)(λ′
i)〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉φi − h(0)(λi)〈f,φ′
i〉φ′

i

+ h(0)(λi)〈f,φ′
i〉φ′

i − h(0)(λ′
i)〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

(78)

≤
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉φi − h(0)(λi)〈f,φ′
i〉φ′

i

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φ′
i〉φ′

i − h(0)(λ′
i)〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

(79)

≤
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)

(

〈f,φi〉φi − 〈f,φi〉φ′
i + 〈f,φi〉φ′

i

− 〈f,φ′
i〉φ′

i

)∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=1

(h(0)(λi)− h(0)(λ′
i))〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

(80)

≤
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉(φi − φ′
i)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi − φ′
i〉φ′

i

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=1

(h(0)(λi)− h(0)(λ′
i))〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

(81)

For the first term in (81), we employ Lemma 2 and therefore

we have σ = λi and ω = λ′
i, for λi ∈ [Λk(α)]k∈Ks

we can have

∥

∥φi − φ′
i

∥

∥≤ π

2

‖A‖
α− ε

=
π

2

ε

α− ε
. (82)

Here d can be seen as d=minλi∈Λk(α),λj∈Λl(α),k 	=l |λi − λ′
j |.

Combined with the fact that |λi − λj |> α and |λi − λ′
i| ≤ ε

for all λi ∈ Λk(α), λj ∈ Λl(α), k �= l, we have d≥ α− ε. With

Cauchy-Schwartz inequality, we have the first term in (81)

bounded as
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉(φi − φ′
i)

∥

∥

∥

∥

∥

≤
∞
∑

i=1

|h(0)(λi)||〈f,φi〉|
∥

∥φi − φ′
i

∥

∥≤ Nsπε

2(α− ε)
‖f‖. (83)

The second term in (81) is bounded as
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi − φ′
i〉φ′

i

∥

∥

∥

∥

∥

≤
∞
∑

i=1

|h(0)(λi)|‖φi − φ′
i‖‖f‖ ≤

Nsπε

2(α− ε)
‖f‖. (84)

These two bounds are obtained by noting that |h(0)(λ)|< 1 and

h(0)(λ) = 0 for λ ∈ [Λk(α)]k∈Km
. The number of eigenvalues

within [Λk(α)]k∈Ks
is denoted as Ns. The third term in (81)

can be bounded by the Lipschitz continuity of h combined

with Lemma 1.

∥

∥

∥

∥

∥

∞
∑

i=1

(h(0)(λi)− h(0)(λ′
i))〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

2

≤
∞
∑

i=1

|h(0)(λi)− h(0)(λ′
i)|2|〈f,φ′

i〉|2

≤
∞
∑

i=1

A2
h|λi − λ′

i|2|〈f,φ′
i〉|2 ≤A2

hε
2‖f‖2. (85)

Then we need to analyze the output difference of h(l)(λ), we

can bound this as
∥

∥

∥h
(l)(L)f − h

(l)(L′)f
∥

∥

∥

≤
∥

∥

∥(ĥ(Cl) + δ)f − (ĥ(Cl)− δ)f
∥

∥

∥≤ 2δ‖f‖, (86)

where h(l)(L) and h
(l)(L′) are manifold filters with filter func-

tion h(l)(λ) on the LB operators L and L′ respectively. Com-

bining the filter functions, we can write

‖h(L)f − h(L′)f‖

=

∥

∥

∥

∥

∥

h
(0)(L)f+

∑

l∈Km

h
(l)(L)f − h

(0)(L′)f−
∑

l∈Km

h
(l)(L′)f

∥

∥

∥

∥

∥

(87)

≤ ‖h(0)(L)f − h
(0)(L′)f‖+

∑

l∈Km

‖h(l)(L)f − h
(l)(L′)f‖

(88)

≤ Nsπε

α− ε
‖f‖+Ahε‖f‖+ 2(N −Ns)δ‖f‖, (89)

which concludes the proof.

D. Proof of Theorem 4

To bound the output difference of MNNs, we need to write

in the form of features of the final layer

‖Φ(H,L, f)−Φ(H,L′, f)‖=
∥

∥

∥

∥

∥

FL
∑

q=1

fq
L −

FL
∑

q=1

f
′q
L

∥

∥

∥

∥

∥

. (90)

The output signal of layer l of MNN Φ(H,L, f) can be

written as

fp
l = σ

⎛

⎝

Fl−1
∑

q=1

h
pq
l (L)fq

l−1

⎞

⎠ . (91)

Similarly, for the perturbed L′ the corresponding MNN is

Φ(H,L′, f) the output signal can be written as

f
′p
l = σ

⎛

⎝

Fl−1
∑

q=1

h
pq
l (L′)f

′q
l−1

⎞

⎠ . (92)
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The difference therefore becomes

‖fp
l − f

′p
l ‖

=

∥

∥

∥

∥

∥

∥

σ

⎛

⎝

Fl−1
∑

q=1

h
pq
l (L)fq

l−1

⎞

⎠− σ

⎛

⎝

Fl−1
∑

q=1

h
pq
l (L′)f

′q
l−1

⎞

⎠

∥

∥

∥

∥

∥

∥

.

