2022 IEEE 61st Conference on Decision and Control (CDC) | 978-1-6654-6761-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/CDC51059.2022.9993136

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancun, Mexico

Chordal Sparsity for Lipschitz Constant Estimation
of Deep Neural Networks

Anton Xue, Lars Lindemann, Alexander Robey, Hamed Hassani, George J. Pappas, and Rajeev Alur |

Abstract— Computing Lipschitz constants of neural networks
allows for robustness guarantees in image classification, safety
in controller design, and generalization beyond the training
data. As calculating Lipschitz constants of neural networks is
NP-hard, techniques for estimating Lipschitz constants must
navigate the trade-off between scalability and accuracy. In
this work, we significantly push the scalability frontier of a
semidefinite programming technique known as LipSDP while
achieving zero accuracy loss. We first show that LipSDP has
chordal sparsity, which allows us to derive a chordally sparse
formulation that we call Chordal-LipSDP. The key benefit is
that the main computational bottleneck of LipSDP, a large
linear matrix inequality, can be decomposed into an equivalent
collection of smaller ones — allowing Chordal-LipSDP to
outperform LipSDP particularly as the network depth grows.
Moreover, our formulation uses a tunable sparsity parameter
that enables one to gain tighter estimates without incurring a
significant computational cost. We illustrate the scalability of
our approach through extensive numerical experiments.

I. INTRODUCTION

Neural networks are arguably the most common choice
of function approximators used in machine learning and
artificial intelligence. Their success is well documented in
the literature and showcased in various applications, e.g.,
in solving the game Go [1] and in handwritten character
recognition [2]. However, many neural networks are known
to be non-robust, i.e., their outputs may be sensitive to
small changes in the inputs and result in large deviations
in the outputs [3]. It is hence often unclear exactly what a
neural network learns and how it can generalize to previously
unseen data. This is a particular concern in safety critical
applications like perception in autonomous driving, where
one would like to be robust and even obtain a robustness
certificate. A way to measure the robustness of a neural
network f : R™ — R™ is to calculate its Lipschitz constant
L that satisfies

1f(x) = FW)Il < Lllx —yl|  for all z,y € R™.
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The exact calculation of L is NP-hard and hence poses
computational challenges [4], [5]. Therefore, past effort has
been on estimating upper bounds on the Lipschitz constant
L in computationally efficient ways. A key difficulty here
is to appropriately model the nonlinear activation functions
within a neural network. For feedforward neural networks,
the authors in [6] abstract activation functions using in-
cremental quadratic constraints [7]. These are then formed
into a convex semidefinite program (SDP), referred to as
LipSDP, whose solution yields tight upper bounds on L. As
the size of the neural network grows, however, the general
formulation of LipSDP becomes computationally intractable.
One may partially alleviate this issue by selectively reducing
the number of optimization variables, which will induce
sparsity into LipSDP at the cost of a looser bound. Still,
this does not address the core computational bottleneck of
LipSDP, which is that the solver must process a large linear
matrix inequality (LMI) whose dimension scales with the
number of neurons.

In this paper we study computationally efficient formu-
lations of LipSDP. In particular, we introduce a variant of
LipSDP that exhibits chordal sparsity [8], [9], which allows
us to decompose a large LMI into an equivalent collection
of smaller ones. Moreover, our formulation has a tunable
sparsity parameter, enabling one to trade-off between ef-
ficiency and accuracy. We call our decomposed program
Chordal-LipSDP, and study its theoretical properties and
computational performance in this paper. The contributions
of our work are as follows:

o We introduce a variant of LipSDP formulated in terms
of a sparsity parameter 7 and precisely characterize its
chordal sparsity pattern. This allows us to decompose
LipSDP, which is a large LMI, into a collection of
smaller ones, yielding an equivalent problem that we
call Chordal-LipSDP.

o« We present numerical evaluations and observe that
Chordal-LipSDP is significantly faster than LipSDP,
especially for deeper networks, without accuracy loss
relative to LipSDP. Furthermore, adjusting 7 allows
Chordal-LipSDP to obtain rapidly tightening bounds on
L without incurring a high performance penalty.

« We make an open-source implementation available at
github.com/AntonXue/chordal-1lipsdp.

