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Abstract—The performance of deep learning (DL) empowered
wireless communications, networking, and sensing depends on
the availability of sufficient high-quality radio frequency (RF)
data, which is more difficult and expensive to collect than other
types. To overcome this obstacle, we propose to harness the power
of diffusion models on latent domains to generate hyper-realistic
RF data for RF sensing. We develop a novel lightweight AIGC
framework centered on latent domains, termed RFID-ACCLDM
(Activity Class Conditional Latent Diffusion Model), to generate
large quantities of RF data at low cost, conditioned on activity
class labels. We demonstrate the high quality of RFID-ACCLDM
generated data via the Frechet Inception Distance (FID) metric,
along with a representative downstream task of human activity
recognition (HAR). The model trained with synthesized data
outperforms its counterpart trained by real data.

Index Terms—Artificial intelligence generated content (AIGC),
Conditional diffusion, Data augmentation, Human activity recog-
nition (HAR), Radio frequency (RF) sensing.

I. INTRODUCTION

The past decade has witnessed significant progress deep

learning (DL)-based wireless communications and network-

ing [1]. However, the availability of vast amounts of high-

quality radio frequency (RF) data is a major determinant of

the efficacy of most DL-based methods. RF data possesses

unique randomness features and is much more difficult to

collect than images or texts. First, RF data is very sensitive

to the open-space propagation environment; any variation in

the transceiver location or the surroundings could create a

different data domain. Second, transceiver devices, waveforms,

frequency bands, and protocols all have a significant impact

on measured RF data. Third, the wireless channel is also time-

dependent, exhibiting large variations over the time of the

day, day of the week, and months. Because of such temporal,

spectral, and spatial dependencies, collecting RF datasets is

an extremely costly task, not to mention that a collected RF

dataset might only be used to a limited extent in a different

setting. As a result, the first obstacle to overcome in making

“ML/AI for wireless” successful is obtaining RF data with

high fidelity and diversity while keeping costs low.

Artificial intelligence-generated content (AIGC) has

emerged as a significant trend recently. Unprecedented

systems such as ChatGPT, DALL-E, and Gemini are leading

the way towards Artificial General Intelligence (AGI).

Transformers and diffusion models are commonly used

as the backbone for these applications, which are mostly

developed in the context of text-to-image generation or

text-prompted AI agents. Can we harness the power of

AIGC to tackle wireless communication problems, especially

generating hyper-realistic RF data? As an earlier generation

of AIGC technology, Generative Adversarial Networks

(GANs), have been investigated for data augmentation [2]–

[4]. However, GANs can only be leveraged as a performance

booster via fine-tuning or augmentation with great room for

improvement [5]. Synthesized data of low fidelity or low

diversity is typically the combined outcome of the stochastic

nature of RF data and the difficulty in training GAN models.

The low-dimensional and simplistically synthesized data

would have limited utility in RF sensing applications,

including human activity recognition (HAR) [6], [7].

In the domain of computer vision (CV), 3D pose animation

data of great fidelity, diversity, and coherence have been

generated utilizing diffusion models [8]–[10]. Chen et al. [11]

went one step further in generating vivid 3D human motion

given a wide array of input prompts by performing diffusion

models on the motion latent space. In this paper, we take one

step further to propose utilizing diffusion models on latent

domains that preserve the time-varying nature of RF sensing

data, to generate hyper-realistic RF sensing data for HAR.

In particular, we shall establish a novel lightweight AIGC

framework centered on latent domains for RFID sensing,

named RFID-ACCLDM (RFID-based Activity Class Condi-

tional Latent Diffusion Model), to synthesize high-quality and

high-diversity RF data at low costs, conditioned on a range of

activity classes. We also construct an RFID sensing system that

interrogates the RFID tags attached to test subjects’ joints for

HAR as a representative example of downstream tasks for our

AIGC model. The conditional latent diffusion model (CLDM)-

based RFID-ACCLDM system will generate massive amounts

RF data for training the RFID sensing system, thereby saving

the enormous work of collecting training RF data with human

labor.

