
1892 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Tangent Bundle Convolutional Learning: From

Manifolds to Cellular Sheaves and Back
Claudio Battiloro , Zhiyang Wang , Graduate Student Member, IEEE, Hans Riess , Member, IEEE,

Paolo Di Lorenzo , Senior Member, IEEE, and Alejandro Ribeiro , Senior Member, IEEE

Abstract—In this work we introduce a convolution operation
over the tangent bundle of Riemann manifolds in terms of expo-
nentials of the Connection Laplacian operator. We define tangent
bundle filters and tangent bundle neural networks (TNNs)
based on this convolution operation, which are novel continuous
architectures operating on tangent bundle signals, i.e. vector
fields over the manifolds. Tangent bundle filters admit a spectral
representation that generalizes the ones of scalar manifold filters,
graph filters and standard convolutional filters in continuous
time. We then introduce a discretization procedure, both in
the space and time domains, to make TNNs implementable,
showing that their discrete counterpart is a novel principled
variant of the very recently introduced sheaf neural networks.
We formally prove that this discretized architecture converges to
the underlying continuous TNN. Finally, we numerically evaluate
the effectiveness of the proposed architecture on various learning
tasks, both on synthetic and real data, comparing it against other
state-of-the-art and benchmark architectures.

Index Terms—Tangent bundle signal processing, tangent bun-
dle neural networks, cellular sheaves, sheaf neural networks,
graph signal processing.

I. INTRODUCTION

D
URING the last few years, the development of deep

learning techniques has led to state-of-the-art results in

various fields. More and more sophisticated architectures have
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promoted significant improvements from both theoretical and

practical perspectives. Although it is not the only reason, the

success of deep learning is in part due to Convolutional Neural

Networks (CNNs) [2]. CNNs have achieved excellent perfor-

mances in a wide range of applications, spanning from im-

age recognition [3] to speech analysis [4] while, at the same

time, lightening the computational load of feedforward fully-

connected neural networks and integrating features in different

spatial resolutions with pooling operators. CNNs are based on

shift operators in the space domain that induce desirable prop-

erties in the convolutional filters, among which the most rele-

vant one is the property of shift equivariance. CNNs naturally

leverage the regular (often metric) structure of the signals they

process, such as spatial or temporal structure. However, data

defined on irregular (non-Euclidean) domains are pervasive,

with applications ranging from detection and recommendation

in social networks [5], to resource allocations over wireless

networks [6], and point clouds for shape segmentation [7], just

to name a few. Structured data is modeled via the more var-

ied mathematical objects, among which graphs and manifolds

are notable examples. For this reason, the notions of shifts

in CNNs have been adapted to convolutional architectures on

graphs (GNNs) [8], [9] as well as a plethora of other struc-

tures, e.g. simplicial complexes [10], [11], [12], cell complexes

[13], [14], homogeneous spaces [15], order lattices [16], and

manifolds [17], [18], [19]. In [20], a framework for algebraic

neural networks has been proposed exploiting commutative

algebras. However, none of these studies consider convolutional

filtering of vector fields over manifolds. Therefore, in this work

we focus on tangent bundles, manifolds constructed from the

tangent spaces of a domain manifold. Tangent bundles are a

specialization of vector bundles which are a specialization of

sheaves, all three of which, in increasing levels of generality,

mathematically characterize both (1) when local data extends

globally and (2) topological obstructions thereof. Our present

focus is on tangent bundles as they are a tool for describing

and processing vector fields, ubiquitous data structures critical

in tasks such as robot navigation and flocking modeling, as

well as in climate science [21] and astrophysics [22]. Moreover,

to make the proposed procedures implementable, we formally

describe and leverage the link between tangent bundles and or-

thogonal cellular sheaves (also called discrete vector bundles), a

mathematical structure that generalizes connection graphs and

matrix-weighted graphs.
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A. Related Works

The well-known manifold hypothesis [23] states that high-

dimensional data examples are sampled from one (or more)

low-dimensional (Riemann) manifolds. This assumption is the

fundamental block of manifold learning, a class of methods

for non-linear dimensionality reduction. The Laplacian Eigen-

map framework is based on the approximation of manifolds by

weighted undirected graphs constructed with k-nearest neigh-

bors or proximity radius heuristics, with the key assumption

being that a set of sampled points of the manifold is avail-

able [24], [25], [26]. Formal connections between GNNs and

Manifold Neural Networks (MNNs) are established in [27],

[28]. Most of the previous works focused on scalar signals, e.g.

one or more scalar values attached to each node of graphs or

point of manifolds; however, recent developments [29], [30],

[31], [32] showed that processing vector data defined on tangent

bundles of manifolds or discrete vector bundles comes with a

series of benefits. The work in [29] introduced a method for

computing parallel transport of vector-valued data on a curved

manifold by extending a vector field defined over any region

to the rest of the manifold via geodesic curves. The work in

[22] presented an algorithm to reconstruct the magnetopause

surfaces from tangent vector observations. Pioneering works on

sheaf theory can be found in [33], [34], [35]. Discrete versions

of sheaves, called cellular sheaves, were first introduced in

[36] and were later rediscovered in [37]. In [36], [37], these

sheaves were first defined over regular cell complexes, hence

the term “cellular” sheaves. Often, as in this work, cellular

sheaves are defined over tamer objects, here graphs. In [30],

the authors studied the problem of learning cellular sheaves

from (assumed) smooth graph signals. The work in [31], [38],

[39], [40] introduced a novel class of diffusion dynamics on

cellular sheaves as a model for network dynamics. In [32],

[41], [42], neural networks operating on discrete vector bundles

are presented, generalizing GNNs: additionally, the work in

[32] exploited cellular sheaf theory to show that the underlying

geometry of the graph gives rise to oversmoothing behavior

of GNNs. Finally, the most important works for us are [43],

[44]. In particular, in [43], the authors introduced an algorithmic

generalization of non-linear dimensionality reduction methods

based on the Connection Laplacian operator and proved that

both manifolds and their tangent bundles can be approximated

with certain cellular sheaves constructed from sampled points of

the manifolds. The work in [44] further generalized the result of

[43] by presenting a framework for approximating Connection

Laplacians over manifolds via their principal bundle structure,

and by proving the spectral convergence of the approximating

sheaf Laplacians.

B. Contributions

In this work, we first define a convolution operation over

the tangent bundle of Riemann manifolds via the Connection

Laplacian operator. Our definition is derived from the vector

diffusion equation over manifolds, and generalizes convolutions

on manifolds [27], graphs [8], [45], as well as standard time

convolutions. Leveraging this operation, we introduce Tangent

Bundle Convolutional Filters to process tangent bundle sig-

nals (vector fields). We define the frequency representation of

tangent bundle signals and the frequency response of tangent

bundle filters using the spectral properties of the Connection

Laplacian. By cascading layers consisting of tangent bundle

filter banks and pointwise non-linearities, we introduce Tangent

Bundle Neural Networks (TNNs). The proposed convolutional

processing framework can be also seen as a novel instantia-

tion of the general theory of algebraic signal processing [20],

[46]. However, tangent bundle filters and tangent bundle neural

networks are continuous architectures that cannot be directly

implemented in practice. For this reason, we provide a princi-

pled way of discretizing them, both in time and space domains,

making convolutions on them computable. In particular, we

discretize the TNNs in the space domain by sampling points

on the manifold and building a cellular sheaf [38] that rep-

resents a legitimate approximation of both the manifold and

its tangent bundle [43]. We prove that the space discretized

architecture over the cellular sheaf converges to the under-

lying TNN as the number of sampled points increases. More-

over, we further discretize the architecture in the time domain

by sampling the filter impulse function in discrete and finite

time steps, notably showing that space-time discretized TNNs

(DD-TNNs) are a novel principled variant of the very recently

introduced Sheaf Neural Networks [32], [41], [42], and thus

shedding further light, from a theoretical point of view, on the

deep connection between algebraic topology and differential

geometry. Finally, we evaluate the performance of TNNs on

both synthetic and real data; in particular, we design a denoising

task of a synthetic tangent vector field on the torus, a manifold

classification task, a reconstruction task, and a forecasting task

of the daily Earth wind field, tackled via a recurrent version

of our architecture. We empirically demonstrate the advantage

of incorporating the tangent bundle structure into our model

by comparing TNNs against Manifold Neural Networks from

[27] (architectures taking into account the manifold structure,

but not the tangent spaces), Multi-Layer Perceptrons [47], and

Recurrent Neural Networks (the latter two do not consider any

geometric information).

C. Paper Outline

The paper is organized as follows. We introduce some prelim-

inary concepts in Section II. We define tangent bundle convolu-

tion, filters and neural networks in Section III. In Section IV, we

illustrate the proposed discretization procedure for TNNs and

we prove the convergence result. We discuss the consistency of

the proposed convolution in Section V. Numerical results are

in Section VI, and conclusions in Section VII.

II. PRELIMINARY DEFINITIONS

In this section, we review some concepts from Riemann ge-

ometry that will be useful to introduce the convolution operation

over tangent bundles.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 26,2024 at 11:17:00 UTC from IEEE Xplore.  Restrictions apply. 



1894 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Fig. 1. An example of tangent vector.

TABLE I
NOTATION

Manifold M
Tangent Space at point x TxM

Tangent Bundle T M
Tangent Bundle Signal F :M→T M

Differential dι : TxM→TxRp

Riemann Metric 〈 , 〉TxM : TxM×TxM→ R

A. Manifolds and Tangent Bundles

We consider a compact, smooth, and orientable

d-dimensional manifold M smoothly embedded in R
p.

Each point x ∈M is endowed with a d-dimensional tangent

space TxM isomorphic to R
d, whose elements v ∈ TxM are

said to be tangent vectors at x. For explicit construction of

tangent spaces on a manifold, consult an introductory textbook

on differential topology [48]. Informally, tangent vectors can

be seen as a generalization of the velocity vector of a curve

constrained to M passing through the point x. An example of

a tangent vector is depicted in Fig. 1.

Definition 1 (Tangent Bundle): The tangent bundle is the dis-

joint union of the tangent spaces T M=
⊔

x∈M TxM together

with the projection map π : T M→M given by π(x,v) = x.

Moreover, the tangent bundle has a natural topology which

makes it a smooth 2d-manifold and makes π a smooth map

[49]. In abuse of language, we often refer to the tangent bundle

as simply the space T M. The embedding induces a Riemann

structure on M which allows to equip each tangent space TxM
with an inner product.

Definition 2 (Riemann Metric): A Riemann Metric on a com-

pact and smooth d -dimensional manifoldM embedded inRp is

a (smoothly chosen) inner product 〈 , 〉TxM : TxM×TxM→
R on each of the tangent spaces TxM of M given, for each v,

w ∈ TxM, by

〈v,w〉TxM = 〈dιv, dιw〉Rp , (1)

where dιv ∈ TxRp is called the differential of v ∈ TxM in

TxRp ⊂ R
p, TxRp is the d -dimensional subspace of Rp being

the embedding of TxM in R
p, the differential dι : TxM→

TxRp is an injective linear mapping (also referred to as push-

forward, as it pushes tangent vectors on M forward to tangent

vectors on R
p) [48], and 〈, 〉Rp is the usual dot product.

The Riemann metric induces also a uniform probability mea-

sure μ over the manifold, simply given by the considered region

scaled by the volume of the manifold.

