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Abstract—This paper studies the relationship between a graph
neural network (GNN) and a manifold neural network (MNN)
when the graph is constructed from a set of points sampled
from the manifold, thus encoding geometric information. We
consider convolutional MNNs and GNNs where the manifold
and the graph convolutions are respectively defined in terms of
the Laplace-Beltrami operator and the graph Laplacian. Using
the appropriate kernels, we analyze both dense and moderately
sparse graphs. We prove non-asymptotic error bounds showing
that convolutional filters and neural networks on these graphs
converge to convolutional filters and neural networks on the
continuous manifold. As a byproduct of this analysis, we observe
an important trade-off between the discriminability of graph
filters and their ability to approximate the desired behavior of
manifold filters. We then discuss how this trade-off is ameliorated
in neural networks due to the frequency mixing property of
nonlinearities. We further derive a transferability corollary for
geometric graphs sampled from the same manifold. We validate
our results numerically on a navigation control problem and a
point cloud classification task.

Index Terms—Graph neural networks, manifold filters, mani-
fold neural networks, convergence analysis, discriminability.

I. INTRODUCTION

GEOMETRIC data, or data supported in non-Euclidean do-
mains, is the object of much interest in modern informa-

tion processing. It arises in a number of applications, including
protein function prediction [3], [4], robot path planning [5], [6],
3D shape analysis [7], [8], [9] and wireless resource allocation
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[10], [11]. Graph convolutional filters [12], [13] and graph
neural networks (GNNs) [14], [15], along with manifold convo-
lutional filters [16] and manifold neural networks (MNNs) [17],
[18], [19], are the standard tools for invariant information pro-
cessing on these domains when they are discrete and continuous
respectively. The convolution operation is implemented through
information diffusion over the geometric structure, thus en-
abling invariant and stable representations [20], [21], [22], [23]
and feature sharing. The cascading neural network architecture
interleaves convolutions and nonlinearities, further expanding
the model’s expressiveness.

Although there is a clear parallel between graphs and
manifolds—the former can be seen as discretizations of the
latter—, manifolds are infinite-dimensional continuous latent
spaces which can only be accessed by discrete point sampling
[7], [24], [25], [26]. In general, we have access to a set of
sampling points from the manifold, and build a graph model to
approximate the underlying continuous manifold while attempt-
ing to retain the local and global geometric structure [7], [11],
[27]. GNNs have been shown to do well at processing infor-
mation over the manifold both experimentally and theoretically
[16], [25], [28]. Of particular note, conditions that guarantee
asymptotic convergence of graph filters and GNNs to manifold
filters and MNNs are known [16].

Asymptotic convergence is a minimal guarantee that can
be enriched with non-asymptotic approximation error bounds.
These bounds are unknown and they are the focus of this pa-
per. These non-asymptotic approximation error bounds relat-
ing graph filters and GNNs to manifold filters and MNNs are
important because they inform the practical design on graphs
of information processing architectures that we want to deploy
on manifolds. In addition, explicit finite-sample error bounds
often reveal details about the convergence regime (e.g., rates
of convergence and discriminability trade-offs) that are not re-
vealed by their asymptotic counterparts. For example, the non-
asymptotic convergence analysis of GNNs on graphs sampled
from a graphon (also referred to as a transferability analysis)
gives a more precise characterization of the discriminability-
convergence tradeoff that arises in these GNNs [29], which is
not elucidated by the corresponding asymptotic convergence
result [30].
Contributions. In this paper, we prove and analyze a non-
asymptotic approximation error bound for GNNs on graphs
sampled from manifold, thus closing the gap between GNNs
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and MNNs with an explicit numerical relationship. We start by
importing the definition of the manifold filter as a convolutional
operation where the diffusions are exponentials of the Laplace-
Beltrami (LB) operator L of the manifold M⊂ R

N [16]. Given
a set of discrete sampling points from the manifold, we describe
how to construct both dense and relatively sparse geometric
graphs that approximate the underlying manifold in both the
spatial and the spectral domains.

Next, we import the concept of Frequency Difference Thresh-
old (FDT) filters (Definition 3) [17] to overcome the challenge
of dimensionality associated with the infinite-dimensional spec-
trum of the LB operator. We show that manifold filters exhibit
a trade-off between their discriminability and their ability to
be approximated by graph filters, which can be observed in
the approximation error bound of geometric graph filters in
Theorems 1 and 2.

The same analysis is conducted for GNNs by incorporating
nonlinearities (Theorem 3), but in GNNs we hypothesize that
the trade-off is alleviated, i.e., that we can recover discrim-
inability, through the addition of these nonlinear operations
(Section V). In other words, geometric GNNs can be both
discriminative and approximative of the underlying MNNs,
which we verify empirically through numerical experiments
(Section VI). Finally, we show how our approximation re-
sult can be extended, by a triangle inequality argument, to a
transferability result for geometric GNNs transferred across
geometric graphs of different sizes sampled from the same
underlying manifold.

Related Works. GNNs have been thoroughly studied and dis-
cussed in a number of previous works [14], [15], [31], [32].
Similarly, the convergence and transferability of neural net-
works on graphs have been studied in many works including
[21], [29], [33], [34]. These works however see the graphs as
samples from a graphon model. In our paper, we focus on the
manifold as the limit model for large-scale graphs, which is
more realistic than graphons as it can incorporate the under-
lying geometric information. Very relevant to this paper, the
spectral convergence of relatively sparse graphs sampled from
manifolds has been studied at length in [35]. Other settings of
transfer learning on GNNs have been studied in [36], [37] with
different graph similarity measurement without focus on the
graph limits.

Manifold filters and manifold neural networks have been
established and discussed in [16], [17], [18], [24] using different
features and metrics. The integral of the heat diffusion process
is employed in [16], [17] where it is shown that manifold
convolutions are consistent with and can recover both the graph
convolution and the time convolution. In [18], a local geodesic
system capturing local anisotropic structures is used to define
the manifold convolution. Taking a different approach, [24]
defines a mixture Gaussian kernel over the spatial domain using
patch operator that is constructed locally.

Among all these methods, the definition leveraging the heat
diffusion process is the only one to build the connection be-
tween graph neural networks and manifold neural networks
when the graphs are sampled from the manifold [16]. However,

this paper does not provide an explicit convergence rate or
approximation error bound between GNNs and MNNs. In [38],
a convergence rate is given for GNNs approximating MNNs, but
the result is restricted to input signals with a limited bandwidth.
Moreover, the graphs constructed in [16] and [38] still need to
be dense with a well-defined Gaussian kernel. In contrast, in
this paper we extend the analysis of the convergence of GNNs
by proving a non-asymptotic approximation error bound for
geometric GNNs sampled from the MNNs where the geometric
graphs are either dense or relatively sparse; and we eliminate
the bandlimited signal assumption by importing frequency-
dependent filters.

Organization. Section II introduces preliminary definitions of
graph signal processing and graph neural networks along with
manifold signal processing and manifold neural networks. Sec-
tion III introduces the construction of the geometric graphs
from the sampling points of the manifold and the convergence
of the geometric graph Laplacians. We show the spectrum of
the geometric graphs – both dense and relatively sparse – can
approximate the spectrum of the LB operator of the underlying
manifold with a bounded error. We then go on to study the
approximation of the filtering on the geometric graphs which
is further extended to the approximation of geometric GNNs
to MNNs in Section IV. Section V discusses the implications
of the results derived in Section IV. Section VI illustrates the
results of Sections IV with numerical examples. SectionVII
concludes the paper. Proofs are deferred to the appendices and
supplementary materials.

II. PRELIMINARY DEFINITIONS

We start by reviewing the basic architecture of graph neural
networks and manifold neural networks.

A. Graph Signal Processing and Graph Neural Networks

Let G= (V, E ,W) be an undirected graph with node set
V, |V|= n, and edge set E ⊆ V × V . The edges in E may be
weighted, in which case the edge weights are assigned by a
function W : E → R. In this paper, we are interested in graph
signals x ∈ R

n supported on the nodes. For 1≤ i≤ n, [x]i
represents the value of the signal at node i.
Graph shift. Operating on graph signals x, we define the
graph shift operator (GSO) S ∈ R

n×n. The GSO is any matrix
satisfying [S]ij �= 0 if and only if (i, j) ∈ E or i= j, e.g., the
adjacency matrix A, [A]ij =W(i, j), or the graph Laplacian
L= diag(A1)−A [13], [39]. The GSO is so called because,
at each node i, it has the effect of shifting or diffusing the
signal values at i’s neighbors to i, where signal values are ag-
gregated. Explicitly, [Sx]i =

∑
j,(i,j)∈E [S]ij [x]j . In the case of

an undirected graph, the GSO is symmetric and can therefore be
decomposed as S=VΛVH . The eigenvalues in the diagonal
matrix Λ are seen as spectral frequencies, and the eigenvectors
in V are the corresponding oscillation modes.
Graph convolution. A graph convolution is defined based on
the graph diffusion process with Kt − 1 consecutive shifts.
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More formally, the graph convolutional filter [13], [15], [40]
with coefficients {hk}Kt−1

k=0 is given by

hG(S)x=

Kt−1∑

k=0

hkS
kx. (1)

Plugging the spectral decomposition of S into (1), we see that
in the spectral domain this filter can be represented as

VHhG(S)x=

Kt−1∑

k=1

hkΛ
kVHx= h(Λ)VHx. (2)

Hence, the graph frequency response of the graph convolution
is given by h(λ) =

∑Kt−1
k=0 hkλ

k, which only depends on the
weights hk and on the eigenvalues of S.
Graph neural network. A graph neural network (GNN) is
built by cascading layers that each consists of a bank of filters
followed by a point-wise nonlinearity σ : R→ R, [σ(x)]i =
σ([x]i). The lth layer of a GNN produces Fl signals xp

l , each
called a feature, given by

xp
l = σ

⎛

⎝
Fl−1∑

q=1

hlpq
G (S)xq

l−1

⎞

⎠, (3)

for 1≤ p≤ Fl. At each layer l = 1, 2 . . . , L, the number of
input and output features are Fl−1 and Fl respectively. The filter
hlpq
G (S) is as in (1) and maps the q-th feature of layer l − 1 to

the p-th feature of layer l. For simplicity, we write the GNN
consisting of L layers like (3) as the map ΦG(H,S,x), where
H denotes a set of the graph filter coefficients at all layers.

