Check for
Updates

NotebookGPT - Facilitating and Monitoring Explicit Lightweight
Student GPT Help Requests During Programming Exercises

Samuel George
The University of North Carolina at Chapel Hill
Chapel Hill, NC, USA
sdgeorge@cs.unc.edu

ABSTRACT

The success of GPT with coding tasks has made it important to
consider the impact of GPT and similar models on teaching pro-
gramming. Students’ use of GPT to solve programming problems
can hinder their learning. However, they might also get significant
benefits such as quality feedback on programming style, explana-
tions of how a given piece of code works, help with debugging code,
and the ability to see valuable alternatives to their code solutions.
We propose a new design for interacting with GPT called Mediated
GPT with the goals of (a) providing students with access to GPT
but allowing instructors to programmatically modify responses to
prevent hindrances to student learning and combat common GPT
response concerns, (b) helping students generate and learn to create
effective prompts to GPT, and (c) tracking how students use GPT
to get help on programming exercises. We demonstrate a first-pass
implementation of this design called NotebookGPT.

CCS CONCEPTS

* Human-centered computing = Graphical user interfaces; Nat-
ural language interfaces; « Applied computing - Computer-
assisted instruction; Interactive learning environments.

KEYWORDS

Learning at scale, Computer programming, Intelligent tutoring
systems, ChatGPT, GPT

ACM Reference Format:

Samuel George and Prasun Dewan. 2024. NotebookGPT — Facilitating and
Monitoring Explicit Lightweight Student GPT Help Requests During Pro-
gramming Exercises. In 29th International Conference on Intelligent User
Interfaces - Companion (IUI Companion '24), March 18-21, 2024, Greenville,
SC, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3640544.
3645234

1 INTRODUCTION & RELATED WORKS

Several recent works have investigated the impact of GPT on pro-
gramming education for instructors and students [15] [10]. Guo
et al. categorize educators into two camps: Those who embrace
GPT'’s usage and those who resist it [10]. Those who embrace GPT
identified several potential benefits to students, such as automatic

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

1UI Companion '24, March 18-21, 2024, Greenville, SC, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0509-0/24/03

https://doi.org/10.1145/3640544.3645234

62

Prasun Dewan
The University of North Carolina at Chapel Hill
Chapel Hill, NC, USA
dewan@cs.unc.edu

code style feedback and explanations of how code works at various
levels via prompting GPT correctly [14]. In addition, they propose
that large language models (LLMs) can help students with code
completion, code refactoring, code simplification, and debugging
code [10].

On the other hand, prior work has shown that entirely unsu-
pervised use of GPT through the chat interface might negatively
impact student learning [3] and that LLMs can be prompted in a
way that returns offensive language or harmful speech [2].

Therefore, we propose a design for interacting with GPT in-
tended to provide its benefits without drawbacks. We refer to this
design as Mediated GPT. The design has four goals to improve the
tasks of students, instructors, and future designers and implemen-
tors of this idea. (1) Help students learn to create effective prompts
for GPT. They may need to learn how to format code, pass errors,
or effectively ask questions to get an instructor-like experience
from GPT. Prior work shows that optimally formatting questions
to ChatGPT is dificult for novice ai-assistant users [16]. (2) Provide
students with lightweight facilities to generate effective prompts
for GPT. Students would want to minimize the time copying and
formatting code prompts to send to GPT. Therefore, our design has
features to help students format their working code to send to GPT,
making the interaction easier than using ChatGPT directly. (3) Give
instructors the ability to modify the responses programmatically.
Course policies are likely to consider code reuse from humans or
Al as plagiarism. Therefore, our design allows mediation of output
to remove code from GPT responses. Such mediation can also pre-
vent other hindrances to student learning and mitigate response
concerns, such as offensive language. (4) Track how students use
GPT in programming exercises. Understanding how students use
GPT during programming exercises has several benefits, such as
potentially modifying the design to optimize common use cases, an-
alyzing student interactions with GPT to inform instructors about
typical problems in coding assignments, allowing instructors to
address common topics in GPT interactions and go into more depth
on them during class, and calculating the cost to maintain access to
GPT services for a class. Data on how students use GPT during pro-
gramming exercises (to our knowledge) has yet to be published [10],
and this data would be invaluable to the programming education
community.