(93)

With the assumption that σ is normalized Lipschitz, we have

‖fp
l − f

′p
l ‖ ≤

∥

∥

∥

∥

∥

∥

Fl−1
∑

q=1

h
pq
l (L)fq

l−1 − h
pq
l (L′)f

′q
l−1

∥

∥

∥

∥

∥

∥

(94)

≤
Fl−1
∑

q=1

∥

∥

∥h
pq
l (L)fq

l−1 − h
pq
l (L′)f

′q
l−1

∥

∥

∥ . (95)

By adding and subtracting h
pq
l (L′)fq

l−1 from each term, com-

bined with the triangle inequality we can get
∥

∥

∥
h
pq
l (L)fq

l−1 − h
pq
l (L′)f

′q
l−1

∥

∥

∥

≤
∥

∥h
pq
l (L)fq

l−1 − h
pq
l (L′)fq

l−1

∥

∥

+
∥

∥

∥
h
pq
l (L′)fq

l−1 − h
pq
l (L′)f

′q
l−1

∥

∥

∥
(96)

The first term can be bounded with (89) for absolute

perturbations. The second term can be decomposed by

Cauchy-Schwartz inequality and non-amplifying of the filter

functions as

∥

∥

∥f
p
l − f

′p
l

∥

∥

∥≤
Fl−1
∑

q=1

Cperε‖fq
l−1‖+

Fl−1
∑

q=1

‖fq
l−1 − f

′q
l−1‖, (97)

where Cper representing the constant in the stability bound of

manifold filters. To solve this recursion, we need to compute

the bound for ‖fp
l ‖. By normalized Lipschitz continuity of σ

and the fact that σ(0) = 0, we can get

‖fp
l ‖ ≤

∥

∥

∥

∥

∥

∥

Fl−1
∑

q=1

h
pq
l (L)fq

l−1

∥

∥

∥

∥

∥

∥

≤
Fl−1
∑

q=1

‖hpq
l (L)‖ ‖fq

l−1‖

≤
Fl−1
∑

q=1

‖fq
l−1‖ ≤

l−1
∏

l′=1

Fl′

F0
∑

q=1

‖fq‖. (98)

Insert this conclusion back to solve the recursion, we can get

∥

∥

∥
fp
l − f

′p
l

∥

∥

∥
≤ lCperε

(

l−1
∏

l′=1

Fl′

)

F0
∑

q=1

‖fq‖. (99)

Replace l with L we can obtain

‖Φ(H,L, f)−Φ(H,L′, f)‖

≤
FL
∑

q=1

(

LCperε

(

L−1
∏

l′=1

Fl′

)

F0
∑

q=1

‖fq‖
)

. (100)

With F0 = FL = 1 and Fl = F for 1≤ l ≤ L− 1, then we have

‖Φ(H,L, f)−Φ(H,L′, f)‖ ≤ LFL−1Cperε‖f‖, (101)

which concludes the proof.

E. Proof of Theorem 3

The decomposition follows the same routine as (75) shows.

By decomposing the filter function as (102) and (103), the norm

difference can also be bounded separately.

h(0)(λ) =

{

ĥ(λ)− ∑

l∈Km

ĥ(Cl) λ ∈ [Λk(γ)]k∈Ks

0 otherwise
(102)

h(l)(λ) =

⎧

⎨

⎩

ĥ(Cl) λ ∈ [Λk(γ)]k∈Ks

ĥ(λ) λ ∈ Λl(γ)
0 otherwise

(103)

where now ĥ(λ) = h(0)(λ) +
∑

l∈Km
h(l)(λ) with Ks defined

as the group index set of singletons and Km the set of partitions

that contain multiple eigenvalues. For manifold filter h(0)(L)
with filter function h(0)(λ), the norm difference can also be

written as
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉φi − h(0)(λ′
i)〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉(φi − φ′
i)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi − φ′
i〉φ′

i

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=1

(h(0)(λi)− h(0)(λ′
i))〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

. (104)

The difference of the eigenvalues due to relative perturbations

can be similarly addressed by Lemma 3.