B. Tangent Bundle Signals

A tangent bundle signal is a vector field over the manifold,

thus a mapping F :M→T M that associates to each point of

the manifold a vector in the corresponding tangent space. In

the theory of vector bundles, a bundle signal is a section. An

example of a (sparse) tangent vector field over the unit 2-sphere

is depicted in Fig. 3 [1].

Remark 1: The choice of employing the terminology “tangent

bundle signal” and not the standard “vector fields” or “sec-

tions” aims to further underline the strong signal processing

perspective of this work, and to facilitate the understanding of

its generalization properties, as highlighted in Section V.

We can define an inner product for tangent bundle signals in

the following way.

Definition 3 (Tangent Bundle Inner Product): Given tangent

bundle signals F and G, their inner product is given by

〈F,G〉T M =

∫

M

〈F(x),G(x)〉TxMdμ(x), (2)

and the induced norm is ||F||2T M = 〈F,F〉T M.

We denote with Γ(T M) the space of tangent bundle signals.

Note that tangent bundle signals have finite energy with respect

to || · ||T M, because they are (continuous) sections of the tan-

gent bundle. Therefore, the length of all the vectors in a vector

field is bounded because the image of a continuous function on a

compact set is bounded. Hence, integrating a bounded function

on (compact) M is always well-defined. In the following, we

denote 〈·, ·〉T M with 〈·, ·〉 when there is no risk of confusion.

III. TANGENT BUNDLE CONVOLUTIONAL FILTERS

Linear filtering operations are historically synonymous (un-

der appropriate assumptions) with convolution. Time signals

are filtered by computing the continuous-time convolution of

the input signal and the filter impulse response [17]; images

are filtered by computing multidimensional convolutions [34];

graph signals are filtered by computing graph convolutions

[5]; scalar manifold signals are filtered by computing manifold

convolutions [27]. In this paper, we define a tangent bundle

filter as the convolution of the filter impulse response h̃ and the

tangent bundle signal F. To do so, we exploit the Connection

Laplacian Operator.

A. Connection Laplacian

The Connection Laplacian is a (second-order) operator ∆ :
Γ(T M)→ Γ(T M), given by the trace of the second co-

variant derivative defined (for this work) via the Levi-Civita

connection [43] (the unique connection compatible with the

Riemann metric). The Connection Laplacian ∆ has some de-

sirable properties: it is negative semidefinite, self-adjoint, el-

liptic, and, furthermore, has a negative spectrum {−λi,φi}∞i=1

with eigenvalues λi and corresponding eigenvector fields φi

satisfying

∆φi =−λiφi, (3)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 26,2024 at 11:17:00 UTC from IEEE Xplore.  Restrictions apply. 



BATTILORO et al.: TANGENT BUNDLE CONVOLUTIONAL LEARNING: FROM MANIFOLDS TO CELLULAR SHEAVES AND BACK 1895

Fig. 2. Vector diffusion.

Fig. 3. An example of tangent bundle signal.

with 0< λ1 ≤ λ2 ≤ · · · . The only possible accumulation

(limit) point is −∞ [43] We can use the Connection Laplacian

to fathom a heat equation for vector diffusion:

∂U(x, t)

∂t
−∆U(x, t) = 0, (4)

where U :M× R
+
0 →T M and U(·, t) ∈ Γ(T M) ∀t ∈ R

+
0 ;

we denote the initial condition condition with U(x, 0) = F(x).
As reported in [29] and in Fig. 2 (obtained from Fig. 4 of [29]),

an intuitive interpretation of (4) is imagining the evolution of

the vector field U(x, t) over time as a “smearing out” of the

initial vector field F(x). In this interpretation, the role of the

Connection Laplacian can be understood as a means to diffuse

vectors from one tangent space to another, because it encodes

when tangent vectors are parallel (via the connection), and how

to “move” them keeping them parallel (via the induced parallel

transport). On scalar functions on Euclidean domains, it agrees

with the classical Laplace operator. (Indeed, in the flat case it

is sufficient to independently diffuse each scalar component,

however, this approach fails for curved space.) The solution of

(4) is given by

U(x, t) = et∆F(x), (5)

which provides a way to construct tangent bundle convolution,

as explained in the following section.

Fig. 4. Illustration of a lowpass, non-amplifying, Lipschitz continuous
tangent bundle filter. The x-axis stands for the spectrum with each sample
representing an eigenvalue. Here the eigenvalues increase at a logarithmic

rate. The red dotted line is λ−2
i and the blue dotted line is the filter, obtained

with impulse response h̃(t) = t2/6, thus ĥ(λ) = 1

3
λ−3, from (10).

B. Tangent Bundle Filters

We are now in the condition of defining a convolution op-

eration and tangent bundle convolutional filters leveraging the

heat diffusion dynamics in (4).

Definition 4 (Tangent Bundle Filter): Let h̃ : R+ → R and

let F ∈ Γ(T M) be a tangent bundle signal. The tangent bundle

filter with impulse response h̃, denoted with h, is given by

G(x) =
(
h̃ �T M F

)
=

∫ ∞

0

h̃(t)U(x, t)dt, (6)

where �T M is the tangent bundle convolution, and U(x, t) is

the solution of the heat equation in (4) with U(x, 0) = F(x).
In the following, we will use the terms tangent bundle filter

and tangent bundle convolution interchangeably. One cannot

explicity compute the output G directly from the input F in

Definition 4. However, this is remedied by injecting the solution

of the heat equation (5) into (6). In this way, we can derive a

closed-form expression for h that is parametric on the Connec-

tion Laplacian, as shown in the following proposition.

Proposition 1 (Parametric Filter): Any tangent bundle filter

h defined as in (6) is a parametric map h(∆) of the Connection

Laplacian operator ∆, given by

G(x) = hF(x) =

∫ ∞

0

h̃(t)et∆F(x)dt= h(∆)F(x). (7)

We can make several considerations starting from

Proposition 1: we can state that tangent bundle filters are

spatial operators, since they operate directly on points

x ∈M; moreover, they are local operators, because they are

parametrized by ∆ which is itself a local operator.

Remark 2: The exponential term et∆ can be seen as a diffu-

sion or shift operator similar to a time delay in a linear time-

invariant (LTI) filter [50], or to a graph shift operator in a

linear shift-invariant (LSI) graph filter [51], or to a manifold

shift operator based on the Laplace-Beltrami operator [27].

The resemblance is due to the fact that tangent bundle filters

are linear combinations of the elements of the tangent bundle

diffusion sequence, such as graph filters are linear combinations

of the elements of the graph diffusion sequence and manifold

filters are linear combinations of the elements of the manifold

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 26,2024 at 11:17:00 UTC from IEEE Xplore.  Restrictions apply. 
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diffusion sequence. These considerations are further useful to

validate the consistency of the proposed convolution operation,

discussed in detail in Section V.

C. Frequency Representation of Tangent Bundles Filters

The spectral properties of the Connection Laplacian ∆ allow

us to introduce the notion of a frequency domain. Following

the approach historically common to many signal processing

frameworks, we define the frequency representation of a tangent

bundle signal F ∈ Γ(T M) as its projection onto the eigenbasis

of the Connection Laplacian

[
F̂
]
i
= 〈F,φi〉=

∫

M

〈F(x),φi(x)〉TxMdμ(x). (8)

Proposition 2 (Frequency Representation): Given a tangent

bundle signal F and a tangent bundle filter h(∆) as in Def-

inition 4, the frequency representation of the filtered signal

G= h(∆)F is given by

[
Ĝ
]
i
=

∫ ∞

0

h̃(t)e−tλidt
[
F̂
]
i
. (9)

Proof: See Section B of Supplemental Material.

Therefore, we can characterize the frequency response of a

tangent bundle filter in the following way.

Definition 5 (Frequency Response): The frequency response

ĥ(λ) of the filter h(∆) is defined as

ĥ(λ) =

∫ ∞

0

h̃(t)e−tλdt. (10)

This leads to
[
Ĝ
]
i
= ĥ(λi)

[
F̂
]
i
, meaning that the tangent

bundle filter is point-wise in the frequency domain. We can

finally write the frequency representation of the filter as

G= h(∆)F=

∞∑

i=1

ĥ(λi)〈F,φi〉φi. (11)

Remark 3: The frequency response ĥ(λ) in Definition 5

is the Laplace transform of h̃(t) if we let λ be an arbitrary

complex argument. The effect of a tangent bundle filter on a

tangent bundle signal in the frequency domain is determined by

evaluating ĥ(λ) at the eigenvalues λi of the Connection Lapla-

cian. This interpretation is analogous to the interpretation of the

Fourier transform as an instantiation of the Laplace transform

restricted to λ= jω [50]. This analogy can be furthered by

observing that jω are eigenvalues of the derivative operator

(see Section V). This interpretation is also consistent with the

interpretation of the frequency response of manifold filters—

also a Laplace transform which is instantiated at the eigenval-

ues of the Laplace-Beltrami operator [27]—and the frequency

response of graph filters – a z-transform which is instantiated

at the eigenvalues of the graph shift operator [45].

D. Lowpass Tangent Bundle Filters

The spectrum of the Connection Laplacian ∆ is infinite-

dimensional, i.e., there is an infinite (though countable) number

of eigenvalues that need to be taken into account. However, we

can design lowpass filters to tackle this problem. This design,

although not mandatory for practical purposes, is crucial in

proving the convergence result of the discretized filters and

neural networks to the underlying continuous filters and TNNs,

respectively, stated in Theorem 1.

Definition 6 (Lowpass Tangent Bundle Filters): A tangent

bundle filter h(∆) is a lowpass filter if its frequency response

function ĥ is O(λ−2
i ), i.e. if lim supi→∞ ĥ(λi)λ

2
i <∞.

In other words, lowpass filters asymptotically decay at least

as fast as λ2
i , thus progressively suppressing high frequencies.

Finally, we define Lipshitz continuous and non-amplifying tan-

gent bundle filters.

Definition 7 (Tangent Bundle Filters with Lipschitz Conti-

nuity): A tangent bundle filter is C-Lispchitz if its frequency

response is Lipschitz continuous with constant C, i.e if |ĥ(a)−
ĥ(b)| ≤ C|a− b| for all a, b ∈ (0,∞).

Definition 8 (Non-Amplifying Tangent Bundle Filters): A

tangent bundle filter is non-amplifying if for all λ ∈ (0,∞), its

frequency response ĥ satisfies |ĥ(λ)| ≤ 1.

The Lipschitz continuity is a standard assumption, while

the non-amplifying assumption is perfectly reasonable, as any

(finite-energy) filter function ĥ(λ) can be normalized. An exam-

ple of a lowpass, non-amplifying, Lipschitz continuous tangent

bundle filter is depicted in Fig. 4.

E. Tangent Bundle Neural Networks

We define a layer of a Tangent Bundle Neural Network

(TNN) as a bank of tangent bundle filters followed by a point-

wise non-linearity. In this setting, pointwise informally means

“pointwise in the ambient space”. We introduce the notion of

differential-preserving non-linearity to formalize this concept

in a consistent way.

Definition 9 (Differential-preserving Non-Linearity): Denote

with Ux ⊂ TxRp the image of the injective differential dι in

TxRp. A mapping σ : Γ(T M)→ Γ(T M) is a differential-

preserving non-linearity if it can be written as σ(F(x)) =
dι−1σ̃x(dιF(x)), where σ̃x : Ux → Ux is a point-wise non-

linearity in the usual (Euclidean) sense.

