1892

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024
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Abstract—In this work we introduce a convolution operation
over the tangent bundle of Riemann manifolds in terms of expo-
nentials of the Connection Laplacian operator. We define tangent
bundle filters and tangent bundle neural networks (TNNs)
based on this convolution operation, which are novel continuous
architectures operating on tangent bundle signals, i.e. vector
fields over the manifolds. Tangent bundle filters admit a spectral
representation that generalizes the ones of scalar manifold filters,
graph filters and standard convolutional filters in continuous
time. We then introduce a discretization procedure, both in
the space and time domains, to make TNNs implementable,
showing that their discrete counterpart is a novel principled
variant of the very recently introduced sheaf neural networks.
We formally prove that this discretized architecture converges to
the underlying continuous TNN. Finally, we numerically evaluate
the effectiveness of the proposed architecture on various learning
tasks, both on synthetic and real data, comparing it against other
state-of-the-art and benchmark architectures.

Index Terms—Tangent bundle signal processing, tangent bun-
dle neural networks, cellular sheaves, sheaf neural networks,
graph signal processing.

1. INTRODUCTION

URING the last few years, the development of deep
learning techniques has led to state-of-the-art results in
various fields. More and more sophisticated architectures have
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promoted significant improvements from both theoretical and
practical perspectives. Although it is not the only reason, the
success of deep learning is in part due to Convolutional Neural
Networks (CNNs) [2]. CNNs have achieved excellent perfor-
mances in a wide range of applications, spanning from im-
age recognition [3] to speech analysis [4] while, at the same
time, lightening the computational load of feedforward fully-
connected neural networks and integrating features in different
spatial resolutions with pooling operators. CNNs are based on
shift operators in the space domain that induce desirable prop-
erties in the convolutional filters, among which the most rele-
vant one is the property of shift equivariance. CNNs naturally
leverage the regular (often metric) structure of the signals they
process, such as spatial or temporal structure. However, data
defined on irregular (non-Euclidean) domains are pervasive,
with applications ranging from detection and recommendation
in social networks [5], to resource allocations over wireless
networks [6], and point clouds for shape segmentation [7], just
to name a few. Structured data is modeled via the more var-
ied mathematical objects, among which graphs and manifolds
are notable examples. For this reason, the notions of shifts
in CNNs have been adapted to convolutional architectures on
graphs (GNNs) [8], [9] as well as a plethora of other struc-
tures, e.g. simplicial complexes [10], [11], [12], cell complexes
[13], [14], homogeneous spaces [15], order lattices [16], and
manifolds [17], [18], [19]. In [20], a framework for algebraic
neural networks has been proposed exploiting commutative
algebras. However, none of these studies consider convolutional
filtering of vector fields over manifolds. Therefore, in this work
we focus on tangent bundles, manifolds constructed from the
tangent spaces of a domain manifold. Tangent bundles are a
specialization of vector bundles which are a specialization of
sheaves, all three of which, in increasing levels of generality,
mathematically characterize both (1) when local data extends
globally and (2) topological obstructions thereof. Our present
focus is on tangent bundles as they are a tool for describing
and processing vector fields, ubiquitous data structures critical
in tasks such as robot navigation and flocking modeling, as
well as in climate science [21] and astrophysics [22]. Moreover,
to make the proposed procedures implementable, we formally
describe and leverage the link between tangent bundles and or-
thogonal cellular sheaves (also called discrete vector bundles), a
mathematical structure that generalizes connection graphs and
matrix-weighted graphs.
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A. Related Works

The well-known manifold hypothesis [23] states that high-
dimensional data examples are sampled from one (or more)
low-dimensional (Riemann) manifolds. This assumption is the
fundamental block of manifold learning, a class of methods
for non-linear dimensionality reduction. The Laplacian Eigen-
map framework is based on the approximation of manifolds by
weighted undirected graphs constructed with k-nearest neigh-
bors or proximity radius heuristics, with the key assumption
being that a set of sampled points of the manifold is avail-
able [24], [25], [26]. Formal connections between GNNs and
Manifold Neural Networks (MNNs) are established in [27],
[28]. Most of the previous works focused on scalar signals, e.g.
one or more scalar values attached to each node of graphs or
point of manifolds; however, recent developments [29], [30],
[31], [32] showed that processing vector data defined on tangent
bundles of manifolds or discrete vector bundles comes with a
series of benefits. The work in [29] introduced a method for
computing parallel transport of vector-valued data on a curved
manifold by extending a vector field defined over any region
to the rest of the manifold via geodesic curves. The work in
[22] presented an algorithm to reconstruct the magnetopause
surfaces from tangent vector observations. Pioneering works on
sheaf theory can be found in [33], [34], [35]. Discrete versions
of sheaves, called cellular sheaves, were first introduced in
[36] and were later rediscovered in [37]. In [36], [37], these
sheaves were first defined over regular cell complexes, hence
the term “cellular” sheaves. Often, as in this work, cellular
sheaves are defined over tamer objects, here graphs. In [30],
the authors studied the problem of learning cellular sheaves
from (assumed) smooth graph signals. The work in [31], [38],
[39], [40] introduced a novel class of diffusion dynamics on
cellular sheaves as a model for network dynamics. In [32],
[41], [42], neural networks operating on discrete vector bundles
are presented, generalizing GNNSs: additionally, the work in
[32] exploited cellular sheaf theory to show that the underlying
geometry of the graph gives rise to oversmoothing behavior
of GNNs. Finally, the most important works for us are [43],
[44]. In particular, in [43], the authors introduced an algorithmic
generalization of non-linear dimensionality reduction methods
based on the Connection Laplacian operator and proved that
both manifolds and their tangent bundles can be approximated
with certain cellular sheaves constructed from sampled points of
the manifolds. The work in [44] further generalized the result of
[43] by presenting a framework for approximating Connection
Laplacians over manifolds via their principal bundle structure,
and by proving the spectral convergence of the approximating
sheaf Laplacians.

B. Contributions

In this work, we first define a convolution operation over
the tangent bundle of Riemann manifolds via the Connection
Laplacian operator. Our definition is derived from the vector
diffusion equation over manifolds, and generalizes convolutions
on manifolds [27], graphs [8], [45], as well as standard time
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convolutions. Leveraging this operation, we introduce Tangent
Bundle Convolutional Filters to process tangent bundle sig-
nals (vector fields). We define the frequency representation of
tangent bundle signals and the frequency response of tangent
bundle filters using the spectral properties of the Connection
Laplacian. By cascading layers consisting of tangent bundle
filter banks and pointwise non-linearities, we introduce Tangent
Bundle Neural Networks (TNNs). The proposed convolutional
processing framework can be also seen as a novel instantia-
tion of the general theory of algebraic signal processing [20],
[46]. However, tangent bundle filters and tangent bundle neural
networks are continuous architectures that cannot be directly
implemented in practice. For this reason, we provide a princi-
pled way of discretizing them, both in time and space domains,
making convolutions on them computable. In particular, we
discretize the TNNs in the space domain by sampling points
on the manifold and building a cellular sheaf [38] that rep-
resents a legitimate approximation of both the manifold and
its tangent bundle [43]. We prove that the space discretized
architecture over the cellular sheaf converges to the under-
lying TNN as the number of sampled points increases. More-
over, we further discretize the architecture in the time domain
by sampling the filter impulse function in discrete and finite
time steps, notably showing that space-time discretized TNNs
(DD-TNNGs) are a novel principled variant of the very recently
introduced Sheaf Neural Networks [32], [41], [42], and thus
shedding further light, from a theoretical point of view, on the
deep connection between algebraic topology and differential
geometry. Finally, we evaluate the performance of TNNs on
both synthetic and real data; in particular, we design a denoising
task of a synthetic tangent vector field on the torus, a manifold
classification task, a reconstruction task, and a forecasting task
of the daily Earth wind field, tackled via a recurrent version
of our architecture. We empirically demonstrate the advantage
of incorporating the tangent bundle structure into our model
by comparing TNNs against Manifold Neural Networks from
[27] (architectures taking into account the manifold structure,
but not the tangent spaces), Multi-Layer Perceptrons [47], and
Recurrent Neural Networks (the latter two do not consider any
geometric information).

C. Paper Outline

The paper is organized as follows. We introduce some prelim-
inary concepts in Section II. We define tangent bundle convolu-
tion, filters and neural networks in Section III. In Section IV, we
illustrate the proposed discretization procedure for TNNs and
we prove the convergence result. We discuss the consistency of
the proposed convolution in Section V. Numerical results are
in Section VI, and conclusions in Section VII.

II. PRELIMINARY DEFINITIONS

In this section, we review some concepts from Riemann ge-
ometry that will be useful to introduce the convolution operation
over tangent bundles.
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M

Fig. 1. An example of tangent vector.

TABLE I
NOTATION

Manifold M
Tangent Space at point x TaeM
Tangent Bundle TM
Tangent Bundle Signal F-M—->TM
Differential du: ToeM — TRP
Riemann Metric G M  TeM X TeM =R

A. Manifolds and Tangent Bundles

We consider a compact, smooth, and orientable
d-dimensional manifold M smoothly embedded in RP.
Each point z € M is endowed with a d-dimensional tangent
space T, M isomorphic to R?, whose elements v € T, M are
said to be tangent vectors at x. For explicit construction of
tangent spaces on a manifold, consult an introductory textbook
on differential topology [48]. Informally, tangent vectors can
be seen as a generalization of the velocity vector of a curve
constrained to M passing through the point z. An example of
a tangent vector is depicted in Fig. 1.

Definition 1 (Tangent Bundle): The tangent bundle is the dis-
joint union of the tangent spaces T M =| |\, T.M together
with the projection map 7 : T M — M given by 7(x,v) = x.