A. Related Work

There has been a great interest in the machine learning
and control communities towards efficiently and accurately
estimating Lipschitz constants of neural networks. Indeed,
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it has been shown that there is a close connection between
the Lipschitz constant of a neural network and its ability
to generalize [10]. The authors in [11] were among the
first to normalize weights of a neural network based on the
Lipschitz constant. In control, Lipschitz constants of neural
network-based control laws can be used to obtain stability
or safety guarantees [12], [13]. Training neural networks
with a desired Lipschitz constant is, however, difficult. In
practice, one has to either solve constrained optimization
problems, e.g., [14], or iteratively bootstrap training pa-
rameters. As a consequence, one is interested in obtaining
Lipschitz certificates of neural networks. In [4], [5], it was
shown that exact calculation of the Lipschitz constant is NP-
hard. As estimating Lipschitz constants is computationally
challenging, we are hereby motivated to efficiently estimate
Lipschitz constants of neural networks.

Broadly, there are two common ways for estimating Lip-
schitz constants of deep neural networks, either sampling-
based as in [15] and [16], or using optimization tech-
niques [6], [17]. A naive approach is to calculate the product
of the norm of the weights of each individual layer. The au-
thors in [4] follow a similar idea, and obtain tighter Lipschitz
constants using singular value decomposition and maximiza-
tion over the unit cube. This, however, still becomes quickly
computationally intractable for large neural networks. Tighter
bounds have been obtained in [18] capturing cross-layer
dependencies using compositions of nonexpansive averaged
operators. However, again this approach does not scale well
with the number of layers. While these works estimate global
Lipschitz constants, it was shown in [19] that estimating local
Lipschitz constants can be done more efficiently.

In this paper, we build on the LipSDP framework pre-
sented in [6], which amounts to solving a SDP. LipSDP
abstracts activation functions into quadratic constraints and
allows to encode rich layer-to-layer relations allowing to
trade-off accuracy and efficiency. While LipSDP considers
the l-norm, general [,-norms on the input output relation of
a neural network can be conservatively obtained using the
equivalence of norms. The authors in [17] present LiPopt,
which is a polynomial optimization framework that allows
to calculate tight estimates of Lipschitz constants for [, and
lso-norms. However, for l5-norms LipSDP empirically shows
to have tighter bounds. Exact computation of the Lipschitz
constant under /; and [, norms was presented in [5] by
solving a mixed integer linear program. Lipschitz continuity
of a neural network with respect to its training parameters
has been analyzed in [20].

We show that a particular formulation of LipSDP satisfies
chordal sparsity [8], [9], from which we apply chordal
decomposition to obtain Chordal-LipSDP. The key benefit of
exploiting chordal sparsity is that a large LMI is decomposed
into an equivalent collection of smaller ones, in particular
allowing us to scale to deeper networks. This equivalence
also means that LipSDP and Chordal-LipSDP will compute
identical estimates of the Lipschitz constant.

Most similar to our work are [21], [22]. The authors
of [21] induce chordal sparsity in a special case of the

DeepSDP [23] framework — which is similar to LipSDP —
but only consider the case of ReLU activations and do not
allow for efficiency-accuracy trade-offs. The authors of [22]
uses sum-of-squares optimization [24] to study feedforward
networks with ReLU activations, and observe, but do not
formalize nor exploit, similar sparsity patterns as we do. A
survey of scalability methods for SDPs is given in [25].

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we state the problem formulation and
provide background on LipSDP and chordal sparsity.

A. Lipschitz Constant Estimation of Neural Networks

We consider feedforward neural networks f : R™ — R™
with K > 2 layers, i.e., K — 1 hidden layers and one linear
output layer. From now on, let ;1 € R™ denote the input
of the neural network. The output of the neural network is
recursively computed for layers k =1,..., K — 1 as

f(x1) = Wgek + bk, @pq1 = o(Wrap +b), (1)

where W and by are the weight matrices and bias vec-
tors of the kth layer, respectively, that are assumed to
be of appropriate size. We denote the dimensions of
Z9,...,Zxg by no,...,ng € N. The function ¢(u) =
veat(o(ur), p(ug) .. .) is the stack vector of activation func-
tions ¢, e.g., ReLU or tanh activation functions, that are
applied element-wise. We assume throughout the paper that
the same type of activation function is used across all layers.

