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Abstract— Computing Lipschitz constants of neural networks
allows for robustness guarantees in image classification, safety
in controller design, and generalization beyond the training
data. As calculating Lipschitz constants of neural networks is
NP-hard, techniques for estimating Lipschitz constants must
navigate the trade-off between scalability and accuracy. In
this work, we significantly push the scalability frontier of a
semidefinite programming technique known as LipSDP while
achieving zero accuracy loss. We first show that LipSDP has
chordal sparsity, which allows us to derive a chordally sparse
formulation that we call Chordal-LipSDP. The key benefit is
that the main computational bottleneck of LipSDP, a large
linear matrix inequality, can be decomposed into an equivalent
collection of smaller ones — allowing Chordal-LipSDP to
outperform LipSDP particularly as the network depth grows.
Moreover, our formulation uses a tunable sparsity parameter
that enables one to gain tighter estimates without incurring a
significant computational cost. We illustrate the scalability of
our approach through extensive numerical experiments.

I. INTRODUCTION

Neural networks are arguably the most common choice

of function approximators used in machine learning and

artificial intelligence. Their success is well documented in

the literature and showcased in various applications, e.g.,

in solving the game Go [1] and in handwritten character

recognition [2]. However, many neural networks are known

to be non-robust, i.e., their outputs may be sensitive to

small changes in the inputs and result in large deviations

in the outputs [3]. It is hence often unclear exactly what a

neural network learns and how it can generalize to previously

unseen data. This is a particular concern in safety critical

applications like perception in autonomous driving, where

one would like to be robust and even obtain a robustness

certificate. A way to measure the robustness of a neural

network f : Rn1 → R
m is to calculate its Lipschitz constant

L that satisfies

∥f(x)− f(y)∥ f L∥x− y∥ for all x, y ∈ R
n1 .
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The exact calculation of L is NP-hard and hence poses

computational challenges [4], [5]. Therefore, past effort has

been on estimating upper bounds on the Lipschitz constant

L in computationally efficient ways. A key difficulty here

is to appropriately model the nonlinear activation functions

within a neural network. For feedforward neural networks,

the authors in [6] abstract activation functions using in-

cremental quadratic constraints [7]. These are then formed

into a convex semidefinite program (SDP), referred to as

LipSDP, whose solution yields tight upper bounds on L. As

the size of the neural network grows, however, the general

formulation of LipSDP becomes computationally intractable.

One may partially alleviate this issue by selectively reducing

the number of optimization variables, which will induce

sparsity into LipSDP at the cost of a looser bound. Still,

this does not address the core computational bottleneck of

LipSDP, which is that the solver must process a large linear

matrix inequality (LMI) whose dimension scales with the

number of neurons.

In this paper we study computationally efficient formu-

lations of LipSDP. In particular, we introduce a variant of

LipSDP that exhibits chordal sparsity [8], [9], which allows

us to decompose a large LMI into an equivalent collection

of smaller ones. Moreover, our formulation has a tunable

sparsity parameter, enabling one to trade-off between ef-

ficiency and accuracy. We call our decomposed program

Chordal-LipSDP, and study its theoretical properties and

computational performance in this paper. The contributions

of our work are as follows:

• We introduce a variant of LipSDP formulated in terms

of a sparsity parameter Ä and precisely characterize its

chordal sparsity pattern. This allows us to decompose

LipSDP, which is a large LMI, into a collection of

smaller ones, yielding an equivalent problem that we

call Chordal-LipSDP.

• We present numerical evaluations and observe that

Chordal-LipSDP is significantly faster than LipSDP,

especially for deeper networks, without accuracy loss

relative to LipSDP. Furthermore, adjusting Ä allows

Chordal-LipSDP to obtain rapidly tightening bounds on

L without incurring a high performance penalty.

• We make an open-source implementation available at

github.com/AntonXue/chordal-lipsdp.

A. Related Work

There has been a great interest in the machine learning

and control communities towards efficiently and accurately

estimating Lipschitz constants of neural networks. Indeed,
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it has been shown that there is a close connection between

the Lipschitz constant of a neural network and its ability

to generalize [10]. The authors in [11] were among the

first to normalize weights of a neural network based on the

Lipschitz constant. In control, Lipschitz constants of neural

network-based control laws can be used to obtain stability

or safety guarantees [12], [13]. Training neural networks

with a desired Lipschitz constant is, however, difficult. In

practice, one has to either solve constrained optimization

problems, e.g., [14], or iteratively bootstrap training pa-

rameters. As a consequence, one is interested in obtaining

Lipschitz certificates of neural networks. In [4], [5], it was

shown that exact calculation of the Lipschitz constant is NP-

hard. As estimating Lipschitz constants is computationally

challenging, we are hereby motivated to efficiently estimate

Lipschitz constants of neural networks.