Moreover, the tangent bundle has a natural topology which
makes it a smooth 2d-manifold and makes 7 a smooth map
[49]. In abuse of language, we often refer to the tangent bundle
as simply the space 7M. The embedding induces a Riemann
structure on M which allows to equip each tangent space 7, M
with an inner product.

Definition 2 (Riemann Metric): A Riemann Metric on a com-
pact and smooth d -dimensional manifold M embedded in R is
a (smoothly chosen) inner product ( , Y7 aq : ToM X Tu M —
R on each of the tangent spaces 7T, M of M given, for each v,
w € T, M, by

(v, W) pm = {dov, diw) o,

ey

where duv € T,RP is called the differential of v € 7, M in
T.RP C RP, T,RP is the d -dimensional subspace of R? being
the embedding of 7, M in RP, the differential dv: T, M —
T.RP is an injective linear mapping (also referred to as push-
forward, as it pushes tangent vectors on M forward to tangent
vectors on RP) [48], and (, )ge is the usual dot product.

The Riemann metric induces also a uniform probability mea-
sure 4 over the manifold, simply given by the considered region
scaled by the volume of the manifold.
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B. Tangent Bundle Signals

A tangent bundle signal is a vector field over the manifold,
thus a mapping F : M — T M that associates to each point of
the manifold a vector in the corresponding tangent space. In
the theory of vector bundles, a bundle signal is a section. An
example of a (sparse) tangent vector field over the unit 2-sphere
is depicted in Fig. 3 [1].

Remark 1: The choice of employing the terminology “tangent
bundle signal” and not the standard “vector fields” or “sec-
tions” aims to further underline the strong signal processing
perspective of this work, and to facilitate the understanding of
its generalization properties, as highlighted in Section V.

We can define an inner product for tangent bundle signals in
the following way.

Definition 3 (Tangent Bundle Inner Product): Given tangent
bundle signals F and G, their inner product is given by

(F.G)7ai = /M<F<x>,G<x>>Wdu<x>, @)

and the induced norm is ||F|%,, = (F, F) 7.

We denote with I'(7 M) the space of tangent bundle signals.
Note that tangent bundle signals have finite energy with respect
to || - [|7 a1, because they are (continuous) sections of the tan-
gent bundle. Therefore, the length of all the vectors in a vector
field is bounded because the image of a continuous function on a
compact set is bounded. Hence, integrating a bounded function
on (compact) M is always well-defined. In the following, we
denote (-, )7 aq with (-, -) when there is no risk of confusion.

III. TANGENT BUNDLE CONVOLUTIONAL FILTERS

Linear filtering operations are historically synonymous (un-
der appropriate assumptions) with convolution. Time signals
are filtered by computing the continuous-time convolution of
the input signal and the filter impulse response [17]; images
are filtered by computing multidimensional convolutions [34];
graph signals are filtered by computing graph convolutions
[5]; scalar manifold signals are filtered by computing manifold
convolutions [27]. In this paper, we define a tangent bundle
filter as the convolution of the filter impulse response i and the
tangent bundle signal F. To do so, we exploit the Connection
Laplacian Operator.

A. Connection Laplacian

The Connection Laplacian is a (second-order) operator A :
I'(TM)—T(TM), given by the trace of the second co-
variant derivative defined (for this work) via the Levi-Civita
connection [43] (the unique connection compatible with the
Riemann metric). The Connection Laplacian A has some de-
sirable properties: it is negative semidefinite, self-adjoint, el-
liptic, and, furthermore, has a negative spectrum {—X\;, @, }52,
with eigenvalues \; and corresponding eigenvector fields ¢;
satisfying

Ap;=—Xi9;, 3)
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Fig. 3.

An example of tangent bundle signal.

with 0 <Ay < A9 <---. The only possible accumulation
(limit) point is —oo [43] We can use the Connection Laplacian
to fathom a heat equation for vector diffusion:

oU(z, 1)
ot

where U: M x RT — TM and U(-,t) e [(TM)Vt € R;
we denote the initial condition condition with U(z,0) = F(x).
As reported in [29] and in Fig. 2 (obtained from Fig. 4 of [29]),
an intuitive interpretation of (4) is imagining the evolution of
the vector field U(x,t) over time as a “smearing out” of the
initial vector field F(z). In this interpretation, the role of the
Connection Laplacian can be understood as a means to diffuse
vectors from one tangent space to another, because it encodes
when tangent vectors are parallel (via the connection), and how
to “move” them keeping them parallel (via the induced parallel
transport). On scalar functions on Euclidean domains, it agrees
with the classical Laplace operator. (Indeed, in the flat case it
is sufficient to independently diffuse each scalar component,
however, this approach fails for curved space.) The solution of
(4) is given by

— AU(z,t) = 0, )

U(z,t) = e"*F(z), %)

which provides a way to construct tangent bundle convolution,
as explained in the following section.
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Fig. 4. Tllustration of a lowpass, non-amplifying, Lipschitz continuous
tangent bundle filter. The x-axis stands for the spectrum with each sample
representing an eigenvalue. Here the eigenvalues increase at a logarithmic
rate. The red dotted line is )\;2 and the blue dotted line is the filter, obtained

with impulse response h(t) = t2/6, thus h()\) = %)\*3, from (10).

B. Tangent Bundle Filters

We are now in the condition of defining a convolution op-
eration and tangent bundle convolutional filters leveraging the
heat diffusion dynamics in (4). B

Definition 4 (Tangent Bundle Filter): Let h: Rt — R and
let F € I'(7'M) be a tangent bundle signal. The tangent bundle
filter with impulse response h, denoted with h, is given by

G(z)= (hxrm F) = /OOO h(t)U(z, t)dt, (6)

where x7 4 is the tangent bundle convolution, and U(x,t) is
the solution of the heat equation in (4) with U(z,0) = F(z).

In the following, we will use the terms tangent bundle filter
and tangent bundle convolution interchangeably. One cannot
explicity compute the output G directly from the input F in
Definition 4. However, this is remedied by injecting the solution
of the heat equation (5) into (6). In this way, we can derive a
closed-form expression for h that is parametric on the Connec-
tion Laplacian, as shown in the following proposition.

Proposition 1 (Parametric Filter): Any tangent bundle filter
h defined as in (6) is a parametric map h(A) of the Connection
Laplacian operator A, given by

G(z) =hF(z) = /0 h h(t)e F(z)dt = h(A)F(z). (7)

We can make several -considerations starting from
Proposition 1: we can state that tangent bundle filters are
spatial operators, since they operate directly on points
x € M; moreover, they are local operators, because they are
parametrized by A which is itself a local operator.

Remark 2: The exponential term e*® can be seen as a diffu-
sion or shift operator similar to a time delay in a linear time-
invariant (LTI) filter [50], or to a graph shift operator in a
linear shift-invariant (LSI) graph filter [51], or to a manifold
shift operator based on the Laplace-Beltrami operator [27].
The resemblance is due to the fact that tangent bundle filters
are linear combinations of the elements of the tangent bundle
diffusion sequence, such as graph filters are linear combinations
of the elements of the graph diffusion sequence and manifold
filters are linear combinations of the elements of the manifold
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diffusion sequence. These considerations are further useful to
validate the consistency of the proposed convolution operation,
discussed in detail in Section V.

C. Frequency Representation of Tangent Bundles Filters

The spectral properties of the Connection Laplacian A allow
us to introduce the notion of a frequency domain. Following
the approach historically common to many signal processing
frameworks, we define the frequency representation of a tangent
bundle signal F € T'(7M) as its projection onto the eigenbasis
of the Connection Laplacian

[F], = (F, ¢,) = /M<F<x>, (@) mdi(z). @)

Proposition 2 (Frequency Representation): Given a tangent
bundle signal F and a tangent bundle filter h(A) as in Def-
inition 4, the frequency representation of the filtered signal
G = h(A)F is given by

¢], = /O T Re Nat[F] ©)

Proof: See Section B of Supplemental Material. O
Therefore, we can characterize the frequency response of a
tangent bundle filter in the following way.
Definition 5 (Frequency Response): The frequency response
h(\) of the filter h(A) is defined as

h(\) = /Oooﬁ(t)e—”dt.

This leads to [G], = h()\;)[F],, meaning that the tangent
bundle filter is point-wise in the frequency domain. We can
finally write the frequency representation of the filter as

= ZM&XE ¢i>¢i'

Remark 3: The frequency response h(\) in Definition 5
is the Laplace transform of h(t) if we let A\ be an arbitrary
complex argument. The effect of a tangent bundle filter on a
tangent bundle signal in the frequency domain is determined by
evaluating H(A) at the eigenvalues \; of the Connection Lapla-
cian. This interpretation is analogous to the interpretation of the
Fourier transform as an instantiation of the Laplace transform
restricted to A = jw [50]. This analogy can be furthered by
observing that jw are eigenvalues of the derivative operator
(see Section V). This interpretation is also consistent with the
interpretation of the frequency response of manifold filters—
also a Laplace transform which is instantiated at the eigenval-
ues of the Laplace-Beltrami operator [27]—and the frequency
response of graph filters — a z-transform which is instantiated
at the eigenvalues of the graph shift operator [45].

(10)

an

D. Lowpass Tangent Bundle Filters

The spectrum of the Connection Laplacian A is infinite-
dimensional, i.e., there is an infinite (though countable) number
of eigenvalues that need to be taken into account. However, we
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can design lowpass filters to tackle this problem. This design,
although not mandatory for practical purposes, is crucial in
proving the convergence result of the discretized filters and
neural networks to the underlying continuous filters and TNNs,
respectively, stated in Theorem 1.

Definition 6 (Lowpass Tangent Bundle Filters): A tangent
bundle filter h(A) is a lowpass filter if its frequency response
function h is O(; ), i.e. if limsup,_, . h(A\i)A? < oo.