The main contributions of this study can be summarized as

follows:

• To the best of our knowledge, this is the first work that

applies CLDM to generate RF data. Our AIGC data

is of higher quality than existing methods in terms of

accessibility, quantity, fidelity, and diversity. The pro-

posed AIGC model only requires a minimal quantity of

real RF training data, combined with the utilization of

latent representations, thus saving a substantial amount

of time and computation resources on diffusion training

and inference.
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• We quantitatively show that the RFID-ACCLDM gener-

ated data is of high quality through metric of Frechet

Inception Distance (FID) [12].

• Our RFID-ACCLDM generated data is highly effective

in boosting the performance of HAR tasks without the

need for mitigating the domain gaps using additional real

RF data. We demonstrated this by using a representative

downstream task of HAR with RFID sensing, where the

DL model trained with RFID-ACCLDM generated data

outperforms that trained with real RF data.

In conclusion, we address two important problems with an

AIGC for RF sensing approach: (i) how to save the demanding

cost of collecting RF data, and (ii) how to conveniently

synthesize large amounts of high-quality RF data for effective

training of ML models.

The remainder of this paper is structured as follows. We

review related work in Section II and then describe the system

design in Section III. Section IV presents our experimental

study and Section V summarizes this paper.

II. RELATED WORKS

Diffusion-based AIGC applications have largely been ex-

plored in the domain of CV. Ground-breaking results on image

synthesis were reported in [13]. The fidelity of these generated

content and the generalizability and adaptability of diffusion

models have inspired several applications utilizing diffusion

in fields outside of CV. Cao et al. [14] applied diffusion

models in high-frequency spaces and achieved excellent, fast

MRI reconstruction performance. Moreover, diffusion models

conditioned on inputs such as texts and labels have also been

proven to be capable of generating more complex and variant

data. A conditional Denoising Diffusion Probabilistic Model

(DDPM) was used to generate coarse but complete 3D point

clouds based on real-scanned partial 3D point clouds [15],

while a conditional Score-based Diffusion model was used for

time-series imputation tasks for healthcare and environment

data [16].

With the increasingly difficult task of bettering content

generation, some researchers have shifted their attention to the

simpler, lower-dimensional latent space. The ingenious and

natural idea that diffusion models should have even better

performance on latent dimensions, stimulates some recent

applications across different fields. Latent Diffusion models

(LDMs) were first introduced in [17] and has enabled state-of-

the-art image synthesis without excessive computations. Then,

Blattmann et al. in [18] turned an image-based LDM into

an unprecedented high-quality video generator, by inserting

a temporal dimension based on temporal attention to the

LDM. Vision-based 3D human pose estimations have had

prior success using plain diffusion models [8], but the rather

complicated human movements created a huge computational

overhead for the diffusion model. Instead of directly perform-

ing diffusion on human movements, the authors in [11] per-

formed diffusion on the motion latent space. As a result, novel

fidelity was achieved on extensive human motion generation

with greatly reduced cost. Conditional inputs such as textual

descriptions were embedded to enable vivid generation with

only users’ input prompts.

RFID, WiFi, and FMCW radar have been extensively

exploited for HAR [6]. Recently, the incorporation of DL

models has helped improve RF sensing performance. However,

a massive amount of training data with high quality and

diversity is typically needed for the DL models to work [19].

The inherently massive and noisy RF measurements are also

subject to the impact of changes in the environment, user

location, orientation, and user body shape, leading to a difficult

uphill battle for making DL models scalable and generalizable.

One direct and effective method to address these challenges

is data augmentation, and GAN-based methods have been

investigated in this regard [2], [4], [20]. Amplitude-Feature

Deep Convolutional GAN (AF-DCGAN) [20] was presented

to mitigate the efforts involved in collecting WiFi fingerprints

by synthesizing CSI amplitude feature maps. However, any

alteration to the indoor environment may cause a degradation

in location accuracy. Additionally, a complicated multimodal

GAN [21] including two generators and one classification

model was designed to synthesize CSI (channel state infor-

mation) data for addressing the impacts of environmental

changes. Despite their effectiveness in boosting sensing per-

formance, most GAN-generated data exhibit a relatively large

domain gap from real data, which limits their usefulness. A

simple yet powerful data augmentation approach is needed for

such RF sensing applications.