The first two terms of (104) rely on the differences of eigen-

functions, which can be derived with Davis-Kahan Theorem in

Lemma 2, the difference of eigenfunctions can be written as

‖ELφi‖= ‖Eλiφi‖= λi‖Eφi‖ ≤ λi‖E‖‖φi‖ ≤ λiε.
(105)

The first term in (104) then can be bounded as
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉(φi − φ′
i)

∥

∥

∥

∥

∥

≤
∞
∑

i=1

|h(0)(λi)||〈f,φi〉|
∥

∥φi − φ′
i

∥

∥≤
∑

i∈Ks

πλiε

2di
‖f‖. (106)

Because di =min{|λi − λ′
i−1|, |λ′

i − λi−1|, |λ′
i+1 −

λi|, |λi+1 − λ′
i|}, with Lemma 3 implied, we have

|λi − λ′
i−1| ≥ |λi − (1 + ε)λi−1|, (107)

|λ′
i − λi−1| ≥ |(1− ε)λi − λi−1|, (108)

|λ′
i+1 − λi| ≥ |(1− ε)λi+1 − λi|, (109)

|λi+1 − λ′
i| ≥ |λi+1 − (1 + ε)λi|. (110)

Combine with Lemma 3 and Definition 8, di ≥ εγ + γ − ε:

|(1− ε)λi+1 − λi| ≥ |γλi − ελi+1| (111)

= ελi

∣

∣

∣

∣

1− λi+1

λi
+

γ

ε
− 1

∣

∣

∣

∣

(112)

≥ λi(γ − ε+ γε) (113)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 26,2024 at 11:11:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: STABILITY TO DEFORMATIONS OF MANIFOLD FILTERS AND MANIFOLD NEURAL NETWORKS 2145

This leads to the bound as
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi〉(φi − φ′
i)

∥

∥

∥

∥

∥

≤ Msπε

2(γ − ε+ γε)
‖f‖. (114)

The second term in (104) can also be bounded as
∥

∥

∥

∥

∥

∞
∑

i=1

h(0)(λi)〈f,φi − φ′
i〉φ′

i

∥

∥

∥

∥

∥

≤
∞
∑

i=1

|h(0)(λi)|‖φi − φ′
i‖‖f‖ ≤

Msπε

2(γ − ε+ γε)
‖f‖, (115)

which similarly results from the fact that |h(0)(λ)|< 1 and

h(0)(λ) = 0 for λ ∈ [Λk(γ)]k∈Km
. The number of eigenvalues

within [Λk(γ)]k∈Ks
is denoted as Ms.

The third term in (104) is:
∥

∥

∥

∥

∥

∞
∑

i=1

(h(0)(λi)− h(0)(λ′
i))〈f,φ′

i〉φ′
i

∥

∥

∥

∥

∥

2

≤
∞
∑

i=1

(

Bhε|λi|
(λi + λ′

i)/2

)2

〈f,φ′
i〉2 ≤

(

2Bhε

2− ε

)2

‖f‖2, (116)

with the use of Lemma 3 and Definition 10.

Then we need to analyze the output difference of h(l)(λ).
∥

∥

∥
h
(l)(L)f − h

(l)(L′)f
∥

∥

∥

≤
∥

∥

∥(ĥ(Cl) + δ)f − (ĥ(Cl)− δ)f
∥

∥

∥≤ 2δ‖f‖. (117)

Combine the filter function, we could get

‖h(L)f − h(L′)f‖

=

∥

∥

∥

∥

∥

h
(0)(L)f+

∑

l∈Km

h
(l)(L)f−h

(0)(L′)f−
∑

l∈Km

h
(l)(L′)f

∥

∥

∥

∥

∥

(118)

≤ ‖h(0)(L)f−h
(0)(L′)f‖+

∑

l∈Km

‖h(l)(L)f−h
(l)(L′)f‖

(119)

≤ Msπε

γ − ε+ γε
‖f‖+ 2Bhε

2− ε
‖f‖+ 2(M −Ms)δ‖f‖, (120)

which concludes the proof.

F. Definition 1 and Convolutional Filters in Continuous Time

The manifold convolution in Definition 1 can also be mo-

tivated with a connection to linear time invariant filters. This

requires that we consider the differential equation

∂u(x, t)

∂t
=

∂

∂x
u(x, t). (121)

This is a one-sided wave equation and it is therefore not an

exact analogous of the diffusion equation in (6) – this would

require that the second derivative be used in the right of (121).

The important observation to make here is that the exponen-

tial of the derivative operator is a time shift so that we can

write u(x, t) = et∂/∂xf(x) = f(x− t). This is true because

et∂/∂xf(x) and f(x− t) are both solutions of (121). It then

follows that Definition 1 particularized to (121) yields the con-

volution definition

g(x) =

∫ ∞

0

h̃(t)et∂/∂xf(x) dt.=

∫ ∞

0

h̃(t)f(x− t) dt.

(122)

This is the standard definition of time convolutions.

The frequency representation result in Proposition 1 holds

for (122) and it implies that standard convolutional filters in

continuous time are completely characterized by the frequency

response in Definition 2. The more standard definition of a fil-

ter’s frequency response as the Fourier transform of the impulse

response h̃(t) – as opposed to the Laplace transform we use in

Definition 2 – suffices because complex exponentials ejw are an

orthonormal basis of eigenfunctions of the derivative operator

with associated eigenvalues jω.
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