Broadly, there are two common ways for estimating Lip-

schitz constants of deep neural networks, either sampling-

based as in [15] and [16], or using optimization tech-

niques [6], [17]. A naive approach is to calculate the product

of the norm of the weights of each individual layer. The au-

thors in [4] follow a similar idea, and obtain tighter Lipschitz

constants using singular value decomposition and maximiza-

tion over the unit cube. This, however, still becomes quickly

computationally intractable for large neural networks. Tighter

bounds have been obtained in [18] capturing cross-layer

dependencies using compositions of nonexpansive averaged

operators. However, again this approach does not scale well

with the number of layers. While these works estimate global

Lipschitz constants, it was shown in [19] that estimating local

Lipschitz constants can be done more efficiently.

In this paper, we build on the LipSDP framework pre-

sented in [6], which amounts to solving a SDP. LipSDP

abstracts activation functions into quadratic constraints and

allows to encode rich layer-to-layer relations allowing to

trade-off accuracy and efficiency. While LipSDP considers

the l2-norm, general lp-norms on the input output relation of

a neural network can be conservatively obtained using the

equivalence of norms. The authors in [17] present LiPopt,

which is a polynomial optimization framework that allows

to calculate tight estimates of Lipschitz constants for l2 and

l∞-norms. However, for l2-norms LipSDP empirically shows

to have tighter bounds. Exact computation of the Lipschitz

constant under l1 and l∞ norms was presented in [5] by

solving a mixed integer linear program. Lipschitz continuity

of a neural network with respect to its training parameters

has been analyzed in [20].

We show that a particular formulation of LipSDP satisfies

chordal sparsity [8], [9], from which we apply chordal

decomposition to obtain Chordal-LipSDP. The key benefit of

exploiting chordal sparsity is that a large LMI is decomposed

into an equivalent collection of smaller ones, in particular

allowing us to scale to deeper networks. This equivalence

also means that LipSDP and Chordal-LipSDP will compute

identical estimates of the Lipschitz constant.

Most similar to our work are [21], [22]. The authors

of [21] induce chordal sparsity in a special case of the

DeepSDP [23] framework — which is similar to LipSDP —

but only consider the case of ReLU activations and do not

allow for efficiency-accuracy trade-offs. The authors of [22]

uses sum-of-squares optimization [24] to study feedforward

networks with ReLU activations, and observe, but do not

formalize nor exploit, similar sparsity patterns as we do. A

survey of scalability methods for SDPs is given in [25].

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we state the problem formulation and

provide background on LipSDP and chordal sparsity.

A. Lipschitz Constant Estimation of Neural Networks

We consider feedforward neural networks f : Rn1 → R
m

with K g 2 layers, i.e., K − 1 hidden layers and one linear

output layer. From now on, let x1 ∈ R
n1 denote the input

of the neural network. The output of the neural network is

recursively computed for layers k = 1, . . . ,K − 1 as

f(x1) := WKxK + bK , xk+1 := ϕ(Wkxk + bk), (1)

where Wk and bk are the weight matrices and bias vec-

tors of the kth layer, respectively, that are assumed to

be of appropriate size. We denote the dimensions of

x2, . . . , xK by n2, . . . , nK ∈ N. The function ϕ(u) :=
vcat(φ(u1), φ(u2) . . .) is the stack vector of activation func-

tions φ, e.g., ReLU or tanh activation functions, that are

applied element-wise. We assume throughout the paper that

the same type of activation function is used across all layers.

B. LipSDP

We now present LipSDP [6] in a way that enables us later
to conveniently characterize the chordal sparsity pattern of
LipSDP. First, let x := vcat(x1, . . . , xK) ∈ R

N be a stack

of the state vectors with N :=
∑K

k=1 nk. By defining

A :=







W1 · · · 0 0

...
. . .

...
...

0 · · · WK−1 0






, B :=







0 In2
· · · 0

...
...

. . .
...

0 0 · · · InK







and b := vcat(b1, b2, . . . , bK−1) we can rewrite the dynam-

ics of (1) as Bx = ϕ(Ax + b), where ϕ : RNf → R
Nf is

a Nf -height stack of φ with Nf := n2 + · · ·+ nK . To deal

with the nonlinear activation function ϕ in an efficient way,

the key idea in LipSDP is to abstract ϕ using incremental

quadratic constraints [7]. In particular, LipSDP considers a

family of symmetric indefinite matrices Q such that any

matrix Q ∈ Q satisfies

[
u− v

ϕ(u)− ϕ(v)

]¦
Q

[
u− v

ϕ(u)− ϕ(v)

]
g 0 (2)

for all u, v ∈ R
Nf . In the case where each element φ of ϕ

is [s, s]-sector-bounded, i.e., where its subgradients satisfy

∂φ ¦ [s, s], then one possible parameterization of Q is

Q :=

{[
A
B

]¦ [
−2ssT (s+ s)T
(s+ s)T −2T

] [
A
B

]
: µ³ g 0

}
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where T is a dense matrix that is parametrized by µ³. In this

paper, we fix an integer Ä g 0 and define T as follows 1

T :=

Nf∑

i=1

(µ³)iieie
¦
i +

∑

(i,j)∈Iτ

(µ³)ij(ei − ej)(ei − ej)
¦,

IÄ := {(i, j) = 1 f i < j f Nf , j − i f Ä}.