In other words, lowpass filters asymptotically decay at least
as fast as A2, thus progressively suppressing high frequencies.
Finally, we define Lipshitz continuous and non-amplifying tan-
gent bundle filters.

Definition 7 (Tangent Bundle Filters with Lipschitz Conti-
nuity): A tangent bundle filter is C-Lispchitz if its frequency
response is Lipschitz continuous with constant C', i.e if |h(a) —
h(b)| < Cla — b] for all a,b € (0, 00).

Definition 8 (Non-Amplifying Tangent Bundle Filters): A
tangent bundle filter is non-amplifying if for all A € (0, c0), its
frequency response h satisfies [2(\)] < 1.

The Lipschitz continuity is a standard assumption, while
the non-amplifying assumption is perfectly reasonable, as any
(finite-energy) filter function 71(/\) can be normalized. An exam-
ple of a lowpass, non-amplifying, Lipschitz continuous tangent
bundle filter is depicted in Fig. 4.

E. Tangent Bundle Neural Networks

We define a layer of a Tangent Bundle Neural Network
(TNN) as a bank of tangent bundle filters followed by a point-
wise non-linearity. In this setting, pointwise informally means
“pointwise in the ambient space”. We introduce the notion of
differential-preserving non-linearity to formalize this concept
in a consistent way.

Definition 9 (Differential-preserving Non-Linearity): Denote
with U, C 7T,RP the image of the injective differential d¢ in
T:RP. A mapping o:T(TM)—=T(TM) is a differential-
preserving non-linearity if it can be written as o(F(z)) =
dv=16,(duF(z)), where 7, : U, — U, is a point-wise non-
linearity in the usual (Euclidean) sense.

Furthermore, we assume that o, = ¢ for all z € M.

Definition 10 (Tangent Bundle Neural Networks): The
I-th layer of a TNN with F} input signals {F{}*" / F}; output

signals {F}' H}fl:f, and non-linearity o(-) is defined as

(e U<Zh A )ul,...,FH_l. (12)

Therefore, a TNN of depth L with input signals {F9} 521 is
built as the stack of L layers defined as in (12), where F{ =
F9. An additional task-dependent readout layer (e.g sum for
classification) can be appended to the final layer.

To globally represent the TNN, we collect all the fil-
ter impulse responses in a function set H = {h?’q} Lug and

q=1

we describe the TNN wu-th output as a mapping FY =
v, (7—[, A, {F9} qul) to emphasize that at TNN is parameter-
ized by both # and the Connection Laplacian A.
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IV. DISCRETIZATION IN SPACE AND TIME

Tangent Bundle Filters and Tangent Bundle Neural Networks
operate on tangent bundle signals, thus they are continuous
architectures that cannot be directly implemented in practice.
Here we provide a procedure for discretizing tangent bundle
signals, both in time and spatial domains; the discretized coun-
terpart of TNNs is an instantiation of the recently introduced
Sheaf Neural Networks [41]. For this reason, in this section
we first provide a brief review of cellular sheaves over undi-
rected graphs, and then we explain the proposed discretization
procedure.

A. Cellular Sheaves

A cellular sheaf over an (undirected) graph consists of a
vector space for each node and edge and a collection of linear
transformations indexed by node-edge incidence pairs of the
graph. Formally, it is a functor on a partially ordered set of
node-edge incidence relations into the category of vector spaces
and linear transformations. We introduce the following non-
standard notation to emphasize the role that sheaves play in ap-
proximating tangent bundles as the number of nodes increases.

Definition 11 (Cellular Sheaf over a Graph): Suppose
M, = (Va, E,) is an undirected graph with n = |V,,| nodes.
A cellular sheaf over M,, is the tuple T M,, = (M,,, F), i.e.:

o A vector space F(v) for each v € V,,. We refer to these

vector spaces as node stalks.

o A vector space F(e) for each e € &,. We refer to these

vector spaces as edge stalks.

e A linear mapping V,, . : F(v) — F(e) represented by a

matrix V, . for each pair (v, e) € V,, x &, with incidence
v Je. These mappings are called restriction maps.

The space L*(TM,,) =@,y F(v) formed by the direct
sum of vector spaces associated with the nodes of the graph is
commonly called the space of 0-cochains, which we refer to
as sheaf signals on 7 M,,. We write a sheaf signal on M,, as
£, € L2(TM,,).

Definition 12 (Sheaf Laplacian): The (non-normalized)
Sheaf Laplacian of a sheaf 7.M,, is a linear mapping A,, :
L2(TM,,) — L2(TM,) defined node-wise

(Anf)(0) = D VE(Viefn(v) = Vi cfo(u).

vdedu

13)

While in general, the dimensions of the stalks may be arbi-
trary, this work focuses on discrete O(d)-bundles, or orthogonal
sheaves. In an orthogonal sheaf, we have V. I= Vﬁe for all
v <eand F(v)=R? for all v. Note, that this does not mean

every stalk is equal, but has the same dimension.

B. Discretization in the Space Domain

The manifold M, the tangent bundle 7.M, and the Con-
nection Laplacian A can be approximated from a set of
sampled points X C RP. Knowing the coordinates of the sam-
pled points, we construct an orthogonal cellular sheaf over
an undirected geometric graph such that its normalized Sheaf
Laplacian converges to the manifold Connection Laplacian as
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the number of sampled points (nodes) increases [44]. For-
mally, we assume that a set of n points X = {z1,...,z,} C
RP are sampled i.i.d. from measure ;. over M. We build a
cellular sheaf 7.M,, via the Vector Diffusion Maps proce-
dure whose details are listed in [43] and which we briefly
review here.

We start by building a weighted (geometric) graph M,, =
(Vn, &) with nodes V,, ={1,2,...,n} and weights w;; for
nodes % and j as follows. Set a scale €, > 0. For each pair
i,J € Vo X Vi, if [[zi — 23 < €5, then ij € €, with weight

Wy, 5 = exp<|xi —€$j|2> ;
n

otherwise, ij ¢ &, and w; ;=0 [43] (Eq. 2.5, page 6). The
neighborhood N; of each point z; contains the points z; €
A lying in a ball of radius /€, centered at x;. Using a lo-
cal PCA procedure, we assign to each node ¢ an orthogonal
transformation O; € RP*?, that is an approximation of a ba-
sis of the tangent space 7T,, M, with d being an estimate of
d obtained from the same procedure (or d itself, if known).
In particular, we fix another scale parameter epca (different
from the graph kernel scale parameter €,) and we define the
PCA neighborhood N} of each point z; as the points z; € X
lying in a ball of radius /epca centered at z;. We define
X,; € RPX VT for each point to be a matrix whose j-th column
is the vector x; — x;, with x; € NF; equivalently, it is possible
to shift each neighbor by the mean 1/|NF| sz enP L5 At this
point, we compute for each point a matrix B; = XlCZ where
C, is a diagonal matrix whose entry are defined as C(i,i) =
VE([[zi — ;]]2/\/épca), with K(-) being any twice differ-
entiable positive monotone function supported on [0, 1] (this
scaling is useful to emphasize nearby points over far away
points). We now perform the actual Local PCA by comput-
ing, per each point, the following covariance matrix and its
eigendecomposition

R; = BB, = M;2;M’.

(14)

5)

Definition 13 (Approximated Tangent Space [43] (Eq. 2.1,
page 5)): For each point z; € X' C M, the approximated basis
O; of its tangent space 7,, M is given by the d largest left
eigenvectors of the covariance matrix R; from (15), where d
is an estimate of dim(M) or dim(M) itself, if known.

When the true manifold dimension d is not known, it is
possible to estimate it directly from the sampled points. In the
ideal case of neighboring points in V” being located exactly on
Tz M, it holds that rank(X;) = rank(B;) = d, therefore only
d singular values are non-vanishing. In this ideal case, d can be
obviously estimated as the number of singular values different
from zero. However, there may usually be more than d non-
vanishing singular values due to the curvature effect. In this
case, it is possible to estimate the dimension d as the number of
singular values accounting for a certain (high) percentage of the
variability of the displacements in B;. In practice, denoting the
singular values of B; with 3, 1 > 3,2 > - -+ > ﬁi,le\’ a thresh-
old 0 < v <1 (possibly close to 1) is chosen and a local dimen-
sion d; is estimated per each point x; as the smallest number of
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Fig. 5.

Pictorial view of discrete parallel transport.

singular values for which Z] 1 Bi/ EW | Bi,; > . For ex-
ample, setting v = 0.8 means that d; singular values account for
at least 80% variability of the displacements. At this point, the
estimate d of the dimension d of the manifold is obtained as the
(integer) mean or the median of the local estimated dimensions
{d;}7_, [43]. Definition 13 is equivalent to say that O; is built
with the first d columns of M, from (15). Moreover, as usual,
O; can be equivalently (and efficiently) computed as the first
d left singular vectors of B;, without explicitly computing the
covariance matrix R;. The local PCA procedure is summarized
in Algorithm 1 in Section A of the Supplemental Material. Now,
a discrete approximation of the parallel transport operator [48],
that is a linear transformation from 7., M to 7, M, is needed.
In the discrete domain, this translates to associating a matrix
to each edge of the above graph. For ¢, small enough, 7, M
and 7T, M are close, meaning that the column spaces of O;
and Oj are similiar. If the column spaces coincide, then the
matrices O and Oj are related by an orthogonal transformation
0, . =0;"0;. However if M is curved, the column spaces
of O; and O w111 not coincide. For this reason, the transport
operator agproximation O, ; is defined as the closest orthogonal
matrix to O; ; [43] (Eq. 2.4, page 6), i.e.:

0,; = argmin O — O, |us, (16)
0:070=1
where || - || s is the Hilbert-Schmidt norm. The solution of

problem (16) is given by OZ =M, JVT R‘ZXUZ where M ;
and V; ; are the SVD of O i =M, ;3 ]V (and the restric-
tion maps of the approximating sheaf); a plctorlal view of this
discrete approximating transport is presented in Fig. 5. We now
build a block matrix S € R"¥*"d and a diagonal block matrix
D € R"*nd with d x d blocks defined as

S;j=w;;D;'0;;D;!, D;;=ndeg (i)I;, (17
where D; = deg(i i)1;, deg(i) = _, w;,; is the degree of node
i, and ndeg(i) = > w; ;/(deg(i )deg( ) is the normalized de-
gree of node i. Finally, we define the (normalized) Sheaf Lapla-
cian as the following matrix

RRJX ndA

A,=e;' (DS —T) € (18)

which is the approximated Connection Laplacian of the under-
lying manifold M [43] (page 13). The procedure to build the
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Sheaf Laplacian is summarized in Algorithm 2 in Section A of
the Supplemental Material. A sheaf 7 M,, with this (orthogo-
nal) structure represents a discretized version of 7 M. Further
details in [43].