Furthermore, we assume that σ̃x = σ̃ for all x ∈M.

Definition 10 (Tangent Bundle Neural Networks): The

l-th layer of a TNN with Fl input signals {Fq
l }Fl

q=1, Fl+1 output

signals {Fu
l+1}

Fl+1

u=1 , and non-linearity σ(·) is defined as

Fu
l+1(x) = σ

(
Fl∑

q=1

h(∆)u,ql F
q
l (x)

)
, u= 1, ..., Fl+1. (12)

Therefore, a TNN of depth L with input signals {Fq}F0
q=1 is

built as the stack of L layers defined as in (12), where F
q
0 =

Fq . An additional task-dependent readout layer (e.g sum for

classification) can be appended to the final layer.

To globally represent the TNN, we collect all the fil-

ter impulse responses in a function set H=
{
h̃u,q
l

}
l,u,q

and

we describe the TNN u-th output as a mapping Fu
L =

Ψu

(
H,∆, {Fq}F0

q=1

)
to emphasize that at TNN is parameter-

ized by both H and the Connection Laplacian ∆.
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IV. DISCRETIZATION IN SPACE AND TIME

Tangent Bundle Filters and Tangent Bundle Neural Networks

operate on tangent bundle signals, thus they are continuous

architectures that cannot be directly implemented in practice.

Here we provide a procedure for discretizing tangent bundle

signals, both in time and spatial domains; the discretized coun-

terpart of TNNs is an instantiation of the recently introduced

Sheaf Neural Networks [41]. For this reason, in this section

we first provide a brief review of cellular sheaves over undi-

rected graphs, and then we explain the proposed discretization

procedure.

A. Cellular Sheaves

A cellular sheaf over an (undirected) graph consists of a

vector space for each node and edge and a collection of linear

transformations indexed by node-edge incidence pairs of the

graph. Formally, it is a functor on a partially ordered set of

node-edge incidence relations into the category of vector spaces

and linear transformations. We introduce the following non-

standard notation to emphasize the role that sheaves play in ap-

proximating tangent bundles as the number of nodes increases.

Definition 11 (Cellular Sheaf over a Graph): Suppose

Mn = (Vn, En) is an undirected graph with n= |Vn| nodes.

A cellular sheaf over Mn is the tuple T Mn = (Mn,F), i.e.:

• A vector space F(v) for each v ∈ Vn. We refer to these

vector spaces as node stalks.

• A vector space F(e) for each e ∈ En. We refer to these

vector spaces as edge stalks.

• A linear mapping Vv,e : F(v)→F(e) represented by a

matrix Vv,e for each pair (v, e) ∈ Vn × En with incidence

v � e. These mappings are called restriction maps.

The space L2(T Mn) =
⊕

v∈V F(v) formed by the direct

sum of vector spaces associated with the nodes of the graph is

commonly called the space of 0-cochains, which we refer to

as sheaf signals on T Mn. We write a sheaf signal on Mn as

fn ∈ L2(T Mn).
Definition 12 (Sheaf Laplacian): The (non-normalized)

Sheaf Laplacian of a sheaf T Mn is a linear mapping ∆n :
L2(T Mn)→L2(T Mn) defined node-wise

(∆nfn)(v) =
∑

v��e��u

VT
v,e(Vv,efn(v)−Vu,efn(u)). (13)

While in general, the dimensions of the stalks may be arbi-

trary, this work focuses on discrete O(d)-bundles, or orthogonal

sheaves. In an orthogonal sheaf, we have V−1
v,e =VT

v,e for all

v � e and F(v)∼= R
d for all v. Note, that this does not mean

every stalk is equal, but has the same dimension.

B. Discretization in the Space Domain

The manifold M, the tangent bundle T M, and the Con-

nection Laplacian ∆ can be approximated from a set of

sampled points X ⊂ R
p. Knowing the coordinates of the sam-

pled points, we construct an orthogonal cellular sheaf over

an undirected geometric graph such that its normalized Sheaf

Laplacian converges to the manifold Connection Laplacian as

the number of sampled points (nodes) increases [44]. For-

mally, we assume that a set of n points X = {x1, . . . , xn} ⊂
R

p are sampled i.i.d. from measure μ over M. We build a

cellular sheaf T Mn via the Vector Diffusion Maps proce-

dure whose details are listed in [43] and which we briefly

review here.

We start by building a weighted (geometric) graph Mn =
(Vn, En) with nodes Vn = {1, 2, . . . , n} and weights wij for

nodes i and j as follows. Set a scale εn > 0. For each pair

i, j ∈ Vn × Vn, if ‖xi − xj‖22 ≤ εn, then ij ∈ En with weight

wi,j = exp

(
||xi − xj ||2√

εn

)
; (14)

otherwise, ij /∈ En and wi,j = 0 [43] (Eq. 2.5, page 6). The

neighborhood Ni of each point xi contains the points xj ∈
X lying in a ball of radius

√
εn centered at xi. Using a lo-

cal PCA procedure, we assign to each node i an orthogonal

transformation Oi ∈ R
p×d̂, that is an approximation of a ba-

sis of the tangent space Txi
M, with d̂ being an estimate of

d obtained from the same procedure (or d itself, if known).

In particular, we fix another scale parameter εPCA (different

from the graph kernel scale parameter εn) and we define the

PCA neighborhood N P
i of each point xi as the points xj ∈ X

lying in a ball of radius
√
εPCA centered at xi. We define

Xi ∈ R
p×|NP

i | for each point to be a matrix whose j-th column

is the vector xj − xi, with xj ∈NP
i ; equivalently, it is possible

to shift each neighbor by the mean 1/|N P
i |

∑
xj∈NP

i
xj . At this

point, we compute for each point a matrix Bi =XiCi, where

Ci is a diagonal matrix whose entry are defined as C(i, i) =√
K(||xi − xj ||2/

√
εPCA), with K(·) being any twice differ-

entiable positive monotone function supported on [0, 1] (this

scaling is useful to emphasize nearby points over far away

points). We now perform the actual Local PCA by comput-

ing, per each point, the following covariance matrix and its

eigendecomposition

Ri =BT
i Bi =MiΣiM

T
i . (15)

Definition 13 (Approximated Tangent Space [43] (Eq. 2.1,

page 5)): For each point xi ∈ X ⊂M, the approximated basis

Oi of its tangent space Txi
M is given by the d̂ largest left

eigenvectors of the covariance matrix Ri from (15), where d̂
is an estimate of dim(M) or dim(M) itself, if known.

When the true manifold dimension d is not known, it is

possible to estimate it directly from the sampled points. In the

ideal case of neighboring points in NP
i being located exactly on

Txi
M, it holds that rank(Xi) = rank(Bi) = d, therefore only

d singular values are non-vanishing. In this ideal case, d can be

obviously estimated as the number of singular values different

from zero. However, there may usually be more than d non-

vanishing singular values due to the curvature effect. In this

case, it is possible to estimate the dimension d as the number of

singular values accounting for a certain (high) percentage of the

variability of the displacements in Bi. In practice, denoting the

singular values of Bi with ³i,1 ≥ ³i,2 ≥ · · · ≥ ³i,|NP
i
|, a thresh-

old 0< ´ ≤ 1 (possibly close to 1) is chosen and a local dimen-

sion d̂i is estimated per each point xi as the smallest number of
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Fig. 5. Pictorial view of discrete parallel transport.

singular values for which
∑d̂i

j=1 ³i,j/
∑|NP

i |
j=1 ³i,j ≥ ´. For ex-

ample, setting ´ = 0.8 means that d̂i singular values account for

at least 80% variability of the displacements. At this point, the

estimate d̂ of the dimension d of the manifold is obtained as the

(integer) mean or the median of the local estimated dimensions

{d̂i}ni=1 [43]. Definition 13 is equivalent to say that Oi is built

with the first d̂ columns of Mi from (15). Moreover, as usual,

Oi can be equivalently (and efficiently) computed as the first

d̂ left singular vectors of Bi, without explicitly computing the

covariance matrix Ri. The local PCA procedure is summarized

in Algorithm 1 in Section A of the Supplemental Material. Now,

a discrete approximation of the parallel transport operator [48],

that is a linear transformation from Txi
M to Txj

M, is needed.

In the discrete domain, this translates to associating a matrix

to each edge of the above graph. For εn small enough, Txi
M

and Txj
M are close, meaning that the column spaces of Oi

and Oj are similiar. If the column spaces coincide, then the

matrices Oi and Oj are related by an orthogonal transformation

Õi,j =Oi
TOj . However, if M is curved, the column spaces

of Oi and Oj will not coincide. For this reason, the transport

operator approximation Oi,j is defined as the closest orthogonal

matrix to Õi,j [43] (Eq. 2.4, page 6), i.e.:

Oi,j = argmin
O:OTO=I

‖O− Õi,j‖HS , (16)

where ‖ · ‖HS is the Hilbert-Schmidt norm. The solution of

problem (16) is given by Oi,j =Mi,jV
T
i,j ∈ R

d̂×d̂, where Mi,j

and Vi,j are the SVD of Õi,j =Mi,jΣi,jV
T
i,j (and the restric-

tion maps of the approximating sheaf); a pictorial view of this

discrete approximating transport is presented in Fig. 5. We now

build a block matrix S ∈ R
nd̂×nd̂ and a diagonal block matrix

D ∈ R
nd̂×nd̂ with d̂× d̂ blocks defined as

Si,j = wi,jD̃
−1
i Oi,jD̃

−1
j , Di,i = ndeg (i)Id̂, (17)

where D̃i = deg(i)Id̂, deg(i) =
∑

j wi,j is the degree of node

i, and ndeg(i) =
∑

j wi,j/(deg(i)deg(j)) is the normalized de-

gree of node i. Finally, we define the (normalized) Sheaf Lapla-

cian as the following matrix

∆n = ε−1
n

(
D−1S− I

)
∈ R

nd̂×nd̂, (18)

which is the approximated Connection Laplacian of the under-

lying manifold M [43] (page 13). The procedure to build the

Sheaf Laplacian is summarized in Algorithm 2 in Section A of

the Supplemental Material. A sheaf T Mn with this (orthogo-

nal) structure represents a discretized version of T M. Further

details in [43].