B. LipSDP

We now present LipSDP [6] in a way that enables us later
to conveniently characterize the chordal sparsity pattern of
LipSDP. First, let x := vcat(x1,...,zx) € RY be a stack

of the state vectors with NV := Zszl ny. By defining
Wi o - 0 0

A= : R Do
0 oo W1 O 0 O

0 In, - 0

Iy

and b == vcat(by, ba, ..., bx_1) we can rewrite the dynam-

ics of (1) as Bx = ¢(Ax + b), where ¢ : RV — RVs is
a Ny-height stack of ¢ with Ny :=no + --- + ng. To deal
with the nonlinear activation function ¢ in an efficient way,
the key idea in LipSDP is to abstract ¢ using incremental
quadratic constraints [7]. In particular, LipSDP considers a
family of symmetric indefinite matrices Q such that any
matrix () € Q satisfies

Lﬁ(”i; - ;@)} ¢ Lb(ul)t - Z(v)} =0 @)

for all u,v € RYs. In the case where each element ¢ of ¢
is [s, 8]-sector-bounded, i.e., where its subgradients satisfy
Op C [s,], then one possible parameterization of Q is

o ([ 25 #12]] e)
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where 7' is a dense matrix that is parametrized by ~y,,. In this
paper, we fix an integer 7 > 0 and define T as follows !

D (aigles —e)ei—e)T,
(i,5) €L~
L={(,j))=1<i<j<Ny j—i<rt}.

Ny
T= Z('Ya)iieie;r +
i=1

By tuning the value of 7, we obtain different formulations
of Q that all provide over-approximations of ¢ as in (2)
while allowing us to trade-off on the spectrum of sparsity
and accuracy. In the sparsest case, i.e., 7 = 0, the matrix T’
is a nonnegative diagonal matrix and vy, € Rff , while in the
densest case, i.e., 7 = Ny — 1, the matrix T is fully dense
and parameterized by v, € R1L+"'+Nf'.

To formulate our variant of LipSDP, we define the linearly-
parametrized matrix-valued functions

Za(ra) = AT —-2s5T  (s+3)T| |A
e =1l |(s+5T —27 ||B|’
Z(ve) = Ex (W Wgk)Ex — vE{ By,
Ey = [ 0 In;c 0 ]ER”I‘XN7

where T is defined as above, 7, € R, and E} is the kth
block-index selector such that x;, = Fjx. Now combine the
above terms as

Z(’Y) = Za('ya) + ZZ('W) € SN7 3)
then LipSDP is the following semidefinite program:

minin&ize ¢ subject to Z(v) <0 “4)

=
If ~; is the optimal value of (4), then the Lipschitz constant
of f is upper-bounded by (v;)'/?, see [6]. That is,

£ () = f)ll < ()2 le =yl for all 2,y € R™.

C. Chordal Sparsity

Chordal sparsity establishes a connection between graph
theory and sparse matrix decomposition [26], [8]. In the
context of this paper, we aim to solve the potentially large-
scale SDP (4) using chordal sparsity in Z(~y). This is done by
decomposing the LMI Z(~) =< 0 into an equivalent collection
of smaller Z;, < 0 LMIs, which we show in Section III.

1) Chordal Graphs and Sparse Matrices: A graph
G(V,€&) consists of vertices V = {1,...,n} and edges
E CV x V. We assume that £ is symmetric, i.e. (i,5) € £
implies (j,i) € &, and so G(V, &) is an undirected graph.
We say that the vertices C C V form a clique if u,v € C
implies (u,v) € £, and let C(7) be the ith vertex of C under
the natural ordering. A maximal clique is a clique that is not
strictly contained within another clique. A cycle of length
[ is a sequence of vertices vy, ...,v; with (v, v1) € £ and
adjacent connections (v;,v;+1) € €. A chord is any edge
that connects two nonadjacent vertices in a cycle, and we

'We use matrix-like subscripts on v, even though it is a vector. I is a
T-banded index set, which makes 7" a 7-banded matrix. In general 7" may
be dense, but restricting its structure will induce chordal sparsity in LipSDP.

say that a graph is chordal if every cycle of length four has
at least one chord [8].

An edge set £ can dually describe the sparsity pattern of
a matrix. Given a graph G(V, £), define the set of symmetric
matrices of size n with sparsity pattern £ as

Sn(g) = {XGS”X”:XJZ:O if (Z,j)gg} 5

If in addition G(V, £) is chordal and X € S™(&), then we
say that X has chordal sparsity or is chordally sparse. For
X with sparsity £, we say that X;; is dense if (i,j) € &,
and that it is sparse otherwise.