B. Manifold Signal Processing and Manifold Neural Networks

Let M be a d-dimensional embedded manifold in R
N. For

simplicity, in this paper whenever we mention the manifold
M, we assume that it is a compact, smooth and differentiable
d-dimensional submanifold embedded in R

N. Atop M, signals
are defined as scalar functions f :M→ R called manifold
signals [23]. The inner product of signals f, g ∈ L2(M) is
defined as

〈f, g〉M =

∫

M
f(x)g(x)dμ(x), (4)

where dμ(x) is the volume element with respect to the measure
μ over M. Similarly, the norm of the manifold signal f is

‖f‖2M = 〈f, f〉M. (5)

Manifold shift. The manifold M is locally Euclidean, and the
local homeomorphic Euclidean space at each point x ∈M is
defined as the tangent space TxM [41]. The disjoint union of
all tangent spaces over M is called the tangent bundle and
denoted TM. The gradient ∇ : L2(M)→ L2(TM) is the dif-
ferentiation operator and maps scalar functions to tangent vector
functions over M [25], [42]. The adjoint of ∇ is the divergence,
which is defined as div : L2(TM)→ L2(M). The Laplace-
Beltrami (LB) operator L : L2(M)→ L2(M) is defined as
the divergence of the gradient [43]. Formally, the operation is
written as

Lf =−div ◦ ∇f. (6)

This operator measures the difference between the signal value
at a point and the average signal value in the point’s neighbor-
hood [25]. This is akin to how the graph Laplacian matrix can
be used to compute the total variation of a graph signal [44].

On manifolds, the shift operation is defined based on the LB
operator and on the solution to the heat equation (see [23] for
a detailed exposition). Explicitly, for a manifold signal f the
manifold shift is written as e−dtLf . Since the LB operator is
self-adjoint and positive-semidefinite and the manifold M is
compact, L has real, positive and discrete eigenvalues {λi}∞i=1,
which can be written as

Lφi = λiφi, (7)

where φi is the eigenfunction associated with eigenvalue λi.
The eigenvalues, or manifold frequencies, are ordered in in-
creasing order as 0< λ1 ≤ λ2 ≤ λ3 ≤ . . ., and the eigenfunc-
tions, or manifold oscillation modes, are orthonormal and form
an eigenbasis of L2(M) in the intrinsic sense. The φi are also
eigenfunctions of the shift operator e−dtL, with corresponding
eigenvalues e−dtλi .
Manifold convolution. Integrating e−dtLf over [0,∞) yields
the infinite-horizon diffusion process

g(x) =

∫ ∞

0

e−tLf(x)dt. (8)

Let h̃ : R+ → R denote the filter impulse response. Based on
this diffusion process,a manifold filter can be defined via the
manifold convolution [23],

g(x) = hf(x) :=

∫ ∞

0

h̃(t)e−tLf(x)dt= h(L)f(x). (9)

Note that the map h := h(L) is parametric on the LB operator,
and is a spatial map acting directly on x ∈M.

If we write [f̂ ]i = 〈f,φi〉L2(M) =
∫
M f(x)φi(x)dμ(x), the

manifold convolution can be represented in the manifold fre-
quency domain as

[ĝ]i =

∫ ∞

0

h̃(t)e−tλidt[f̂ ]i. (10)

Hence, the frequency response of the filter h(L) is given by
ĥ(λ) =

∫∞
0

h̃(t)e−tλdt, which only depends on the impulse
response h̃ and the LB eigenvalues λ= λi. Further summing
over all i and projecting back onto the spatial domain, we can
alternatively represent h(L) as

g = h(L)f =

∞∑

i=1

ĥ(λi)[f̂ ]iφi. (11)

Manifold neural network. Similarly to the GNN, we can de-
fine the manifold neural network (MNN) as a cascade of layers
l = 1, 2 . . . , L each of which consists of a bank of manifold
filters and a pointwise nonlinearity σ. Layer l can be explicitly
written as

fp
l (x) = σ

⎛

⎝
Fl−1∑

q=1

hpq
l (L)fq

l−1(x)

⎞

⎠, (12)
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where each signal fp
l , 1≤ p≤ Fl is a different feature. Each

layer l maps Fl−1 input features to Fl output features. For a
more succinct representation, in the following the MNN will
be denoted Φ(H,L, f), where H is a function set gathering the
impulse responses of the manifold filters hpq

l for all features and
all layers.

III. GEOMETRIC GRAPHS AND LAPLACIAN CONVERGENCE

Given discrete set of points sampled from the manifold M,
we can construct a discrete approximation of M by connecting
the sample points by means of a graph. The nodes of the graph
are the sample points, and the edges (more specifically, their
weights) are defined as some function of the Euclidean distance
between each node pair to encode geometric information from
the manifold. We henceforth refer to graphs carrying topologi-
cal manifold information as geometric graphs, which is slightly
different from the graph theory definition that focuses on the
geometric properties of the edges of the graph [45].

Let X be a set of n points {x1, x2, . . . , xn} sampled uni-
formly, identically and independently from the manifold M
according to measure μ. The discrete empirical measure associ-
ated with these points is defined as pn = 1

n

∑n
i=1 δxi

, where δxi

represents the Dirac measure at xi. For signals u, v ∈ L2(M),
the inner product associated with measure pn is defined as

〈u, v〉L2(Gn) =

∫

u(x)v(x)dpn =
1

n

n∑

i=1

u(xi)v(xi) (13)

and so the norm in L2(Gn) is

‖u‖2L2(Gn)
= 〈u, u〉L2(Gn).

For signals u,v ∈ L2(Gn), the inner product is

〈u,v〉L2(Gn) =
1

n

n∑

i=1

[u]i[v]i

and the norm is ‖u‖2L2(Gn)
= 〈u,u〉L2(Gn).

We construct an undirected geometric graph Gn from the
sampled points X by seeing each point as a vertex. Every pair
of vertices is connected by edges with weight values determined
by a function Kε of their Euclidean distance. Explicitly, the
weight of edge (i, j), denoted wij , is given by

wij =Kε

(
‖xi − xj‖2

ε

)

, (14)

where ‖xi − xj‖ is the Euclidean distance between xi and xj .
The geometric adjacency matrix Aε

n and the geometric graph
Laplacian Lε

n can therefore be expressed as [Aε
n]ij = wij for

1≤ i, j ≤ n and Lε
n = diag(Aε

n1)−Aε
n [46].

Since it is constructed from points xi ∈M, the geometric
graph can be seen as a discrete approximation, or discretization,
of the manifold. To analogously obtain the discretization of
a manifold signal f ∈ L2(M) on this graph, as well as the
reconstruction from the graph signal back to the manifold sig-
nal, we define a uniform sampling operator Pn : L2(M)→
L2(Gn) and an interpolation operator In : L2(Gn)→ L2(M).

The application of the operator Pn to f yields the geometric
graph signal

f =Pnf with f(xi) = f(xi), xi ∈X . (15)

I.e., f is a signal on the graph Gn sharing the values of the
manifold signal f at the sampled points X .

We put certain restrictions on the sampling and interpolation
operators as follows [47].

Definition 1: We call the sampling and interpolation opera-
tors Pn and In asymptotically reconstructive if for any mani-
fold signal f ∈ L2(M), it holds

lim
n→∞

InPnf = f. (16)

Moreover, the sampling and interpolation operators Pn and In
are bounded if there exists a constant D such that

lim sup
n∈N

‖Pn‖ ≤D, lim sup
n∈N

‖In‖ ≤D. (17)

Seeing the geometric graph Laplacian Lε
n as an operator

acting on f :X → R, we can write the diffusion operation at
each point xi explicitly as

Lε
nf(xi) =

n∑

j=1

Kε

(
‖xi − xj‖2

ε

)

(f(xi)− f(xj)) (18)

for i= 1, 2, . . . , n. This operation can be further extended to
continuous manifold signals f :M→ R as

Lε
nf(x) =

n∑

j=1

Kε

(
‖x− xj‖2

ε

)

(f(x)− f(xj)) (19)

where x ∈M. If we additionally extend the set of sampled
points from X to all of the manifold M, we obtain the func-
tional approximation of the geometric graph Laplacian

Lεf(x) =

∫

M
Kε

(
‖x− y‖2

ε

)

(f(x)− f(y)) dμ(y). (20)

The definition of the weight function Kε allows the construc-
tion of geometric graphs with different levels of sparsity. With
different choices of Kε (i.e., whether Kε has a bounded support,
the relationship between ε and the number of sampling nodes
n, etc.), the graphs can be sparse (average node degree Θ(1)),
relatively sparse (average node degree Θ(log n)) or dense (aver-
age node degree Θ(n)). In the following, we will focus on two
kernel definitions that allow constructing dense and relatively
sparse geometric graphs.

