Check for
Updates

Assistant Dashboard Plus — Enhancing an Existing Instructor
Dashboard with Difficulty Detection and GPT-based Code

Clustering
Samuel George Tao Huang Chandler Robinson
The University of North Carolina at The University of North Carolina at The University of North Carolina at
Chapel Hill Chapel Hill Chapel Hill

Chapel Hill, NC, USA
sdgeorge@cs.unc.edu

Chapel Hill, NC, USA
thuang@unc.edu

Chapel Hill, NC, USA
chandle@unc.edu

Gabriel Schell Wei Shan Zigian Zhao
The University of North Carolina at The University of North Carolina at The University of North Carolina at
Chapel Hill Chapel Hill Chapel Hill

Chapel Hill, NC, USA
gabrieli@ad.unc.edu

Zeqi Zhou
The University of North Carolina at
Chapel Hill
Chapel Hill, NC, USA
zegi@ad.unc.edu

ABSTRACT

As interest in programming as a major grows, instructors must

accommodate more students in their programming courses. One

particularly challenging aspect of this growth is providing quality

assistance to students during in-class and out-of-class program-
ming exercises. Prior work proposes using instructor dashboards

to help instructors combat these challenges. Further, the introduc-
tion of ChatGPT represents an exciting avenue to assist instructors

with programming exercises but needs a delivery method for this
assistance. We propose a revision of a current instructor dashboard

Assistant Dashboard Plus that extends an existing dashboard
with two new features: (a) identifying students in dificulty so that
instructors can effectively assist them, and (b) providing instruc-

tors with pedagogically relevant groupings of students’ exercise

solutions with similar implementations so that instructors can pro-

vide overlapping code style feedback to students within the same
group. For dificulty detection, it uses a state-of-the-art algorithm

for which a visualization has not been created. For code cluster-
ing, it uses GPT. We present a first-pass implementation of this

dashboard.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IUI Companion "24, March 18-21, 2024, Greenville, SC, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0509-0/24/03

https://doi.org/10.1145/3640544.3645231

Chapel Hill, NC, USA
wshan@unc.edu

54

Chapel Hill, NC, USA
zigian@ad.unc.edu

Prasun Dewan

The University of North Carolina at

Chapel Hill
Chapel Hill, NC, USA
dewan@cs.unc.edu

CCS CONCEPTS

* Human-centered computing = Graphical user interfaces; User
interface design; Visualization toolkits; Graphical user interfaces;
» Applied computing > Computer-assisted instruction.

KEYWORDS

Computer programming, Dashboards, Learning at scale, ChatGPT,
GPT

ACM Reference Format:

Samuel George, Tao Huang, Chandler Robinson, Gabriel Schell, Wei Shan,
Zigian Zhao, Zeqi Zhou, and Prasun Dewan. 2024. Assistant Dashboard
Plus — Enhancing an Existing Instructor Dashboard with Dificulty De-
tection and GPT-based Code Clustering. In 29th International Conference
on Intelligent User Interfaces - Companion (Ul Companion '24), March 18—
21, 2024, Greenville, SC, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3640544.3645231

1 INTRODUCTION & RELATED WORKS

Interest in computer science as a major continues to grow [1], and
this increase in interest has naturally led to a rise in enrollment in
computer science courses [11]. Large enrollment combined with
the fact that programming is already a challenging subject to teach
[12] has led to the development of several tools to help instructors
with a particularly challenging aspect of handling large classes,
which is assisting students with programming exercises.
Instructor dashboards are one such set of tools developed to ad-
dress this challenge. These dashboards provide visualizations and
interfaces with the goals of (a) helping instructors track students’
progress on programming exercises so they can adequately gauge
exercise and course pace [13] [10] [6] [4], (b) identifying students
in dificulty during exercises to provide them help [4] [6] [3], and

https://orcid.org/0000-0002-8492-5128
https://doi.org/10.1145/3640544.3645231
https://doi.org/10.1145/3640544.3645231
https://doi.org/10.1145/3640544.3645231

1UI Companion ’24, March 18-21, 2024, Greenville, SC, USA

(c) generating code clusters from similar code solution implemen-
tations to provide bulk code style feedback [5] [14] [7]. The most
recent dashboard (to our knowledge) in the instructor dashboard
space, VizProg, attempts to meet all three of these goals [15]. Aside
from the pedagogical goals of these dashboards, they also target
a wide variety of programming exercise types from those given
in-class, which we call Synchronous exercises, to those given as
take-home exercises, which we call Asynchronous exercises.

Many of these dashboards are intelligent dashboards — that is,
they display Al inferences. These dashboards, thus, contribute to
both Al and user interface (Ul) design.

Not all Al-based class analytics research, however, has been
visualized. Two such technologies involve dificulty detection [2]
[9] and code-clustering capabilities of large language models, such
as ChatGPT.