III. SYSTEM DESIGN

As shown in Fig. 1, the proposed RFID-ACCLDM system

consists of two stages. The first stage is a recurrent variational

autoencoder (R-VAE) that can accurately sample latent dis-

tributions and faithfully reconstruct the latent representations

back into original RF data. The latent space of RF activity

data is compact and lightweight, while capturing a significant

amount of features of the raw RF domain. The second stage

is a CLDM that performs the diffusion process on the latent

dimensions. The trained model is able to mass-generate latent

vector representations that can be decoded into realistic and

diverse RF data corresponding to different human activities.

A. R-VAE

The RF data corresponding to human activities, i.e., xL
1:N =

{xL
i }Ni=1, are 2D time-variant data with numerous features, in

which N stands for the time frame number, and L denotes

the number of RF features. RF signals are readily impacted

by nearby movements, and, when captured by RF devices,

behave in a cyclical fluctuation pattern distinctive to different

human activities. To learn the time dependencies in temporal

RF data and sample latent vectors with time dependencies,

we incorporate LSTM (Long Short-Term Memory) units into

the VAE encoder and decoder structure, termed LSTM RF

encoder ε and LSTM RF decoder ψ, respectively. The encoder

ε encodes real RF data xL
1:N into a latent vector z = ε(xL

1:N ) ∈
R1×ld, whose dimension is a 1D vector with arbitrary length.

The LSTM encoder is fed with the input RF sequence over
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Figure 1. The procedure of conditional RF data generation with RFID-
ACCLDM. The reverse process p (see (2)) progressively transforms random
Gaussian noises into plausible time series data, conditioned on embedded class
labels. The structure of the denoiser, the U-Net model, is also illustrated.

time, and the neural network attempts to store all of its data

in its final hidden state ct (cell state) by encapsulating it.

The mean µ and log variance σ2 can then be obtained after

passing through a linear layer. The latent distribution z can

be parameterized by a normal distribution with such mean

and log variance. To enable back propagation for this random

block computation, a reparameterization trick is executed to

approximate z as z = µ + σ̃ · ϵ, where σ̃ = e0.5×log σ2

and ϵ

is sampled from a standard normal distribution N (0, I) with

the same shape of the standard deviation σ̃. The internal states

are then passed onto the decoder ψ consisting of LSTM cells,

which will be used to reconstruct the target sequence. The

encoder and decoder are implemented by a 3-layer LSTM with

a hidden size of 1,024. The latent length of z is set to 256.

The overall training objective is to minimize the total recon-

struction error and negative Kullback-Leibler (KL) divergence

score, which can be expressed as follows [22]:

min
ϕ,θ

LR−V AE(ϕ, θ) (1)

= Eqφ(z|xL
1:N

)[log pθ(x̃
L
1:N |z)]−KL(qϕ(z|xL

1:N )||p(z)),

where qϕ(z|xL
1:N ) and pθ(x̃

L
1:N |z)] are parametric probability

distributions modeling the encoder and decoder, respectively,

with ϕ and θ being the variational parameters; P (z) repre-

sents the latent distribution of N (0, I). The first term in (1)

is similar to autoencoder’s reconstruction loss and can be

trained with mean squared error (MSE) (xL
1:N − x̃L

1:N )2. The

second term can be transformed to −0.5
∑ld

l=1(1+ log(σ2
l )−

µ2
l − exp log(σ2

l )). In each epoch, the total loss is calcu-

lated through
∑M

m=1 xm for M amounts of RF data with

xm = xL
1:N being the RF data for the mth individual activity.