By tuning the value of Ä , we obtain different formulations

of Q that all provide over-approximations of ϕ as in (2)

while allowing us to trade-off on the spectrum of sparsity

and accuracy. In the sparsest case, i.e., Ä = 0, the matrix T
is a nonnegative diagonal matrix and µ³ ∈ R

Nf

+ , while in the

densest case, i.e., Ä = Nf − 1, the matrix T is fully dense

and parameterized by µ³ ∈ R
1+···+Nf

+ .

To formulate our variant of LipSDP, we define the linearly-

parametrized matrix-valued functions

Z³(µ³) :=

[
A
B

]¦ [
−2ssT (s+ s)T
(s+ s)T −2T

] [
A
B

]
,

Zℓ(µℓ) := E¦
K(W¦

KWK)EK − µℓE
¦
1 E1,

Ek :=
[
· · · 0 Ink

0 · · ·
]
∈ R

nk×N ,

where T is defined as above, µℓ ∈ R+, and Ek is the kth

block-index selector such that xk = Ekx. Now combine the

above terms as

Z(µ) := Z³(µ³) + Zℓ(µℓ) ∈ S
N , (3)

then LipSDP is the following semidefinite program:

minimize
µg0

µℓ subject to Z(µ) ¯ 0 (4)

If µ⋆
ℓ is the optimal value of (4), then the Lipschitz constant

of f is upper-bounded by (µ⋆
ℓ )

1/2, see [6]. That is,

∥f(x)− f(y)∥ f (µ⋆
ℓ )

1/2∥x− y∥ for all x, y ∈ R
n1 .

C. Chordal Sparsity

Chordal sparsity establishes a connection between graph

theory and sparse matrix decomposition [26], [8]. In the

context of this paper, we aim to solve the potentially large-

scale SDP (4) using chordal sparsity in Z(µ). This is done by

decomposing the LMI Z(µ) ¯ 0 into an equivalent collection

of smaller Zk ¯ 0 LMIs, which we show in Section III.

1) Chordal Graphs and Sparse Matrices: A graph

G(V, E) consists of vertices V := {1, . . . , n} and edges

E ¦ V × V . We assume that E is symmetric, i.e. (i, j) ∈ E
implies (j, i) ∈ E , and so G(V, E) is an undirected graph.

We say that the vertices C ¦ V form a clique if u, v ∈ C
implies (u, v) ∈ E , and let C(i) be the ith vertex of C under

the natural ordering. A maximal clique is a clique that is not

strictly contained within another clique. A cycle of length

l is a sequence of vertices v1, . . . , vl with (vl, v1) ∈ E and

adjacent connections (vi, vi+1) ∈ E . A chord is any edge

that connects two nonadjacent vertices in a cycle, and we

1We use matrix-like subscripts on γα even though it is a vector. Iτ is a
τ -banded index set, which makes T a τ -banded matrix. In general T may
be dense, but restricting its structure will induce chordal sparsity in LipSDP.

say that a graph is chordal if every cycle of length four has

at least one chord [8].

An edge set E can dually describe the sparsity pattern of

a matrix. Given a graph G(V, E), define the set of symmetric

matrices of size n with sparsity pattern E as

S
n(E) := {X ∈ S

n : Xij = Xji = 0 if (i, j) ̸∈ E}. (5)

If in addition G(V, E) is chordal and X ∈ S
n(E), then we

say that X has chordal sparsity or is chordally sparse. For

X with sparsity E , we say that Xij is dense if (i, j) ∈ E ,

and that it is sparse otherwise.

2) Chordal Decomposition of Sparse Matrices: For a

chordally sparse X ∈ S
n(E), useful decompositions can

be analyzed through the cliques of G(V, E). Given a clique

Ck ¦ V , define its block-index matrix as follows:

(ECk
)ij = 1 if Ck(i) = j else 0, ECk

∈ R
|Ck|×n.

By decomposing a chordally sparse matrix with respect to

its maximal cliques, a key result in sparse matrix analysis

allows us to deduce the semidefiniteness of a large matrix

with respect to a collection of smaller matrices.

Lemma 1 (Theorem 2.10 [9]). Let G(V, E) be a chordal

graph and let {C1, . . . , Cp} be the set of its maximal cliques.