At this point, we introduce a linear sampling operator ΩX
n :

Γ(T M)→ Γ(T Mn) to discretize a tangent bundle signal F as

a sheaf signal fn ∈ R
nd̂ such that (refer to Appendix A for the

rigorous definition of Γ(T Mn)):

fn =ΩX
n F, (19)

fn(xi) := [fn]((i−1)d̂+1):(i+1)d̂ =Oi
T dιF(xi) ∈ R

d̂, (20)

where ((i− 1)d̂+ 1) : (i+ 1)d̂ indicates all the components

of fn from the ((i− 1)d̂+ 1)-th to the (i+ 1)d̂-th compo-

nent. In words, the sampling operator ΩX
n in (19) takes the

embedded tangent signal dιF as input, evaluates it on each

point xi in the sampling set X , projects the evaluated signals

dιxi
(F(xi)) ∈ R

p over the d-dimensional subspaces spanned

by the Ois from Definition 13 and, finally, sequentially collects

the n projections Oi
T dιF(xi) ∈ R

d̂ in the vector fn ∈ R
nd̂,

representing the discretized tangent bundle signal. We are now

in the condition of plugging the discretized operator from (18)

and signal from (19) in the definition of tangent bundle filter

from (7), obtaining:

gn =

∫ ∞

0

h̃(t)et∆nfndt= h(∆n)fn ∈ R
nd̂. (21)

Following the same considerations of Section III-E, we can

define a discretized space tangent bundle neural network

(D-TNN) as the stack of L layers of the form

fun,l+1 = σ

(
Fl∑

q=1

h(∆n)
u,q
l f

q
n,l

)
, u= 1, ..., Fl+1, (22)

where (with a slight abuse of notation) σ has the same

point-wise law of σ̃ in Definition 9. As in the continuous

case, we describe the uth output of a D-TNN as a mapping

Ψu

(
H,∆n, {xq

n}F0
q=1

)
to emphasize that it is parameterized by

filters H and the Sheaf Laplacian ∆n. The D-TNN architecture

comes with desirable theoretical properties. As the number

of sampling points goes to infinity, the Sheaf Laplacian ∆n

converges to the Connection Laplacian ∆ [43] and the sheaf

signal xn consequently converges to the tangent bundle signal

F. Combining these results, we prove in the next theorem

that the output of a D-TNN converges to the output of the

corresponding underlying TNN as the sample size increases,

validating the approximation fitness of a D-TNN. To the best of

our knowledge, this is the first result to formally connect Sheaf

Neural Networks to tangent bundles of Riemann manifolds. Let

us denote the injectivity radius and the condition number [44],

[48] of the manifold M with κ and τ , respectively.

Theorem 1: Let X = {x1, . . . , xn} ⊂ R
p be a set of n i.i.d.

sampled points from measure μ over M⊂ R
p and F a tangent

bundle signal. Let T Mn be the cellular sheaf built from X
as explained above with d̂= d and 0< εn ≤min{κ, τ−1}. Let

Ψu

(
H, ·, ·

)
be the uth output of a neural network of L layers

parameterized by the operator ∆ of T M or by the discrete

operator ∆n of T Mn. If:
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TABLE II
NOTATION AND SUMMARY OF THE CONTINUOUS (ON TANGENT BUNDLES)

FRAMEWORK AND ITS DISCRETIZATION (ON CELLULAR SHEAVES)

Tangent Bundle T M Cellular Sheaf T Mn

Signal F fn

Laplacian ∆ ∆n

Inner product 〈F,G〉T M =
∫
M

〈F(x),G(x)〉TxMdµ(x) 〈fn,gn〉T Mn
= 1

n

∑n
i=1 fn(xi) · un(xi)

Filter G=
∫
∞

0
h̃(t)et∆Fdt= h(∆)F gn =

∑K−1

k=0
hke

k∆n fn = h(∆n)f

Neural Network Fu
l+1

= σ
(∑Fl

q=1 h(∆)u,q
l

F
q
l

)
fu
n,l+1

= σ
(∑Fl

q=1 h(∆n)
u,q
l

f
q
n,l

)

A1 the frequency response of filters inH are non-amplifying

Lipschitz continuous;

A2 Each filter h̃(·) ∈H is a lowpass filter;

A3 σ̃ from Definition 9 is point-wise normalized Lipschitz

continuous,

then there exists a sequence of scales εn → 0 as n→∞ s.t.

lim
n→∞

||Ψu

(
H,∆n,Ω

X
n F

)
−ΩX

n Ψu

(
H,∆,F

)
||T Mn

= 0,

(23)

with the limit in probability, for each u= 1, 2, . . . , FL.

Proof: See Appendix A.

Remark 4: Denoting the Sheaf Laplacian with ∆n is an abuse

of notation, because Theorem 1 is a condition both on εn → 0
and n→∞. For this reason, we should employ a notation such

as ∆n,εn ; however, we will keep ∆n in the following for the

sake of exposition and consistency.

Theorem 1 requires the filters to be lowpass. This can be

challenging in a learning context because the filters are learned

end-to-end and they may or may not satisfy this hypothesis.

Thus, the practical implication of Theorem 1 is that it is possible

to train TNNs on sampled manifolds although we do not offer an

explicit method to guarantee that this is indeed attained. A first

important point to make is that this condition is not spurious,

as it is a minimal condition imposed in the proof of Theorem

1 to guarantee convergence. A second important point is that

filters can be forced to be lowpass by constraining the filters

coefficients during training, if needed. Here we do not advocate

the use of these constraints.

C. Discretization in the Time Domain

The discretization in space introduced in the previous section

is still not enough for implementing TNNs in practice. Indeed,

learning the continuous time function h̃(t) is in general infea-

sible. For this reason, we discretize h̃(t) in the continuous time

domain by fixing a sampling interval Ts > 0. In this way, we

can replace the filter response function with a series of coef-

ficients hk = h̃(kTs), k = 0, 1, 2 . . . . Fixing Ts = 1 and taking

K samples over the time horizon, the discrete-time version of

the convolution in (6) is given by

h(∆n)F(x) =

∞∑

k=0

hke
k∆nF(x), (24)

which can be seen as a finite impulse response (FIR) filter

with shift operator e∆n . We are now in the condition of inject-

ing the space discretization from Section IV in the finite-time

architecture in (24), thus finally obtaining an implementable

tangent bundle filter that exploits the approximating cellular

sheaf T Mn as

gn = h(∆n)fn =
K−1∑

k=0

hke
k∆nfn. (25)

The discretized manifold filter of order K can be seen as a

generalization of graph convolution to the orthogonal cellular

sheaf domain. Thus, we refer e∆n as a sheaf shift operator. At

this point, by replacing the filter h
pq
l (∆n) in (22) with (25), we

obtain the following architecture:

fun,l+1 = σ

(
Fl∑

q=1

K−1∑

k=0

hu,q
k,l

(
e∆n

)k
f
q
n,l

)
, u= 1, ..., Fl+1,

(26)

that we refer to as discretized space-time tangent bundle neural

network (DD-TNN). DD-TNNs are a novel principled variant of

the recently proposed Sheaf Neural Networks [32], [41], [42],

with e∆n as (sheaf) shift operator and order K diffusion. To bet-

ter enhance this similarity, we rewrite the layer in (26) in matrix

form by introducing the matrices Xn,l = {fun,l}Fl

u=1 ∈ R
nd̂×Fl ,

and Hl,k = {hu,q
k,l }

Fl,Fl+1

q=1,u=1 ∈ R
Fl×Fl+1 , as

Xn,l+1 = σ

(
K−1∑

k=0

(
e∆n

)k
Xn,lHl,k

)
∈ R

nd̂×Fl+1 , (27)

where the filter weights {Hl,k}l,k are learnable parameters.

Finally, we have completed the process of building TNNs from

(orthogonal) cellular sheaves and back. The proposed method-

ology also shows that manifolds and their tangent bundles can

be seen as the limits of graphs and (orthogonal) cellular sheaves

on top of them. A summary of the proposed continuous frame-

work on tangent bundles and its discretization on orthogonal

cellular sheaves is presented in Table II. Please notice that, when

Ts = 1 and K = 1 in (27), the standard Sheaf Neural Network

from [41] (up to an additional channel mixing matrix) with the

exponential of the sheaf Laplacian as shift operator is recovered.

V. CONSISTENCY OF TANGENT BUNDLE CONVOLUTIONS

The tangent bundle convolution in Definition 4 provides a

definition of a convolution that is compatible with convolutions

on manifold scalar fields, convolutions on graphs, and (stan-

dard) convolutions for signals in time.

The manifold convolution from [27] is recovered when the

bundle is a scalar bundle, i.e. when scalar functions f :M→ R

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 26,2024 at 11:17:00 UTC from IEEE Xplore.  Restrictions apply. 



1900 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

over the manifold are considered. In this case, the Connection

Laplacian ∆ reduces to the usual Laplace-Beltrami operator

[49], here denoted with ∆M : L2(M)→L2(M), and the re-

sulting convolution, given a filter h̃ : R+ → R, is

g(x) =
(
h̃ �M f)(x) =

∫ ∞

0

h̃(t)e−t∆Mf(x)dt. (28)

This expression is both the manifold convolution from [27]

and a particular case of (7). The negative sign comes from

the convention to define the standard Laplacian as a positive

semidefinite operator whereas the Connection Laplacian is de-

fined to be negative semidefinite.

Given a set of n points X ⊂ R
p sampled from the manifold,

we further recover a form of graph convolution [8], [45]. In

particular, if the manifold M is discretized as a geometric graph

Mn whose nodes are the sampled points, the Laplace-Beltrami

operator ∆M is discretized as a graph Laplacian ∆M,n ∈ R
n×n

whose entries are the weights wi,j of equation (14). If we

further discretize f :M→ R as a graph signal fn :Mn → R,

the resulting convolution is

gn =
(
h̃ �Mn

fn) =

∫ ∞

0

h̃(t)e−t∆M,nfndt. (29)

This is a particular case of (21) and can be interpreted as an

exponential form of a graph convolution. Further discretizing

the filter across the index t as we do in Section IV-C. yields the

graph convolution

gn =

K−1∑

k=0

hk(e
−∆M,n)kfn. (30)

This is a FIR graph filter with e−∆M,n used as a shift operator.

The expression can be made more familiar if we approximate

the exponential by e−∆M,n ≈ In −∆M,n.

The standard time convolution is recovered when the man-

ifold is the real line R, the functions f : R→ R are scalar

functions, and the operator employed in the heat equation in

(4) is replaced by the derivative operator ∂/∂x. In particular,

due to the fact that the exponential of the derivative operator is

a time shift operator, we can write e−t∂/∂xf(x) = f(x− t). In

this case, the resulting convolution is

g(x) =
(
h̃ �R f)(x) =

∫ ∞

0

h̃(t)e−t∂/∂xf(x)dt

=

∫ ∞

0

h̃(t)f(x− t) dt, (31)

This is the (standard) time convolution and also a particular case

of (7). An additional amenable theoretical feature of our tangent

bundle convolution is its consistency with the framework of

Algebraic Signal Processing (ASP) [20], [46]. An ASP model

is made of four components: (i) A vector space V where the

signals of interest live. (ii) The space End(V) of endomor-

phisms of V containing the linear maps that can be applied

to the signals in V. (iii) An Algebra A that defines abstract

convolutional filters. (iv) A homomorphism ρ that maps filters

in A to endomorphisms that can be applied to signals. In our

case, the vector space V is made of tangent bundle signals,

and the algebra A is the algebra (L1(R+), �R) of absolute

integrable functions in R+ with the standard convolution �R as

the product. The homomorphism ρ maps the filter h̃(t) to the

tangent bundle filter ρ(h̃) whose action on a signal F is

ρ(h̃) ◦ F(s) =
∫ ∞

0

h̃(t)et∆F(s) dt. (32)

This is clearly the definition we obtain in (7) by combining (5)

and (6). It is trivial to verify that ρ(h̃) is a homomorphism.