B. RFID Data Generation with Conditional Latent Diffusion

Denoising diffusion probabilistic models [23] progressively

perturb data with random noises (termed the “forward dif-

fusion” process), and then remove noises in succession to

generate new data samples (termed the “reverse diffusion”

process). The former can be designed with a T-length Markov

chain with fixed-variance scheduler to alter data distribution

into an Isotropic Gaussian distribution, whereas the latter

also utilizes a T-length Markov chain to reverse the Gaussian

corruption by learning the transitional kernels parametrically

modeled by a neural network ϵθ(xt, t) such as the U-Net [24].

Nevertheless, raw RF data typically have sophisticated

motion-specific features over time coupled with high-

frequency outliers, which hinder the diffusion model to learn

the true data distribution. With increasing variations of activity

classes, a base diffusion setup with DDPM schedules and a

U-Net will have difficulties generating realistic RF data true to

their class labels (i.e., human activities), while at the same time

consuming more computational time and resources. Therefore,

we propose to carry out the diffusion process on a represen-

tative and low-dimensional RF latent space, i.e., z ∈ R1×256,

to reduce the cost and enhance the generative quality. To meet

the input dimensions of the U-Net, we first reshape the latent

space into a 2D representation of size 1×16×16. The proposed

RFID-ACCLDM system is capable of generating RFID data

of high fidelity and diversity that closely aligns with various

activity classes. The impressively realistic data samples vividly

capture long-range correlation of movement trajectories as

well as short-range delicate movement information of human

joints.

In RFID-ACCLDM, the latent vector is denoted as zRF
t

for convenient reference at any time step within the forward

and reverse diffusion process. Following the notation, zRF
0 =

ε(xL
1:N ) is the first and pre-noising sample in the forward

process, as well as the final sampled latent vector. The forward

diffusion on latent space can be modeled as a Markov nosing

process as follows:

q(zRF
t |zRF

t−1) = N (zRF
t ;

√
αtz

RF
t−1, 1− αtI).

q(zRF
1:T |zRF

0 ) =

T
∏

t=1

q(zRF
t |zRF

t−1),

in which the constant αt ∈ (0, 1) is a hyper-parameter for

noising and sampling, and αt is calculated as 1− βt.

Furthermore, we use A to designate the class label of human

activities ranging from simple one-limb activities (e.g., drink-

ing) to complex full-body activities (e.g., fortnite dancing).

To enable conditional latent diffusion, we design a reverse

diffusion process tailored to the latent space of RFID sensing,

and a supervised training method. The class label A is taken

as the conditioning input. The Markov chain for the reverse

process of RFID-ACCLDM is defined as:

pθ(z
RF
t−1|zRF

t ,A) = N (zRF
t−1;µθ(z

RF
t , t | A),Σθ(z

RF
t , t | A))

pθ(z
RF
0:T |A) = p(zRF

T )
∏T

t=1pθ(z
RF
t−1|zRF

t ,A).
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Next, we define a new denoiser U-net ϵθ(z
RF
t , t | A), using

activity class labels as the conditional input. The parameteri-

zation of pθ(z
RF
t−1 | zRF

t ) is is given by:

µθ(z
RF
t , t) =

1√
αt

(

zRF
t − 1− αt√

1− ᾱt

(ϵ− ϵθ(z
RF
t , t | A)

)

,

where zRF
t is defined as

√
ᾱt · zRF

0 +
√
1− ᾱt · ϵ0 with

ϵ0 ∼ N (0, I) and ᾱt =
∏t

τ=0 ατ . As in [23], the reverse

process of our RFID-ACCLDM system can trained by solving

the following optimization problem:

min
θ

LRFID−ACCLDM (θ) (2)

= Et,ϵ∼N (0,I),zRF
0

∼q(zRF
0

)

∥

∥

(

ϵ− ϵθ(z
RF
t , t | A)

)∥

∥

2
.

The denoising function ϵθ(z
RF
t , t | A) estimates the noise

vector ϵ that was introduced to its noisy latent vector input zt.