At this point, we introduce a linear sampling operator fo
[(TM) = I'(TM,) to discretize a tangent bundle signal F as
a sheaf signal f,, € R™? such that (refer to Appendix A for the
rigorous definition of T'(7 M,,)):

£, =QFF,
— 0T d
£.(zi) == [fn]((i_l)g_,_l);(i_,_l),j =0, diF(z;) € R,

19)
(20)

where ((i —1)d+ 1) : (i + 1)d indicates all the components
of f, from the ((i — 1)d + 1)-th to the (i 4 1)d-th compo-
nent. In words, the sampling operator fo in (19) takes the
embedded tangent signal diF as input, evaluates it on each
point z; in the sampling set X, projects the evaluated signals
diy, (F(z;)) € RP over the d-dimensional subspaces spanned
by the O;s from Definition 13 and, finally, sequentially collects
the n projections O;” diF(z;) € R in the vector f,, € R,
representing the discretized tangent bundle signal. We are now
in the condition of plugging the discretized operator from (18)
and signal from (19) in the definition of tangent bundle filter
from (7), obtaining:

gn = / h(t)etArf,dt =h(A,)f, e R, (21)

0

Following the same considerations of Section III-E, we can

define a discretized space tangent bundle neural network
(D-TNN) as the stack of L layers of the form

Fy
£ = o(Z h(Anﬁ“quJ), u=1,...F, (2
q=1

where (with a slight abuse of notation) o has the same
point-wise law of o in Definition 9. As in the continuous
case, we describe the uth output of a D-TNN as a mapping
T, (H,Ap, {x5}1,) to emphasize that it is parameterized by
filters H and the Sheaf Laplacian A,,. The D-TNN architecture
comes with desirable theoretical properties. As the number
of sampling points goes to infinity, the Sheaf Laplacian A,
converges to the Connection Laplacian A [43] and the sheaf
signal x,, consequently converges to the tangent bundle signal
F. Combining these results, we prove in the next theorem
that the output of a D-TNN converges to the output of the
corresponding underlying TNN as the sample size increases,
validating the approximation fitness of a D-TNN. To the best of
our knowledge, this is the first result to formally connect Sheaf
Neural Networks to tangent bundles of Riemann manifolds. Let
us denote the injectivity radius and the condition number [44],
[48] of the manifold M with s and 7, respectively.

Theorem 1: Let X = {x1,...,z,} C R? be a set of n i.i.d.
sampled points from measure p over M C RP and F a tangent
bundle signal. Let 7 M,, be the cellular sheaf built from X
as explained above with d = d and 0 < €, < min{x, 7 '}. Let
\Ilu(’H, Y ) be the uth output of a neural network of L layers
parameterized by the operator A of 7 M or by the discrete
operator A,, of TM,,. If

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 26,2024 at 11:17:00 UTC from IEEE Xplore. Restrictions apply.



BATTILORO et al.: TANGENT BUNDLE CONVOLUTIONAL LEARNING: FROM MANIFOLDS TO CELLULAR SHEAVES AND BACK

1899

TABLE II
NOTATION AND SUMMARY OF THE CONTINUOUS (ON TANGENT BUNDLES)
FRAMEWORK AND ITS DISCRETIZATION (ON CELLULAR SHEAVES)

Tangent Bundle 7 M

Cellular Sheaf 7M.,

Signal F

fn

Laplacian A

An

Inner product

(F,G)rm = [ (F(2), G(2)) T, mdp(z)

(Fn 8n) T M, = = S0 Ful@) - un (@)

Filter

G = [° h(t)e!" Fdt = h(A)F

gn =Yy hieAnfy =h(A,)f

Neural Network

£y 3
Flh, = U(Zq’:l h(A)) qF;I)

F) Ly
f#,1+1 = U(quzl h(An);‘ qfq.l)

A1l the frequency response of filters in 7 are non-amplifying
Lipschitz continuous;

A2 Each filter h(-) € H is a lowpass filter;

A3 o from Definition 9 is point-wise normalized Lipschitz
continuous,

then there exists a sequence of scales €, — 0 as n — 00 s.t.

lim ||, (H, A, Q)F) — Q78 (H,AF) ||, =0,
(23)

with the limit in probability, for each u=1,2,..., Fp.
Proof: See Appendix A. |

Remark 4: Denoting the Sheaf Laplacian with A,, is an abuse
of notation, because Theorem 1 is a condition both on ¢,, — 0
and n — oo. For this reason, we should employ a notation such
as A, ., ; however, we will keep A,, in the following for the
sake of exposition and consistency.

Theorem 1 requires the filters to be lowpass. This can be
challenging in a learning context because the filters are learned
end-to-end and they may or may not satisfy this hypothesis.
Thus, the practical implication of Theorem 1 is that it is possible
to train TNNs on sampled manifolds although we do not offer an
explicit method to guarantee that this is indeed attained. A first
important point to make is that this condition is not spurious,
as it is a minimal condition imposed in the proof of Theorem
1 to guarantee convergence. A second important point is that
filters can be forced to be lowpass by constraining the filters
coefficients during training, if needed. Here we do not advocate
the use of these constraints.

C. Discretization in the Time Domain

The discretization in space introduced in the previous section
is still not enough for implementing TNNs in practice. Indeed,
learning the continuous time function fz(t) is in general infea-
sible. For this reason, we discretize iz(t) in the continuous time
domain by fixing a sampling interval 7T > 0. In this way, we
can replace the filter response function with a series of coef-
ficients hy, = h(kTy), k=0,1,2.... Fixing Ts = 1 and taking
K samples over the time horizon, the discrete-time version of
the convolution in (6) is given by

h(A,)F(2) =Y hpet4F(z), (24)
k=0
which can be seen as a finite impulse response (FIR) filter

with shift operator 2. We are now in the condition of inject-
ing the space discretization from Section IV in the finite-time

architecture in (24), thus finally obtaining an implementable
tangent bundle filter that exploits the approximating cellular
sheaf T M,, as
K-1
g =h(A)f, =) hgekArf,.
k=0

(25)

The discretized manifold filter of order K can be seen as a
generalization of graph convolution to the orthogonal cellular
sheaf domain. Thus, we refer 2~ as a sheaf shift operator. At
this point, by replacing the filter h}/(A,,) in (22) with (25), we
obtain the following architecture:

F, K—1 X
£l = U(Z > i (et) fg,l>, u=1,..., Fii1,
q=1 k=0
(26)

that we refer to as discretized space-time tangent bundle neural
network (DD-TNN). DD-TNNs are a novel principled variant of
the recently proposed Sheaf Neural Networks [32], [41], [42],
with e®» as (sheaf) shift operator and order K diffusion. To bet-
ter enhance this similarity, we rewrite the layer in (26) in matrix
form by introducing the matrices X, ; = {f" O e RrAX L
and H; , = {hy’/ 5;{?;;1 e RFIXFii1 g

K-1
Xn,l+1 = O’< Z (eA”)an,lHl,k> c Rndsz+1, 27)
k=0

where the filter weights {H; ,};  are learnable parameters.
Finally, we have completed the process of building TNNs from
(orthogonal) cellular sheaves and back. The proposed method-
ology also shows that manifolds and their tangent bundles can
be seen as the limits of graphs and (orthogonal) cellular sheaves
on top of them. A summary of the proposed continuous frame-
work on tangent bundles and its discretization on orthogonal
cellular sheaves is presented in Table II. Please notice that, when
Ts =1 and K =1 in (27), the standard Sheaf Neural Network
from [41] (up to an additional channel mixing matrix) with the
exponential of the sheaf Laplacian as shift operator is recovered.

V. CONSISTENCY OF TANGENT BUNDLE CONVOLUTIONS

The tangent bundle convolution in Definition 4 provides a
definition of a convolution that is compatible with convolutions
on manifold scalar fields, convolutions on graphs, and (stan-
dard) convolutions for signals in time.

The manifold convolution from [27] is recovered when the
bundle is a scalar bundle, i.e. when scalar functions f : M — R
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over the manifold are considered. In this case, the Connection
Laplacian A reduces to the usual Laplace-Beltrami operator
[49], here denoted with Ay : Lo(M) — L2(M), and the re-
sulting convolution, given a filter 4 : R* — R, is

9(z) = (> )(x) = / T R(t)e A f )t

This expression is both the manifold convolution from [27]
and a particular case of (7). The negative sign comes from
the convention to define the standard Laplacian as a positive
semidefinite operator whereas the Connection Laplacian is de-
fined to be negative semidefinite.

