

1      **Influence of the Madden-Julian Oscillation on the diurnal cycles of convection and precipi-**  
2      **tation over the Congo Basin**

4      Kathrin Alber<sup>a</sup>, Liming Zhou<sup>a</sup>, Paul Roundy<sup>a</sup>, and Stephen Solimine<sup>a</sup>

6      <sup>a</sup>Department of Atmospheric and Environmental Sciences  
7      University at Albany, State University of New York, Albany, NY, 12222, USA

9      Corresponding Author: Kathrin Alber ([kalber2@albany.edu](mailto:kalber2@albany.edu))

12     Received 24 December 2022; Received in revised form 8 August 2023; Accepted 13 August 2023

14     Citation: Kathrin Alber, Liming Zhou, Paul E. Roundy, Stephen L. Solimine, Influence of the  
15     Madden-Julian Oscillation on the diurnal cycles of convection and precipitation over the Congo  
16     Basin, *Atmospheric Research*, Volume 294, 2023, 106967, ISSN 0169-8095,  
17     <https://doi.org/10.1016/j.atmosres.2023.106967>.

20      **Abstract**

21     The Congolese rainforest is a hotspot for convection where thunderstorms and rainfall exhibit a  
22     strong diurnal cycle. Previous studies have shown that various modes of variability such as the  
23     Madden-Julian Oscillation (MJO), the leading mode of intraseasonal variability in the tropics, can  
24     impact the diurnal cycles of precipitation and convection over tropical land areas. Thus, this study  
25     analyzes the influence of the MJO on diurnal variations of convection and precipitation over the  
26     Congo and explores possible mechanisms leading to the observed changes, using Gridded Satellite  
27     (GridSat-B1), Tropical Rainfall Measuring Mission (TRMM), and ERA5 reanalysis data. Results  
28     show that convection and precipitation are increased during the MJO enhanced convective phase  
29     (RMM phases 1 and 2) and decreased during the suppressed convective phase (RMM phases 5 and  
30     6), where the differences are found to be largest during the morning hours when convection is  
31     weakest. Convection is generally deeper during the enhanced phase and shallower during the sup-  
32     pressed phase, accompanied by a slower decay of convective clouds and anvils during the en-  
33     hanced phase. Furthermore, the influence of the MJO was found to be stronger on stratiform pre-  
34     cipitation compared to convective precipitation. While the diurnal cycles of convective precipita-  
35     tion fractions are similar during both MJO phases, the fraction of stratiform precipitation is higher  
36     during the enhanced phase, mainly in the morning hours. Suggested atmospheric drivers contrib-  
37     uted to the observed differences between the two MJO phases include enhanced upward air motion  
38     in the mid- and upper levels and strong divergence in the upper levels during the enhanced  
39     phase, and strong mid-level divergence and upper- to mid-level subsidence during the suppressed  
40     phase, mainly during the nighttime and morning hours. Furthermore, decreased mid-level wind  
41     speed, increased upper-level wind speed, and enhanced relative humidity may be contributing fac-  
42     tors to the increased formation of stratiform precipitation during the enhanced phase. These results  
43     enhance our understanding of the MJO's impacts on precipitation and convection variability, ulti-  
44     mately improving predictions of MJO modulated rainfall over the Congo.

45      **1. Introduction**

47 The Congo Basin situated in equatorial tropical Africa is one of the most convective regions  
48 in the world and has the second largest latent heating rate from convection after the Maritime  
49 continent (MC) (Washington et al. 2013; Feng et al. 2021). Convection and rainfall over the Congo  
50 are predominately associated with surface solar heating, resulting in a strong diurnal cycle of  
51 clouds and precipitation with a minimum in clouds in the morning and a peak in clouds and  
52 convection in the late afternoon and early evening hours (Jackson et al. 2009; Alber et al. 2021a;  
53 Hartman 2021). Several previous studies have shown that convection varies diurnally, and that the  
54 diurnal variations also differ spatially. Different techniques and datasets have been utilized to  
55 investigate the diurnal cycles of tropical convection and precipitation. For example, Hendon and  
56 Woodberry (1993) used brightness temperature ( $T_b$ ) derived from 11 $\mu$ m satellite radiance  
57 measurements lower than 230 K as a threshold to isolate deep convection. Nesbitt et al. (2003)  
58 used Tropical Rainfall Measuring Mission (TRMM) satellite precipitation measurements to  
59 highlight variations in rainfall over tropical land areas, while Yang and Slingo (2001) used global  
60 0.5° and 3-hourly satellite infrared data to provide a climatology of the diurnal cycle of convection  
61 and surface temperature in the tropics.