2) Chordal Decomposition of Sparse Matrices: For a
chordally sparse X € S™(&), useful decompositions can
be analyzed through the cliques of G(V, ). Given a clique
C;, C V, define its block-index matrix as follows:

(Ec,)ij = 1if Ci(i) = j else 0, Fg, € RICIxm,

By decomposing a chordally sparse matrix with respect to
its maximal cliques, a key result in sparse matrix analysis
allows us to deduce the semidefiniteness of a large matrix
with respect to a collection of smaller matrices.

Lemma 1 (Theorem 2.10 [9]). Let G(V,E) be a chordal
graph and let {Cy,...,C,} be the set of its maximal cliques.
Then X € S™(E) and X = 0 if and only if there exists
Xy € SIC! such that each X, = 0 and

D
X =) E¢ XyEc,. (6)
k=1

We say that (6) is a chordal decomposition of X by
Ci,...,Cp, and such a decomposition allows us to solve a
large LMI using an equivalent collection of smaller ones.

III. CHORDAL DECOMPOSITION OF LIPSDP

In this section, we present Chordal-LipSDP which is a
chordally sparse formulation of LipSDP. We first identify
the sparsity pattern for Z(-y) in Theorem 1 and then present
Chordal-LipSDP in Theorem 2 as a chordal decomposition of
LipSDP. An equivalence result is then stated in Theorem 3.
The proofs of our results can be found in the appendix.

Our goal is to construct the edge set £ of a chordal graph
G(V, &) with vertices V = {1,..., N} such that Z(v) €
SN (&). To gain intuition for &, we plot the dense entries of
Z(+) in Figure 1 where the (7, j) square is dark if (Z(v));;
is dense, i.e., (i,7) € £.

Fig. 1. The sparsity of Z(~) for 7 = 0, 2, 4 with dimensions (3, 3, 3, 3, 3).
For each increment of 7, each block grows by one unit on the bottom and
right, and corresponds to a maximal clique of G(V, £). As T increases the
number of blocks (maximal cliques) will decrease as the lower-right blocks
become overshadowed. At 7 = 0 we have what [6] refers to as “LipSDP-
neuron”; at 7 = Ny — 1 we have the completely dense “LipSDP-network”.
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In order to compactly present our results, we first define
a notation for summation as follows:

k
S(k) = Zm, ng+1 =m, S(0):=0, S(K):=N.
=1

Our main results are then stated in the following theorems.

Theorem 1. Let Z(v) be defined as in (3). It holds that
Z () € SN(E), where £ = Uf:_ll Ex such that

E={@,5): Sk—-1)+1<4i,j<S(k+1)+7}.

Note that the set £ defined in Theorem 1 is already
illustrated in Fig. 1. Also, we implicitly assume that all
(,7) in the definition of &£ are within 1 < 4,5 < N. From
this construction of £ it is then straightforward to prove
chordality of G(V, ) and identify its maximal cliques.

Theorem 2. Let V = {1,...,N} and define & as in
Theorem 1. Then G(V,E) is chordal and the set of its
maximal cliques is {C1,...,Cp,}, where

p=min{k:Sk+1)+7> N}
and each clique Cy, for k < p has size and elements

\Ck|::nk+nk+1—|—7, Ck(l) = S(k—1)+l

for 1 <i <|Cg|. The final cliqgue C, has elements

Coi) =S(p—1)+i, 1<i<N-Sp-1).
Using Lemma 1, the maximal cliques {C1,...,Cp} from
Theorem 2 now give a chordal decomposition of Z(v), and
lets us formulate the following semidefinite program that we
call Chordal-LipSDP:
minimize Yy
V20,21, 2
P
subject to  Z(y) = ZEch ZyEe,, (7
k=1
Zi =20 for k=1,...,p,

We remark that solving Chordal-LipSDP is typically much
faster than solving LipSDP, especially for deep neural net-
works as we impose a set of smaller LMIs instead of one
large LMI. That is, the computational benefit of (7) over (4)
is that each Z;, < 0 constraint is a significantly smaller LMI
than Z(vy) < 0, which is the case for deeper networks.

In the next theorem, we show that LipSDP and Chordal-
LipSDP compute Lipschitz constants that are in fact identi-
cal, i.e., a chordal decomposition of LipSDP gives no loss
of accuracy over the original formulation.