A. Laplacian Convergence: Dense Graphs

Dense geometric graphs can be constructed when pairs of
points xi and xj are connected with a weight function Kε

defined on an unbounded support (i.e. [0,∞)), which connects
xi and xj regardless of the distance between them, but often
with the edge weight inversely proportional to this distance.
This results in a dense geometric graph with n2 edges. In par-
ticular, the Gaussian kernel has been widely used to define the
weight value function due to the good approximation properties
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of the corresponding graph Laplacians vis-à-vis the Laplace-
Beltrami operator [48], [49], [50]. In the Gaussian case, the
weight function Kε is computed explicitly as

Kε

(
‖x− y‖2

ε

)

=
1

n

1

εd/2+1(4π)d/2
e−

‖x−y‖2
4ε , (21)

with d representing the dimension of the manifold. The consis-
tency of the geometric graph Laplacian constructed with this
Gaussian kernel is ensured by a non-asymptotic error bound.
Explicitly, the following result quantifies the approximation of
the dense geometric graph Laplacian in the weak sense.

Proposition 1: LetM⊂ R
N be equipped with LB operatorL,

whose eigendecomposition is given by (7). Let Gn be a dense
geometric graph constructed from n points sampled u.i.d. from
M with the edge weights defined as (14) and (21), ε= ε(n)>
n−1/(d+4). Then, with probability at least 1− δ, the following
holds for each pair of {λi,φi}

|Lε
nφi(x)− Lφi(x)| ≤

(

C1

√
ln(1/δ)

2nεd+2
+ C2

√
ε

)

λ
d+2
4

i . (22)

The constants C1, C2 depend on the volume of the manifold
and are defined in Appendix B.

Proof: See Section B in supplemental materials.
We can see that the quality of the approximation of L by Lε

n

relates not only to the number of sampling points n but also
grows with the corresponding eigenvalue λi. In high frequency
domain, a larger eigenvalue leads to a larger difference between
the geometric graph Laplacian Lε

n and the Laplace-Beltrami
operator L when operating on the corresponding eigenfunc-
tion φi of L. This can be interpreted to mean that eigenfunc-
tions associated with eigenvalues oscillates faster [51] and have
slower convergence.

Based on this approximation result and using the Davis-
Kahan theorem [52], we can further derive a non-asymptotic ap-
proximation bound relating the spectra of the dense geometric
graph Laplacian and of the LB operator in a limited spectrum.

Proposition 2: Let M⊂ R
N be equipped with LB operator

L, whose eigendecomposition is given by (7). Let Lε
n be the dis-

crete graph Laplacian of the dense geometric graph Gn defined
as in (19) and (21), with spectrum given by {λε

i,n,φ
ε
i,n}ni=1. Fix

K ∈ N
+ and ε= ε(n)> n−1/(d+4). Then, with probability at

least 1− e−2nεd+3

, we have

|λi − λε
i,n| ≤ Ω1,K

√
ε, ‖aiφε

i,n − φi‖ ≤ Ω2,K

√
ε/θ, (23)

with ai ∈ {−1, 1} for all i < K and θ the eigengap of L, i.e.,
θ =min1≤i≤K{λi − λi−1, λi+1 − λi}. The constants Ω1,K ,
Ω2,K depend on λK , d and the volume of M.

Proof: See Section C in supplemental materials.
Looking at Proposition 2, we can see that the element-wise

non-asymptotic convergence of the eigenvalues and eigenfunc-
tions is only guaranteed in a limited part of the spectrum
(i < K), and that the upper bound is related to the upper limit
λK . This can be interpreted to mean that as eigenfunctions in
the high frequency domain oscillate faster, they are harder to
approximate. Therefore, when designing filters, we need to be
especially careful when trying to discriminate components in
the high frequency domain.

B. Laplacian Convergence: Relatively Sparse Graphs

We can construct relatively sparse graphs by setting the
weight function Kε with a bounded support, i.e., only nodes that
are within a certain distance of one another can be connected by
an edge. We consider the following weight function from [35]
with normalization, which has been shown to well approximate
the LB operator,

Kε

(
‖x− y‖2

ε

)

=
1

n

d+ 2

εd/2+1αd
1[0,1]

(
‖x− y‖2

ε

)

, (24)

where αd is the volume of the unit ball in R
d. As shown by the

indicator function, edges only connect points whose distance
is within the radius

√
ε. From the theory of random geometric

graphs [53], the order of the radius ε decides the order of the
average node degree. I.e., if ε is in the order of Θ(1), the
expected node degree is in the order of Θ(n), which is a dense
regime. If ε is in the order of Θ((log(n)/n)2/d), the expected
node degree is in the order of Θ(log(n)), which is a relatively
sparse regime. When setting ε in the order of Θ(n−2/d), the
graph is sparse with average node degree Θ(1).

The following proposition provides a non-asymptotic error
bound (in the weak sense) for the approximation of the LB
operator by the relatively sparse graph Laplacian.

Proposition 3 [35, Theorem 3.3]: Let M∈ R
N be equipped

with LB operator L, whose eigendecompostion is given by
(7). Let Gn be a sparse geometric graph constructed from n
points sampled u.i.d. from M with the edge weights defined as
(14) and (24), ε > (log(n)/2n)2/(d+2). Then, with probability
at least 1− δ, the following holds for each pair of {λi,φi}

|Lε
nφi(x)− Lφi(x)| ≤

(

C3

√
ln (2n/δ)

cnεd+2
+ C4

√
ε

)

λ
d+2
4

i .

(25)

The constants C3, C4 depend on the volume of the manifold.
Comparing Proposition 1 with Proposition 3, we see that

for large enough ε the difference between the graph Lapla-
cian and the Laplace-Beltrami operator is in the order of
O(

√
ln(2n/δ)/(nεd+2),

√
ε) in the sparse graph setting, which

is slightly larger than the order O(
√

ln(1/δ)/(nεd+2),
√
ε) we

observe in the dense graph case (22). This agrees with the
intuition that as dense graphs include more information about
the manifold—by taking into account all the connections be-
tween each pair of sampling points—, their Laplacian provides
a better approximation to the Laplace-Beltrami operator of the
underlying manifold than those of relatively sparse graphs.

The differences between the eigenvalues and eigenfunctions
can be bounded similarly, based on the Davis-Kahan theorem.

Proposition 4 [35, Theorem 2.4, Theorem 2.6]: Let M⊂ R
N

be equipped with LB operator L, whose eigendecomposition is
given by (7). Let Lε

n be the discrete graph Laplacian of graph
Gn defined as (19) and (24), with spectrum {λε

i,n,φ
ε
i,n}ni=1.

Fix K ∈ N
+ and assume that ε= ε(n)≥ (log(n)/2n)

2/(d+2)

Then, with probability at least 1− 2ne−cnεd+3

, we have

|λi − λε
i,n| ≤ CK,1

√
ε, ‖aiφε

i,n − φi‖ ≤ CK,2

√
ε/θ, (26)
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with ai ∈ {−1, 1} for all i < K and θ the eigengap of L, i.e.,
θ =min1≤i≤K{λi − λi−1, λi+1 − λi}. The constants CK,1,
CK,2 depend on λK , d and the volume of M.

Akin to the result described in Proposition 2, the approxi-
mation errors of the eigenvalues and eigenfunctions can only
be bounded within a certain range of the spectrum (< λK).
Comparing with the bounds given in Proposition 2, the orders
of the errors both depend on variable ε in the weight func-
tion. Meanwhile, for the convergence probability there is a
higher probability in the dense geometric graph setting com-
pared with the relatively sparse geometric graph setting, which
also supports the observation that dense geometric graphs can
provide a better approximation of the underlying manifold than
sparse ones.

Remark 1: We note that ε in (24) controls the connectivity
radius of each node to its neighboring nodes, and that the aver-
age vertex degree is given by αdnε

d/2 according to the random
geometric graph theory [54]. In the case of Proposition 4, where
ε is fixed in the order of (log(n)/2n)2/(d+2), the average degree
scales with an order between O((log(n))2/n) and O(log(n)).
Hence, the graphs in Propositions 3 and 4 are relatively sparse.

IV. GEOMETRIC GNN CONVERGENCE

Equipped with Propositions 2 and 4 relating the spectrum of
the manifold and graph Laplacian operators, we will next show
that convolutional filters operating on dense or sparse geometric
graphs constructed by sampling the underlying manifold give
good approximations of manifold filters. As neural networks
are cascading structures composing convolutional filters, GNNs
inherit this approximation property from graph filters, and thus
provide good approximations of MNNs. We begin this section
by discussing how the definitions of manifold filters and MNNs
can be generalized to the sampled geometric graphs.

A. Geometric Graph Convolution

If we fix the impulse response function h̃(t), the definition of
manifold filtering in (9) indicates that the convolution operation
on the manifold is parametric with respect to the LB operator.
Therefore, we can replace the LB operator, acting on the contin-
uous manifold signal, by the discrete graph Laplacian Lε

n acting
on a geometric graph signal as defined in (18). Explicitly,

g =

∫ ∞

0

h̃(t)e−tLε
nfdt := h(Lε

n)f , g, f ∈ R
n. (27)

This can be interpreted as a discrete geometric graph filtering
process in continuous-time, where the exponential term e−Lε

n

should be seen as the GSO. This is slightly different than
the graph convolutional filtering hG defined in (1), where we
assumed a discrete-time frame.