We have developed a system to provide a dashboard-based de-
livery method for these two kinds of technologies. Previous work
on dashboards has proposed alternatives to existing Uls based on
new Ul elements. On the other hand, our system creates two new
extensions to an existing dashboard Ul that are consistent with the
original dashboard’s Ul. The result is a less revolutionary Ul than
dashboard Uls designed from scratch — hence a demo submission.
However, its advantage is that an instructor wishing to track the
wide range of analytics the system provides can use a single Ul
rather than multiple Uls. The specific analytics provided by our
dashboard Ul are:

¢ An indication of class pace regardless of exercise type (syn-
chronous or asynchronous).

¢ An identification of students in dificulty that works regard-
less of exercise type (synchronous or asynchronous).

* GPT-supported grouping of exercise solutions that represent
pedagogically relevant groups that can share the same code
style feedback.

We next discuss the Ul and algorithms we use for a first-pass im-
plementation to provide these analytics. We call this new dashboard
Assistant Dashboard Plus. Our current implementation runs on
a local computer with static data from our relevant algorithms. In
the future, we will port this implementation to a website with the
algorithms and dashboard running in real-time. Thus, this work
only focuses on the Ul design and the relevant algorithms to meet
our analytic goals.

2 ASSISTANT DASHBOARD PLUS

We next show the original Assistant Dashboard and the current
implementation of our Assistant Dashboard Plus.

2.1 Extending Assistant Dashboard Ul

Figure 1 shows a side-by-side comparison of the original Assistant
Dashboard (left) and our new Assistant Dashboard Plus (right).
We extended Assistant Dashboard to meet our analytic goals in
several ways. The original Assistant Dashboard already contains
a view of the class pace and students with dificulty in its original
implementation (Features A-C), meeting part of our analytic goals.
The original dashboard’s dificulty detection was limited to syn-
chronous exercises. However, we adapted the dashboard to support
class pace (Features 1-2) and extended dificulty detection (Features

55

George et al.

3-4) to asynchronous exercises. In addition, we added a tab (Feature
5) to display student solution groups. We leveraged the existing
visual feature for dificulty detection (Feature C) to support a visual
representation of these groupings (Feature 6). In addition, we allow
the instructor to look at a student’s current code like the original
dashboard (Features D & 7), and we expanded the dashboard to
work with multiple exercises (Feature 8). Finally, we removed all the
original Assistant Dashboard visual elements for gauging model
performance (Feature 9) since these are only used in the original
implementation to evaluate their dificulty detection algorithm.

2.2 Assistant Dashboard Plus Scenario

The unique aspect of our system is the set of aspects of student
progress it visualizes in a single user interface. Below, we present a
scenario — a thought experiment — to motivate the user interface.

Imagine an instructor who has given a large class of students a
take-home programming exercise. The instructor wants to see how
many students have started and pulls up Assistant Dashboard
Plus. Using the class pace features (Features 1-2), The instructor
finds that only ™6 of students have started the assignment and
sends an email reminding students that the exercise is due in less
than a week.

Two days before the assignment is due, the instructor holds
ofice hours, and no one attends. Not wanting to waste ofice hours,
the instructor opens our instructor dashboard and finds several
students who need help based on their predicted time to finish
(Feature 3). The instructor checks their current code (Feature 7),
emails them asking if they need help, and gives them advice —
personalized learning — based on their working code. One student
responds that they are in dificulty, indicating the instructor was
able to intervene early to help a struggling student, and the student
decides to come to ofice hours. With our dashboard, the instructor
gets a time-based visualization of students with dificulty, and the
ofice hours are well-spent.

Finally, the assignment ends, and the instructor wants to under-
stand if students correctly used the concepts taught in class to solve
the exercise. Again, the instructor opens our dashboard and checks
the GPT-based final solution code groupings (Features 5-6). The
instructor finds a group of students who gave solutions that do not
correctly apply the taught concepts and decides to discuss this set
of solutions and how to improve them in class. Thus, the instructor
can provide all those students with valuable code style feedback
and optimize their teaching based on their real problems.

In this scenario, without our dashboard, the instructor would
have to use multiple tools, such as a modified Assistant Dashboard
that supports asynchronous exercises [4] and the ChatGPT interface
[8] to discover solution groupings. Similarly, the instructor could
modify a single existing dashboard, such as VizProg [15] to support
GPT-based groupings to gain the benefits of our single dashboard.
In the future, we intend to expand our dashboard to incorporate
additional algorithms for dificulty detection (Feature 4) and allow
its use for multiple assignments (Feature 8). We do not discuss these
features in this work. We next examine the algorithms enabling
this scenario.