Theorem 3. The SDPs (4) and (7) are equivalent: -y is
a solution for (4) iff v,Z1,...,Zy is a solution for (7).
Moreover, their optimal objective values are identical.

Note that Theorem 3 assumes the same 7' is used for both
LipSDP and Chordal-LipSDP, and that this 7" is 7-banded.

IV. EXPERIMENTS

In this section we evaluate the effectiveness of Chordal-
LipSDP. Our aim is to answer the following questions:

(Q1) How well does Chordal-LipSDP scale in compar-
ison to the baseline methods?

(Q2) How does the computed Lipschitz constant vary
as the sparsity parameter 7 increases?

(Dataset) We use a randomly generated batch of neural
networks with random weights from A/(0,1/2), with depth
K = d, widths ny = --- = ng = w, and input-output
ny =m =2 forw € {10,...,50}, and d € {5,10,...,50}.
As a naming convention, for instance, W30-D20 would be
the random network with w = 30 and d = 20. In total there
are 50 such random networks.

(Baseline Methods) We compare Chordal-LipSDP against
the following baselines:

e LipSDP: as in (4), using the same values of 7

o Naive-Lip: by taking L = H,ﬁil [1Willy

o CP-Lip [18], which scales exponentially with depth.
To the best of our knowledge this is the only? other
method that can handle general activation functions
while yielding a non-trivial bound.

(System) All experiments were run on an Intel 19-9940X
with 28 cores and 125 GB of RAM. Our codebase was
implemented in Julia 1.7.2, and we used MOSEK 9.3 as
our convex solver with a tolerance of ¢ = 1075.

A. (Q1) Runtime of Chordal-LipSDP vs Baselines

We first evaluate the runtime of Chordal-LipSDP against
the baselines of LipSDP, Naive-Lip, and CP-Lip. For each
random network we ran both Chordal-LipSDP and LipSDP
with sparsity parameter values of 7 = 0,...,6 and record
their respective runtimes in Figure 2. Because Naive-Lip and
CP-Lip do not depend on the sparsity parameter 7, they
therefore appear as constant times for all sparsities; we omit
plotting the Naive-Lip times because they are < 0.1 seconds
for all networks. Moreover, because the runtime of CP-Lip
scales exponentially with the number of layers, we only ran
CP-Lip for networks of depth < 25.

Figure 2 gives a general comparison for scalability be-
tween LipSDP and Chordal-LipSDP. We further record the
runtimes of these two methods when the width of the network
is fixed and the depth is varied in Figure 3, as well as when
the depth is fixed and the width is varied in Figure 4.

We see that as the network depth increases, Chordal-
LipSDP significantly out-scales LipSDP, especially for net-
works of depth > 20. Moreover, Chordal-LipSDP also
achieves better scaling for higher values of 7 compared
to LipSDP. In general, Naive-Lip is consistently the fastest
method, while CP-Lip is initially fast, but quickly falls off
on deep networks due to exponential scaling with depth.

2The method of [4] is not a true upper-bound of the Lipschitz constant,
although it is often such in practice as demonstrated in [6]. The method
of [5] assumes piecewise linear activations.
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Fig. 2.

The runtimes (seconds) of Chordal-LipSDP, LipSDP, and CP-Lip on a subset of the networks. The times for Naive-Lip are omitted because it

finishes in < 0.1 seconds on all instances. We ran Chordal-LipSDP and LipSDP for 7 = 0, ..., 6. Because CP-Lip is independent of 7, it is a constant

line. Moreover, due to the scaling exponentially with respect to the number of layers, we only ran CP-Lip for networks of depth < 25.
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depth on the x-axis. Each curve shows the runtimes for a different value

width varies. Similar to Figure 3, but the x-axis now shows varying widths.
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least an order of magnitude. Moreover, the Lipschitz constant Fig. 5. The Lipschitz constant estimate given by Chordal-LipSDP (the
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the runtime would be reasonable (depth < 25).
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also plot the estimates given by CP-Lip (green) and Naive-Lip (purple).
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C. Discussion

Our experiments show that Chordal-LipSDP out-scales
LipSDP on deeper networks, but this is not necessarily the
case for shallower networks, e.g. when depth < 10. This
is likely because the overhead of creating many smaller
constraints of the form Z; < 0, as well as a large equality
constraint Z(y) = Y.h_, B} ZyEe, may only be worth-
while when there are sufficiently many maximal cliques, i.e.,
when the network is deep. This also means that Chordal-
LipSDP is likely more resource intensive than LipSDP.