Leveraging (11), the spectral representation of the above
continuous time geometric graph filter can be written as

g =

n∑

i=1

ĥ(λε
i,n)〈f ,φε

i,n〉L2(Gn)φ
ε
i,n, (28)

where {λε
i,n,φ

ε
i,n}ni=1 is the spectrum of Lε

n. The spectral rep-
resentation exposes the total dependency of the filter frequency

representation on the eigenspectrum of the Laplacian operator
This indicates that the relationship between geometric graph
filters and manifold filters can be established in the spectral
domain using Propositions 2 and 4.

B. Geometric Graph Convolution Convergence

Recall that the pointwise convergence of the eigenspectrum
in Proposition 2 and 4 is restricted to a certain spectral range.
Yet, the frequency representation of the graph filter has a depen-
dency on all spectral components. Hence, the infinite spectrum
of the LB operator inevitably presents a challenge in the con-
vergence analysis of geometric graph filters.

To address this issue, we exploit Weyl’s law [55]. This clas-
sical result states that for any compact region the eigenvalues
{λi}∞i=1 of L grow proportionally to i2/d. This indicates that
large eigenvalues tend to accumulate and that the differences
between neighboring eigenvalues tend to become smaller as
the eigenvalues grow larger. This phenomenon is formally de-
scribed in the following lemma.

Lemma 1 [17, Proposition 3]: Consider a d-dimensional
manifoldM⊂ R

N and letL be its LB operator with eigenvalues
{λk}∞k=1. Let C1 be an arbitrary constant and αd the volume
of the d-dimensional unit ball. Let Vol(M) denote the volume
of manifold M. For any α > 0 and d > 2, there exists N1,

N1 = �(αd/C1)
d/(2−d)(CdVol(M))2/(2−d)� (29)

such that, for all k > N1, λk+1 − λk ≤ α.
Equipped with this fact, we can employ a partitioning strat-

egy to separate the infinite spectrum into finite intervals as
shown in Definition 2.

Definition 2 [17, Definition 4] (α-separated spectrum):
The α-separated spectrum of the LB operator L is defined as
a partition Λ1(α) ∪ . . . ∪ ΛN (α) satisfying |λi − λj |> α for
λi ∈ Λk(α) and λj ∈ Λl(α), k �= l.

The α-separated spectrum as defined above can be achieved
by means of a α-FDT filter, which is defined as follows.

Definition 3 [17, Definition 5] (α-FDT filter): The
α-frequency difference threshold (α-FDT) filter is defined as
a filter h(L) whose frequency response satisfies

|ĥ(λi)− ĥ(λj)| ≤ γk for all λi, λj ∈ Λk(α) (30)

with γk ≤ γ for some γ > 0 and k = 1, . . . , N .
To prove convergence, we will also an assumption on the

continuity of the manifold filter, which needs to be a Lipschitz
filter as defined below.

Definition 4 (Lipschitz filter): A filter is Ah-Lispchitz if
its frequency response is Lipschitz continuous with Lipschitz
constant Ah,

|ĥ(a)− ĥ(b)| ≤Ah|a− b| for all a, b ∈ (0,∞). (31)

Letting the geometric graph filter (27) be a Lipschitz con-
tinuous α-FDT filter, we are ready to prove an approximation
error bound on the difference between the outputs of a manifold
filter and a geometric graph filter on a dense geometric graph.

Theorem 1 (Convergence of filters on dense geometric
graphs): Let M⊂ R

N be equipped with LB operator L, whose
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eigendecomposition is given by (7). Let Lε
n be the discrete

graph Laplacian of the dense graph Gn defined as in (19) and
(21), with spectrum given by {λε

i,n,φ
ε
i,n}ni=1. Fix K ∈ N

+ and
assume that ε= ε(n)> n−1/(d+4) Let h(·) be the convolutional
filter. Under the assumption that the frequency response of
filter h is Lipschitz continuous and α-FDT with α2 � ε, α >
CM,dK

2/d−1 and γ =Ω2,K
√
ε/α, with probability at least

1− e−2nεd+3

it holds that

‖h(Lε
n)Pnf −Pnh(L)f‖L2(Gn)

≤
(
NΩ2,K

α
+AhΩ1,K

)√
ε+ Cgc

√
log n

n
(32)

where N is the partition size of the α-FDT filter and Cgc

depends on both d and the volume of M.
Proof: See Appendix A.

From this theorem, we can see that, if we take the prob-
ability as δ ≤ e−2nεd+3

, the order of ε can be derived as
O((ln(1/δ)/(2n))1/(d+3)). Therefore, given enough sampling
points, one can guarantee good approximation accuracy with
high probability. Also note that a higher dimension leads to
a larger ε, which results in a larger approximation error. This
indicates that it is more difficult to approximate manifolds with
higher dimension.

Observe that the partition of the spectrum by the α-FDT filter
lifts the limitation on the spectrum required in Propositions 2
and 4. This is achieved by setting α large enough that eigen-
values larger than λK are grouped. A smaller K leads to a
larger α, to ensure that more eigenvalues in the high frequency
domain are grouped. Therefore, we can alleviate the divergence
of spectral components associated with large eigenvalues by
giving them similar frequency responses, which subsequently
leads to similar filter outputs. When K gets larger, the constants
Ω1,K and Ω′

2,K scale with λK as Propositions 2 and 4 show.
Meanwhile, α can be set smaller, and the approximation error
becomes larger.

Another observation we can make from this non-asymptotic
error bound is that, for a fixed number of sampling points n,
an interesting trade-off arises between the approximative and
discriminative capabilities of the filter. A larger α (i.e., a smaller
K) means a less discriminative filter as more eigenvalues tend
to be grouped and treated similarly with an almost constant
frequency response. A larger α leads to a smaller number of
partitions, as the number of singletons decreases, which results
in the decrease of the error bound in (33). This implies that
the error bound becomes smaller, as the errors brought by
the approximation of the eigenvalues are alleviated by treating
different eigenvalues with similar frequency responses.

For relatively sparse graphs, we can also establish an approx-
imation error bound between the outputs of manifold filters and
geometric graph filters (27).

Theorem 2 (Convergence of filters on relatively sparse
geometric graphs): Let M⊂ R

N be equipped with LB operator
L, whose eigendecomposition is given by (7). Let Lε

n be the
discrete graph Laplacian of Gn defined as in (19) and (24). Fix
K ∈ N

+ and assume that ε= ε(n)> (log(n)/n)1/d Let h(·) be

the convolutional filter. Under the assumption that the frequency
response of the filter h is Lipschitz continuous and α-FDT with
α2 � ε, α > CM,dK

1−2/d and γ = CK,2ε/α, with probability
at least 1− 2n exp(−Cnεd+3) it holds that

‖h(Lε
n)Pnf −Pnh(L)f‖L2(Gn)

≤
(
NCK,2

α
+AhCK,1

)√
ε+ Cgc

√
log n

n
(33)

where N is the partition size ofthe α-FDT filter and Cgc de-
pends on both d and the volume of M.

Proof: See Appendix A.
If we take the probability as δ ≤ 2ne−Cnεd+3

, the order of ε
can be derived as O((ln(2n/δ)/n)1/(d+3)), which is slightly
larger than the order derived in the dense geometric graph
setting in Proposition 4. Similar comments apply that, when
compared with sparse geometric graph filters, dense geometric
graph filters provide a better approximation of the underlying
manifold filters because dense graphs carry more information
about the geometry of the manifold.

C. Geometric Graph Neural Network

As filtering on the constructed geometric graph can success-
fully approximate filtering on the manifold, we can cascade
geometric graph filters and point-wise nonlinearities σ to con-
struct a geometric GNN to provide a good approximation of
the manifold neural network. Given the geometric graph filter
defined in (27), the geometric GNN on Gn can be written as

xp
l = σ

⎛

⎝
Fl−1∑

q=1

hpq
l (Lε

n)x
q
l−1

⎞

⎠, (34)

where hpq
l (Lε

n) is the filter at the l-th layer of this GNN map-
ping the q-th feature in the l − 1-th layer to the p-th feature in
the l-th layer, with 1≤ q ≤ Fl−1 and 1≤ p≤ Fl. We denote
the number of features in the l-th layer Fl (we have dropped
the subscript n in xp

l and xq
l−1 for simplicity). Gathering the

filter functions in the set H, this geometric GNN on Gn can be
represented more concisely as the map Φ(H,Ln,x).

D. Geometric GNN Convergence

Imposing a continuity assumption on the nonlinearity func-
tion, we can prove the following approximation error bound for
geometric GNNs and MNNs.

Assumption 1 (Normalized Lipschitz nonlinearity): The non-
linearity σ is normalized Lipschitz continuous, i.e., |σ(a)−
σ(b)| ≤ |a− b|, with σ(0) = 0.

We note that this assumption is reasonable, since most com-
mon nonlinearity functions (e.g., the ReLU, the modulus and
the sigmoid) are normalized Lipschitz.

Theorem 3: With the same hypotheses and definitions
as in Theorem 1 and 2 respectively, let Φ(H,L, ·) be an
L-layer MNN on M (12) with F0 = FL = 1 input and out-
put features and Fl = F, l = 1, 2, . . . , L− 1 features per layer.
Let Φ(H,Ln, ·) be the GNN with the same architecture ap-
plied to the geometric graph Gn. If the nonlinearities satisfy
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Assumption 1 and the manifold filters satisfy ‖h(Lε
n)Pnf −

Pnh(L)f‖L2(Gn) ≤Δfil,n, it holds that

‖Φ(H,Lε
n,Pnf)−PnΦ(H,L, f)‖L2(Gn) ≤ LFL−1Δfil,n

with high probability.
Proof: See Section D in supplemental materials.