Given a set of n points X C RP sampled from the manifold,
we further recover a form of graph convolution [8], [45]. In
particular, if the manifold M is discretized as a geometric graph
M., whose nodes are the sampled points, the Laplace-Beltrami
operator A  is discretized as a graph Laplacian Ay , € R"*"
whose entries are the weights w; ; of equation (14). If we
further discretize f: M — R as a graph signal £, : M,, = R,
the resulting convolution is

(28)

~ ey ~
gn = (h *M,, fn) = / h(t)e_tAMm'fndt (29)
0

This is a particular case of (21) and can be interpreted as an
exponential form of a graph convolution. Further discretizing
the filter across the index ¢ as we do in Section I'V-C. yields the
graph convolution

K—1
gn = hi(em B )b, (30)
k=0
This is a FIR graph filter with e~ used as a shift operator.
The expression can be made more familiar if we approximate
the exponential by e =AM x~ T, — A .

The standard time convolution is recovered when the man-
ifold is the real line R, the functions f:R — R are scalar
functions, and the operator employed in the heat equation in
(4) is replaced by the derivative operator 0/0x. In particular,
due to the fact that the exponential of the derivative operator is
a time shift operator, we can write e *9/9% f() = f(x — t). In
this case, the resulting convolution is

ole) = (i 1)) = | T Re 007
-/ TR f (e — e,

This is the (standard) time convolution and also a particular case
of (7). An additional amenable theoretical feature of our tangent
bundle convolution is its consistency with the framework of
Algebraic Signal Processing (ASP) [20], [46]. An ASP model
is made of four components: (i) A vector space V where the
signals of interest live. (ii) The space End(V) of endomor-
phisms of V containing the linear maps that can be applied
to the signals in V. (iii) An Algebra A that defines abstract
convolutional filters. (iv) A homomorphism p that maps filters
in A to endomorphisms that can be applied to signals. In our
case, the vector space V is made of tangent bundle signals,
and the algebra A is the algebra (£1(R.y),*r) of absolute
integrable functions in R4 with the standard convolution % as

3D
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the product. The homomorphism p maps the filter E(t) to the
tangent bundle filter p(h) whose action on a signal F is

p(h) o F(s) = / h(t)e' F(s) dt. (32)
0

This is clearly the definition we obtain in (7) by combining (5)

and (6). It is trivial to verify that p(h) is a homomorphism.
An alternative definition of tangent bundle convolution would

be obtained if we replace the algebra A with the algebra of poly-

nomials. Thus, filters would be polynomials h(t) = Zszo hytk

and the tangent bundle filters would be

K
p(h) o F(s)=> hiAFF(s). (33)
k=0

In this latter case, discretizing the manifold would give rise to
graph filters defined as polynomials of the graph Laplacian. In
this paper we prefer to work with (32) rather than (33) because
it leads to the connection with convolutions in continuous time
stated in (31). This connection can’t be made if we adopt (33)
as a definition of tangent bundle filter. It is important to remark
that if we adopt (33) as a definition a similar convergence
theorem holds. We just need to change the definition of the
filter’s frequency response to the polynomial ZkK:o hiA\F and
proceed to adapt assumptions and derivations.

VI. NUMERICAL RESULTS

In this section, we assess the performance of Tangent Bundle
Neural Networks on four tasks: denoising of a tangent vector
field on the torus (synthetic data), reconstruction from partial
observations of the Earth wind field (real data), forecasting of
the Earth wind field (real data), obtained via a recurrent version
of the proposed architecture, and binary manifold classification
(synthetic data). In this work, we are interested in showing the
advantage of including information about the tangent bundle
structure for processing tangent bundle signals. For this reason,
in the following experiments we always use the vanilla DD-
TNN architecture in (27) without any additional modules (e.g.
readout MLP layers), and we compare our architectures against
vanilla Manifold Neural Networks (MNNs) from [27], convo-
lutional architectures built in a similar way to ours but taking
into account only the manifold structure. MNNs are imple-
mented as GNNs with the exponential of the normalized cloud
Laplacian [27], [52]. Moreover, we also compare DD-TNNs
against Multi-Layer Perceptrons (MLPs) [47] in the denoising
and reconstruction tasks, against Recurrent Neural Networks
(RNNS5) [53] in the forecasting task, and against 3D-CNN in the
classification task. Therefore, from a discrete point of view, we
present a comparison between a specific (novel and principled)
Sheaf Neural Networks class (DD-TNNs, which introduce a
relational inductive bias [54] given by the tangent bundle/sheaf
structure), a specific Graph Neural Networks class (MNNs,
which introduce a relational inductive bias given by the man-
ifold/graph structure), and Multi-Layer Perceptrons/Recurrent
Neural Networks (MLPs/RNNs, which introduce no relational
inductive biases). It is clear that the employed classes of archi-
tectures could be enriched with many additional components
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TABLE III
MSE ON THE TORUS DENOISING TASK
T=1072 T=10"1 7=3-10"T

DD-TNN [ 2.02-10 % +1.88-10° | 1.78 10 2 +£1.96-10° [ 1.35-10 1 £1.42-10~ 7

E{n} = 100 MNN 7.33-10744+4.61-107% | 245-10724+4.26-107% | 2.19-107' £3.56 - 1072
MLP 2.34-1074+288-10° 1.83-1072 +2.48-1073 1.52-10~! +£2.15- 102

DD-TNN [ 2.06 -10-%+1.46-10° | 1.82-10 2+ 1.18-10~° | 1.36-10" 1 £1.05- 102

E{n} = 200 MNN 7781074 £5.76-1074 | 2.50-1072£3.90-1073 | 2.11-10"! £3.30-1072
MLP 2.28-10"4+3.52-10°° 1.88-1072 +2.88-1073 1.55-107! +2.06 - 10~2

DD-TNN [ 2.05-10-%+1.07-10"° | 1.80-10-2+£1.01-10° | 1.31-10" 1 £7.91-10°%

E{n} = 300 MNN 6.64-107% +£4.13-10~4 2.43-107244.01-107% | 2.05-10"! £3.06-10~2
MLP 2.36-10"44+2.87-107° 1.85-10724£2.25-1073 1.51-10"1 +£1.87-1072

DD-TNN | 2.00-10 ¥ +960-10° | 1.80-10 2+899-10 % | 1.35-10 ' £8.03-10 °

E{n} =400 MNN 6.84-107% +£6.28-10* | 3.45.10724+£5.88-1072 | 2.55-10"1 £9.50- 1072
MLP 2.26-10"44+3.27-107° 1.86-1072 £2.28-1073 1.58 1071 £1.90-10~2

(biases, layer normalization, dropout, gating, just to name a
few), and it is also clear that a huge number of other architec-
tures could be tailored to the proposed tasks, but testing them
is beyond the scope of this paper.!

A. Torus Denoising

We design a denoising task on a 2-dimensional torus (M =
T2) and its tangent bundle. It is well known that the 2-torus,
the 2-sphere, the real projective plane, together with their con-
nected sums completely classify closed 2-dimensional mani-
folds, thus it is a good manifold to test our architecture. A
parameterization of the 2-dimensional torus is obtained by re-
volving a circle in three-dimensional space about an axis that
is coplanar with the circle: [z, y, z] = [(b+ acosf) cos ¢, (b +
a cos B) sin ¢, r sin 0], where ¢, 6 € [0, 27), a is the radius of the
tube, and b is the distance from the center of the tube to the cen-
ter of the torus; b/a is called the aspect ratio. In this experiment,
we work on a ring torus, thus a torus with aspect ratio greater
than one (in particular, we choose b = 0.3, a = 0.1). We uni-
formly sample the torus on n points X = {1, ..., 2,}, and we
compute the corresponding cellular sheaf 7 M,,, Sheaf Lapla-
cian A,, and signal sampler QT,X as explained in Section IV-B,
with epca = 0.8 and ¢, = 0.5. We consider the tangent vector
field over the torus given by dtF(z,y, z) = (—sin6, cos 6, 0) €
R3. At this point, we add AWGN with variance 72 to diF ob-
taining a noisy field diF, then we use Qf to sample it, obtaining
f, € R?>". We test the performance of the TNN architecture
by evaluating its ability to denoising f,,. We exploit a 3 layers
architecture with 8 and 4 hidden features, and 1 output feature
(the denoised signal), using K = 2 in each layer, with Tanh()
non-linearities in the hidden layers and a linear activation on
the output layer; the architecture hyperparameters have been
chosen with hyperparameters sweeps. We train the architecture
to minimize the square error ||f, — £2[|* between the noisy
signal f,, and the output of the network f? via the ADAM
optimizer [55] and a patience of 5 epochs, with hyperparameters
set to obtain the best results. We compare our architecture with
a 3 layers MNN (implemented via a GNN as explained in [27])
with same hyperparameters; to make the comparison fair, dcF
evaluated on X is given as input to the MNN, organized in a
matrix F,, € R"*3. We train the MNN to minimize the square
error |F,, — F¢||%, where |||| is the Frobenius Norm and F¢

'Our implementation of TNNs & datasets available at https://github.com/
clabat9/Tangent- Bundle-Neural-Networks

is the network output. It is trivial to see that the “two” MSEs
used for TNN and MNN are completely equivalent due to the
orthogonality of the projection matrices O;. In Table III, we
evaluate TNNs and MNNs for four different expected sam-
ple sizes (E{n} = 100, E{n} = 200, E{n} = 300, and E{n} =
400), for three different noise standard deviation (7 = 1072,
7=-10"" and 7 = 3-107"), showing the MSEs 1||f, — 2|2
and 1||F,, — F|%, where £, is the sampling via Q:F of the
clean field and F,, is the matrix collecting the clean field eval-
uated on X. 8 sampling realizations and 8 mask realizations
per each of them are tested; to make the results consistent,
divergent or badly trained runs are discarded if present, and then
the results are averaged (on average about 2 runs are discarded
per each sampling realization). As the reader can notice from
Table I, TNNs always perform better than MNNs and MLPs,
due to their “bundle-awareness”, i.e. the sheaf structure.