Then X ∈ S
n(E) and X ° 0 if and only if there exists

Xk ∈ S
|Ck| such that each Xk ° 0 and

X =

p∑

k=1

E¦
Ck
XkECk

. (6)

We say that (6) is a chordal decomposition of X by

C1, . . . , Cp, and such a decomposition allows us to solve a

large LMI using an equivalent collection of smaller ones.

III. CHORDAL DECOMPOSITION OF LIPSDP

In this section, we present Chordal-LipSDP which is a

chordally sparse formulation of LipSDP. We first identify

the sparsity pattern for Z(µ) in Theorem 1 and then present

Chordal-LipSDP in Theorem 2 as a chordal decomposition of

LipSDP. An equivalence result is then stated in Theorem 3.

The proofs of our results can be found in the appendix.

Our goal is to construct the edge set E of a chordal graph

G(V, E) with vertices V := {1, . . . , N} such that Z(µ) ∈
S
N (E). To gain intuition for E , we plot the dense entries of

Z(µ) in Figure 1 where the (i, j) square is dark if (Z(µ))ij
is dense, i.e., (i, j) ∈ E .

Fig. 1. The sparsity of Z(γ) for τ = 0, 2, 4 with dimensions (3, 3, 3, 3, 3).
For each increment of τ , each block grows by one unit on the bottom and
right, and corresponds to a maximal clique of G(V, E). As τ increases the
number of blocks (maximal cliques) will decrease as the lower-right blocks
become overshadowed. At τ = 0 we have what [6] refers to as “LipSDP-
neuron”; at τ = Nf −1 we have the completely dense “LipSDP-network”.
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In order to compactly present our results, we first define

a notation for summation as follows:

S(k) :=

k∑

l=1

nl, nK+1 := m, S(0) := 0, S(K) := N.

Our main results are then stated in the following theorems.

Theorem 1. Let Z(µ) be defined as in (3). It holds that

Z(µ) ∈ S
N (E), where E :=

⋃K−1
k=1 Ek such that

Ek :=
{
(i, j) : S(k − 1) + 1 f i, j f S(k + 1) + Ä

}
.

Note that the set E defined in Theorem 1 is already

illustrated in Fig. 1. Also, we implicitly assume that all

(i, j) in the definition of E are within 1 f i, j f N . From

this construction of E it is then straightforward to prove

chordality of G(V, E) and identify its maximal cliques.

Theorem 2. Let V := {1, . . . , N} and define E as in

Theorem 1. Then G(V, E) is chordal and the set of its

maximal cliques is {C1, . . . , Cp}, where

p := min {k : S(k + 1) + Ä g N}

and each clique Ck for k < p has size and elements

|Ck| := nk + nk+1 + Ä, Ck(i) := S(k − 1) + i

for 1 f i f |Ck|. The final clique Cp has elements

Cp(i) := S(p− 1) + i, 1 f i f N − S(p− 1).

Using Lemma 1, the maximal cliques {C1, . . . , Cp} from

Theorem 2 now give a chordal decomposition of Z(µ), and

lets us formulate the following semidefinite program that we

call Chordal-LipSDP:

minimize
µg0,Z1,...,Zp

µℓ

subject to Z(µ) =

p∑

k=1

E¦
Ck
ZkECk

,

Zk ¯ 0 for k = 1, . . . , p,

(7)

We remark that solving Chordal-LipSDP is typically much

faster than solving LipSDP, especially for deep neural net-

works as we impose a set of smaller LMIs instead of one

large LMI. That is, the computational benefit of (7) over (4)

is that each Zk ¯ 0 constraint is a significantly smaller LMI

than Z(µ) ¯ 0, which is the case for deeper networks.

In the next theorem, we show that LipSDP and Chordal-

LipSDP compute Lipschitz constants that are in fact identi-

cal, i.e., a chordal decomposition of LipSDP gives no loss

of accuracy over the original formulation.

Theorem 3. The SDPs (4) and (7) are equivalent: µ is

a solution for (4) iff µ, Z1, . . . , Zp is a solution for (7).

Moreover, their optimal objective values are identical.

Note that Theorem 3 assumes the same T is used for both

LipSDP and Chordal-LipSDP, and that this T is Ä -banded.

IV. EXPERIMENTS

In this section we evaluate the effectiveness of Chordal-

LipSDP. Our aim is to answer the following questions:

(Q1) How well does Chordal-LipSDP scale in compar-

ison to the baseline methods?

(Q2) How does the computed Lipschitz constant vary

as the sparsity parameter Ä increases?

(Dataset) We use a randomly generated batch of neural

networks with random weights from N (0, 1/2), with depth

K = d, widths n2 = · · · = nK = w, and input-output

n1 = m = 2 for w ∈ {10, . . . , 50}, and d ∈ {5, 10, . . . , 50}.