During the training of the U-Net, the encoder ε can be frozen

to compress motion into zRF
0 . If the overhead of computation

is troublesome for computing devices with limited power,

latent vectors of RF data from different activity classes can

be computed before the diffusion at the cost of scalability and

convenience for the entire system. During the reverse diffusion

stage, ϵθ(z
RF
t , t | A) first predicts zRF

0 with T successive

denoising steps. Then the decoder ψ reshapes and decodes

zRF
0 back to RF data corresponding to specific human activity.

The U-Net, deployed as the denoiser network for the diffu-

sion process of RFID-ACCLDM, is based on a wide ResNet.

We choose U-Net since it can compress and reconstruct a

noisy latent input at time step t to predict the noise that has

been added to the latent input, hence achieving the effect

of “denoising,” which is one step of the reverse diffusion

process of generating new samples. The training objective in

each epoch can be conveniently modeled by (ϵθ − ϵ)2, i.e.,

the MSE function between the predicted noise ϵθ and the

introduced noise ϵ. To capture the time step t when the latent

representation within a batch is currently computed for the

U-Net, we apply sinusoidal positional encodings to encode

the noise level and time step t. To incorporate activity class

conditioned diffusion generation, we first embed the class

labels using an MLP (multilayer perceptron) layer, which can

be easily implemented through a Pytorch function. The class

embedding is then integrated into the U-Net by concatenating

the embedded label with time step t. We denote the resulting

time step as t̃. The implementation of our U-Net network is

shown in the lower part of Fig. 1. We use a basic architecture

of U-Net model for diffusion including residual blocks and

the self-attention mechanism. The encoder compresses our

reshaped latents zRF
0 ∈ R16×16 to as small as R4×4.

IV. EXPERIMENTAL STUDY

A. Implementation and Experiment Setting

As a paradigmatic downstream task, we design a holistic

RFID-based HAR system to evaluate the performance and

advantages of our generative network model. As shown in

Fig. 2, an off-the-shelf Impinj R420 reader, passive ALN-9634

(HIGG-3) tags, and three S9028PCR polarized antennas are

Figure 2. The setup of the RFID-based HAR experimental system.

used in the system. We attach 12 RFID tags to the test subject’s

joints, including the hip, neck, left upper leg, left knee, right

upper leg, right knee, left shoulder, left arm, left forearm,

right shoulder, right arm, and right forearm. A Lenovo Legion

gaming laptop with an Nvidia GTX 1660 Ti GPU and an

Intel Core i7-9750H CPU is used to process raw RF signals

and train diffusion models.

We collect RFID phase data from three antennas of the

reader An Xbox Kinect 2.0 device is used to obtain vision

data, which is used as labels for supervised training in the

original baseline system. The variations between RFID phase

values from two successive time frames are computed as the

ground truth RF data. The sampling rate of RFID phase data

is around 110 Hz, while the frame rate of Kinect is 30 frames

per second (fps). Every collected data sample is preprocessed

and synchronized prior to being downsampled to 7.5 Hz.

In the R-VAE and diffusion training, we set the length of

RFID activity data to 64 samples (or, 8.53 seconds). A window

of 30 frames (4 seconds) with a sliding factor of 10 frames

(1.3 seconds) is slid across 64 frames to obtain 4 RFID data

units of 30 frames, which are used for the downstream task

of HAR. The total dimension of RF data is 30 × 36 where

30 refers to the number of time frames, and 36 denotes the

number of RF features.

We use six RFID data files with a length of 64 frames per

activity class as the U-Net’s training data. These data were

captured from three test volunteers with similar body shapes.

All our models are trained with the AdamW optimizer with a

batch size of 4. As for the R-VAE training, the learning rate is

set to 0.0001. The training task lasts 4 hours. A linearly scaled

variance βt is chosen from β0 = 10−4 to βT = 0.02 for the

diffusion training. The number of noising steps T is set to

1,000. We utilize a cyclical learning rate mechanism with the

maximum learning rate set to 0.005. For run time, the U-Net

is trained for 12 hours, while the diffusion training on raw

RFID data takes 16 hours. For sampling, our latent diffusion

technique only takes 4 seconds to generate one sample, while

the diffusion model on raw data takes nearly 40 seconds.