An alternative definition of tangent bundle convolution would

be obtained if we replace the algebra A with the algebra of poly-

nomials. Thus, filters would be polynomials h̃(t) =
∑K

k=0 hkt
k

and the tangent bundle filters would be

ρ(h̃) ◦ F(s) =
K∑

k=0

hk∆
kF(s). (33)

In this latter case, discretizing the manifold would give rise to

graph filters defined as polynomials of the graph Laplacian. In

this paper we prefer to work with (32) rather than (33) because

it leads to the connection with convolutions in continuous time

stated in (31). This connection can’t be made if we adopt (33)

as a definition of tangent bundle filter. It is important to remark

that if we adopt (33) as a definition a similar convergence

theorem holds. We just need to change the definition of the

filter’s frequency response to the polynomial
∑K

k=0 hkλ
k and

proceed to adapt assumptions and derivations.

VI. NUMERICAL RESULTS

In this section, we assess the performance of Tangent Bundle

Neural Networks on four tasks: denoising of a tangent vector

field on the torus (synthetic data), reconstruction from partial

observations of the Earth wind field (real data), forecasting of

the Earth wind field (real data), obtained via a recurrent version

of the proposed architecture, and binary manifold classification

(synthetic data). In this work, we are interested in showing the

advantage of including information about the tangent bundle

structure for processing tangent bundle signals. For this reason,

in the following experiments we always use the vanilla DD-

TNN architecture in (27) without any additional modules (e.g.

readout MLP layers), and we compare our architectures against

vanilla Manifold Neural Networks (MNNs) from [27], convo-

lutional architectures built in a similar way to ours but taking

into account only the manifold structure. MNNs are imple-

mented as GNNs with the exponential of the normalized cloud

Laplacian [27], [52]. Moreover, we also compare DD-TNNs

against Multi-Layer Perceptrons (MLPs) [47] in the denoising

and reconstruction tasks, against Recurrent Neural Networks

(RNNs) [53] in the forecasting task, and against 3D-CNN in the

classification task. Therefore, from a discrete point of view, we

present a comparison between a specific (novel and principled)

Sheaf Neural Networks class (DD-TNNs, which introduce a

relational inductive bias [54] given by the tangent bundle/sheaf

structure), a specific Graph Neural Networks class (MNNs,

which introduce a relational inductive bias given by the man-

ifold/graph structure), and Multi-Layer Perceptrons/Recurrent

Neural Networks (MLPs/RNNs, which introduce no relational

inductive biases). It is clear that the employed classes of archi-

tectures could be enriched with many additional components

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 26,2024 at 11:17:00 UTC from IEEE Xplore.  Restrictions apply. 



BATTILORO et al.: TANGENT BUNDLE CONVOLUTIONAL LEARNING: FROM MANIFOLDS TO CELLULAR SHEAVES AND BACK 1901

TABLE III
MSE ON THE TORUS DENOISING TASK

τ = 10−2 τ = 10−1 τ = 3 · 10−1

E{n}= 100
DD-TNN 2.02 · 10−4 ± 1.88 · 10−5 1.78 · 10−2 ± 1.96 · 10−3 1.35 · 10−1 ± 1.42 · 10−2

MNN 7.33 · 10−4 ± 4.61 · 10−4 2.45 · 10−2 ± 4.26 · 10−3 2.19 · 10−1 ± 3.56 · 10−2

MLP 2.34 · 10−4 ± 2.88 · 10−5 1.83 · 10−2 ± 2.48 · 10−3 1.52 · 10−1 ± 2.15 · 10−2

E{n}= 200
DD-TNN 2.06 · 10−4 ± 1.46 · 10−5 1.82 · 10−2 ± 1.18 · 10−3 1.36 · 10−1 ± 1.05 · 10−2

MNN 7.78 · 10−4 ± 5.76 · 10−4 2.50 · 10−2 ± 3.90 · 10−3 2.11 · 10−1 ± 3.30 · 10−2

MLP 2.28 · 10−4 ± 3.52 · 10−5 1.88 · 10−2 ± 2.88 · 10−3 1.55 · 10−1 ± 2.06 · 10−2

E{n}= 300
DD-TNN 2.05 · 10−4 ± 1.07 · 10−5 1.80 · 10−2 ± 1.01 · 10−3 1.31 · 10−1 ± 7.91 · 10−3

MNN 6.64 · 10−4 ± 4.13 · 10−4 2.43 · 10−2 ± 4.01 · 10−3 2.05 · 10−1 ± 3.06 · 10−2

MLP 2.36 · 10−4 ± 2.87 · 10−5 1.85 · 10−2 ± 2.25 · 10−3 1.51 · 10−1 ± 1.87 · 10−2

E{n}= 400
DD-TNN 2.00 · 10−4 ± 9.60 · 10−6 1.80 · 10−2 ± 8.99 · 10−4 1.35 · 10−1 ± 8.03 · 10−3

MNN 6.84 · 10−4 ± 6.28 · 10−4 3.45 · 10−2 ± 5.88 · 10−2 2.55 · 10−1 ± 9.50 · 10−2

MLP 2.26 · 10−4 ± 3.27 · 10−5 1.86 · 10−2 ± 2.28 · 10−3 1.58 · 10−1 ± 1.90 · 10−2

(biases, layer normalization, dropout, gating, just to name a

few), and it is also clear that a huge number of other architec-

tures could be tailored to the proposed tasks, but testing them

is beyond the scope of this paper.1

A. Torus Denoising

We design a denoising task on a 2-dimensional torus (M=
T2) and its tangent bundle. It is well known that the 2-torus,

the 2-sphere, the real projective plane, together with their con-

nected sums completely classify closed 2-dimensional mani-

folds, thus it is a good manifold to test our architecture. A

parameterization of the 2-dimensional torus is obtained by re-

volving a circle in three-dimensional space about an axis that

is coplanar with the circle: [x, y, z] = [(b+ a cos θ) cosφ, (b+
a cos θ) sinφ, r sin θ], where φ, θ ∈ [0, 2π), a is the radius of the

tube, and b is the distance from the center of the tube to the cen-

ter of the torus; b/a is called the aspect ratio. In this experiment,

we work on a ring torus, thus a torus with aspect ratio greater

than one (in particular, we choose b= 0.3, a= 0.1). We uni-

formly sample the torus on n points X = {x1, . . . , xn}, and we

compute the corresponding cellular sheaf T Mn, Sheaf Lapla-

cian ∆n and signal sampler ΩX
n as explained in Section IV-B,

with εPCA = 0.8 and εn = 0.5. We consider the tangent vector

field over the torus given by dιF(x, y, z) = (− sin θ, cos θ, 0) ∈
R

3. At this point, we add AWGN with variance τ2 to dιF ob-

taining a noisy field d̃ιF, then we useΩX
n to sample it, obtaining

f̃n ∈ R
2n. We test the performance of the TNN architecture

by evaluating its ability to denoising f̃n. We exploit a 3 layers

architecture with 8 and 4 hidden features, and 1 output feature

(the denoised signal), using K = 2 in each layer, with Tanh()

non-linearities in the hidden layers and a linear activation on

the output layer; the architecture hyperparameters have been

chosen with hyperparameters sweeps. We train the architecture

to minimize the square error ‖f̃n − fon‖2 between the noisy

signal f̃n and the output of the network fon via the ADAM

optimizer [55] and a patience of 5 epochs, with hyperparameters

set to obtain the best results. We compare our architecture with

a 3 layers MNN (implemented via a GNN as explained in [27])

with same hyperparameters; to make the comparison fair, d̃ιF
evaluated on X is given as input to the MNN, organized in a

matrix F̃n ∈ R
n×3. We train the MNN to minimize the square

error ‖F̃n − Fo
n‖2F , where ‖‖F is the Frobenius Norm and Fo

n

1Our implementation of TNNs & datasets available at https://github.com/
clabat9/Tangent-Bundle-Neural-Networks

is the network output. It is trivial to see that the “two” MSEs

used for TNN and MNN are completely equivalent due to the

orthogonality of the projection matrices Oi. In Table III, we

evaluate TNNs and MNNs for four different expected sam-

ple sizes (E{n}= 100, E{n}= 200, E{n}= 300, and E{n}=
400), for three different noise standard deviation (τ = 10−2,

τ = ·10−1 and τ = 3 · 10−1), showing the MSEs 1
n‖fn − fon‖2

and 1
n‖Fn − Fo

n‖2F , where fn is the sampling via ΩX
n of the

clean field and Fn is the matrix collecting the clean field eval-

uated on X . 8 sampling realizations and 8 mask realizations

per each of them are tested; to make the results consistent,

divergent or badly trained runs are discarded if present, and then

the results are averaged (on average about 2 runs are discarded

per each sampling realization). As the reader can notice from

Table I, TNNs always perform better than MNNs and MLPs,

due to their “bundle-awareness”, i.e. the sheaf structure.

B. Wind Field Reconstruction

We design a reconstruction task on real-world data. We use

daily average measurements (the tangent bundle signal) of Earth

surface wind field collected by NCEP/NCAR2; in particular,

we use the data corresponding to the wind field of the 1st

of January 2016, consisting of regularly spaced observations

covering the whole Earth surface. The observations are local-

ized in terms of latitude and longitude, thus we convert them

in 3-dimensional coordinates by using the canonical spherical

approximation for the Earth with nominal radius R= 6356.8.

The wind field is a 2-dimensional tangent vector field made

of a zonal component, following the local parallel of latitude,

and a meridional component, following the local meridian of

longitude. A visualization of the wind field is shown in Fig. 6

(figures taken from the official data repository). We preprocess

the data by scaling the observations to be in the range [−1, 1].
We first randomly sample n points to obtain the sampling

set X , the cellular sheaf T Mn, and the Sheaf Laplacian ∆n

again with εPCA = 0.8 and εn = 0.5; at this point, we mask

ñ < n of these points, we collect them in a set X̃C ⊂X , and

we aim to infer their corresponding measurements exploiting

the remaining available n− ñ measurements, collected in the

set X̃ ⊂ X . This reconstruction problem can be equivalently

seen as a semi-supervised regression problem. To tackle it, we

first organize the data corresponding to the point in X in a

2https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
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(a) Zonal Wind (b) Meridional Wind

Fig. 6. Visualization of Earth wind field on 1st of January 2016 (a) zonal component. (b) meridional component.