As a naming convention, for instance, W30-D20 would be

the random network with w = 30 and d = 20. In total there

are 50 such random networks.

(Baseline Methods) We compare Chordal-LipSDP against

the following baselines:

• LipSDP: as in (4), using the same values of Ä
• Naive-Lip: by taking L =

∏K
k=1 ∥Wk∥2

• CP-Lip [18], which scales exponentially with depth.

To the best of our knowledge this is the only2 other

method that can handle general activation functions

while yielding a non-trivial bound.

(System) All experiments were run on an Intel i9-9940X

with 28 cores and 125 GB of RAM. Our codebase was

implemented in Julia 1.7.2, and we used MOSEK 9.3 as

our convex solver with a tolerance of ε = 10−6.

A. (Q1) Runtime of Chordal-LipSDP vs Baselines

We first evaluate the runtime of Chordal-LipSDP against

the baselines of LipSDP, Naive-Lip, and CP-Lip. For each

random network we ran both Chordal-LipSDP and LipSDP

with sparsity parameter values of Ä = 0, . . . , 6 and record

their respective runtimes in Figure 2. Because Naive-Lip and

CP-Lip do not depend on the sparsity parameter Ä , they

therefore appear as constant times for all sparsities; we omit

plotting the Naive-Lip times because they are < 0.1 seconds

for all networks. Moreover, because the runtime of CP-Lip

scales exponentially with the number of layers, we only ran

CP-Lip for networks of depth f 25.

Figure 2 gives a general comparison for scalability be-

tween LipSDP and Chordal-LipSDP. We further record the

runtimes of these two methods when the width of the network

is fixed and the depth is varied in Figure 3, as well as when

the depth is fixed and the width is varied in Figure 4.

We see that as the network depth increases, Chordal-

LipSDP significantly out-scales LipSDP, especially for net-

works of depth g 20. Moreover, Chordal-LipSDP also

achieves better scaling for higher values of Ä compared

to LipSDP. In general, Naive-Lip is consistently the fastest

method, while CP-Lip is initially fast, but quickly falls off

on deep networks due to exponential scaling with depth.

2The method of [4] is not a true upper-bound of the Lipschitz constant,
although it is often such in practice as demonstrated in [6]. The method
of [5] assumes piecewise linear activations.
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Fig. 2. The runtimes (seconds) of Chordal-LipSDP, LipSDP, and CP-Lip on a subset of the networks. The times for Naive-Lip are omitted because it
finishes in < 0.1 seconds on all instances. We ran Chordal-LipSDP and LipSDP for τ = 0, . . . , 6. Because CP-Lip is independent of τ , it is a constant
line. Moreover, due to the scaling exponentially with respect to the number of layers, we only ran CP-Lip for networks of depth ≤ 25.

Fig. 3. The runtimes (seconds) of LipSDP and Chordal-LipSDP as the
depth varies. The networks of each plot share the same width, but vary by
depth on the x-axis. Each curve shows the runtimes for a different value
of τ = 0, . . . , 6, where higher curves denote higher runtimes — and also
higher values of τ . The region between τ = 0 and τ = 6 are shaded.

B. (Q2) Lipschitz Constant vs Sparsity Parameter

We also studied how the value of Ä affects the resulting

Lipschitz constant and plot the results in Figure 5. In

particular, as Ä increases, the estimate rapidly improves by at

least an order of magnitude. Moreover, the Lipschitz constant

estimate is also better than Naive-Lip and CP-Lip — when

the runtime would be reasonable (depth f 25).

Fig. 4. The runtimes (seconds) of LipSDP and Chordal-LipSDP as the
width varies. Similar to Figure 3, but the x-axis now shows varying widths.

Fig. 5. The Lipschitz constant estimate given by Chordal-LipSDP (the
same as LipSDP) on some networks, with τ on the x-axis. On the left we
also plot the estimates given by CP-Lip (green) and Naive-Lip (purple).
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C. Discussion

Our experiments show that Chordal-LipSDP out-scales

LipSDP on deeper networks, but this is not necessarily the

case for shallower networks, e.g. when depth f 10. This

is likely because the overhead of creating many smaller

constraints of the form Zk ¯ 0, as well as a large equality

constraint Z(µ) =
∑p

k=1 E
¦
Ck
ZkECk

may only be worth-

while when there are sufficiently many maximal cliques, i.e.,

when the network is deep. This also means that Chordal-

LipSDP is likely more resource intensive than LipSDP.

We found that using Dualization.jl to preprocess

LipSDP resulted in a significantly (often ×10) faster solve

time. This preprocessing did not yield noticeable benefits for

Chordal-LipSDP, however, and so are not shown.

Additionally, we found it helpful to scale the weights

of Wk in order to make sure that the solver receives a

sufficiently well-conditioned problem, especially for larger

problem instances. To ensure scaling correctness, we require

that the scaled network f̂ must satisfy f(x) = c1f̂(c0x) for

all x ∈ R
n1 for some known c0, c1 ∈ R+, which is possible

for ReLU activations.