We found that using Dualization. jl to preprocess
LipSDP resulted in a significantly (often x10) faster solve
time. This preprocessing did not yield noticeable benefits for
Chordal-LipSDP, however, and so are not shown.

Additionally, we found it helpful to scale the weights
of Wy in order to make sure that the solver receives a
sufficiently well-conditioned problem, especially for larger
problem instances. To ensure scaling correctness, we require
that the scaled network f must satisfy f(z) = ¢1f(cox) for
all z € R™ for some known ¢y, c; € R4, which is possible
for ReLU activations.

V. CONCLUSIONS

We present Chordal-LipSDP, a chordally sparse variant of
LipSDP for estimating the Lipschitz constant of a feedfor-
ward neural network. We give a precise characterization of
the sparsity structure present, and using this we decompose
the large LMI of LipSDP — which is its main computa-
tional bottleneck — into an equivalent collection of smaller
constraints.

Our numerical experiments show that Chordal-LipSDP
significantly out-scales LipSDP, especially on deeper net-
works. Moreover, our formulation introduces a tunable spar-
sity parameter that allows the user to finely trade-off accuracy
and scalability: in fact it is often possible to gain rapidly
tightening estimates of the Lipschitz constant without incur-
ring a major performance penalty.

APPENDIX
A. Proof of Theorem 1

To simplify and formalize the proof, we first need to
introduce some useful notation. We extend the definition of
sparsity patterns to general matrices. Let £ C {1,...,m} X
{1,...,n} and define analogously to (5):

M X(E) i= {M € R™ ™ : M;; = 0if (i,7) €€}, (8)

and for (i,7) € £ associated with an m X n matrix we will
assume that 1 <¢ <mand 1 < j < n. When m = n, we
simply write M". Let £" be the transpositioned (inverse)
pairs of £, and note that £ = £ T iff £ is symmetric. We will
explicitly distinguish between symmetric and nonsymmetric
& when necessary. Whenever we write S™(&) it is implied
that £ is symmetric, and that the undirected graph G(V, &)
is therefore well-defined.
In the remainder, we also use the following notation

ki =min{k : S(k) >}, 1<i<N.

There are a few useful properties for k; that we remark:
o k; is the index of (n1,...,nk) that 1 <4 < N falls in.
o If 4 < 7, then k; < k’j.

o S(k;i—1)<i<S(k;) forall 1 <i<N.

Also, some rules of sparse matrix arithmetics are as follows:

AeM™™ME) — AT e M ™(ET)
AeM"(Eq),BeM"(Ep) = A+ BeM"(E4UER)
AeM™(E) = A+ AT es*(EuE)

To prove Theorem 1, we need to show that Z(«y) € SV (&).
Note first that Z(-y) can be expressed as:

Z(y)=A"TA+B'TB+A'"TB+B'TA
+ EgWiWgEg —yE] E;.

The proof of Theorem 1 follows five steps and analyzes
sparsity of each term in Z () separately. For better readabil-
ity, we summarize these five steps next and provide detailed
proofs for each step in separate lemmas.

Step 1. We construct the edge set £ = UkK:_11 &,k Where

Epp={(,5): S(k—1)+1<j<S(k),
Sk)y—7+1<i<S(k+1)+7}.

In Lemma 2, we show that BTTA € MY (£p). By symme-
try, it then also holds that ATTB € MM (£}).

Step 2. By construction, each £p ;, has dense entries only
in the column range S(k—1)+1 < j < S(k), which means
that Egx N Epr = 0 when k # k'. The goal now is to
show that BTTA + ATTB is in a sense the “frontier” of
growth for Z () as 7 increases, as seen in Figure 1. To more
easily analyze the growth pattern of £ U £, we define an
over-approximation ¢ = U§:1 Ec.x 2 Ep where

Eop ={(0,4): S(k=1)+1<j < S(k),
1 SiSS(k—Fl)—f—T}.
Each £c ), is similar to £px, but with the ¢ index range
relaxed. In addition the union is up to K, which is the depth
of the neural network. £¢ is then a stair-case like sparsity
pattern where the top side is dense (resp. the left side of €CT~
is dense), and so £ N EJ is an overlapping block diagonal
structure. Our goal is now to show that each term of Z(v)
has sparsity Ec N &, beginning with BTTA+ ATTB. In
Lemma 3, we show that Eg UEL C Ec NEL. By Step 1, it
consequently follows that
BTTA+ ATTB e SN(EgUEL) CSN(Ean&L).
Step 3. Let us next define the edge set £4 as

Ea={(i,§): S(k;j) —7+1<S(k; +1),
S(ki) —74+1<S(k;j+1)}.