TABLE IV
MSE ON THE WIND FIELD RECONSTRUCTION TASK

E{ñ}= 0.5n E{ñ}= 0.3n E{ñ}= 0.1n

E{n}= 100
DD-TNN 1.93 · 10−2 ± 3.64 · 10−3 1.15 · 10−2 ± 2.75 · 10−3 3.31 · 10−3 ± 1.62 · 10−3

MNN 4.20 · 10−2 ± 3.05 · 10−2 3.12 · 10−2 ± 1.86 · 10−2 2.82 · 10−2 ± 2.32 · 10−2

MLP 2.00 · 10−2 ± 3.99 · 10−3 1.21 · 10−2 ± 2.50 · 10−3 3.61 · 10−3 ± 1.70 · 10−3

E{n}= 200
DD-TNN 1.99 · 10−2 ± 2.30 · 10−3 1.18 · 10−2 ± 1.62 · 10−3 3.67 · 10−3 ± 1.23 · 10−3

MNN 3.19 · 10−2 ± 1.31 · 10−2 2.74 · 10−2 ± 1.55 · 10−2 2.58 · 10−2 ± 1.82 · 10−2

MLP 2.03 · 10−2 ± 2.28 · 10−3 1.20 · 10−2 ± 1.68 · 10−3 3.69 · 10−3 ± 1.17 · 10−3

E{n}= 300
DD-TNN 1.88 · 10−2 ± 1.72 · 10−3 1.13 · 10−2 ± 1.54 · 10−3 3.96 · 10−3 ± 1.00 · 10−3

MNN 2.68 · 10−2 ± 7.64 · 10−3 2.41 · 10−2 ± 1.05 · 10−2 2.09 · 10−2 ± 1.76 · 10−2

MLP 1.95 · 10−2 ± 1.74 · 10−3 1.18 · 10−2 ± 1.56 · 10−3 4.00 · 10−3 ± 8.85 · 10−4

E{n}= 400
DD-TNN 1.95 · 10−2 ± 1.66 · 10−3 1.14 · 10−2 ± 1.38 · 10−3 3.70 · 10−3 ± 8.55 · 10−4

MNN 2.48 · 10−2 ± 6.55 · 10−3 2.52 · 10−2 ± 1.20 · 10−2 8.16 · 10−2 ± 1.87 · 10−1

MLP 2.01 · 10−2 ± 1.66 · 10−3 1.19 · 10−2 ± 1.24 · 10−3 3.81 · 10−3 ± 8.46 · 10−4

matrix Fn ∈ R
n×2, where the first column collects the zonal

components and the second column collects the meridional

components. At this point, we build the matrix F̃n ∈ R
n×2,

that is a copy of F except for the rows of F corresponding

to the masked points in X̃C , replaced with the mean of the

measurements of the available points in X̃ . We then vectorize

F̃n to obtain f̃n ∈ R
2n, the input tangent bundle signal. We now

exploit the same DD-TNN architecture from Section VI-A, with

the same hyperparameters, to perform the reconstruction task

by training it to minimize the reconstruction square error
∑

i∈X̃

‖f̃n(i)− fon(i)‖2 (34)

between the available measurements fn(i) and the output of

the network corresponding to them fon(i), i ∈ X̃ . Again, we

compare our architecture with the same MNN from Section

VI-A, to which we give as input the matrix F̃ and we train it to

minimize
∑

i∈X̃ ‖F̃n(i)− Fo
n(i)‖2, where Fo

n is the network

output and F̃n(i) indicates the i−th row of F̃n(i); being f̃n the

vectorization of F̃n, also in this case it is trivial to check

the equivalence of the two MSEs. As evaluation metric, we use

the reconstruction MSE on the measurements corresponding

to the masked nodes 1
n

∑
i∈X̃C ‖fn(i)− fon(i)‖2. In Table IV

we evaluate TNNs and MNNs for four different expected sam-

ple sizes (E{n}= 100, E{n}= 200, E{n}= 300, and E{n}=
400), for three different masking probabilities (E{ñ}= 0.5n,

E{ñ}= 0.3n, and E{ñ}= 0.1n) per each of them (the prob-

ability of a node to being masked). As the reader can notice,

TNNs are always able to perform better than MNNs and MLPs,

keeping the performance stable with the number of samples and,

of course, improving with more observations available.

C. Wind Field Forecasting With Recurrent TNNs

We design a forecasting task on the same wind field data

from Section VI-B. In particular, we use daily observation

corresponding to the wind field from the 1st of January 2016

to 7 September 2016 to train the model and we use obser-

vations from the 1st of January 2017 to 7 September 2017

to test it. We, again, randomly sample n points to obtain the

sampling set X , the cellular sheaf T Mn, and the Sheaf Lapla-

cian ∆n; at this point, we organize the data corresponding

to the sampled point in X in a sequence {Fn,t}t indexed by

time t (daily interval), with each Fn,t ∈ R
n×2. As in Section

VI-B, we vectorize {Fn,t}t to obtain {fn,t}t, the input tangent

bundle signals, with each fn,t ∈ R
2n. We now introduce a hy-

perparameter Tf > 0 representing the length of the predictive

time window of the model, i.e., given in input a subsequence

{fn,t}t=Ts+Tf

t=Ts
starting at time Ts of length Tf , the model out-

puts a sequence {fon,t}
t=Tf

t=1 of length Tf aiming at estimating

the next Tf element {fn,t}t=Ts+2Tf+1
t=Ts+Tf+1 of the input sequence.
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TABLE V
MSE ON THE WIND FIELD FORECASTING TASK

Tf = 20 Tf = 50 Tf = 80

E{n}= 100
DD-TNN 8.39 · 10−2 ± 1.62 · 10−2 1.20 · 10−1 ± 7.13 · 10−2 1.36 · 10−1 ± 5.05 · 10−2

MNN 3.76 · 10−1 ± 2.74 · 10−1 6.18 · 10−1 ± 2.09 · 10−1 9.63 · 10−1 ± 1.55 · 10−2

RNN 8.89 · 10−2 ± 3.06 · 10−2 8.69 · 10−2 ± 3.19 · 10−2 7.24 · 10−2 ± 2.63 · 10−2

E{n}= 200
DD-TNN 8.14 · 10−2 ± 3.58 · 10−2 7.03 · 10−2 ± 1.40 · 10−2 1.61 · 10−1 ± 7.38 · 10−2

MNN 3.49 · 10−1 ± 2.03 · 10−1 6.70 · 10−1 ± 2.30 · 10−1 5.03 · 10−1 ± 1.39 · 10−1

RNN 9.78 · 10−2 ± 3.58 · 10−2 7.54 · 10−2 ± 4.92 · 10−2 1.20 · 10−1 ± 5.99 · 10−2

E{n}= 300
DD-TNN 6.43 · 10−2 ± 1.13 · 10−2 7.03 · 10−2 ± 3.16 · 10−2 2.49 · 10−1 ± 1.74 · 10−1

MNN 6.69 · 10−1 ± 2.12 · 10−1 6.09 · 10−1 ± 3.66 · 10−1 8.83 · 10−1 ± 8.60 · 10−2

RNN 7.95 · 10−2 ± 3.43 · 10−2 8.68 · 10−2 ± 4.06 · 10−2 1.34 · 10−1 ± 4.66 · 10−2

E{n}= 400
DD-TNN 8.93 · 10−2 ± 2.78 · 10−2 8.47 · 10−2 ± 1.67 · 10−2 1.34 · 10−1 ± 4.35 · 10−2

MNN 4.06 · 10−1 ± 2.47 · 10−1 7.50 · 10−1 ± 2.86 · 10−1 2.35 · 10−1 ± 9.49 · 10−2

RNN 6.29 · 10−2 ± 2.66 · 10−2 1.25 · 10−1 ± 3.89 · 10−2 5.19 · 10−2 ± 3.38 · 10−2

To do so, we introduce a recurrent version of the proposed DD-

TNNs, which, to the best of our knowledge, is also the first

recurrent architecture working on cellular sheaves. The building

block of the proposed recurrent architecture is a layer made of

three components: a tangent bundle filter processing the current

sequence element fn,t, a tangent bundle filter processing the

current hidden state zt−1, i.e., the output of the layer com-

puted on the previous sequence element, and a pointwise non-

linearity. Formally, the layer reads as:

zt = σ

(
K−1∑

k=0

hk

(
e∆n

)k
fn,t +

K−1∑

k=0

wk

(
e∆n

)k
zt−1

)
, (35)

with t= Ts, ..., Ts + Tf , and z0 = 0. To obtain the required

estimates, we can set {fon,t}
t=Tf

t=1 = {zt}t=Tf

t=1 . This architecture

can be used also in a Multi-Layer fashion: in this case, at layer

l and at time t, the first filter takes zl−1,t (the current time

t hidden state of the previous layer l − 1) as input, and the

second filter takes zl,t−1 (the previous time t− 1 hidden state of

the current layer l) as input. Therefore, the resulting L−layers

architecture is:

zl,t = σ

(
K−1∑

k=0

hk,l

(
e∆n

)k
zl−1,t +

K−1∑

k=0

wk,l

(
e∆n

)k
zl,t−1

)
,

(36)

with l = 1, ..., L, t= Ts, ..., Ts + Tf , and z0,t = fn,t. In this

case, to obtain the required estimates, we can set {fon,t}
t=Tf

t=1 =

{zL,t}t=Tf

t=1 . For the wind field forecasting task, the training set

is made of all the possible m= 250− 2Tf subsequences of

length 2Tf of the 2016 data, we use a 3-layers Recurrent DD-

TNN with K = 2 and Tanh non-linearities, and we train it to

minimize the square error
∑m

t=1

∑t+Tf

t̃=t
‖fn,t̃ − fo

n,t̃−t+1
‖22. To

have a fair comparison, we set up the corresponding recurrent

version of MNNs (RMNNs, a recurrent graph neural network)

with the same structure, same hyperparameters, same loss but

with inputs {Fn,t}t. As evaluation metric, we compute the

MSE on the 2017 data after training. In Table V we evaluate

RTNNs and RMNNs for four different expected sample sizes

(E{n}= 100, E{n}= 200, E{n}= 300, and E{n}= 400), and

for three different time window lengths (Tf = 20, Tf = 50,

and Tf = 80) per each of them. Also in this case, the bundle

“awareness” of (recurrent) TNNs allows to reach significantly

better results in all the tested scenarios w.r.t. (recurrent) MNNs,

outperforming RNNs too in most of the cases except for the

Fig. 7. An immersed Klein bottle.

long-term predictions cases (Tf = 80), probably due to the ab-

sence of gating or memory mechanisms, useful also to improve

training. Moreover, in all the experiments, TNNs have fewer

parameters than MNNs, due to the different organization of the

data in the input layer.

D. Manifold Classification

We design an ill-conditioned binary manifold classification

task. The goal is to assess whether TNNs are able to learn

to distinguish between a torus and an immersed Klein bottle,

given uninformative features, i.e. a constant vector field. The

Klein bottle is a 2-dimensional non-orientable manifold (i.e.

with no “inside” or “outside”). The Klein bottle has to be prop-

erly embedded in R
4 since it must pass through itself without

the presence of a hole. However, it can be immersed in R
3,

as depicted in Fig. 7. Working on the immersion makes the

classification task ill-conditioned, because an immersed Klein

Bottle is not even a proper manifold. The choice of giving as

input uninformative features is made in order to evaluate if the

network is able to solely leverage the geometric information

contained in the approximated Connection Laplacian (the Sheaf

Laplacian) to infer the manifold, resembling [56], [57]. We

opted to employ the immersed Klein bottle as one of the target

manifolds to heuristically evaluate how our method tackles ill-

conditioned tasks that do not match the theoretical justification

of our architecture. We create datasets of 2000 data points,

where each datapoint is computed with the following steps:
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TABLE VI
ACCURACY ON THE MANIFOLD

CLASSIFICATION TASK

Id() Tanh()
DD-TNN 76.2%± 4.8 87.5%± 0.9
MNN 56.3%± 5.3 97.7%± 0.3
3D-CNN 86.3%± 2.3 98.5%± 0.6

i) choose if sampling the torus or the Klein bottle tossing a

fair coin; ii) uniformly sample the manifold on E{n}= 100
points and compute the corresponding cellular sheaf T Mn, and

Sheaf Laplacian ∆n (both the manifolds are normalized to be

contained in a cube of unitary side length, such that the scale

is not a discriminating feature); iii) associate to each sampled

point the projection via the Oi s of the constant vector field

given by dιF(x, y, z) = (1, 1, 1) ∈ R
3. We exploit the same

DD-TNN architecture from Section VI-A, with the same hyper-

parameters, plus a final 2-layers MLP classifier with a ReLU()
non-linearity after the first layer and a Softmax() non-linearity

after the second layer. We train the architecture to minimize

the usual binary cross-entropy. We compare our architecture

with the same MNN from Section VI-A, where obviously the

Sheaf Laplacian is replaced by the graph Laplacian. Unlike the

experiments of the previous section, we found that in this case

the employed non-linearity impacts the classification accuracy;

in particular, we observed changes when the “non-linearity” is

the identity function Id() (thus when a cascade of discretized

tangent bundle filters is used) or the Tanh(). For this reason

we evaluate TNNs and MNNs using both Id() and Tanh().
Moreover, we also report the results of a simple 3D-CNN. To

feed the data in the 3D-CNN, we follow the approach from

[58], i.e. we first convert each data point to the volumetric

representation as an occupancy grid with resolution 6 × 6 × 6.