V. CONCLUSIONS

We present Chordal-LipSDP, a chordally sparse variant of

LipSDP for estimating the Lipschitz constant of a feedfor-

ward neural network. We give a precise characterization of

the sparsity structure present, and using this we decompose

the large LMI of LipSDP — which is its main computa-

tional bottleneck — into an equivalent collection of smaller

constraints.

Our numerical experiments show that Chordal-LipSDP

significantly out-scales LipSDP, especially on deeper net-

works. Moreover, our formulation introduces a tunable spar-

sity parameter that allows the user to finely trade-off accuracy

and scalability: in fact it is often possible to gain rapidly

tightening estimates of the Lipschitz constant without incur-

ring a major performance penalty.

APPENDIX

A. Proof of Theorem 1

To simplify and formalize the proof, we first need to

introduce some useful notation. We extend the definition of

sparsity patterns to general matrices. Let E ¦ {1, . . . ,m} ×
{1, . . . , n} and define analogously to (5):

M
m×n(E) := {M ∈ R

m×n : Mij = 0 if (i, j) ̸∈ E}, (8)

and for (i, j) ∈ E associated with an m× n matrix we will

assume that 1 f i f m and 1 f j f n. When m = n, we

simply write M
n. Let E¦ be the transpositioned (inverse)

pairs of E , and note that E = E¦ iff E is symmetric. We will

explicitly distinguish between symmetric and nonsymmetric

E when necessary. Whenever we write S
n(E) it is implied

that E is symmetric, and that the undirected graph G(V, E)
is therefore well-defined.

In the remainder, we also use the following notation

ki := min{k : S(k) g i}, 1 f i f N.

There are a few useful properties for ki that we remark:

• ki is the index of (n1, . . . , nK) that 1 f i f N falls in.

• If i f j, then ki f kj .

• S(ki − 1) f i f S(ki) for all 1 f i f N .

Also, some rules of sparse matrix arithmetics are as follows:

A ∈ M
m×n(E) =⇒ A¦ ∈ M

n×m(E¦)

A ∈ M
n(EA), B ∈ M

n(EB) =⇒ A+B ∈ M
n(EA ∪ EB)

A ∈ M
n(E) =⇒ A+A¦ ∈ S

n(E ∪ E¦)

To prove Theorem 1, we need to show that Z(µ) ∈ S
N (E).

Note first that Z(µ) can be expressed as:

Z(µ) = A¦TA+B¦TB +A¦TB +B¦TA

+ E¦
KW¦

KWKEK − µlE
¦
1 E1.

The proof of Theorem 1 follows five steps and analyzes

sparsity of each term in Z(µ) separately. For better readabil-

ity, we summarize these five steps next and provide detailed

proofs for each step in separate lemmas.

Step 1. We construct the edge set EB :=
⋃K−1

k=1 EB,k where

EB,k :=
{
(i, j) : S(k − 1) + 1 f j f S(k),

S(k)− Ä + 1 f i f S(k + 1) + Ä
}
.

In Lemma 2, we show that B¦TA ∈ M
N (EB). By symme-

try, it then also holds that A¦TB ∈ M
N (E¦

B ).
Step 2. By construction, each EB,k has dense entries only

in the column range S(k−1)+1 f j f S(k), which means

that EB,k ∩ EB,k′ = ∅ when k ̸= k′. The goal now is to

show that B¦TA + A¦TB is in a sense the “frontier” of

growth for Z(µ) as Ä increases, as seen in Figure 1. To more

easily analyze the growth pattern of EB ∪ E¦
B , we define an

over-approximation EC :=
⋃K

k=1 EC,k § EB where

EC,k :=
{
(i, j) : S(k − 1) + 1 f j f S(k),

1 f i f S(k + 1) + Ä
}
.

Each EC,k is similar to EB,k, but with the i index range

relaxed. In addition the union is up to K, which is the depth

of the neural network. EC is then a stair-case like sparsity

pattern where the top side is dense (resp. the left side of E¦
C

is dense), and so EC ∩ E¦
C is an overlapping block diagonal

structure. Our goal is now to show that each term of Z(µ)
has sparsity EC ∩ E¦

C , beginning with B¦TA + A¦TB. In

Lemma 3, we show that EB ∪ E¦
B ¦ EC ∩ E¦

C . By Step 1, it

consequently follows that

B¦TA+A¦TB ∈ S
N (EB ∪ E¦

B ) ¦ S
N (EC ∩ E¦

C ).

Step 3. Let us next define the edge set EA as

EA :=
{
(i, j) : S(kj)− Ä + 1 f S(ki + 1),

S(ki)− Ä + 1 f S(kj + 1)
}
.