In Lemma 4, we show that
ATTA+ EJWEWKEK — B By € SV (Ea),

while we show that £4 C £ N Eg in Lemma 5.
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Step 4. For the remaining term BT B of Z(vy), we show
that B'TB € SY(Ec N &J) in Lemma 6.

Step 5. The previous steps imply that Z(y) € SV (Ec N
Eg ). Particularly, by Lemmas 3, 5, and 6, each term has
sparsity Ec N Eg , and therefore so does their sum. Finally,
we show that £ N 55 C £ in Lemma 7. This therefore
means that Z(7y) € SV (€) and concludes the proof. O

B. Statement and proof of Lemma 2
Lemma 2. It holds that BTTA € MY (Ep).
Proof. We analyze the action of BT T on each block column
A, € RNrXme of A separately, where we have the partition
A= [Al oo Ag 0] and A = Zf:_ll A, E}. Since
Wy, € R™+1%7% the entry (Ay); is dense iff
S(lf)fn1+1§2§5(k+l)*n1,
and there is no condition on j since each column of Ay has
at least one dense entry. Note that 7" is 7-banded, and so has
the same sparsity as R+ R, where R:=I+U +---+U"
and U is the upper-shift matrix. Thus (T'Ay);; is dense iff
S(k)—nl—T—l—l§z§$’(/€+1)—n1—|—7
Finally, left-multiplication by BT pads a zero block of height
ny at the top, and so (BTTAk)ij is dense iff
Sk)y—17+1<i<Sk+1)+7.
Right-multiplication by FEj puts Aj into the kth block
column of (nq,...,nk), so (BTTAkEk)ij is dense iff
Sk—1)+1<j<S(k),
Sk)—7+1<i<Sk+1)+7
and so BTTA,E}, has sparsity Ep k- Since BTTA is the
sum of BTTAyEy, we have that BTTA e MY (€g). O

By symmetry we also have that ATTB € MY (£}); the
dense blocks of BTT A grow vertically with 7, and those of
ATTB grow horizontally.

C. Statement and proof of Lemma 3

Lemma 3. It holds that Eg UERL C Ec NEL.

Proof. We show that g3, C ¢ and £ C Sg for any
1 <k < K — 1. It suffices to consider only g ;, because
EoNEL, is symmetric, and would therefore also contain £ ..

To show that £, C Ec, observe that £ C Ec . To
show that £, C &2, consider (i,j) € Ep k, and we claim
that (i,j) € 53,%, for which we need to satisfy

Ski—1)+1<i<S(k), 1<j<S(ki+1)+r.

The LHS inequalities follow from the previously stated prop-
erties of k;. For the RHS inequalities deduce the following
from the definition of £p 4:

and because ¢ < S(k; + 1) we have
J<i+7T—-1<8(k;+1)+T,

meaning that (,j) € £% . C &L O

D. Statement and proof of Lemma 4
Lemma 4. It holds that
ATTA+ EfWiWgEx —vwE] Ey € SV(£4).
Proof. Note that (y¢E{ E;);; being dense implies that
(ATTA),; is dense, and therefore it suffices to show that
ATTA+ EfWEIWKEx =WTTW € SN(E4),

T = blockdiag(T, I), W := blockdiag(W1,..., Wk),
where it }\s assumed that each W, € R™+1%"k jg dense.
Because 7' has more sparse entries than a 7-banded matrix
of the same size, it is therefore less dense than R R, where
R=I1+U+---4U" and U is the upper-shift matrix. Let
V := RW, it then suffices to show that V'V € SN@A)
because V'V includes all the dense entries of W TTW.
Observe that (VTV)Z-J- = >, Vi;Vi; is dense iff the ith and
jth columns of V' share a row ¢ at which V}; and Vj; are
both dense. Let V}, € R(n2t +nxt+m)xni pe the kth block
column of V, then (V});; is dense iff

S(k)—n1—7+1 SiSS(k—Fl)—TM.
Thus Vi and Vs have rows at which they are both dense iff
S(k)*?’Ll*T+1§S(k/+1)77L1
Sk —n1 —7+1<8S(k+1) —ny,
which are equivalent to the conditions described in £4. U

E. Statement and proof of Lemma 5
Lemma 5. It holds that E4 C Ec NEL.
Proof. By symmetry of €4, it suffices to prove that £4 C E¢.