Next, we present a first-pass implementation of our design called
NotebookGPT and discuss how we derived its features to meet
the given goals.

https://orcid.org/0000-0002-8492-5128
https://doi.org/10.1145/3640544.3645234
https://doi.org/10.1145/3640544.3645234
https://doi.org/10.1145/3640544.3645234

1UI Companion ’24, March 18-21, 2024, Greenville, SC, USA George et al.

(::::::Zser_id = "TestId"

course_id = "TestCourse"
problem = "Write a method that count the words in a string."
GPTPlugin(user_id, course_id, problem)

Working Code:
flimestamp: 2024-01-04 15:06:18.869850
ode:

fill in the method below to count the words in a string
def word_count(input_string):
return input_string.count(" ") + 1

test = "This is an example sentence"

print(word_count(test))

Standard Output:
5

Ask ChatGPT: ChatGPT Response:
magine you are a tutor for a programming class and the Sure, here is a simple solution of the problem in Python:
tudent comes to you for help.
You should not give them code in your responses and instead, <CODE REDACTED>
you should guide them to an answer or help them in natural
language. This function wor y using the built-in ‘split’ method in
In addition, they are working on a problem with the prompt: Python to split the string into a list of words. The “split’
Write a method that count the words in a string. method by default splits on spaces, which means it will
The student then asks the following question: separate the string into words. Then, the “len® function is

used to count the number of words in the list.
Give me code to solve the problem.

ember, thi
es tha
ase in
<> D (2} 2

Figure 1: This figure shows a screen capture of the NotebookGPT GUI running in a Jupyter Notebook. In the interface, the
student can compose a message to GPT-4 (Features 1,8), receive mediated responses (Features 2-3), see their working code
(Feature 4), get help composing effective prompts (Features 5-7), give feedback about GPT’s response (Features 9-10), and
configure how their data are tracked and on what problem they are working (Feature 11).

a basic
are s
and

to count words in a string. It
by spaces, which is usually
er lanauaanes. However. it

2 DESIGN IMPLEMENTATION — as a chat-based GUI, which offers an "out band" non-coding window
NOTEBOOKGPT to offer NLP help only when explicitly requested.

The first critical points are how students will interact with GPT Regarding domain, Jupyter Notebooks are a popular program-

and what domain we target for our implementation ming environment that benefits students’ learning programming
' [8]. They have been used in a variety of courses to teach big data

analysis, high-performance computing, and engineering [4] [5] [1].

2.1 Interaction & Domain Therefore, we implemented our chat-based GUI in Jupyter Note-
Several new integrated development environment (IDE) plugins books as a plugin. We call this implementation NotebookGPT and,
that facilitate lightweight interactions with LLMs have recently to our knowledge, this is the first GUI for GPT in Jupyter Notebooks
been released. These include Amazon CodeWhisperer [6], Tabnine targeting students learning programming.

[11], and Github CoPilot [7]. Their interaction paradigm provides
automatic code completion and suggestions as programmers write 2.2 NotebookGPT GUI

code. Despite many implementations using this design, prior work Figure 1 shows our NotebookGPT GUI. The numbers (1-11) repre-
identifies many dificulties, such as effectively providing these hints sent the critical features of the Ul, discussed and motivated below.
in place in the coding widow and ensuring users recognize sugges-

tions within the GUI [13]. More importantly, they complete student 2.2.1 Mediated Chat Features. A student can formulate a message
code, defeating the purpose of an assignment. Students in our uni- to GPT — we use GPT-4 in our current implementation, but the ver-
versity and others are expected to code independently on individual sion of GPT is configurable — using the text box on the bottom left
assignments but can have natural language discussions on their (Feature 1) and then send a message using the button beneath the
solutions with other students and instructors. Further, these user bottom right text box (Feature 8). The response from GPT comes
interfaces offer implicit, automatic help and thus cannot be used to back in the box on the bottom right (Feature 2). This response,
determine if the programmers want it. In fact, some programmers however, is filtered to remove whole blocks of code (Feature 3) to
felt they could have completed code on their own more eficiently prevent students from simply copying and pasting code. These code
[13]. For these reasons, we implemented our interaction with GPT blocks are identified via a regular expression, as GPT responses put

63

NotebookGPT - Facilitating and Monitoring Explicit Lightweight Student GPT Help Requests