Classifier-free guidance [25] is implemented to improve data

generation and prevent the model from synthesizing images of

conflicting classes.
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Table I
COMPARISON OF FID SCORES: RFID-ACCLDM VS. RFPOSE-GAN

Standing still Waving Walking

RFID-ACCLDM (proposed) 4.5583 7.0073 3.6421

RFPose-GAN [4] 36.1981 32.2464 45.3412

B. Quality of Synthesized RF Data

A distinctive advantage of the proposed RFID-ACCLDM

model is that it produces high-quality RFID data with great

diversity, as opposed to merely producing data that is homoge-

neous and similar to the training set. Such diversity is highly

desirable for training robust DL models. In this study, we

employ the Frechet Inception Distance (FID) [12] to evaluate

the distribution similarity between collections of generated

and real RFID data. The FID score quantifies the distance

between feature vectors in a high-dimensional latent space.

A lower FID score indicates that the generated RFID data is

more faithful to the real data (higher fidelity).

We randomly sample 80 latent diffusion generated and real

RFID data from different activities for FID calculation and

comparison. The activities range from a simple activity of

standing still to a complicated activity of boxing that involves

all the body parts. As can be seen in Table I, superior FID

scores are achieved by our proposed model over our previ-

ous work RFPose-GAN [4]. RFPose-GAN uses a supervised

GAN to map a specific 3D pose data to its corresponding

synthesized RFID data. It may be hard to train such GAN

models, where only some parts of the data distributions were

learned sometimes. Consequently, it is rather challenging to

synthesize specific activities with minimal variations over time

under noise and interference from the environment, which

result in the high FID scores of RFPose-GAN. On the other

hand, the significantly lower FID scores of RFID-ACCLDM

demonstrate the high fidelity of its generated RFID data. Such

a caliber of FID scores is on a par of state-of-the-art image

synthesis works [17].

C. Human Activity Recognition Results

As a final test of RFID-ACCLDM, we use its synthesized

RFID data to train a downstream task’s DL model. In this

study, the quality of our generated data is tested using an

RFID-based HAR system with six activity classes. We deploy

a straightforward CNN model for the classification task, which

consists of four 2D convolutional layers each accompanied by

a dropout layer to help reduce overfitting. The second, third,

and fourth convolution layer is followed by a maxpooling2D

layer. For the purpose of calculating final accuracy, the convo-

lution output is flattened and fed into a fully connected layer.

Given that the The test data are from the collected ground

truth data including two different subjects at locations slightly

different from where the training data was collected. They

are also processed with time windows starting and ending at

random time frames to try to replicate a real-life scenario.

In Fig. 3, three confusion matrices for RFID-based HAR

are presented. They are obtained by training on 32 minutes

of real data (left), 16 minutes of RFID-ACCLDM generated

data (middle), and 64 minutes of RFID-ACCLDM generated

data (right), respectively. Despite using synthesized data that

is only half the amount of real data, the accuracy and F1 score

are slightly better than training with real data. This is because

our synthesized data offers more fine-grained diversity while

reaching the same level of fidelity as real data. Furthermore,

with the addition of another 48 minutes of RFID-ACCLDM

synthesized data, both the accuracy and F1 score completely

outperform the case of training with real data by a large margin

(reaching 91.80% and 91.56%, about a 9.7% improvement).

This result proves the superiority of our AIGC model because

it only takes us about 36 minutes to create this amount of

synthesized data. It is important to note that the CNN designed

for the classification task is only to showcase the effects of

our generated data, but not to bring out the full potential

of such data and real data. Future work will involve a more

comprehensive system of classifiers for an ablation study.

Fig. 4 shows a comprehensive comparison of F1 scores

obtained through our proposed model by progressively syn-

thesizing larger amounts of data at different training epochs.