The choice of the hyperparameters is made to keep the number

of learnable parameters similar to DD-TNN and MNN. The

results are averaged over 8 realizations of the datasets, and

per each of them the training dataset is obtained by sampling

80% of the datapoints, and the test set is obtained with the

remaining 20%. As the reader can notice in Table VI, the 3D-

CNN performs better than both MNN and DD-TNN. This is

something that we could expect: as described above, this task is

ill-conditioned for DD-TNN and MNN, and it is trivially easier

to solve for an architecture designed for point clouds, the 3D-

CNN w.r.t. architectures based on manifold diffusion operators.

However, the performance of DD-TNN is still competitive even

if the setting is disadvantaged. Moreover, TNNs significantly

perform better than MNNs when Id() is employed, i.e. tangent

bundle filters significantly perform better than manifold filters,

while MNNs perform better than TNNs when an actual non-

linearity, the Tanh(), is introduced.

VII. CONCLUSION

In this work, we introduced Tangent Bundle Filters and

Tangent Bundle Neural Networks (TNNs), novel continuous

architectures operating on tangent bundle signals, i.e. manifold

vector fields. We made TNNs implementable by discretiza-

tion in space and time domains, showing that their discrete

counterpart is a principled variant of Sheaf Neural Networks.

We proved that discretized TNNs asymptotically converge to

their continuous counterparts, and we assessed the performance

of TNNs on both synthetic and real data. This work gives a

multifaceted contribution: on the methodological side, it is the

first work to introduce a signal processing framework for sig-

nals defined on tangent bundles of Riemann manifolds via the

Connection Laplacian; on the theoretical side, the presented dis-

cretization procedure and convergence result explicitly link the

manifold domain with cellular sheaves, formalizing intuitions

presented in works like [42]. In future work, we will investi-

gate more general classes of cellular sheaves that approximate

unions of manifolds (perhaps representing multiple classes) or,

more generally, stratified spaces [59], [60]. We believe our per-

spective on tangent bundle neural networks could shed further

light on challenging problems in graph neural networks such as

heterophily [32], over-squashing [61], or transferability [28].

Finally, we plan to tackle more sophisticated tasks with our

proposed architectures.

APPENDIX

A. Proof of Theorem 1

Proof: We define an inner product for sheaf signals f and

u on a general cellular sheaf T Mn as

〈f ,u〉T Mn
=

1

n

n∑

i=1

fn(xi) • un(xi), (37)

and the induced norm ||f ||2T Mn
= 〈f , f〉T Mn

. Assuming that

the points in X are sampled i.i.d. from the uniform probability

measure μ given by the metric on M and that T Mn is built

as in Section V, the inner product in (37) is equivalent to the

following inner product for tangent bundle signals F and U:

〈F,U〉T Mn
=

∫

M

〈F(x),U(x)〉TxMdμn(x)

=
1

n

n∑

i=1

〈F(xi),U(xi)〉Txi
M, (38)

and the induced norm ||F||2T Mn
= 〈F,F〉T Mn

, where μn =
1
n

∑n
i=1 δxi

is the empirical measure corresponding to μ. In-

deed, from (1) and due to the orthogonality of the transforma-

tions Oi in Section V, (38) can be rewritten as

〈F,U〉T Mn
=

1

n

n∑

i=1

dιF(xi) • dιU(xi)

=
1

n

n∑

i=1

Oi
T dιF(xi) • Oi

T dιU(xi)

=
1

n

n∑

i=1

fn(xi) • un(xi) = 〈fn,un〉T Mn
(39)

where fn =ΩX
n F and un =ΩX

n U, respectively. We denote

with Γ(T Mn) the space of tangent bundle signals w.r.t. the
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empirical measure μn (or, equivalently, the space of sheaf sig-

nals w.r.t the norm induced by (37)). In the following, we will

denote the norm || · ||T Mn
with || · || when there is no risk of

confusion. In [44], the spectral convergence of the constructed

Sheaf Laplacian in (18) to the Connection Laplacian of the

underlying manifold has been proved, and we exploit that result

for proving the following proposition.

Proposition 3 (Consequence of Theorem 6.3 [44]): Let

X = {x1, . . . , xn} ⊂ R
p be a set of n i.i.d. sampled points from

measure μ over M⊂ R
p. Let T Mn be a cellular sheaf built

from X as explained in Section V, with d̂= d and 0< εn ≤
min{κ−1, ι}. Let ∆n be the Sheaf Laplacian of T Mn and ∆
be the Connection Laplacian operator of M. Let λn

i be the i-th
eigenvalue of ∆n and φi

n the corresponding eigenvector. Let

λi be the i-th eigenvalue of ∆ and φi the corresponding eigen-

vector field of ∆, respectively. Then there exists a sequence of

scales εn → 0 as n→∞ such that:

lim
n→∞

λn
i = λi, lim

n→∞
‖φi

n −ΩX
n φi‖T Mn

= 0, (40)

where the limits are taken in probability.

Proof: This proposition is a consequence of Theorem 6.3

in [25]. Indeed, we rely on the operator introduced in Defi-

nition 6.1 of [44] with α= 1 (hn is our εn), here denoted as

Ξ : Γ(T M)→ Γ(T M), and on the operator Ξ̃ = ε−1
n

(
Ξ− id

)
,

where id is the identity mapping. It is straightforward to check:

Ξ̃F(xj) = dι−1Oj

(
∆nΩ

X
n F

)
(xj), (41)

for j = 1, . . . , n. We now show that the eigenvectors sampled

on X and eigenvalues of Ξ̃ correspond to the eigenvectors and

eigenvalues of ∆n. Let us denote the the i-th eigenvector and

eigenvalue of Ξ̃ with φ̃
n

i and −λ̃n
i , respectively. We have:

Ξ̃φ̃
n

i (xj) =−λ̃n
i φ̃

n

i (xj) = dι−1Oj

(
∆nΩ

X
n φ̃

n

i

)
(xj) (42)

If we apply the mapping i to the last two equalities of (42) and

we exploit the orthoghonality of Oj , we obtain:

(
∆nΩ

X
n φ̃

n

i

)
(xj) =−λ̃n

i Oj
T dιφ̃

n

i =−λ̃n
i Ω

X
n φ̃

n

i (xj) (43)

where the second equality applies the definition of ΩX
n in (19).

Therefore, we have:

λn
i = λ̃n

i , φi
n(xj) =ΩX

n φ̃
n

i (xj), (44)

j = 1, . . . , n. At this point, we can recall Theorem 6.3 in [44],

that, in the setting of our Theorem 1, states that there exists a

sequence of scales εn → 0 as n→∞ such that:

lim
n→∞

λ̃n
i = λi, lim

n→∞
‖φ̃n

i − φi‖T M = 0, (45)

with the limit taken in probability, j = 1, . . . , n. Injecting the

empirical measure in (45) and exploiting the results in (39) and

(44), we obtain:

‖φ̃n

i − φi‖T Mn
= ‖φi

n −ΩX
n φi‖T Mn

(46)

The results in (45) and (46) and the a.s. convergence of the

empirical measure μn to the measure μ conclude the proof.

For the sake of clarity, in the following we will drop the

dependence on the NNs output index u; from the definitions

of TNNs in (12) and D-TNNS in (22), we can thus write:

‖Ψ
(
H,∆n,Ω

X
n F

)
−ΩX

n Ψ
(
H,∆,F

)
‖=

∥∥∥xn,L −ΩX
n FL

∥∥∥ .

Further explicating the layers definitions, at layer l we have:

∥∥∥xn,l −ΩX
n Fl

∥∥∥

=

∥∥∥∥∥∥
σ

⎛
¿

Fl−1∑

q=1

h
q
l (∆n)x

q
n,l−1

À
⎠−ΩX

n σ

⎛
¿

Fl−1∑

q=1

h
q
l (∆)Fq

l−1

À
⎠
∥∥∥∥∥∥

(47)

with x
q
n,0 =ΩX

n Fq for q = 1, . . . , F0. Exploiting the normal-

ized point-wise Lipschitz continuity of the non-linearities (A3)

and the linearity of the sampling operator ΩX
n , we have:

‖xn,l−ΩX
n Fl‖ ≤

∥∥∥∥∥

Fl−1∑

q=1

h
q
l (∆n)x

q
n,l−1−ΩX

n

Fl−1∑

q=1

h
q
l (∆)Fq

l−1

∥∥∥∥∥

≤
Fl−1∑

q=1

∥∥∥hq
l (∆n)x

q
n,l−1 −ΩX

n h
q
l (∆)Fq

l−1

∥∥∥

(48)

The difference term in the last LHS of (48) can be further

decomposed for every q = 1, . . . , Fl−1 as

‖hq
l (∆n)x

q
n,l−1 −ΩX

n h
q
l (∆)Fq

l−1‖
≤ ‖hq

l (∆n)x
q
n,l−1 − h

q
l (∆n)Ω

X
n F

q
l−1

+ h
q
l (∆n)Ω

X
n F

q
l−1 −ΩX

n h
q
l (∆)Fq

l−1‖
≤
∥∥∥hq

l (∆n)x
q
n,l−1 − h

q
l (∆n)Ω

X
n F

q
l−1

∥∥∥

+
∥∥∥hq

l (∆n)Ω
X
n F

q
l−1 −ΩX

n h
q
l (∆)Fq

l−1

∥∥∥ (49)

The first term of the last inequality in (49) can be bounded

as ‖xq
n,l−1 −ΩX

n F
q
l−1‖ with the initial condition ‖xq

n,0 −
ΩX

n F
q
0‖= 0 for q = 1, . . . , F0. Denoting the second term with

Dn
l−1, and iterating the bounds derived above through layers

and features, we obtain:

‖Ψ(H,∆n,Ω
X
n F)−ΩX

n Ψ(H,∆,F)‖ ≤
L∑

l=0

L∏

l′=l

Fl′D
n
l .