Assistant Dashboard Plus — Enhancing an Existing Instructor Dashboard
with Difficulty Detection and GPT-based Code Clustering

IUI Companion ’24, March 18-21, 2024, Greenville, SC, USA

Selected Student: 3010

Predicted Total Score: 0.20

Timeline
Time Since Start: 0.0min

10x 100x 1000x Stop

Play Simulation:

Class Summary

Task1

Task 2 -
Task3 e

Code State

Classroom (n=30)

© Py
’

[

Predicted Score Accuracy True Positive Rate

Previous States

A A

A A A

high

Figure 1: The left Ul is the original Assistant Dashboard by Diana et al. [4]. It allows instructors to gauge class pace (Features A-
B) and identify students in dificulty (Feature C). It also gives the instructor context to assist with that dificulty (Feature D).
The right Ul is our new Assistant Dashboard Plus. It provides the same view of class pace (Features 1-2) but includes a new
dificulty detection algorithm based on time-to-finish (Feature 3) and a student’s code history (Feature 4). It also shows student
solution groupings (Feature 5) and leverages a visual feature similar to the original dashboard (Feature C) to show these groupings
(Feature 6). Instructors can look at a student’s current code as in the original dashboard (Features D & 7) and browse this view for
multiple programming exercises (Feature 8). Assistant Dashboard Plus excludes all the in-dashboard metrics for gauging model

performance in the original dashboard (Feature 9).

2.3 Assistant Dashboard Plus Algorithms

2.3.1 Class Pace. We implemented the same algorithm as the one
used in Assistant Dashboard to determine class pace.

2.3.2 Difficulty Detection. The original implementation of Assis-
tant Dashboard assumed that Predicted Score was a good indicator

of students in dificulty. However, our experience from several

real-world asynchronous assignments shows that most students
finish asynchronous programming exercises and get perfect scores.
This finding is intuitive since most students, given ample time and
instructor help, will complete an assignment and get full credit.
Therefore, we implemented an existing algorithm that lacked a
visual vehicle to identify these students. This algorithm uses an
implementation of Recent Temporal Patterning (RTP) proposed

by Price et al. [9] to predict the time to finish.

2.3.3 Solution Grouping. Finally, we want to provide instructors
with pedagogically meaningful code groupings. We chose to use
GPT for our code groups because of the improved performance
of GPT over time, which we expect to keep improving during the
development of our implementation. The GPT-4-Turbo model we
use for our currentimplementation showed a noticeable improve-
ment over GPT-4, which we used initially. We asked GPT to give
us pedagogically meaningful groups without giving the number of
groups or examples — what we call Zero-shot Grouping.

We choose to use this method because it does not require efforton
the instructor’s part. In addition, GPT can automatically generate a
simple summary of the solution group in natural language (Feature
6 legend) to help guide instructors to specific solution groups. To
our knowledge, no other unsupervised grouping algorithm can
produce such a summary.

56

3 SUMMARY, DISCUSSION & FUTURE WORKS

Here, we present a first-pass implementation of Assistant Dash-
board Plus, an expansion of an original instructor dashboard by Di-
ana et al. that supports gauging students’ pace, identifying students
in dificulty, and using GPT to create pedagogically meaningful
groups of students’ solutions to programming exercises.

While our dashboard is intended to support all these uses to
benefit instructors, we also see some potential shortcomings. For
instructors, our primary concern is that the Al-based inferences
displayed, such as the students indicated to be in dificulty or the
solution groups presented, lack accuracy. This lack of accuracy
would harm instructors who might waste valuable time during
class or ofice hours by addressing improper solution groups or
engaging with students who are not having dificulty, respectively.
In addition, students who are not in dificulty but are interrupted by
the instructor might lose focus or be discouraged at being identified
as in dificulty. Another potential limitation is that a single feature-
full user interface may overwhelm an instructor who wishes to use
a subset of the progress metrics supported in our user interface.

It is important to do real-time studies to validate the usefulness
of our instructor dashboard and determine the severity of potential
shortcomings. We intend to do studies that deploy the dashboard
during synchronous and asynchronous programming exercises and
refine the user interface and algorithms based on these studies.

ACKNOWLEDGMENTS

This work was funded in part by NSF awards OAC 1829752 and
1924059. The detailed and insightful comments on the paper im-
proved the discussion of our technical contributions.

1UI Companion ’24, March 18-21, 2024, Greenville, SC, USA

REFERENCES

[1] Nick Anderson. [n.d.]. College is remade as tech majors surge and humanities

dwindle. The Washington Post ([n.d.]). https://www.washingtonpost.com/
education/2023/05/19/college-majors-computer-science-humanities/ Accessed:
2024-01-06.