It can be seen that the F1 score is steadily improved as more

synthesized data are used in model training. The F1 curve is

able to surpass the model trained on 32 minutes of real data

when only 16 minutes of generated data are used after 480

epochs of pursuit. With 64 minutes of synthesized samples,

the F1 curve becomes higher than that of training on 32

minutes of real data for the entire training process. The models

trained on 128 minutes of synthesized data converge to a high-

performance state after merely 40 epochs, and its F1 curve

reaches a new height of 93.05%. This demonstrates the greatly

reduced domain gap between real and generated data, which

is very common in the case of GAN generated data.

It is important to highlight that the superior F1 scores are

obtained by only using synthesized data: this is an AIGC

method, rather than a data augmentation method. This exper-

iment proves that the data generated by the proposed RFID-

ACCLDM method are can replace real data for CNN-based

HAR. The fidelity and diversity of the AIGC RFID data

synthesized by our model are validated.

V. CONCLUSIONS

In this paper, we proposed an AIGC for RF sensing approach

to address the challenge of lacking RF data. The proposed

RFID-ACCLDM framework utilizes a latent diffusion model

conditioned on activity class labels to generate RFID sensing

data. We demonstrated the high quality and usefulness of

the synthesized data by the proposed RFID-ACCLDM system

through the metric of FID, followed by a representative down-

stream task. The proposed AIGC for RF sensing approach

offered a convincing solution to the pressing issues of how to

obtain high-quality RF data and minimize the high expense of

RF data acquisition.
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Figure 3. The confusion matrices obtained with CNN models trained on 32 minutes of real data (left), 16 minutes of RFID-ACCLDM generated data (middle),
and 64 minutes of RFID-ACCLDM generated data (right).
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Figure 4. F1 scores of human activity classification when the quantity of
RFID-ACCLDM generated data is progressively increased.

REFERENCES

[1] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
machine learning in wireless networks: Key technologies and open
issues,” IEEE Communications Surveys and Tutorials, vol. 21, no. 4,
pp. 3072–3108, Fourth Quarter 2019.

[2] M. Patel, X. Wang, and S. Mao, “Data augmentation with Conditional
GAN for automatic modulation classification,” in Proc. ACM WiseML

2020, Linz, Austria, July 2020, pp. 31–36.

[3] J. Zhang, F. Wu, B. Wei, Q. Zhang, H. Huang, S. W. Shah, and J. Cheng,
“Data augmentation and dense-LSTM for human activity recognition
using WiFi signal,” IEEE Internet of Things J., vol. 8, no. 6, pp. 4628–
4641, Mar. 2021.

[4] Z. Wang, C. Yang, and S. Mao, “Data augmentation for RFID-based
3D human pose tracking,” in Proc. IEEE VTC-Fall 2022, London, UK,
Sept. 2022, pp. 1–2.

[5] J. Wang, L. Zhang, C. Wang, X. Ma, Q. Gao, and B. Lin, “Device-free
human gesture recognition with generative adversarial networks,” IEEE

Internet of Things Journal, vol. 7, no. 8, pp. 7678–7688, Aug. 2020.

[6] C. Yang, X. Wang, and S. Mao, “RFID-Pose: Vision-aided 3D human
pose estimation with RFID,” IEEE Transactions on Reliability, vol. 70,
no. 3, pp. 1218–1231, Sept. 2021.

[7] ——, “TARF: Technology-agnostic RF sensing for human activity
recognition,” IEEE Journal of Biomedical and Health Informatics,
vol. 27, no. 2, pp. 636–647, Feb. 2023.

[8] G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-Or, and A. H.
Bermano, “Human motion diffusion model,” in Proc. ICLR 2023, Kigali,
Rwanda, May 2023, pp. 1–16.