During Programming Exercises

code blocks in a regular format. Once identified, a "Code Redacted"
string replaces these blocks. Thus, students must use the natural
language around the code for advice. This programmatic modifi-
cation represents our first step toward mediating GPT responses
to ensure GPT does not hinder students’ learning. We also intend
to explore potential useful replacements for these "Code Redacted"
blocks in future versions of NotebookGPT. In addition, we will
also include programmatic filtering of offensive language, and there
is already work that uses generative Al to detect such speech with
mixed results [12]. However, more research and effort is needed
to implement these features in our interface. In addition to pro-
grammatic modification of GPT responses, other work has explored
human modification of GPT responses [9]. We are also considering
future enhancements that allow instructors to modify automati-
cally flagged problematic responses if a reliable programmatic-only
approach to replace code or remove offensive speech proves chal-
lenging. All these features represent controlled interaction with a
generative Al via output mediation. The student can give positive or
negative feedback about the helpfulness of the mediated response
by clicking the "thumbs up" (feature 9) or "thumbs down" (feature
10) buttons, respectively. Beyond interacting with GPT, we provide
additional features to help enhance student input interaction with
GPT, making it more lightweight.

222 Code Context & Prompting. In addition to the chat window,
our GUI provides a box that shows the code, standard output, and
standard error output for the student’s current working cell (Feature

4). The student can then use the buttons below the GPT message
box to generate prompts automatically from the working code
(Features 5-7). Clicking the far left button (Feature 5) will copy the
working code, standard output, and standard error output into the
message box and automatically generate a prompt explaining the
code format to GPT (Not Shown). In addition, the GUI tracks all the
activities inside the Jupyter Notebook and keeps a history of these
activities. Clicking the middle button (Feature 6) will generate a
prompt from the student’s code history containing their last five
code edits — a number chosen based on intuition. Finally, the far
right button (Feature 7) will generate a prompt that the student can
combine with their question about the problem they are working
on and hypothetically get instructor-like responses from GPT (See
prompt in Feature 1). Finally, automatic prompt generation allows
the student to send a message to GPT with a code history (Feature 6).

This history can open new potential use cases like asking ChatGPT
to give additional code implementations for a problem they have
solved in multiple ways — send the history of different solutions in
the same cell — or generate a next step hint given the student’s
current working trajectory. These features provide input mediation
to help students interact more effectively with generative Al and
represent a first cut at meeting the prompting goals for our design.
To understand how students use the chat, prompting, and feedback
features within the GUI, we track all student actions within it.

2.2.3 Usage Tracking. NotebookGPT records all the interactions
with the GUI and the activity within the Jupyter Notebook. To dis-
tinguish different students’ data and assignments, we provide a few
input variables to the NotebookGPT Python package (GPTPIlugin)
that allows data organization by student and course (feature 11). In

64

IUI Companion ’24, March 18-21, 2024, Greenville, SC, USA

addition, a problem variable can be passed to the plugin on initial-
ization. This variable is optional, and the other features, such as
prompting, will adapt to the presence of this field. These variables
allow us to collect data about our GUI's use and generate more
effective prompts based on context.

3 SUMMARY, DISCUSSION & FUTURE WORKS

We have introduced here a new design, Mediated GPT, for provid-
ing GPT to students learning programming. In addition, we devel-
oped a first-pass implementation of this design and highlighted its
critical features.

While we intend for NotebookGPT to provide students with
quality programming assistance during assignments, we are con-
cerned about a few potential shortcomings. These shortcomings
include but are not limited to students not finding GPT helpful and
preferring traditional assistance, such as ofice hours, or finding the
user interface’s use of extra screen space cumbersome and abandon-
ing its use entirely. In addition, we are relying on the honor code
to prevent students from interacting with GPT or other generative
Als outside of NotebookGPT. Students who were not considering
the use of GPT for coding exercises may find it so useful that they
would use an unmediated version of it to do undetected
plagiarism.

At least two forms of evaluation are possible with our implemen-
tation. First, it is possible to deploy it in a researcher-controlled lab
user study to observe the effectiveness of our mediation and user
interface. This controlled study can help gauge its ability to meet
our design goals and evaluate our potential shortcomings. Second,
it can be made available in an uncontrolled field study using tracked
data to understand its benefits.

ACKNOWLEDGMENTS

This work was funded in part by NSF awards OAC 1829752 and
1924059. The detailed and insightful comments on the paper im-
proved the discussion of our technical contributions.