We conclude that the geometric GNN converges to the MNN
as long as the geometric graph filter components give good
approximations of the corresponding manifold filters when re-
stricted to the sampled geometric graphs. Further, we see that
this error consists of two terms. The first term, LFL−1, depends
on the number of filters and layers in the MNN architecture.
More specifically, the approximation bound grows linearly with
the number of layers L and exponentially with the number
of features F where the rate is determined by L. This term
appears because the approximation errors propagate across all
the manifold filters in all layers of the MNN. The second term is
the approximation error constant of the geometric graph filters
Δfil,n, replaced with the error bounds from Theorem 1 and
Theorem 2 for dense and sparse graphs respectively.

We note that the approximation error constant Δfil,n em-
phasizes that the trade-off between approximation and discrim-
inability is inherited from the convolutional filters. However,
since neural networks also have nonlinearities in their layers,
the geometric GNN has a better ability to both discriminate
high frequency components and approximate the MNN with
satisfying accuracy. This is due to the fact that nonlinearities
have a spectral mixing effect. In the neural network architecture,
the frequency components in the high frequency domain can
be shifted to low frequency domain, where they can then be
discriminated by the filters in the following layer. This role of
nonlinearities has also been discussed in the stability analysis
of GNNs [20] as well as of MNNs [17].

E. From Convergence to Transferability

Leveraging the non-asymptotic convergence results derived
in Theorem 3, we can immediately prove a transferability corol-
lary for geometric GNNs constructed from a common underly-
ing MNN. Explicitly, consider two geometric graphs Gn1

and
Gn2

that are either dense (21) or realtively sparse graphs (24).
The difference between the outputs of the same neural network
(i.e., with the same weights) on these two graphs is bounded by
the following corollary.

Corollary 1: Let M⊂ R
N be equipped with LB operator

L. Let Lε
n1

be the discrete graph Laplacian of the graph Gn1

defined as in (19) and (21) or (24). Let Lε
n2

be the discrete graph
Laplacian of the graph Gn2

constructed in the same manner as
Gn1

. LetΦ(H, ·, ·) be anL-layer GNN withF0 = FL = 1 input
and output features and Fl = F, l = 1, 2, . . . , L− 1 features per
layer. Assume that the filters and nonlinearity functions are as
in Definitions 3, 4 and satisfy Assumption 1 respectively. Then,
it holds in high probability that

‖In1
Φ(H,Lε

n1
,Pn1

f)− In2
Φ(H,Lε

n2
,Pn2

f)‖
≤ LFL−1(Δfil,n1

+Δfil,n2
). (35)

From this corollary, we can observe that the geometric GNN
trained on one geometric graph can be directly transferred to
another geometric graph if they are constructed in the same way
from the same underlying manifold. The difference between the
outputs of the GNNs depends on the size of the neural network
architecture as well as on the approximation capability of the
filter functions. Larger numbers of sample points n1 and n2

lead to smaller approximation errors Δfil,n1
and Δfil,n2

, that
is, better approximation leads to better transferability in geo-
metric GNNs.

The main implication of this corollary is that if we have
trained a geometric GNN on a relatively small geometric graph,
this GNN can be transferred to another, larger geometric graph
with performance guarantees, which is helpful because it is
costly to train GNNs on large graphs. Using the bound in
Corollary 1, we can determine the minimum number of sampled
points needed for training a geometric GNN to meet a given
approximation error tolerance. Therefore, the geometric GNN
is a suitable model to approximate both continuous MNNs and
large geometric GNNs.

V. DISCUSSION

Approximation vs. discriminability tradeoff. In the conver-
gence results for geometric graph filters on both dense graphs
(Theorem 1) and relatively sparse graphs (Theorem 2), the
approximation error bounds depend on the size of the parti-
tion (N ), the frequency partition threshold (α), the Lipschitz
continuity constant (Ah) and the weight function parameter (ε),
and the number of nodes in the geometric graph (n). The size
of the partition and the frequency partition threshold have a
concerted effect in the approximation, as a larger frequency par-
tition threshold leads to a larger number of intervals containing
more than one eigenvalue and a smaller number of intervals
containing only one eigenvalue. The size of the partition how-
ever tends to stay the same or decrease because the number of
intervals cannot exceed the number of eigenvalues. Therefore, a
larger frequency partition threshold results in a smaller partition
size. Combined, these lead to a smaller approximation error
bound. Meanwhile, a larger frequency threshold also means that
a larger number of eigenvalues are grouped and treated with
similar frequency responses. This makes the α-FDT filters less
discriminative. A similar story holds for the Lipschitz constant
Ah, with smaller Lipschitz constant increasing the approxima-
tion error bound but decreasing discriminability. A larger ε leads
to a larger approximation error bound, but at the same time
the variation range γ in the α-FDT filter becomes larger which
results in better discriminability. In conclusion, there is a trade-
off between the approximation and discriminability properties
of both geometric graph filters and geometric GNNs, but in
GNNs this trade-off is alleviated thanks to the nonlinearities,
as we discuss next.

Graph filters vs. GNNs. Due to the aforementioned trade-
off between approximation and discriminability arising from
the spectrum partition, geometric graph filters cannot simulta-
neously discriminate high-frequency components and provide
good approximations of manifold filters. In geometric GNNs,
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though not showing explicitly in Theorem 3, this trade-off is
however alleviated by the use of nonlinearities. When process-
ing the outputs of the filters in the previous layer, the non-
linearities in a given layer have the ability to shift some high
frequency components to the low frequency domain, where they
can then be discriminated by the filters in the following layer. As
a consequence of this frequency scattering behavior, geometric
GNNs can be simultaneously approximative and discriminative.

Dense graphs vs. sparse graphs. Depending on whether the
graphs are dense or sparse, different weight functions are cho-
sen to construct the geometric graph, leading to different con-
vergence regimes. From the results presented in Proposition 1
and Proposition 2 for dense geometric graphs and Proposition 3
and Proposition 2 for sparse geometric graphs, we can see that,
given the same number of sample points n and the same weight
function parameter ε, dense graphs have a slightly smaller ap-
proximation error bound when compared with sparse graphs—
thus implying that geometric graph filters and geometric GNNs
provide better approximations of manifold filters and MNNs
when operating on dense graphs. This can be explained by the
fact that dense graphs include more information; for one, they
are complete. However, the sparse graph setting is a more real-
istic model in practice, and in particular it has been employed
in many areas such as wireless communication networks and
sensor networks. The approximation guarantees derived in this
paper apply in either sparsity regime.

Discretization over time. Theoretically, we employ the defini-
tions of geometric graph convolution and manifold convolution
in a continuous-time domain as (27) and (9) show. However,
in practice we need to operate the filters and neural networks
in digital systems, which requires the time horizon is discrete.
In the following section, we carry out numerical experiments
with geometric graph filters defined in a discrete-time domain.
Specifically, we discretize the impulse response function with
an interval Ts and replace the function with a series of filter
coefficients hk = h̃(kTs) [16]. By fixing the time horizon with
finite Kt samples, we can write the practical geometric filter as

g =

Kt−1∑

k=0

hke
−kLε

nf , f ,g ∈ R
n, (36)

which recovers the graph convolution definition in (1) with
e−Lε

n seen as the graph shift operator.

VI. NUMERICAL EXPERIMENTS

A. Navigation Control

We consider a problem of automatic navigation control [56].
We intend to navigate an agent starting from a given point to
find a path to the goal without colliding into the obstacles.
We uniformly sample n grid points over the free space while
avoiding the obstacle areas. We first generate several trajectories
with Dijkstra’s shortest path algorithm that leads the agent from
a randomly selected starting point to the pre-selected goal.
Every point on a generated trajectory can be labeled with a
2-d direction vector leading to the next point along the tra-
jectory, which finally reaches the goal. This experiment aims

to learn a successful trajectory starting from any given point
over the space by predicting the potential directions of all the
unlabeled points based on the labeled directions on the gen-
erated trajectories. By connecting every pair of points that are
not intercepted by the obstacles, we can construct a geometric
graph structure involving the topological space information.
The geometric Laplacian matrix of the constructed graph Ln

is calculated based on the weight function defined in (14) with
(21). Specifically, the underlying topology information is cap-
tured by setting the Euclidean distance between two points as
infinity (i.e. weight value as zero) if there is no direct path
connecting these two points without colliding into the obstacles.

The input graph signal is the position coordinates of some
point over the space and the output is the direction vector point-
ing to the next point that can lead to the goal point. The learned
architectures are tested via randomly generating 100 starting
points and computing the trajectory by predicting directions of
the points along the trajectory. If the trajectory can reach the
goal point without colliding into the obstacles, the trajectory
is marked as “success”. The performances are measured by
calculating the successful rates of all the learned architectures.

Learning architectures and experiment settings. We build
dense geometric graphs as the approximations to the models as
the regular grid graph structure brings little difference between
the dense and sparse graph setting. We set the position of each
point as input signals on the graphs. We control the number of
labeled points 30% of the total sampled points. The weights
of the edges are calculated based on the Euclidean distance
between the nodes and the weight function is determined as (21)
with ε= 0.2. We use the Laplacian matrix as the input graph
shift operator. We train and test three architectures, including
2-layer Graph Filters (GF), 2-layer Graph Neural Network
(GNN) and 2-layer Lipschitz Graph Neural Network (Lipschitz
GNN) which all contain F0 = 2 input features, F1 = 128 and
F2 = 64 features with Kt = 10 filters in each layer. ReLU is
used as the nonlinearity function in GNN and Lipschitz GNN.
In Lipschitz GNN architecture, we add a penalty term which
is the scaled derivative of the filter function CL|ĥ′(λ)| to the
loss function similar to the Lipschitz regularization scheme in
[57]. A larger penalty constant CL indicates a smoother filter
function. All architectures also include a linear readout layer to
map the 64 features on each node to a 2-d direction vector. The
loss function is MSE loss and the optimizer is SGD with the
learning rate set as 0.0002. The architectures are trained over
30, 000 epochs. We run 5 independent realizations and show
the average successful rates and the standard deviation across
these realizations.