B. Wind Field Reconstruction

We design a reconstruction task on real-world data. We use
daily average measurements (the tangent bundle signal) of Earth
surface wind field collected by NCEP/NCAR?; in particular,
we use the data corresponding to the wind field of the 1st
of January 2016, consisting of regularly spaced observations
covering the whole Earth surface. The observations are local-
ized in terms of latitude and longitude, thus we convert them
in 3-dimensional coordinates by using the canonical spherical
approximation for the Earth with nominal radius R = 6356.8.
The wind field is a 2-dimensional tangent vector field made
of a zonal component, following the local parallel of latitude,
and a meridional component, following the local meridian of
longitude. A visualization of the wind field is shown in Fig. 6
(figures taken from the official data repository). We preprocess
the data by scaling the observations to be in the range [—1, 1].
We first randomly sample n points to obtain the sampling
set X, the cellular sheaf 7 M,,, and the Sheaf Laplacian A,
again with epca = 0.8 and €, =0.5; at this point, we mask
n < n of these points, we collect them in a set X ¢ cXx,and
we aim to infer their corresponding measurements exploiting
the rgmaining available n — n measurements, collected in the
set X C X. This reconstruction problem can be equivalently
seen as a semi-supervised regression problem. To tackle it, we
first organize the data corresponding to the point in X in a

Zhttps://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
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Visualization of Earth wind field on 1st of January 2016 (a) zonal component. (b) meridional component.

TABLE IV
MSE ON THE WIND FIELD RECONSTRUCTION TASK
E{n} =0.5n E{n} =0.3n E{n} =0.1n

DD-TNN [ 1.93-10 2+364-10 ° | 1.15-10 2+275-10 2 | 3.31-10 3 £1.62-10 °

E{n} = 100 MNN 4.20-10724+3.05-1072 | 3.12-10724+1.86-10"2 | 2.82-1072+£2.32-1072
MLP 2.00-1072 4+ 3.99- 1073 1.21-10724£2.50-1073 | 3.61-107%£1.70-103

DD-TNN | 1.99-10 2+230-10 ° | 1.18-10 2+1.62-10 ° | 3.67-10 3 +1.23-10 °

E{n} = 200 MNN 3.19-10724+1.31-1072 | 2.74-1072+£1.55-10"2 | 2.58-1072+£1.82-102
MLP 2.03-1072 42281073 1.20-10724£1.68-1073 | 3.69-107% £1.17-103

DD-TNN | 1.88-10 2+£1.72-10 ° | 1.13-10 2+£1.54-10 ° | 3.96-10 3 £1.00-10 2

E{n} = 300 MNN 2.68-107247.64-1073 | 241-10724£1.05-10"2 | 2.09-1072+1.76 102
MLP 1.95-1072 4+ 1.74 - 1073 1.18-1072 £ 1.56 - 1073 | 4.00-10~% +£8.85-10"*

DD-TNN | 1.95-10 2£1.66-10 ° | 1.14-10 2+£1.38-10 ° | 3.70-10 3 £8.55-10 *

E{n} =400 MNN 2.48-107246.55-1073 | 2.52-1072+1.20-1072 | 8.16-1072+£1.87-10*
MLP 2.01-1072 4+ 1.66 - 10~3 1.19-10724+1.24-1073 | 3.81-10734+8.46-10~*

matrix F,, € R"*2, where the first column collects the zonal
components and the second column collects the meridional
components. At this point, we build the matrix F,, € R"*2,
that is a copy of F except for the rows of F corresponding
to the masked points in X'C, replaced with the mean of the
measurements of the available points in X'. We then vectorize
F,, to obtain f,, € R?", the input tangent bundle signal. We now
exploit the same DD-TNN architecture from Section VI-A, with
the same hyperparameters, to perform the reconstruction task
by training it to minimize the reconstruction square error

> IE() — £2 ()1

ieX

(34)

between the available measurements f, (i) and the output of
the network corresponding to them £9(i), i € X'. Again, we
compare our architecture with the same MNN from Section
VI-A, to which we give as input the matrix F and we train it to
minimize Z‘e)? |F.. (i) — F2(i)|%, where F? is the network
output and F,, (¢) indicates the i—th row of F n(2); being £, the
vectorization of Fn, also in this case it is trivial to check
the equivalence of the two MSEs. As evaluation metric, we use
the reconstruction MSE on the measurements corresponding
to the masked nodes £ Y. s [|f.(i) — £2(i)[|%. In Table IV
we evaluate TNNs and MNN:Ss for four different expected sam-
ple sizes (E{n} = 100, E{n} = 200, E{n} = 300, and E{n} =
400), for three different masking probabilities (E{n} = 0.5n,

E{n} =0.3n, and E{n} = 0.1n) per each of them (the prob-
ability of a node to being masked). As the reader can notice,
TNNSs are always able to perform better than MNNs and MLPs,
keeping the performance stable with the number of samples and,
of course, improving with more observations available.

C. Wind Field Forecasting With Recurrent TNNs

We design a forecasting task on the same wind field data
from Section VI-B. In particular, we use daily observation
corresponding to the wind field from the 1st of January 2016
to 7 September 2016 to train the model and we use obser-
vations from the Ist of January 2017 to 7 September 2017
to test it. We, again, randomly sample n points to obtain the
sampling set X, the cellular sheaf 7 M,,, and the Sheaf Lapla-
cian A,,; at this point, we organize the data corresponding
to the sampled point in X in a sequence {F,, ;}, indexed by
time ¢ (daily interval), with each F,, ; € R™* 2. As in Section
VI-B, we vectorize {F,, ,}; to obtain {f,, ,}, the input tangent
bundle signals, with each f, ; € R2". We now introduce a hy-
perparameter Ty > 0 representing the length of the predictive
time window of the model, i.e., given in input a subsequence
{f,, t}t T+T7 starting at time T, of length T, the model out-

puts a sequence {f°
the next 7' element {f, ;}

t}t 1f of length 7'y aiming at estimating
t=T,+2Ts+1

=T+ Ty 41 of the input sequence.
—+s
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TABLE V
MSE ON THE WIND FIELD FORECASTING TASK
Ty =20 Ty =50 Ty =80

DD-TNN | 839-10 2 +1.62- 10~ 1.20-10 T £7.13-10~ 136-10 L £5.05-10 2

E{n} = 100 MNN 3.76 - 1071 £2.74- 1071 6.18-1071 £2.09 - 1071 9.63-1071 £ 1.55 1072
RNN 8.89-10724+3.06-10"2 | 8.69-10"2+3.19-1072 | 7.24-10"2 +£2.63-10"2

DD-TNN | 8.14-10 2+358-10 2 | 7.03-10 2+£140-10 2 | 1.61-10 ' £7.38-10 2

E{n} =200 MNN 3.49 1071 +£2.03- 1071 6.70 - 1071 +£2.30- 10~ 5.03-107' +£1.39 - 1071
RNN 9.78 - 1072 + 3.58 - 10~ 2 7.54-107244.92-1072 | 1.20-10"* +5.99 1072

DD-TNN | 6.43-10 2+1.13-10 2 | 7.03-10 2£3.16-10 2 | 2.49.10 '£1.74-10 T

E{n} = 300 MNN 6.69-1071+2.12-10"" | 6.09-10"1 +3.66-10"1 | 8.83-10"! £8.60 102
RNN 7.95-107243.43-1072 | 8.68-10724+4.06-10"2 | 1.34-10"1 +4.66-10~2

DD-TNN | 89310 2+278-10 2 | 847-10 2+£167-10 2 | 1.34-10 ' £4.35-10 2

E{n} = 400 MNN 4.06-1071+£247-10"" | 7.50-10"' £2.86-10" | 2.35.107! £9.49.1072
RNN 6.29-10724+266-1072 | 1.25-107'4+3.89-1072 | 5.19-10"24+3.38. 1072

To do so, we introduce a recurrent version of the proposed DD-
TNNs, which, to the best of our knowledge, is also the first
recurrent architecture working on cellular sheaves. The building
block of the proposed recurrent architecture is a layer made of
three components: a tangent bundle filter processing the current
sequence element f,, ;, a tangent bundle filter processing the
current hidden state z;_;, i.e., the output of the layer com-
puted on the previous sequence element, and a pointwise non-
linearity. Formally, the layer reads as:

K-1 L K—-1 i
ze=0| > he(e®) fup+ Y wi(e®) zon |, (35)
k=0 k=0

with ¢ =T, ..., Ty + T}, and zg = 0. To obtain the required
estimates, we can set {f,‘j’t}ile = {z:}'=]" . This architecture
can be used also in a Multi-Layer fashion: in this case, at layer
[ and at time ¢, the first filter takes z;_; ; (the current time
t hidden state of the previous layer [ — 1) as input, and the
second filter takes z; ;1 (the previous time ¢ — 1 hidden state of
the current layer /) as input. Therefore, the resulting L—Ilayers
architecture is:

K—1 . K—1 X
A A
Z| =0 Z hia(e") z—1,e + Zwk,l(e ")zt |,
k=0 k=0
(36)

with [ =1,...,L, t =T, ..., Ts + Ty, and zg s = £, . In this
case, to obtain the required estimates, we can set {f; , Zipf =

{z L7t}§z?f . For the wind field forecasting task, the training set
is made of all the possible m = 250 — 27y subsequences of
length 27°¢ of the 2016 data, we use a 3-layers Recurrent DD-
TNN with K = 2 and Tanh non-linearities, and we train it to
minimize the square error > ;" Z;;Tf [t S 2. To
have a fair comparison, we set up the corresponding recurrent
version of MNNs (RMNNS, a recurrent graph neural network)
with the same structure, same hyperparameters, same loss but
with inputs {F, ,;};. As evaluation metric, we compute the
MSE on the 2017 data after training. In Table V we evaluate
RTNNs and RMNNs for four different expected sample sizes
(E{n} =100, E{n} = 200, E{n} = 300, and E{n} = 400), and
for three different time window lengths (T'y =20, T} = 50,
and T’y = 80) per each of them. Also in this case, the bundle
“awareness” of (recurrent) TNNs allows to reach significantly
better results in all the tested scenarios w.r.t. (recurrent) MNNSs,
outperforming RNNs too in most of the cases except for the

An immersed Klein bottle.