Consider (i,j) € £a, we claim that (i,5) € Ecx, — for

which a sufficient condition is
S(kj—1)+1<5<8S(kj), 1<i<S(kj+1)+7,

The LHS inequalities follow from the properties of k;. For

the RHS inequalities, recall that ¢ < S(k;), and rewrite with

the second condition of £4 to yield
1<i<S(k)<Skkj+1)+7—1,

and so (4, ) € Eor; C Ec. O

F. Statement and proof of Lemma 6

Lemma 6. It holds that BTTB € SN (Ec N EL).

Proof. By symmetry, it suffices to show BT TB € MY (£¢).
Because left (resp. right) multiplication by BT (resp. B)
consists of padding n; zeros on the top (resp. left), we may
treat BT T'B as a 7-banded matrix. First suppose that j < 1,
then (BTTB)l-j is dense iff ¢ < j+7. Since j < S(k; +1),

1<i<j+7<Skj+1)+T,

which shows that (i, j) € Eox, € Ec.
Now suppose that i < j, then (BTTB);; is dense iff
j <i+ 7. Furthermore, S(k;) < S(k;) < S(k; +1), so

1<j<i+T<Sk)+7<Skj+1)+7
which again shows that (4, j) € Ecx,; € Ec. O
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G. Statement and proof of Lemma 7
Lemma 7. It holds that Ec N EL C €.
Proof. Consider (i, j) € EcNEJ, and suppose without loss of
generality that i < j. Then (i, j) € Ecx; and (4,7) € 52:7,%,
meaning that the following conditions hold:
S(k; —1)+1<j < S(kj),
S(ki —1)+1 <0 < S(ks),

1<i<S(kj+1)+m,
1<j<Ski+1)+T

Tightening the bounds for k; and by monotonicity of S,

Sk —1)+1<i<S(k;) <S(k; +1)+,
Sk —1)+1<8Sk;—1)+1<5j<Ski+1)+T7,

which together imply that (i,7) € &, C £. O

H. Proof of Theorem 2

[3]
[4]

[5]

[6]

[7]

[8]

[10]

The structure of £ results in a lengthy proof of Theorem 1.
However, it is easy to guess each & by simple experiments,
and leads to a straightforward proof of Theorem 2. [11]

Note that SV (&) are the block diagonal matrices whose
(4,7) entry is dense iff S(k—1)+1<4,j < S(k+1)+7. [y
Because £ is a union of the &, sparsities, SV (£) is therefore
the set of matrices with overlapping block diagonals, which [13]
are known to be chordal [8, Section 8.2].

It remains to identify the maximal cliques of G(V, £). First
consider k£ < p with k > 1, and observe that (N, N) & &,. 14
By construction each & is the edges of a clique, and when
k < p such & is also not contained by any other £+ because  [15]

Sk—1)+1<8SK —1)+1, ifk<k [16]
SK+1)+r<Sk+1)+7, ifk>Fk,
so there exists (i,7) € & \ & withi =j=Sk—-1)+1 7]
when k < k', and i = j = S(k+ 1) + 7 when k > k.
Thus, & is in fact the edges of a maximal clique containing
indices ¢ that satisfy S(k—1)+1 <14 < S(k+1)+7, which  [18]
are exactly the conditions of Cy, for k < p.

Now consider k£ > p with £ < K — 1, and observe that [19]

&k C &, because any (4, j) € &, will satisfy

[20]
Sp—-1)+1<Sk-1)4+1<i4,j<N<S(p+1)+7,
and so (i,7) € &, as well. £, is therefore the edges of a  [?!]
clique that contains all other cliques that contain N, and is
thus maximal — corresponding to the description of C,,. 0  [22]
L. Proof of Theorem 3

Because Z(vy) € SN(£) and G(V,€) is chordal with [23]
maximal cliques {C1,...,Cp}, conclude from Lemma 1 that
Z() 2 0 iff each Z, < 0. O (24]
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