Convergence analysis. The convergence is tested by calcu-
lating the norm of the differences between the outputs of
the final graph filter layer for each architecture. By training
the graph filters and GNNs Φ(Hn, ·, ·) on geometric graphs
with n= 190, 276, 435, 630, 780 and graph filters and GNNs
Φ(Hn0

, ·, ·) on graphs with n0 = 1225, we plot the differences
between the output on the relatively large enough geometric
graphs with size n0 = 1225 measured as ‖Φ(Hn0

,Ln0
,xn0

)−
Φ(Hn,Ln0

,xn0
)‖. From Figure 2 we can see that the output
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Figure 1. Lipschitz GNN trained on geometric graph with n= 435 and tested on geometric graphs with n= 435, 630, 780, 1225. The red arrows in the
figures show the predicted directions for all sampled points over the space.

Figure 2. Differences of the outputs of 2-layer graph filters, 2-layer GNN
and 2-layer Lipschitz GNN.

Figure 3. Differences of the outputs of Lipshitz GNN with penalty terms.

differences decrease and converge as the trained geometric
graph size grows, which is accordant with Corollary 1. This
also verifies the convergence of geometric GNNs as presented
in Theorem 3 if we see the large geometric graph as an ap-
proximation of the underlying manifold. We can conclude that
Lipschitz GNNs have better approximations while GNNs out-
perform Graph Filters.

We further study the effect of Lipschitz continuity of the
graph filter functions by changing the penalty constant CL.
From Figure 3 we can see as the constant grows, the output dif-
ferences become smaller, which attests our claim that smoother
filter functions provide better approximations.

TABLE I
SUCCESSFUL RATES WHEN TESTING THE ARCHITECTURES

TRAINED ON GEOMETRIC GRAPHS WITH n= 435, 630,
780, 1225 ON THE GEOMETRIC GRAPH WITH n0 = 1225

Graph Filter GNN Lipschitz GNN
n= 435 0.73 ± 0.12 0.71 ± 0.15 0.77±0.14
n= 630 0.72 ±0.10 0.76± 0.11 0.80 ±0.14
n= 780 0.80±0.12 0.83±0.09 0.82± 0.11
n= 1225 0.84± 0.08 0.82±0.07 0.84±0.09

Transferability verification. We verify the transferability re-
sult presented in Corollary 1 by training the architectures on
a sampled geometric graph with size n= 435, 630, 780, 1225
and testing these architectures on the large geometric graphs
with n0 = 1225. Note that due to the non-scability of the linear
readout layer, we keep the graph filter functions unchanged and
only retrain the final linear layer to map the outputs to a 2-d
direction vector. The successful rates are shown in Table I. We
can observe that the architectures trained on smaller sampled
geometric graphs can still perform well when implemented
on larger graphs. Moreover, Lipschitz GNN performs slightly
better than GNN which outperforms Graph Filters. This can be
understood as the Lipschitz continuity of the filter functions and
the nonlinearity functions help with the transferability as we
have discussed in Section 3.

To make the results more explicit, we show the predicted
directions for each point over the space tested with a Lipschitz
GNN trained on graph with n= 435 in Figure 1. The red arrows
point to the learned directions starting from each unlabeled
points while the blue arrows are the learned directions for
labeled points. We can see that Lipschitz GNN can efficiently
learn the successful directions for unlabeled points based on
these geometric graphs and can transfer to larger graphs.

B. Point Cloud Model Classification

We further evaluate the convergence results on the Model-
Net10 [58] classification problem. The dataset includes 3,991
meshed CAD models from 10 categories for training and 908
models for testing. In each model, n points are uniformly ran-
domly selected to construct geometric graphs to approximate
the underlying model, such as chairs, tables. Figure 4 shows
the point cloud model with different sampling points. Our goal
is to identify the models for chairs from other models.
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Figure 4. Point cloud models with 50 and 300 sampling points in each
model. Our goal is to identify chair models from other models such as toilet
and table.

Learning architectures and experiment settings. We build
both dense and sparse geometric graphs as the approximations
to the models. We set the coordinates of each point as input
signals on the graphs. The weights of the edges are calculated
based on the Euclidean distance between the nodes. For the
dense geometric graphs, the weight function is determined as
(21) with ε= 0.1. Similarly, the weight function of a sparse
geometric graph is calculated as (24) with ε= 0.001 as the
threshold. We calculate the Laplacian matrix for each graph as
the input graph shift operator. In this experiment, we implement
and compare three different architectures, including 2-layer
Graph Filters (GF), 2-layer Graph Neural Network (GNN) and
2-layer Lipschitz Graph Neural Network (Lipschitz GNN). The
architectures contain F0 = 3 input features which are the 3-d
coordinates of each point, F1 = 64 and F2 = 32 features with
Kt = 5 filters in each layer. In GNN and Lipschitz GNN, ReLU
is used as the nonlinearity function. The filters in Lipschitz
GNN is regularized as Lipschitz continuous by imposing a
penalty term CL|ĥ′(λ)| to the loss function with CL set as 0.3.
All architectures include a linear readout layer to map the final
classification outputs.

All the architectures are trained by minimizing the cross-
entropy loss. We implement an ADAM optimizer with the learn-
ing rate set as 0.005 along with the forgetting factors 0.9 and
0.999. We carry out the training for 40 epochs with the size of
batches set as 10. We run 5 random dataset partitions and show
the average estimation error rates and the standard deviation
across these partitions.

Convergence Verification. We verify our convergence results
by training the graph filters and GNNs on geometric graphs with
n= 300, 400, 500, 600, 700, 800, 900 sampled points, and plot-
ting the norm of differences between the final graph filter layer
outputs on geometric graphs with size n and on the relatively
large enough geometric graphs with size 1000. Figure 5 shows
the convergence results for dense graphs and Figure 6 shows
the results for sparse graphs.

From the figures we can see that the differences between
the outputs on the trained smaller geometric graphs and the
relatively large geometric graphs decrease and converge as the
trained graph size grows, which verifies Corollary 1. This also
proves what we state in Theorem 3 that the approximation errors
of geometric GNNs to the MNNs decrease as the number of
nodes grows if we see the large enough graph with 1000 nodes
as the manifold. We can also observe that Lipschitz GNNs have
better approximations than GNNs because of the continuous
filter function while GNNs outperform graph filters due to the
nonlinearity function.

Figure 5. Differences of the outputs of Lipschitz GNN, GNN and graph
filter trained on dense geometric graphs.

Figure 6. Differences of the outputs of Lipschitz GNN, GNN and graph
filter trained on sparse geometric graphs.

TABLE II
CLASSIFICATION ERROR RATES FOR MODEL ‘CHAIR’ WHEN TESTING THE

ARCHITECTURES TRAINED ON DENSE GEOMETRIC GRAPHS WITH

n= 300, 500, 700, 900 TO DENSE GEOMETRIC GRAPHS WITH

1000 NODES. AVERAGE OVER 5 DATA REALIZATIONS

Graph Filters GNN Lipschitz GNN
n= 300 21.15%± 3.48% 9.35%± 2.46% 7.63%± 3.36%
n= 500 18.09%± 6.28% 7.80%± 3.50% 7.54%± 4.01%
n= 700 17.31%± 6.59% 8.16%± 2.95% 7.97%± 2.45%
n= 900 15.58%± 4.54% 7.20%± 3.77% 6.68%± 3.94%

Transferability verification. We train the architectures on both
dense and sparse geometric graphs with n= 300, 500, 700, 900
sampled points from each CAD model. To justify the theoretical
results that we have stated in Section IV, we test these trained ar-
chitectures on a relatively large graph containing 1000 sampled
points to verify that geometric GNNs have the transferability to
large graphs, i.e. the trained geometric graph filters and GNNs
can be directly implemented on larger geometric graphs as long
as the geometric graphs are constructed in the same manner.
The classification error rates are shown in Table II for the dense
graph setting and in Table III for the sparse graph setting.

We can see from the results shown in the tables that the
trained architectures can still perform well on the relatively
large geometric graphs, both for dense and sparse graph set-
tings. We can see that Lipschitz GNNs outperform GNNs,
which perform better than graph filters. This attests the effects
of the filter function continuity and nonlinearity that we have
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TABLE III
CLASSIFICATION ERROR RATES FOR MODEL ‘CHAIR’ WHEN TESTING THE

ARCHITECTURES TRAINED ON SPARSE GEOMETRIC GRAPHS WITH

n= 300, 500, 700, 900 TO SPARSE GEOMETRIC GRAPHS

WITH SIZE 1000. AVERAGE OVER 5 DATA REALIZATIONS

Graph Filters GNN Lipschitz GNN
n= 300 19.83%± 5.94% 7.74%± 4.05% 7.68%± 3.75%
n= 500 21.97%± 4.17% 10.10%± 1.40% 8.60%± 2.95%
n= 700 13.85%± 3.81% 7.45%± 4.03% 8.02%± 2.77%
n= 900 16.62%± 2.38% 7.92%± 3.14% 7.44%± 3.30%

discussed in Section IV, which is continuous filter function and
nonlinearity function both help with improving transferability.
We can also observe that architectures trained on geometric
graphs with more number of nodes can achieve better perfor-
mances on the relatively large graphs. This can be understood
when we see this large enough geometric graph with 1000 nodes
approximately as the underlying manifold and as Theorem 3
shows the geometric GNNs can give better approximations to
the MNNs as the number of nodes grow. This can also be
understood as the transferability property presented in Corol-
lary 1, which also indicates that graph filters and GNNs trained
on larger geometric graphs have better performance approxi-
mations. Furthermore, the results also show that architectures
trained on dense geometric graphs transfer better than the ones
trained on sparse geometric graphs, which is also accordant with
what we have claimed in Section IV.