Fig. 7.

long-term predictions cases (1'y = 80), probably due to the ab-
sence of gating or memory mechanisms, useful also to improve
training. Moreover, in all the experiments, TNNs have fewer
parameters than MNNSs, due to the different organization of the
data in the input layer.

D. Manifold Classification

We design an ill-conditioned binary manifold classification
task. The goal is to assess whether TNNs are able to learn
to distinguish between a torus and an immersed Klein bottle,
given uninformative features, i.e. a constant vector field. The
Klein bottle is a 2-dimensional non-orientable manifold (i.e.
with no “inside” or “outside”). The Klein bottle has to be prop-
erly embedded in R* since it must pass through itself without
the presence of a hole. However, it can be immersed in R3,
as depicted in Fig. 7. Working on the immersion makes the
classification task ill-conditioned, because an immersed Klein
Bottle is not even a proper manifold. The choice of giving as
input uninformative features is made in order to evaluate if the
network is able to solely leverage the geometric information
contained in the approximated Connection Laplacian (the Sheaf
Laplacian) to infer the manifold, resembling [56], [57]. We
opted to employ the immersed Klein bottle as one of the target
manifolds to heuristically evaluate how our method tackles ill-
conditioned tasks that do not match the theoretical justification
of our architecture. We create datasets of 2000 data points,
where each datapoint is computed with the following steps:
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TABLE VI
ACCURACY ON THE MANIFOLD
CLASSIFICATION TASK

1d() Tanh()
DD-TNN | 76.2% + 4.8 87.5% £ 0.9
MNN 56.3% + 5.3 97.7% £ 0.3
3D-CNN [ 86.3% +2.3 | 98.5% + 0.6

i) choose if sampling the torus or the Klein bottle tossing a
fair coin; ii) uniformly sample the manifold on E{n} =100
points and compute the corresponding cellular sheaf 7 M,,, and
Sheaf Laplacian A,, (both the manifolds are normalized to be
contained in a cube of unitary side length, such that the scale
is not a discriminating feature); iii) associate to each sampled
point the projection via the O; s of the constant vector field
given by diF(z,y,2) =(1,1,1) € R3. We exploit the same
DD-TNN architecture from Section VI-A, with the same hyper-
parameters, plus a final 2-layers MLP classifier with a ReLU()
non-linearity after the first layer and a Softmax() non-linearity
after the second layer. We train the architecture to minimize
the usual binary cross-entropy. We compare our architecture
with the same MNN from Section VI-A, where obviously the
Sheaf Laplacian is replaced by the graph Laplacian. Unlike the
experiments of the previous section, we found that in this case
the employed non-linearity impacts the classification accuracy;
in particular, we observed changes when the “non-linearity” is
the identity function Id() (thus when a cascade of discretized
tangent bundle filters is used) or the Tanh(). For this reason
we evaluate TNNs and MNNs using both Id() and Tanh().
Moreover, we also report the results of a simple 3D-CNN. To
feed the data in the 3D-CNN, we follow the approach from
[58], i.e. we first convert each data point to the volumetric
representation as an occupancy grid with resolution 6 X 6 x 6.
The choice of the hyperparameters is made to keep the number
of learnable parameters similar to DD-TNN and MNN. The
results are averaged over 8 realizations of the datasets, and
per each of them the training dataset is obtained by sampling
80% of the datapoints, and the test set is obtained with the
remaining 20%. As the reader can notice in Table VI, the 3D-
CNN performs better than both MNN and DD-TNN. This is
something that we could expect: as described above, this task is
ill-conditioned for DD-TNN and MNN, and it is trivially easier
to solve for an architecture designed for point clouds, the 3D-
CNN w.r.t. architectures based on manifold diffusion operators.
However, the performance of DD-TNN is still competitive even
if the setting is disadvantaged. Moreover, TNNs significantly
perform better than MNNs when Id() is employed, i.e. tangent
bundle filters significantly perform better than manifold filters,
while MNNs perform better than TNNs when an actual non-
linearity, the Tanh(), is introduced.

VII. CONCLUSION

In this work, we introduced Tangent Bundle Filters and
Tangent Bundle Neural Networks (TNNs), novel continuous
architectures operating on tangent bundle signals, i.e. manifold

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

vector fields. We made TNNs implementable by discretiza-
tion in space and time domains, showing that their discrete
counterpart is a principled variant of Sheaf Neural Networks.
We proved that discretized TNNs asymptotically converge to
their continuous counterparts, and we assessed the performance
of TNNs on both synthetic and real data. This work gives a
multifaceted contribution: on the methodological side, it is the
first work to introduce a signal processing framework for sig-
nals defined on tangent bundles of Riemann manifolds via the
Connection Laplacian; on the theoretical side, the presented dis-
cretization procedure and convergence result explicitly link the
manifold domain with cellular sheaves, formalizing intuitions
presented in works like [42]. In future work, we will investi-
gate more general classes of cellular sheaves that approximate
unions of manifolds (perhaps representing multiple classes) or,
more generally, stratified spaces [59], [60]. We believe our per-
spective on tangent bundle neural networks could shed further
light on challenging problems in graph neural networks such as
heterophily [32], over-squashing [61], or transferability [28].
Finally, we plan to tackle more sophisticated tasks with our
proposed architectures.

APPENDIX

A. Proof of Theorem 1

Proof: We define an inner product for sheaf signals f and
u on a general cellular sheaf 7 M,, as

Zf

and the induced norm ||f[|5-,, = (f,f)7 . Assuming that
the points in X" are sampled i.i.d. from the uniform probability
measure £ given by the metric on M and that 7 M,, is built
as in Section V, the inner product in (37) is equivalent to the
following inner product for tangent bundle signals F' and U:

(B, Uraa, = /M<F<x>,U<x>>mdun<x>
- Z

and the 1nduced norm ||F||%,, = (F,F)7,. where p, =
L ZZ 1 0z, is the empirical measure corresponding to . In-
deed from (1) and due to the orthogonality of the transforma-
tions O; in Section V, (38) can be rewritten as

(f,u)7 M, sy, (x), (37)

Ti)) T, M (38)

1 n
(F,U)rm, = - Z dF (z;) « AU ()

i=1

1 n
= — Z OZ'TdLF(S(}Z‘) . OleLU<.’17l>
n

i=1
n

where f,, = Qn F and u, = Qn U, respectively. We denote
with I'(7M,,) the space of tangent bundle signals w.r.t. the

*u, xz) = <fn7 un>TMn (39)
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empirical measure /., (or, equivalently, the space of sheaf sig-
nals w.r.t the norm induced by (37)). In the following, we will
denote the norm || - ||7- a4, With || - || when there is no risk of
confusion. In [44], the spectral convergence of the constructed
Sheaf Laplacian in (18) to the Connection Laplacian of the
underlying manifold has been proved, and we exploit that result
for proving the following proposition.

Proposition 3 (Consequence of Theorem 6.3 [44]): Let
X ={x1,...,2,} C RP beasetof nii.d. sampled points from
measure 4 over M C RP. Let T M,, be a cellular sheaf built
from X as explained in Section V, with d=d and 0 < €n <
min{x~!,¢}. Let A, be the Sheaf Laplacian of 7. M,, and A
be the Connection Laplacian operator of M. Let A" be the i-th
eigenvalue of A,, and ¢," the corresponding eigenvector. Let
A; be the i-th eigenvalue of A and ¢, the corresponding eigen-
vector field of A, respectively. Then there exists a sequence of
scales €, — 0 as n — oo such that:

lim A =2X;, lim [|¢," —
n— oo

QY pllrm, =0,  (40)
n—oo

where the limits are taken in probability.

Proof: This proposition is a consequence of Theorem 6.3
in [25]. Indeed, we rely on the operator introduced in Defi-
nition 6.1 of [44] with a=1 (h,, is our ¢,), here denoted as
Z:I(TM) — I'(TM), and on the operator = = ¢, ! (£ — id),
where id is the identity mapping. It is straightforward to check:

EF(z;) = d 'O, (A, F)(2;), 41)

for j=1,...,n. We now show that the eigenvectors sampled
on X and eigenvalues of = correspond to the eigenvectors and
eigenvalues of A,,. Let us denote the the i-th eigenvector and
eigenvalue of = with ¢ and )\ , respectively. We have:

Eo; () = —Al'd; ( 0, (A, 0%, ) ()

If we apply the mapping ¢ to the last two equalities of (42) and
we exploit the orthoghonality of O, we obtain:

(2,9F0, ) (z;) =

where the second equality applies the definition of Qf in (19).
Therefore, we have:

A=A () = Dy (),

7 =1,...,n. At this point, we can recall Theorem 6.3 in [44],
that, in the setting of our Theorem 1, states that there exists a
sequence of scales ¢, — 0 as n — oo such that:

. ~n
lim [|¢; — &;ll7m =0,
n—r 00

xj)=di” (42)

N0, dug; = -\, (x;) (43)

(44)

lim /\ =\,

n—o0

(45)

with the limit taken in probability, 7 =1, ..., n. Injecting the
empirical measure in (45) and exploiting the results in (39) and
(44), we obtain:

~n
i — il = 0." — Qi Dyl 7,

The results in (45) and (46) and the a.s. convergence of the
empirical measure i, to the measure p conclude the proof.