[9] W. Shan, Z. Liu, X. Zhang, Z. Wang, K. Han, S. Wang, S. Ma,
and W. Gao, “Diffusion-based 3D human pose estimation with

multi-hypothesis aggregation,” arXiv preprint arXiv:2303.11579, Aug.
2023. [Online]. Available: https://arxiv.org/abs/2303.11579

[10] C. Rommel, E. Valle, M. Chen, S. Khalfaoui, R. Marlet, M. Cord,
and P. Perez, “DiffHPE: Robust, coherent 3D human pose lifting with
diffusion,” in Proc. IEEE/CVF ICCV Workshops, Paris, France, Oct.
2023, pp. 3220–3229.

[11] X. Chen, B. Jiang, W. Liu, Z. Huang, B. Fu, T. Chen, and G. Yu,
“Executing your commands via motion diffusion in latent space,” in
Proc. IEEE/CVF CVPR 2023, Vancouver, Canada, June 2023, pp.
18 000–18 010.

[12] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local
Nash equilibrium,” in Proc. NIPS 2017, Long Beach, CA, Dec. 2017,
pp. 6629–6640.

[13] P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image
synthesis,” in Proc. NeurIPS 2021, Virtual Conference, Dec. 2021, pp.
8780–8794.

[14] C. Cao, Z.-X. Cui, S. Liu, H. Zheng, D. Liang, and Y. Zhu,
“High-frequency space diffusion models for accelerated MRI,”
arXiv preprint arXiv:2208.05481, Dec. 2022. [Online]. Available:
https://arxiv.org/abs/2208.05481

[15] Z. Lyu, Z. Kong, X. XU, L. Pan, and D. Lin, “A conditional point
diffusion-refinement paradigm for 3D point cloud completion,” in Proc.

ICLR 2022, Virtual Conference, Apr. 2022, pp. 1–24.
[16] Y. Tashiro, J. Song, Y. Song, and S. Ermon, “CSDI: Conditional score-

based diffusion models for probabilistic time series imputation,” in Proc.

NeurIPS 2021, Virtual Conference, Dec. 2021, pp. 1–13.
[17] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,

“High-resolution image synthesis with latent diffusion models,” in Proc.

IEEE/CVF CVPR 2022, New Orleans, LA, June 2022, pp. 10 684–
10 695.

[18] A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler,
and K. Kreis, “Align your latents: High-resolution video synthesis with
latent diffusion models,” in Proc. IEEE/CVF CVPR 2023, Vancouver,
Canada, June 2023, pp. 22 563–22 575.

[19] C. Li, Z. Cao, and Y. Liu, “Deep AI enabled ubiquitous wireless sensing:
A survey,” ACM Comput. Surv., vol. 54, no. 2, pp. 1–35, Mar. 2021.

[20] Q. Li, H. Qu, Z. Liu, N. Zhou, W. Sun, S. Sigg, and J. Li, “AF-DCGAN:
Amplitude feature deep convolutional GAN for fingerprint construction
in indoor localization systems,” IEEE Trans. Emerg. Topics Comput.

Intell., vol. 5, no. 3, pp. 468–480, June 2021.
[21] D. Wang, J. Yang, W. Cui, L. Xie, and S. Sun, “Multimodal CSI-based

human activity recognition using GANs,” IEEE Internet of Things J.,
vol. 8, no. 24, pp. 17 345–17 355, Dec. 2021.

[22] D. P. Kingma and M. Welling, An Introduction to Variational Autoen-

coders. Boston, MA: Now Publishers, 2019.
[23] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic

models,” arXiv preprint arxiv:2006.11239, Dec. 2020. [Online].
Available: https://arxiv.org/abs/2006.11239

[24] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Medical Image

Comput. Computer-Assisted Intervention 2015, Munich, Germany, Oct.
2015, pp. 234–241.

[25] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” in Proc.

NeurIPS 2021 Workshops, Virtual Conference, Dec. 2021, pp. 1–8.

2024 International Conference on Computing, Networking and Communications (ICNC)

1097
Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on July 25,2024 at 06:52:08 UTC from IEEE Xplore.  Restrictions apply. 