Jason Carter and Prasun Dewan. 2009. Automatically Identifying That Distributed
Programmers Are Stuck. In Proceedings of the 2009 ICSE Workshop on Cooperative
and Human Aspects on Software Engineering (CHASE '09). IEEE Computer Society,
USA, 12. https://doi.org/10.1109/CHASE.2009.5071403

Jason Carter and Prasun Dewan. 2015. Mining Programming Activity to Promote
Help. 23-42. https://doi.org/10.1007/978-3-319-20499-4_2

Nicholas Diana, Michael Eagle, John Stamper, Shuchi Grover, Marie Bienkowski,
and Satabdi Basu. 2017. An Instructor Dashboard for Real-Time Analytics in
Interactive Programming Assignments. In Proceedings of the Seventh International
Learning Analytics & Knowledge Conference (Vancouver, British Columbia,
Canada) (LAK '17). Association for Computing Machinery, New York, NY, USA,
272-279. https://doi.org/10.1145/3027385.3027441

ElenaL. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C. Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACM Trans. Comput.-Hum. Interact. 22, 2, Article 7 (mar 2015),
35 pages. https://doi.org/10.1145/2699751

Philip J. Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring
for Computer Programming. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’'15).

Association for Computing Machinery, New York, NY, USA, 599-608. https:

//doi.org/10.1145/2807442.2807469

Teemu Koivisto and Arto Hellas. 2022. Evaluating CodeClusters for Effectively
Providing Feedback on Code Submissions. In 2022 |EEE Frontiers in Education
Conference (FIE). 1-9. https://doi.org/10.1109/FIE56618.2022.9962751

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian,
Hao He, Antong Li, Mengshen He, Zhengliang Liu, Zihao Wu, Dajiang Zhu, Xiang
Li, Ning Qiang, Dingang Shen, Tianming Liu, and Bao Ge. 2023. Summary of

57

[9

[10

[11

[12

[14

[15

George et al.

ChatGPT/GPT-4 Research and Perspective Towards the Future of Large Language
Models. arXiv:2304.01852 [cs.CL]

Y. Mao. [n.d.]. One minute is enough: Early Prediction of Student Success and
Event-level Dificulty during Novice Programming Tasks. In: Proceedings of the
12th International Conference on Educational Data Mining (EDM 2019) ([n.d.]).
https://par.nsf.gov/biblio/10136495

Christian Murphy, Gail Kaiser, Kristin Loveland, and Sahar Hasan. 2009. Retina:
Helping Students and Instructors Based on Observed Programming Activities.
SIGCSE Bull. 41, 1 (mar 2009), 178-182. https://doi.org/10.1145/1539024.1508929
Natasha Singer. [n. d.]. The Hard Part of Computer Science? Getting Into Class.
The New York Times ([n.d.]). https://www.nytimes.com/2019/01/24/technology/
computer-science-courses-college.html Accessed: 2024-01-06.

Aaron J. Smith, Kristy Elizabeth Boyer, Jeffrey Forbes, Sarah Heckman, and
Ketan Mayer-Patel. 2017. My Digital Hand: A Tool for Scaling Up One-to-One
Peer Teaching in Support of Computer Science Learning. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (Seattle,
Washington, USA) (SIGCSE '17). Association for Computing Machinery, New
York, NY, USA, 549-554. https://doi.org/10.1145/3017680.3017800

David Stotts and Yu Ji. 2020. Bricks: Extreme Active Learning for Introductory
Programming. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (Portland, OR, USA) (SIGCSE '20). Association for Computing
Machinery, New York, NY, USA, 1418. https://doi.org/10.1145/3328778.3372547
Eliane S. Wiese, Michael Yen, Antares Chen, Lucas A. Santos, and Armando Fox.
2017. Teaching Students to Recognize and Implement Good Coding Style. In
Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale (Cambridge,
Massachusetts, USA) (L@S "17). Association for Computing Machinery, New York,
NY, USA, 41-50. https://doi.org/10.1145/3051457.3051469

Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. VizProg: Identifying Misun-
derstandings By Visualizing Students’ Coding Progress. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI "23). Association for Computing Machinery, New York, NY, USA,
Article 596, 16 pages. https://doi.org/10.1145/3544548.3581516

https://www.washingtonpost.com/education/2023/05/19/college-majors-computer-science-humanities/
https://www.washingtonpost.com/education/2023/05/19/college-majors-computer-science-humanities/
https://doi.org/10.1109/CHASE.2009.5071403
https://doi.org/10.1007/978-3-319-20499-4_2
https://doi.org/10.1145/3027385.3027441
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1109/FIE56618.2022.9962751
https://arxiv.org/abs/2304.01852
https://par.nsf.gov/biblio/10136495
https://doi.org/10.1145/1539024.1508929
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html
https://doi.org/10.1145/3017680.3017800
https://doi.org/10.1145/3328778.3372547
https://doi.org/10.1145/3051457.3051469
https://doi.org/10.1145/3544548.3581516