Therefore, we can focus on each difference term Dn
l and omit

the feature and layer indices to simplify the notations. We can

write the convolution operation in the spectral domain as

‖h(∆n)Ω
X
n F−ΩX

n h(∆)F‖

=

∥∥∥∥∥

n∑

i=1

ĥ(λn
i )〈ΩX

n F,φn
i 〉T Mn

φn
i

−
∞∑

i=1

ĥ(λi)〈F,φi〉T MΩX
n φi

∥∥∥∥∥ (50)
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By adding and subtracting
∑n

i=1 ĥ(λi)〈ΩX
n F,φn

i 〉T Mn
φ

n
i , by

coupling the terms with the same index and using the triangle

inequality, we can then write
∥∥∥∥∥

n∑

i=1

ĥ(λn
i )〈ΩX

n F,φn
i 〉T Mn

φn
i −

∞∑

i=1

ĥ(λi)〈F,φi〉T MΩX
n φi

∥∥∥∥∥

≤
∥∥∥∥∥

n∑

i=1

(
ĥ(λn

i )− ĥ(λi)
)
〈ΩX

n F,φn
i 〉T Mn

φn
i

∥∥∥∥∥ [T1]

+

∥∥∥∥∥

n∑

i=1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

φn
i −〈F,φi〉T MΩX

n φi

)∥∥∥∥∥ [T2]

+

∥∥∥∥∥

∞∑

p=n+1

ĥ(λp)〈F,φp〉T MΩX
n φp

∥∥∥∥∥[T3] (51)

We now proceed to prove that [T1] converges to zero in proba-

bility as n increases. Fixed a M[T1] ∈ N, we can always rewrite

[T1] as

[T1] =

∥∥∥∥∥

min{n,M[T1]}∑

i=1

(
ĥ(λn

i )− ĥ(λi)
)
〈ΩX

n F,φn
i 〉T Mn

φn
i

+

n∑

i=M[T1]+1

(
ĥ(λn

i )− ĥ(λi)
)
〈ΩX

n F,φn
i 〉T Mn

φn
i

∥∥∥∥∥
(52)

Please notice that, when n <M[T1], the last sum is an empty

sum. By using the triangle inequality, the orthonormality of

the φn
i , the Cauchy-Schwartz inequality |〈ΩX

n F,φn
i 〉T Mn

| ≤
‖ΩX

n F‖, and the finiteness of ‖ΩX
n F‖, we can further bound

the RHS of (52), obtaining

[T1]≤ C[T1]

min{n,M[T1]}∑

i=1

|ĥ(λn
i )− ĥ(λi)|

+ C[T1]

n∑

i=M[T1]+1

|ĥ(λn
i )− ĥ(λi)|, (53)

for some constant C[T1] > 0. At this point, by using the fact that

|a− b| ≤ |b| and the Lipschitz continuity of ĥ(·) (A1), we can

further bound the RHS of (53) as

[T1]≤ C[T1]

min{n,M[T1]}∑

i=1

|λn
i − λi|

︸ ︷︷ ︸
[T1.1]

+C[T1]

∞∑

i=M[T1]+1

|ĥ(λi)|

︸ ︷︷ ︸
[T1.2]

(54)

It is clear that we can make [T1.2] in (54) arbitrarily small by

increasing M[T1] since it is the reminder of a convergent series

with positive summands (A2). Therefore, for all ´[T1] > 0, we

can always choose an M[T1] such that [T1.2] is smaller than

´[T1]/2C. Fixed M[T1], we can further bound [T1.1] using

the spectral convergence result in (40). In particular, using the

definition of limit in probability, letting 0< ´i ≤ ´[T1]/2CM ,

for all δi > 0, there exist Ni such that for all n≥Ni, it holds

P(|λn
i − λi| ≤ ´i)≥ 1− δi. (55)

Therefore, for all ´[T1] > 0 and for all n≥maxi Ni, it holds

[T1.1]≤ C[T1]

min{n,M[T1]}∑

i=1

´i ≤ ´[T1]/2 (56)

with probability at least
∏min{n,M[T1]}

i=1 (1− δi) := 1− δ[T1].

This allows us to state that for all ´[T1] > 0, for all δ[T1] > 0,

there exist an N[T1] such that, for all n >N[T1], we have

P([T1]≤ ´[T1])≥ 1− δ[T1], (57)

i.e. [T1] converges in probability to zero. We now

proceed to show that [T2] in (51) converges to zero in

probability as n increases. By adding and subtracting∑n
i=1 ĥ(λi)〈ΩX

n F,φn
i 〉T Mn

ΩX
n φi, and by using the triangle

inequality, we can write
∥∥∥∥∥

n∑

i=1

ĥ(λi)(〈ΩX
n F,φn

i 〉T Mn
φn

i − 〈F,φi〉T MΩX
n φi)

∥∥∥∥∥

≤
∥∥∥∥∥

n∑

i=1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

φn
i

− 〈ΩX
n F,φn

i 〉T Mn
ΩX

n φi

)∥∥∥∥∥[T2.1]

+

∥∥∥∥∥

n∑

i=1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

ΩX
n φi

− 〈F,φi〉T MΩX
n φi

)∥∥∥∥∥[T2.2] (58)

We can use now the same approach of [T1]. In particular, fixed

a M[T2.1] ∈ N, we can always rewrite [T2.1] and then bound it

using the triangle inequality as

[T2.1] =

∥∥∥∥∥

min{n,M[T2.1]}∑

i=1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

φn
i

− 〈ΩX
n F,φn

i 〉T Mn
ΩX

n φi

)

+

n∑

i=M[T2.1]+1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

φn
i

− 〈ΩX
n F,φn

i 〉T Mn
ΩX

n φi

)∥∥∥∥∥

≤
∥∥∥∥∥

min{n,M[T2.1]}∑

i=1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

φn
i

− 〈ΩX
n F,φn

i 〉T Mn
ΩX

n φi

)∥∥∥∥∥

+

∥∥∥∥∥

n∑

i=M[T2.1]+1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

φn
i

− 〈ΩX
n F,φn

i 〉T Mn
ΩX

n φi

)∥∥∥∥∥ (59)

We can now further bound the RHS of (59) by using

the triangle inequality, the Cauchy-Schwarz inequality
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|〈ΩX
n F,φn

i 〉T Mn
| ≤ ‖ΩX

n F‖, the non-amplifying frequency

response (A1, for the first term), the finiteness of ‖ΩX
n F‖, and

the finiteness of ‖φn
i −ΩX

n φi‖ (for the second term) as

[T2.1]≤ C[T2.1]

min{n,M[T2.1]}∑

i=1

‖φn
i −ΩX

n φi‖
︸ ︷︷ ︸

[T2.1.1]

+ C[T2.1]

∞∑

i=M[T2.1]+1

|ĥ(λi)|

︸ ︷︷ ︸
[T2.1.2]

, (60)

for some constant C[T2.1] > 0. Leveraging the same arguments

we used for [T1.1] and [T1.2] in (54) to bound [T2.1.1] and

[T2.1.2] in (60), respectively, but using the convergence of the

eigenvectors and not of the eigenvalues from (40), we can state

that for all ´[T2.1] > 0, for all δ[T2.1] > 0, there exist an N[T2.1]

such that, for all n >N[T2.1], we have

P([T2.1]≤ ´[T2.1])≥ 1− δ[T2.1], (61)

i.e. [T2.1] converges in probability to zero. Following the same

procedure we used to obtain the bound in (59) for [T2.1], we

can obtain the following bound for [T2.2]:

[T2.2]≤
∥∥∥∥∥

min{n,M[T2.2]}∑

i=1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

ΩX
n φi

− 〈F,φi〉T MΩX
n φi

)∥∥∥∥∥

+

∥∥∥∥∥

n∑

i=M[T2.2]+1

ĥ(λi)
(
〈ΩX

n F,φn
i 〉T Mn

ΩX
n φi

− 〈F,φi〉T MΩX
n φi

)∥∥∥∥∥ (62)

We further bound the RHS of (62) by using the triangle and

Cauchy-Schwarz inequalities, the non-amplifying frequency re-

sponse (for the first term), the finiteness of ‖ΩX
n F‖ and ‖F‖,

and the finiteness of ‖φn
i −ΩX

n φi‖ (for the second term), as

[T2.2]≤ C[T2.2]

min{n,M[T2.2]}∑

i=1

|〈ΩX
n F,φn

i 〉T Mn
−〈F,φi〉T M|

︸ ︷︷ ︸
[T2.2.1]

+ C[T2.2]

∞∑

i=M[T2.2]+1

|ĥ(λi)|

︸ ︷︷ ︸
[T2.2.2]

, (63)

for some constant C[T2.2] > 0. It is trivial, from the weak law

of large numbers and from (38)-(39), that

lim
n→∞

∣∣∣〈ΩX
n F,ΩX

n φi〉T Mn
− 〈F,φi〉T M

∣∣∣= 0, (64)

with the limit taken in probability. By direct substitution and

using the distributive law of the dot product, we can write

∣∣∣〈ΩX
n F,ΩX

n φi〉T Mn
− 〈ΩX

n F,φn
i 〉T Mn

∣∣∣

=

∣∣∣∣∣
1

n

n∑

i=1

(
ΩX

n F(xi) • ΩX
n φi(xi)−ΩX

n F(xi) • φn
i (xi)

)∣∣∣∣∣

=
∣∣∣〈ΩX

n F,ΩX
n φi − φ

n
i 〉T Mn

∣∣∣≤ ‖ΩX
n F‖‖ΩX

n φi − φ
n
i ‖,

(65)

where the last inequality is obtained using the Cauchy-Schwartz

inequality. Therefore, using again the spectral convergence of

eigenvectors from (40), we can write

lim
n→∞

∣∣∣〈ΩX
n F,ΩX

n φi〉T Mn
− 〈ΩX

n F,φn
i 〉T Mn

∣∣∣= 0, (66)

where the limit is taken in probability. As a direct consequence

of the (64) and (66), we can directly state that

lim
n→∞

∣∣∣〈ΩX
n F,φn

i 〉T Mn
− 〈F,φi〉T M

∣∣∣= 0, (67)

again with the limit in probability. At this point, leveraging the

same arguments we used for [T1.1] and [T1.2] in (54) (and for

[T2.1.1] and [T2.1.2] in (60)) to bound [T2.2.1] and [T2.2.2]
in (63), respectively, but using the convergence of the inner

products in (67), we can state that for all ´[T2.2] > 0, for all

δ[T2.2] > 0, there exist an N[T2.2] such that, for all n >N[T2.2]:

P([T2.2]≤ ´[T2.2])≥ 1− δ[T2.2], (68)

i.e. [T2.2] converges in probability to zero. As a consequence,

we can state that for all ´[T2] > 0, for all δ[T2] > 0, there exist

an N[T2] such that, for all n >N[T2], we have

P([T2]≤ ´[T2])≥ 1− δ[T2], (69)

i.e. [T2] converges in probability to zero. We are now missing

only the convergence in probability of [T3] from (51). However,

[T3] is again the reminder of a convergent series with positive

summands (A2), implying that it deterministically goes to zero

as n increases. Therefore, for all ´[T3] > 0, there exist an N[T3]

such that, for all n >N[T3], we have

[T3]≤ ´[T3] (70)

As a direct consequence of (57)-(69)-(70), we can state that

for all ´ > 0, for all δ > 0, there exist a N such that, for all

n >N , we have

P([T1] + [T2] + [T3]≤ ´)≥ 1− δ, (71)

Combining (71) with (51), we can finally state that

lim
n→∞

Dn
l = lim

n→∞
‖h(∆n)Ω

X
n F−ΩX

n h(∆)F‖= 0, (72)

where the limit is taken in probability. The proof is concluded

by combining (72) and (50).
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