(46)
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For the sake of clarity, in the following we will drop the
dependence on the NNs output index u; from the definitions
of TNNSs in (12) and D-TNNS in (22), we can thus write:

1% (3, A, QFF) - QX0 (3, 0,F) | = |

X
Xn,L — Qn FLH .

Further explicating the layers definitions, at layer [ we have:

xn,l — foFl H

Fi_y

Z h?(An)fol,l
q=1

Fi_y

> hi(
q=1

-

with X?%O = Qf F9 for ¢q=1,..., Fy. Exploiting the normal-
ized point-wise Lipschitz continuity of the non-linearities (A3)
and the linearity of the sampling operator Q;f, we have:

Fz,1 Fl—l
Ins —QEFill <[] D BI(An)xh, -7 > h(AF],
q=1 q=1
Fi_1

B (A,)xS,_, — YR (A)FE |

<>
qg=1
(48)

The difference term in the last LHS of (48) can be further
decomposed for every ¢ =1,..., Fj_1 as

I (An)xs ;= QB (A)FL|
< |[hi(An)x), , — hi(A,)QF]
+h{(A,)QFL — Q7RI (A)F |
< |[Bf(an)xd -y~ B (AL |

mn,

+ iAo FL —ernaFL | @)
The first term of the last inequality in (49) can be bounded
as [[x?, , — QYF{ || with the initial condition %% 0 —
foFgH =0forg=1,..., Fy. Denoting the second term with
D' ., and iterating the bounds derived above through layers

and features, we obtain:
L L
| ¥ (H, A, U F) — QXU (H, A F)| gZH FyD}.

Therefore, we can focus on each difference term D;* and omit
the feature and layer indices to simplify the notations. We can
write the convolution operation in the spectral domain as

(AL F — Q@ h(A)F|

= > AN F, )70, B}

1=1

Yo

i=1

)T M (50)
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By adding and subtracting 37, h(\) (X F, ") aq, d7, by
coupling the terms with the same index and using the triangle
inequality, we can then write

S A QNFE ) T, b7 =D h(N)(F ) rm i

i=1 i=1

<132 (0w = h()) (. 87) 7, 07

[T1]

2RO (0 67 7, 07— (F, ) 7ae2) 1) | (T2
=1

[ DT ROW)(F.¢,) T ¢, || (T3] (51)
p=n+1

We now proceed to prove that [T'1] converges to zero in proba-
bility as n increases. Fixed a M|r; € N, we can always rewrite
[T1] as

min{n, M1}

=] 3 (A - hO)) (QVE. )7, O
+ Y (AN =) (QFF 677, 0
i=Mp1+1

(52)

Please notice that, when n < M[Tl], the last sum is an empty
sum. By using the triangle inequality, the orthonormality of
the ¢!, the Cauchy-Schwartz inequality [(Q F, ¢7)1us, | <
|2 F||, and the finiteness of ||Q:;*F||, we can further bound
the RHS of (52), obtaining

min{n,]\x[[Tl] }

TU<Cry D>, [BOT) = h(N))
1=1
+Cry Y. RO =)L (53)
i=Mp1)+1

for some constant Crq) > 0. At this point, by using the fact that
|a — b] <|b| and the Lipschitz continuity of i(-) (A1), we can
further bound the RHS of (53) as

min{nJW[Tl]} 00
TU<Cry Y, I =Xl+Cry > [N
i=1 i=Mp1)+1
[T1.1] [T1.2]
(54)

It is clear that we can make [7'1.2] in (54) arbitrarily small by
increasing M|71; since it is the reminder of a convergent series
with positive summands (A2). Therefore, for all y71; > 0, we
can always choose an Mpq) such that [7'1.2] is smaller than
Yr1]/2C. Fixed Mpqy, we can further bound [7'1.1] using
the spectral convergence result in (40). In particular, using the
definition of limit in probability, letting 0 < ~; < 771]/2CM,
for all §; > 0, there exist IN; such that for all n > NN;, it holds

PN = Xl <7i) >1 =6, (55)
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Therefore, for all y(71; > 0 and for all n > max; N, it holds

min{n,JW[T”}

D

i=1

[T1.1] < Cpry ¥ <Yr1y/2 (56)

with probability at least H;:T{TL’M[T”}(I —6;):==1—0pp1y.

This allows us to state that for all ;1) > 0, for all J;7q) > 0,
there exist an N{ry such that, for all n > N7y}, we have

P([T1] <) = 1 = iy, (57)

ie. [T'1] converges in probability to zero. We now
proceed to show that [T2] in (51) converges to zero in
probability as n increases. By adding and subtracting
Sy RO (QEF, 0™ 7 a0, QY ;. and by using the triangle
inequality, we can write

D RO F, 87 )7 a0, b7 — (F, i) a2 )
i=1

<|| o (@F 6yt
—(Q)F, ¢ )7m, 2 9, )|[T2:1]

+ iﬁui)(mﬁ,#mnﬂf@
— (F.0)Tml ) |[T22)  (59)

We can use now the same approach of [T'1]. In particular, fixed
a Mpq.1) € N, we can always rewrite [1'2.1] and then bound it
using the triangle inequality as

min{n,Mps.1)}

> ) ((VF ), O

i=1

[72.1] =

— (Q)F, ¢7) a0, 2 ;)

n

Y

i=Mpg.1)+1

) (R, 67 7, 7

—(QVF, )T, 2 )

‘ (59)

min{n,Mrs.1)}

D

i=1

<

) (0, 67 7, 07

— () F, 7)) ;)

n

> ) (QFF ), @)

i=M[r2.1)+1

+

—(QVF )T, 2 )

We can now further bound the RHS of (59) by using
the

triangle inequality, the Cauchy-Schwarz inequality
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HQYF, ¢! a0, | <||QYF|, the non-amplifying frequency
response (A1, for the first term), the finiteness of || Q" F||, and
the finiteness of ||@!" — Q¥ ¢,|| (for the second term) as

min{n,Mps.1)}

D

i=1

[12.1] < Cipa.q (AR AL

[T2.1.1]

>

i:AI[T2.1] +1

+ Clra Ih(N), (60)

[T2.1.2]

for some constant Cpz 1) > 0. Leveraging the same arguments
we used for [T'1.1] and [T'1.2] in (54) to bound [1'2.1.1] and
[T'2.1.2] in (60), respectively, but using the convergence of the
eigenvectors and not of the eigenvalues from (40), we can state
that for all (7.1 > 0, for all d[3.1) > 0, there exist an N2 1)
such that, for all n > N7 1), we have

P([T2.1] <vr2.1) =1 = 21y, (61)

i.e. [T'2.1] converges in probability to zero. Following the same
procedure we used to obtain the bound in (59) for [T2.1], we
can obtain the following bound for [72.2]:

min{n,M[p2.2) }

D

i=1

2.9 <

O (R, 67 7, 2 0,

n

S WO ((@FF 67 7m0,

i=M[r2.2)+1

— (F, ¢i>TMQf¢i)

+

~ (F,0)7m )

‘ (62)

We further bound the RHS of (62) by using the triangle and
Cauchy-Schwarz inequalities, the non-amplifying frequency re-
sponse (for the first term), the finiteness of || ;' F|| and ||F||,
and the finiteness of ||} — Q¥ ¢,|| (for the second term), as

min{n, M1z 2}

122 < Ciraay >, U E &) 7m, — (F ¢) 7l
=1
[T2.2.1]
+Crag Y. RN, (63)
i=Mr2.2)+1
[T2.2.2]

for some constant C73 o) > 0. It is trivial, from the weak law
of large numbers and from (38)-(39), that

lim [(QYF, QY b)) a1, — (F.:)7m| =0,

n—oo

(64)
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with the limit taken in probability. By direct substitution and
using the distributive law of the dot product, we can write

(QXF. QY b ra, — (OFF, 8 ras,
1< ‘

=3 (NP (@) - QY i) — QYF (@) - 6 ()

n
i=1

< | F[[I27 ¢, — o7
(65)

= () F. QY6 — ¢1)7m,

where the last inequality is obtained using the Cauchy-Schwartz
inequality. Therefore, using again the spectral convergence of
eigenvectors from (40), we can write

lim [(QXF, QX)) 7, — (U F, )70,

n—oo

=0, (66)

where the limit is taken in probability. As a direct consequence
of the (64) and (66), we can directly state that

lim |(2,F, ¢})7m,

n—oo

~(F.$)7m|=0, (6D
again with the limit in probability. At this point, leveraging the
same arguments we used for [T'1.1] and [T'1.2] in (54) (and for
[72.1.1] and [T'2.1.2] in (60)) to bound [12.2.1] and [12.2.2]
in (63), respectively, but using the convergence of the inner
products in (67), we can state that for all yp2.9; > 0, for all
d[r2.2) > 0, there exist an N7 9] such that, for all n > N7 o

P([T2.2] < y72.9) 2 1= bi72.9 (68)

i.e. [T'2.2] converges in probability to zero. As a consequence,
we can state that for all ypg) > 0, for all o9 > 0, there exist
an N{rg such that, for all n > Njpg), we have

P([T2] <v72)) =1 = 072, (69)

i.e. [T'2] converges in probability to zero. We are now missing
only the convergence in probability of [T'3] from (51). However,
[T'3] is again the reminder of a convergent series with positive
summands (A2), implying that it deterministically goes to zero
as n increases. Therefore, for all VT3] > 0, there exist an [V, (T3]
such that, for all n > N, (T3], We have

(T3] < 7y (70)

As a direct consequence of (57)-(69)-(70), we can state that
for all v > 0, for all § > 0, there exist a N such that, for all
n > N, we have

P(T1] + [T2] + [T3] <) 21—, (71)
Combining (71) with (51), we can finally state that
lim D = lim [|h(A,)QF — QY h(A)F| =0, (72)
n— o0 n— 00

where the limit is taken in probability. The proof is concluded
by combining (72) and (50).
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