In Lemma 4, we show that

A¦TA+ E¦
KW¦

KWKEK − µℓE
¦
1 E1 ∈ S

N (EA),

while we show that EA ¦ EC ∩ E¦
C in Lemma 5.
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Step 4. For the remaining term B¦TB of Z(µ), we show

that B¦TB ∈ S
N (EC ∩ E¦

C ) in Lemma 6.

Step 5. The previous steps imply that Z(µ) ∈ S
N (EC ∩

E¦
C ). Particularly, by Lemmas 3, 5, and 6, each term has

sparsity EC ∩ E¦
C , and therefore so does their sum. Finally,

we show that EC ∩ E¦
C ¦ E in Lemma 7. This therefore

means that Z(µ) ∈ S
N (E) and concludes the proof. □

B. Statement and proof of Lemma 2

Lemma 2. It holds that B¦TA ∈ M
N (EB).

Proof. We analyze the action of B¦T on each block column

Ak ∈ R
Nf×nk of A separately, where we have the partition

A =
[
A1 . . . AK−1 0

]
and A =

∑K−1
k=1 AkEk. Since

Wk ∈ R
nk+1×nk , the entry (Ak)ij is dense iff

S(k)− n1 + 1 f i f S(k + 1)− n1,

and there is no condition on j since each column of Ak has

at least one dense entry. Note that T is Ä -banded, and so has

the same sparsity as R+R¦, where R := I +U + · · ·+UÄ

and U is the upper-shift matrix. Thus (TAk)ij is dense iff

S(k)− n1 − Ä + 1 f i f S(k + 1)− n1 + Ä.

Finally, left-multiplication by B¦ pads a zero block of height

n1 at the top, and so (B¦TAk)ij is dense iff

S(k)− Ä + 1 f i f S(k + 1) + Ä.

Right-multiplication by Ek puts Ak into the kth block

column of (n1, . . . , nK), so (B¦TAkEk)ij is dense iff

S(k − 1) + 1 f j f S(k),

S(k)− Ä + 1 f i f S(k + 1) + Ä

and so B¦TAkEk has sparsity EB,k. Since B¦TA is the

sum of B¦TAkEk, we have that B¦TA ∈ M
N (EB).

By symmetry we also have that A¦TB ∈ M
N (E¦

B ); the

dense blocks of B¦TA grow vertically with Ä , and those of

A¦TB grow horizontally.

C. Statement and proof of Lemma 3

Lemma 3. It holds that EB ∪ E¦
B ¦ EC ∩ E¦

C .

Proof. We show that EB,k ¦ EC and EB,k ¦ E¦
C for any

1 f k f K − 1. It suffices to consider only EB,k because

EC∩E
¦
C is symmetric, and would therefore also contain E¦

B,k.

To show that EB,k ¦ EC , observe that EB,k ¦ EC,k. To

show that EB,k ¦ E¦
C , consider (i, j) ∈ EB,k, and we claim

that (i, j) ∈ E¦
C,ki

, for which we need to satisfy

S(ki − 1) + 1 f i f S(ki), 1 f j f S(ki + 1) + Ä.

The LHS inequalities follow from the previously stated prop-

erties of ki. For the RHS inequalities deduce the following

from the definition of EB,k:

j f S(k), S(k)− Ä + 1 f i =⇒ j f S(k) f i+ Ä − 1,

and because i f S(ki + 1) we have

j f i+ Ä − 1 f S(ki + 1) + Ä,

meaning that (i, j) ∈ E¦
C,ki

¦ E¦
C .

D. Statement and proof of Lemma 4

Lemma 4. It holds that

A¦TA+ E¦
KW¦

KWKEK − µℓE
¦
1 E1 ∈ S

N (EA).

Proof. Note that (µℓE
¦
1 E1)ij being dense implies that

(A¦TA)ij is dense, and therefore it suffices to show that

A¦TA+ E¦
KW¦

KWKEK = W¦T̂W ∈ S
N (EA),

T̂ := blockdiag(T, I), W := blockdiag(W1, . . . ,WK),

where it is assumed that each Wk ∈ R
nk+1×nk is dense.

Because T̂ has more sparse entries than a Ä -banded matrix

of the same size, it is therefore less dense than R¦R, where

R := I +U + · · ·+UÄ and U is the upper-shift matrix. Let

V := RW , it then suffices to show that V ¦V ∈ S
N (EA)

because V ¦V includes all the dense entries of W¦T̂W .

Observe that (V ¦V )ij =
∑

l VliVlj is dense iff the ith and

jth columns of V share a row ℓ at which Vli and Vlj are

both dense. Let Vk ∈ R
(n2+···+nK+m)×nk be the kth block

column of V , then (Vk)ij is dense iff

S(k)− n1 − Ä + 1 f i f S(k + 1)− n1.