VII. CONCLUSION

In this paper, we import the definition of manifold convo-
lutional filters with an exponential Laplace-Beltrami operator
to process manifold signals. The manifold model is accessible
with a set of i.i.d. uniformly sampled points over the manifold.
We construct both dense and sparse graph models to approxi-
mate the underlying manifold. We first prove the approximation
error bounds of discrete graph Laplacians to the LB operator in
the spectral domain. We transfer the definition of manifold filter
to the constructed graph and prove the graph filter can approx-
imate the manifold filter with a non-asymptotic error bound.
The constructed graph filters need to trade-off between the
discrimative and approximative powers while GNNs composed
with graph filters and nonlinearities can alleviate the trade-off
with the frequency mixing by nonlinearities. We conclude that
the GNNs are thus both good approximations of MNNs and
discriminative. We finally verified our results numerically with
a navigation control problem over a manifold.

APPENDIX

A. Proof of Theorem 1 and Theorem 2

We first write out the filter representation as

‖h(Lε
n)Pnf −Pnh(L)f‖ ≤

∥
∥
∥
∥
∥

∞∑

i=1

ĥ(λε
i,n)〈Pnf,φ

ε
i,n〉Gn

φε
i,n

−
∞∑

i=1

ĥ(λi)〈f,φi〉MPnφi

∥
∥
∥
∥
∥

(37)

We denote the index of partitions that contain a single
eigenvalue as a set Ks (|Ks|=Ns) and the rest as a set Km

(|Km|=Nm). We decompose the α-FDT filter function as
ĥ(λ) = h(0)(λ) +

∑
l∈Km

h(l)(λ) as

h(0)(λ) =

{
ĥ(λ)−

∑

l∈Km

ĥ(Cl) λ ∈ [Λk(α)]k∈Ks

0 otherwise
(38)

h(l)(λ) =

⎧
⎨

⎩

ĥ(Cl) λ ∈ [Λk(α)]k∈Ks

ĥ(λ) λ ∈ Λl(α)
0 otherwise

(39)

with Cl some constant in Λl(α). With the triangle inequality,
we start by analyzing the output difference of h(0)(λ) as
∥
∥
∥
∥

n∑

i=1

h(0)(λε
i,n)〈Pnf,φ

ε
i,n〉Gn

φε
i,n

−
∞∑

i=1

h(0)(λi)〈f,φi〉MPnφi

∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

n∑

i=1

(
h(0)(λε

i,n)− h(0)(λi)
)
〈Pnf,φ

ε
i,n〉Gn

φε
i,n

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

i=1

h(0)(λi)
(
〈Pnf,φ

ε
i,n〉Gn

φε
i,n − 〈f,φi〉MPnφi

)
∥
∥
∥
∥
∥
.

(40)

The first term in (40) can be bounded by leveraging the
Ah-Lipschitz continuity of the frequency response. From the
eigenvalue difference in Proposition 4, we can claim that for
each eigenvalue λi ≤ λK , we have

|λε
i,n − λi| ≤ Ω1,K

√
ε. (41)

The square of the first term is bounded as
∥
∥
∥
∥
∥

∞∑

i=1

(h(0)(λε
i,n)− h(0)(λi))〈Pnf,φ

ε
i,n〉Gn

φε
i,n

∥
∥
∥
∥
∥

2

≤
∞∑

i=1

|h(0)(λε
i,n)− h(0)(λi)|2|〈Pnf,φ

ε
i,n〉Gn

|2 (42)

≤
∞∑

i=1

A2
h|λε

i,n − λi|2‖Pnf‖2 ≤A2
hΩ

2
1,Kε. (43)

The second term in (40) can be bounded combined with the
convergence of eigenfunctions in (45) as
∥
∥
∥
∥
∥

∞∑

i=1

h(0)(λi)
(
〈Pnf,φ

ε
i,n〉Gn

φε
i,n − 〈f,φi〉MPnφi

)
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

i=1

h(0)(λi)
(
〈Pnf,φ

ε
i,n〉Gn

φε
i,n

− 〈Pnf,φ
ε
i,n〉Gn

Pnφi

)
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

i=1

h(0)(λi)
(
〈Pnf,φ

ε
i,n〉Gn

Pnφi − 〈f,φi〉MPnφi

)
∥
∥
∥
∥
∥

(44)
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From the convergence stated in Theorem 4, we have

‖aiφε
i,n − φi‖ ≤ Ω2,K

√
ε/θ, (45)

with the eigengap θ ≥ α under the α-FDT filter. Therefore, the
first term in (44) can be bounded as
∥
∥
∥
∥
∥

∞∑

i=1

h(0)(λi)
(
〈Pnf,φ

ε
i,n〉Gn

φε
i,n − 〈Pnf,φ

ε
i,n〉MPnφi

)
∥
∥
∥
∥
∥

≤
Ns∑

i=1

‖Pnf‖‖φε
i,n −Pnφi‖ ≤

NsΩ2,K

α

√
ε. (46)

The last equation comes from the definition of norm in L2(Gn).
The second term in (44) can be written as
∥
∥
∥
∥
∥

∞∑

i=1

h(0)(λi)(〈Pnf,φ
ε
i,n〉Gn

Pnφi − 〈f,φi〉MPnφi)

∥
∥
∥
∥
∥

≤
∞∑

i=1

|h(0)(λi)|
∣
∣〈Pnf,φ

ε
i,n〉Gn

− 〈f,φi〉M
∣
∣ ‖Pnφi‖. (47)

Because {x1, x2, · · · , xn} is a set of uniform sampled points
from M, based on Theorem 19 in [59] we can claim that

∣
∣〈Pnf,φ

ε
i,n〉Gn

− 〈f,φi〉M
∣
∣=O

(√
log n

n

)

. (48)

Consider the boundedness of frequency response |h(0)(λ)| ≤ 1
and the bounded energy ‖Pnφi‖, we have

∥
∥
∥
∥
∥

∞∑

i=1

ĥ(λi)
(
〈Pnf,φ

ε
i,n〉Gn

− 〈f,φi〉M
)
Pnφi

∥
∥
∥
∥
∥

=O

(√
log n

n

)

.

Combining the above results, we can bound the output dif-
ference of h(0). Then we need to analyze the output difference
of h(l)(λ) and bound this as

∥
∥
∥Pnh

(l)(L)f − h(l)(Lε
n)Pnf

∥
∥
∥

≤
∥
∥
∥(ĥ(Cl) + γ)Pnf − (ĥ(Cl)− γ)Pnf

∥
∥
∥≤ 2γ‖Pnf‖,

(49)

where h(l)(L) and h(l)(Lε
n) are filters with filter function

h(l)(λ) on the LB operator L and graph Laplacian Lε
n respec-

tively. Combining the filter functions, we can write

‖Pnh(L)f − h(Lε
n)Pnf‖

=

∥
∥
∥
∥
∥
Pnh

(0)(L)f +Pn

∑

l∈Km

h(l)(L)f−

h(0)(Lε
n)Pnf −

∑

l∈Km

h(l)(Lε
n)Pf

∥
∥
∥
∥
∥

(50)

≤ ‖Pnh
(0)(L)f − h(0)(Lε

n)Pnf‖+
∑

l∈Km

‖Pnh
(l)(L)f − h(l)(Lε

n)Pnf‖

≤AhΩ1,K

√
ε+

NsΩ2,K

α

√
ε+Nmγ + Cgc

√
log(n)

n
(51)

With γ =Ω2,K
√
ε/α, we have

‖h(Lε
n)Pnf −Pnh(L)f‖

≤
(
NΩ2,K

α
+AhΩ1,K

)√
ε+ Cgc

√
log n

n
(52)

We can prove Theorem 2 similarly by importing Proposi-
tion 4 into the eigenvalue and eigenfunction differences.

B. Proof of Proposition 1

We decompose the operator difference between the graph
Laplacian and the LB operator with an intermediate term Lε,
which is the functional approximation defined in (20). We first
focus on the operator difference between Lε and L. From [49],
we can get the bound as

‖Lεφi − Lφi‖ ≤ C
√
ε‖φi‖Hd/2+1 , (53)

For the Sobolev norm of eigenfunction φi, according to [60,
Lemma 4.4] we have

‖φi‖Hd/2+1 ≤ Cλ
d+2
4

i , (54)

which leads to

‖Lεφi − Lφi‖ ≤ C1

√
ελ

d+2
4

i . (55)

For the operator difference betweenLε
n andLε with Hoeffding’s

inequality as

P (|Lε
nφi(x)− Lεφi(x)|> ε1)≤ exp

(

− 2nε21
‖φi‖2Hd/2+1

)

.