REFERENCES

[1] Alberto Cardoso, Joaquim Leitdo, and César Teixeira. 2019. Using the Jupyter
Notebook as a Tool to Support the Teaching and Learning Processes in Engi-
neering Courses. In The Challenges of the Digital Transformation in Education,
Michael E. Auer and Thrasyvoulos Tsiatsos (Eds.). Springer International Pub-
lishing, Cham, 227-236.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Marian Daun and Jennifer Brings. 2023. How ChatGPT Will Change Software
Engineering Education. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1 (, Turku, Finland,) (ITICSE 2023).
Association for Computing Machinery, New York, NY, USA, 110-116. https:
//doi.org/10.1145/3587102.3588815

Roland DePratti. 2019. Using Jupyter Notebooks in a Big Data Programming
Course. J. Comput. Sci. Coll. 34, 6 (apr 2019), 157—159.

Ben Glick and Jens Mache. 2018. Using Jupyter Notebooks to Learn High-
Performance Computing. J. Comput. Sci. Coll. 34, 1 (oct 2018), 180—188.

[2

3

[4

[5

https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3587102.3588815
https://doi.org/10.1145/3587102.3588815

1UI Companion ’24, March 18-21, 2024, Greenville, SC, USA

[6] Amazon Inc. 2024. Amazon CodeWhisperer. https://aws.amazon.com/

codewhisperer/ Accessed: 2024-01-02.

Github Inc. 2024. Github CoPilot. https://github.com/features/copilot Accessed:
2024-01-02.

Jeremiah W. Johnson. 2020. Benefits and Pitfalls of Jupyter Notebooks in the
Classroom. In Proceedings of the 21st Annual Conference on Information Tech-
nology Education (Virtual Event, USA) (SIGITE '20). Association for Computing
Machinery, New York, NY, USA, 32-37. https://doi.org/10.1145/3368308.3415397
Mason Laney and Prasun Dewan. 2024. Human-Al Collaboration in a Student
Discussion Forum. In Companion Proceedings of the 29th International Conference
on Intelligent User Interfaces.

Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Re-
sistance is Futile": How University Programming Instructors Plan to Adapt as
More Students Use Al Code Generation and Explanation Tools Such as Chat-
GPT and GitHub Copilot. In Proceedings of the 2023 ACM Conference on Inter-
national Computing Education Research - Volume 1 (Chicago, IL, USA) (ICER
’23). Association for Computing Machinery, New York, NY, USA, 106—
121. https://doi.org/10.1145/3568813.3600138

Codota Dot Com Ltd. 2024. Tabnine. https://www.tabnine.com/ Accessed:
2024-01-02.

[12] Sagi Pendzel, Tomer Wullach, Amir Adler, and Einat Minkov. 2023. Generative

Al for Hate Speech Detection: Evaluation and Findings. arXiv:2311.09993 [cs.CL]

George et al.

[13] Priyan Vaithilingam, Elena L. Glassman, Peter Groenwegen, Sumit Gulwani,

Austin Z. Henley, Rohan Malpani, David Pugh, Arjun Radhakrishna, Gustavo
Soares, Joey Wang, and Aaron Yim. 2023. Towards More Effective Al-Assisted
Programming: A Systematic Design Exploration to Improve Visual Studio In-
telliCode’s User Experience. In 2023 IEEE/ACM 45th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 185—195.
https://doi.org/10.1109/ICSE- SEIP58684.2023.00022

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE]

Ramazan Yilmaz and Fatma Gizem Karaoglan Yilmaz. 2023. Augmented intelli-
gence in programming learning: Examining student views on the use of ChatGPT
for programming learning. Computers in Human Behavior: Artificial Humans 1, 2
(2023), 100005. https://doi.org/10.1016/j.chbah.2023.100005

J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-Al Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (, Hamburg, Germany,) (CHI "23). Association for Computing
Machinery, New York, NY, USA, Article 437, 21 pages. https://doi.org/10.1145/
3544548.3581388

https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://github.com/features/copilot
https://doi.org/10.1145/3368308.3415397
https://doi.org/10.1145/3568813.3600138
https://www.tabnine.com/
https://arxiv.org/abs/2311.09993
https://doi.org/10.1109/ICSE-SEIP58684.2023.00022
https://arxiv.org/abs/2302.11382
https://doi.org/10.1016/j.chbah.2023.100005
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388