Thus Vk and Vk′ have rows at which they are both dense iff

S(k)− n1 − Ä + 1 f S(k′ + 1)− n1

S(k′)− n1 − Ä + 1 f S(k + 1)− n1,

which are equivalent to the conditions described in EA.

E. Statement and proof of Lemma 5

Lemma 5. It holds that EA ¦ EC ∩ E¦
C .

Proof. By symmetry of EA, it suffices to prove that EA ¦ EC .

Consider (i, j) ∈ EA, we claim that (i, j) ∈ EC,kj
— for

which a sufficient condition is

S(kj − 1) + 1 f j f S(kj), 1 f i f S(kj + 1) + Ä,

The LHS inequalities follow from the properties of kj . For

the RHS inequalities, recall that i f S(ki), and rewrite with

the second condition of EA to yield

1 f i f S(ki) f S(kj + 1) + Ä − 1,

and so (i, j) ∈ EC,kj
¦ EC .

F. Statement and proof of Lemma 6

Lemma 6. It holds that B¦TB ∈ S
N (EC ∩ E¦

C ).

Proof. By symmetry, it suffices to show B¦TB ∈ M
N (EC).

Because left (resp. right) multiplication by B¦ (resp. B)

consists of padding n1 zeros on the top (resp. left), we may

treat B¦TB as a Ä -banded matrix. First suppose that j f i,
then (B¦TB)ij is dense iff i f j+ Ä . Since j f S(kj +1),

1 f i f j + Ä f S(kj + 1) + Ä,

which shows that (i, j) ∈ EC,kj
¦ EC .

Now suppose that i f j, then (B¦TB)ij is dense iff

j f i+ Ä . Furthermore, S(ki) f S(kj) f S(kj + 1), so

1 f j f i+ Ä f S(ki) + Ä f S(kj + 1) + Ä

which again shows that (i, j) ∈ EC,kj
¦ EC .

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 26,2024 at 11:53:42 UTC from IEEE Xplore.  Restrictions apply. 



G. Statement and proof of Lemma 7

Lemma 7. It holds that EC ∩ E¦
C ¦ E .

Proof. Consider (i, j) ∈ EC∩E
¦
C and suppose without loss of

generality that i f j. Then (i, j) ∈ EC,kj
and (i, j) ∈ E¦

C,ki
,

meaning that the following conditions hold:

S(kj − 1) + 1 f j f S(kj), 1 f i f S(kj + 1) + Ä,

S(ki − 1) + 1 f i f S(ki), 1 f j f S(ki + 1) + Ä.

Tightening the bounds for ki and by monotonicity of S,

S(ki − 1) + 1 f i f S(ki) f S(ki + 1) + Ä,

S(ki − 1) + 1 f S(kj − 1) + 1 f j f S(ki + 1) + Ä,

which together imply that (i, j) ∈ Eki
¦ E .

H. Proof of Theorem 2

The structure of E results in a lengthy proof of Theorem 1.

However, it is easy to guess each Ek by simple experiments,

and leads to a straightforward proof of Theorem 2.

Note that SN (Ek) are the block diagonal matrices whose

(i, j) entry is dense iff S(k− 1) + 1 f i, j f S(k+ 1) + Ä .

Because E is a union of the Ek sparsities, SN (E) is therefore

the set of matrices with overlapping block diagonals, which

are known to be chordal [8, Section 8.2].

It remains to identify the maximal cliques of G(V, E). First

consider k < p with k g 1, and observe that (N,N) ̸∈ Ek.

By construction each Ek is the edges of a clique, and when

k < p such Ek is also not contained by any other Ek′ because
{
S(k − 1) + 1 < S(k′ − 1) + 1, if k < k′

S(k′ + 1) + Ä < S(k + 1) + Ä, if k > k′,

so there exists (i, j) ∈ Ek \ Ek′ with i = j = S(k − 1) + 1
when k < k′, and i = j = S(k + 1) + Ä when k > k′.
Thus, Ek is in fact the edges of a maximal clique containing

indices i that satisfy S(k−1)+1 f i f S(k+1)+Ä , which

are exactly the conditions of Ck for k < p.

Now consider k > p with k f K − 1, and observe that

Ek ¦ Ep because any (i, j) ∈ Ek will satisfy

S(p− 1) + 1 < S(k − 1) + 1 f i, j f N f S(p+ 1) + Ä,

and so (i, j) ∈ Ep as well. Ep is therefore the edges of a

clique that contains all other cliques that contain N , and is

thus maximal — corresponding to the description of Cp. □

I. Proof of Theorem 3

Because Z(µ) ∈ S
N (E) and G(V, E) is chordal with

maximal cliques {C1, . . . , Cp}, conclude from Lemma 1 that

Z(µ) ¯ 0 iff each Zk ¯ 0. □
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