(56)

Therefore, we can claim that with probability at least 1− δ,
we have

|Lε
nφi(x)− Lεφi(x)| ≤

√
ln 1/δ

2n
‖φi‖Hd/2+1 . (57)

Combining (55) and (57) with triangle inequality, we can get
the conclusion in Theorem 1.

C. Proof of Proposition 2

We first import two lemmas to help prove the spectral
properties.

Lemma 2: Let A,B be self-adjoint operators with
{λi(A),ui}∞i=1 and {λi(B),wi}∞i=1 as the corresponding
spectrum. Let Prwi

be the orthogonal projection operation
onto the subspace generated by wi. Then we have

‖aiui −wi‖ ≤ 2‖ui − Prwi
ui‖ ≤

2‖Bui −Aui‖
minj �=i |λj(B)− λi(A)| .

(58)

Proof: The first inequality is directly from [59, Proposition
18]. Let Pr⊥wi

be the orthogonal projection onto the comple-
ment of the subspace generated by wi. Then we have

‖ui − Prwi
ui‖= ‖Pr⊥wi

ui‖=
∥
∥
∥
∑

j �=i

〈ui,wj〉wj

∥
∥
∥. (59)
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Therefore, we have

‖Pr⊥wi
Bui − Pr⊥wi

Aui‖
=
∥
∥
∥
∑

j �=i

〈Bui,wj〉wj −
∑

j �=i

〈Aui,wj〉wj

∥
∥
∥ (60)

=
∥
∥
∥〈ui,Bwj〉wj −

∑

j �=i

λi(A)〈ui,wj〉wj

∥
∥
∥ (61)

=
∥
∥
∥
∑

j �=i

(λi(B)− λi(A))〈ui,wj〉wj

∥
∥
∥ (62)

≥min
j �=i

|λi(B)− λi(A)|
∥
∥
∥
∑

j �=i

〈ui,wj〉wj

∥
∥
∥ (63)

=min
j �=i

|λi(B)− λi(A)|‖ui − Prwi
ui‖, (64)

together with ‖Bui −Aui‖ ≥ ‖Pr⊥wi
Bui − Pr⊥wi

Aui‖. We
can conclude the proof.

The following lemma is adapted from [48, Lemma 5c]
Lemma 3: Let A,B be self-adjoint operators with

{λi(A),ui}∞i=1 and {λi(B),wi}∞i=1 as the corresponding
spectrum. Then we have

|λi(A)− λi(B)|= 〈(A−B)ui,wi〉
|〈ui,wi〉|

≤ ‖(A−B)ui‖
|〈ui,wi〉|

(65)

With the above lemmas and our proposed Theorem 1, which
includes the operator difference, we can prove Theorem 2.
We first fix some K ∈ N, wich provides an upper bound for
λi ≤ λK for all 1≤ i≤K. By taking the probability 1− n−2

and ε= n−1/(d+4), we can conclude that the operator differ-
ence in Theorem 1 can be bounded with order O(

√
ε), with

the constant scaling with λ
d+2
4

K . Combine with Lemma 2 and
θ =min1≤j �=i≤K |λj − λε

i,n|, we can get

‖aiφε
i,n − φi‖ ≤

Ck

θ

√
ε, (66)

where we denote the constant as Ω1 to include the effects of K,
the eigengap and the volume of M.

This upper bound of the eigenfunction difference leads to
|〈ui,wi〉| ≥ 1− Ω1/2

√
ε≥ 1. Combining with Lemma 3, the

difference of the eigenvalues can also be bounded in the order
of O(

√
ε).

D. Proof of Theorem 3

To bound the output difference of MNNs, we need to write
in the form of features of the final layer

‖Φ(H,Lε
n,Pnf)−PnΦ(H,L, f))‖

=

∥
∥
∥
∥
∥

FL∑

q=1

xq
n,L −

FL∑

q=1

Pnf
q
L

∥
∥
∥
∥
∥
≤

FL∑

q=1

∥
∥
∥x

q
n,L −Pnf

q
L

∥
∥
∥ . (67)

By inserting the definitions, we have
∥
∥
∥x

p
n,l −Pnf

p
l

∥
∥
∥

=

∥
∥
∥
∥
∥
∥
σ

⎛

⎝
Fl−1∑

q=1

hpq
l (Lε

n)x
q
n,l−1

⎞

⎠−Pnσ

⎛

⎝
Fl−1∑

q=1

hpq
l (L)fq

l−1

⎞

⎠

∥
∥
∥
∥
∥
∥

(68)

with xn,0 =Pnf as the input of the first layer. With a normal-
ized point-wise Lipschitz nonlinearity, we have

‖xp
n,l −Pnf

p
l ‖

≤

∥
∥
∥
∥
∥
∥

Fl−1∑

q=1

hpq
l (Lε

n)x
q
n,l−1 −Pn

Fl−1∑

q=1

hpq
l (L)fq

l−1

∥
∥
∥
∥
∥
∥

(69)

≤
Fl−1∑

q=1

∥
∥
∥h

pq
l (Lε

n)x
q
n,l−1 −Pnh

pq
l (L)fq

l−1

∥
∥
∥ (70)

The difference can be further decomposed as

‖hpq
l (Lε

n)x
q
n,l−1 −Pnh

pq
l (L)fq

l−1‖

≤ ‖hpq
l (Lε

n)x
q
n,l−1 − hpq

l (Lε
n)Pnf

q
l−1

+ hpq
l (Lε

n)Pnf
q
l−1 −Pnh

pq
l (L)fq

l−1‖ (71)

≤
∥
∥
∥h

pq
l (Lε

n)x
q
n,l−1 − hpq

l (Lε
n)Pnf

q
l−1

∥
∥
∥

+
∥
∥hpq

l (Lε
n)Pnf

q
l−1 −Pnh

pq
l (L)fq

l−1

∥
∥ (72)

The second term can be bounded with ‖h(Lε
n)Pnf −

Pnh(L)f‖L2(Gn) ≤Δfil,n. The first term can be decomposed
by Cauchy-Schwartz inequality and non-amplifying of the
filter functions as

∥
∥
∥x

p
n,l −Pnf

p
l

∥
∥
∥≤

Fl−1∑

q=1

Δfil,n‖xq
n,l−1‖

+

Fl−1∑

q=1

‖xq
l−1 −Pnf

q
l−1‖, (73)

where Cper representing the constant in the error bound of man-
ifold filters in (33). To solve this recursion, we need to compute
the bound for ‖xp

l ‖. By normalized Lipschitz continuity of σ
and the fact that σ(0) = 0, we can get

‖xp
l ‖ ≤

∥
∥
∥
∥
∥
∥

Fl−1∑

q=1

hpq
l (Lε

n)x
q
l−1

∥
∥
∥
∥
∥
∥
≤

Fl−1∑

q=1

‖hpq
l (Lε

n)‖ ‖xq
l−1‖

≤
Fl−1∑

q=1

‖xq
l−1‖ ≤

l−1∏

l′=1

Fl′

F0∑

q=1

‖xq‖. (74)

Insert this conclusion back to solve the recursion, we can get

∥
∥
∥x

p
n,l −Pnf

p
l

∥
∥
∥≤ lΔfil,n

(
l−1∏

l′=1

Fl′

)
F0∑

q=1

‖xq‖. (75)

Replace l with L we can obtain

‖Φ(H,Lε
n,Pnf)−PnΦ(H,L, f))‖

≤
FL∑

q=1

(

LΔfil,n

(
L−1∏

l′=1

Fl′

)
F0∑

q=1

‖xq‖
)

. (76)

With F0 = FL = 1 and Fl = F for 1≤ l ≤ L− 1, then we have

‖Φ(H,Lε
n,Pnf)−PnΦ(H,L, f))≤ LFL−1Δfil,n, (77)

which concludes the proof.
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[4] V. Gligorijević et al., “Structure-based protein function prediction us-
ing graph convolutional networks,” Nature Commun., vol. 12, no. 1,
pp. 1–14, 2021.

[5] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Piscataway, NJ, USA: IEEE Press, 2020,
pp. 11785–11792.

[6] E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro, “Multi-robot coverage
and exploration using spatial graph neural networks,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Piscataway, NJ, USA: IEEE Press,
2021, pp. 8944–8950.

[7] J. Zeng, G. Cheung, M. Ng, J. Pang, and C. Yang, “3D point cloud
denoising using graph Laplacian regularization of a low dimensional
manifold model,” IEEE Trans. Image Process., vol. 29, pp. 3474–3489,
2019.

[8] M. Devanne, H. Wannous, S. Berretti, P. Pala, M. Daoudi, and A. Del
Bimbo, “3-D human action recognition by shape analysis of motion
trajectories on Riemannian manifold,” IEEE Trans. Cybern., vol. 45,
no. 7, pp. 1340–1352, Jul. 2015.

[9] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,” ACM
Trans. Graph. (ToG), vol. 38, no. 5, pp. 1–12, 2019.

[10] Z. He, L. Wang, H. Ye, G. Y. Li, and B.-H. F. Juang, “Resource allo-
cation based on graph neural networks in vehicular communications,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Piscataway, NJ,
USA: IEEE Press, 2020, pp. 1–5.

[11] Z. Wang, L. Ruiz, M. Eisen, and A. Ribeiro, “Stable and transferable
wireless resource allocation policies via manifold neural networks,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Piscataway, NJ, USA: IEEE Press, 2022, pp. 8912–8916.

[12] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks: From graph filters to graph neural networks,” IEEE
Signal Process. Mag., vol. 37, no. 6, pp. 128–138, Nov. 2020.

[13] A. Ortega, P. Frossard, J. Kovacević, J. M. Moura, and P. Vandergheynst,
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