62  
63 According to Lazri et al. (2014), the life cycle of a convective system can generally be divided  
64 into three stages, i.e., growth, maturity, and dissipation. The cycle begins with the vertical growth  
65 of a convective core with intensifying vertical updrafts. During this stage, the cloud top height  
66 increases, the cloud expands horizontally, and the cloud optical thickness increases while precipi-  
67 tation droplets grow. During the maturity stage, both updrafts and downdrafts exist simultaneously,  
68 where evaporating precipitation cools surrounding areas which favors downdrafts while the anvil  
69 expands. During the dissipation stage, updrafts weaken and begin to disappear while the anvil  
70 reaches a maximum and begins to dissipate and the cloud droplet radius decreases. In the young  
71 portions of the cloud, defined by vigorous vertical motion, precipitation is mostly convective  
72 where precipitation particles increase the size and mass by collection of cloud water through coa-  
73 lesence and/or riming and the particles fall in heavy showers. In the older regions of the cloud  
74 when the vertical motions weaken, precipitation is more stratiform and drifts to the ground more  
75 slowly as the particles increase their mass by vapor diffusion (Houze 1997).

76  
77 Precipitation and convection over the tropics can be influenced by various modes of variability  
78 such as the Madden-Julian Oscillation (MJO), El Niño Southern Oscillation (ENSO) and Indian  
79 Ocean Dipole (IOD) (Otto et al. 2013; Hart et al. 2019; Raghavendra et al. 2020; Jiang et al. 2021).  
80 The MJO (Madden and Julian 1971, 1972) is one of the most fundamental modes of atmospheric  
81 variability and is the leading mode of intraseasonal variability in the tropics (Dias et al. 2017). It  
82 is characterized as an eastward moving planetary-scale signal, associated with strong convection  
83 that originates in the Indian Ocean and moves along the equatorial Indian and western-central  
84 Pacific Oceans, recurring every 30–90 days (Zhang 2005; Kim et al. 2008). Convection is in-  
85 creased during the MJO enhanced phase and decreased during the MJO suppressed phase. It has  
86 also been shown that the MJO interacts with the diurnal cycle (Slingo et al. 2003; Sakaeda et al.  
87 2017). However, the modulation of precipitation by the MJO varies in different regions of the  
88 world, and studies disagree on how the MJO affects the diurnal cycle phase and amplitude of  
89 rainfall and convection depending on the region. While the diurnal amplitude is found to be de-  
90 creased during the MJO enhanced phase over the islands of the MC, it is shown to increase over  
91 the oceans of the MC during the same phase (Sui and Lau 1992; Sui et al. 1997; Rauniyar and  
92 Walsh 2011; Oh et al. 2012), suggesting that the MJO impacts the diurnal cycles of rainfall and

93 convection differently over land and the ocean. Furthermore, studies analyzing the influence of the  
94 MJO on the diurnal phase show contradictory results. For example, Oh et al. (2012) and Rauniyar  
95 and Walsh (2011) identified the MJO's influence on the diurnal phase, while Tian et al. (2006)  
96 and Suzuki (2009) found no relationship between the two at all.

97  
98 Over the Congo, Raghavendra et al. (2020) found a significant relationship between the MJO  
99 and rainfall during October through March from 1979–2018, showing that the MJO significantly  
100 impacts rainfall over the region. They utilized the daily MJO real-time multivariable (RMM) phase  
101 index data (Wheeler and Hendon 2004), where RMM phase 2 was regarded as the MJO enhanced  
102 phase and RMM phases 5 and 6 were regarded as the MJO suppressed phase over the region. The  
103 study showed that the number of days in the MJO suppressed phase increased significantly by 0.34  
104 days year<sup>-1</sup> from 1979–2018, while no significant trends for the number of MJO enhanced days  
105 were found. The study concluded that the decreasing trend in the number of MJO dry days may  
106 contribute to the observed decrease in rainfall by 13.6% and may thereby help to partially explain  
107 the large-scale and long-term drying trend documented during the past three decades over the  
108 Congo (Zhou et al. 2014; Hua et al. 2016, 2018; Jiang et al. 2019). Interestingly, in contrast to this  
109 drying trend, several studies such as Taylor et al. 2018, Raghavendra et al. 2018, and Alber et al.  
110 2020b also showed an increase in thunderstorm intensity over the Congo during the past 20 to 30  
111 years.

112  
113 However, despite being the second largest rainforest on earth, the Congo remains understudied  
114 compared to other major rainforests such as the Amazon (Zhou et al. 2014; Alsdorf 2016).  
115 Although the impacts of the MJO on African climate has been analyzed, most studies have focused  
116 on Eastern Africa (e.g., Pohl and Camberlin 2006; Berhane and Zaitchik 2014; Vashisht and  
117 Zaitchik 2022; Maybee et al. 2022; Talib et al. 2023), Southern Africa (e.g., Hart et al. 2013) or  
118 Western Africa (e.g., Alaka and Maloney 2012; Sossa et al. 2017). To the best of our knowledge,  
119 no studies have been conducted yet to investigate how the MJO may influence the diurnal varia-  
120 tions of convection and rainfall over the Congo. This study therefore aims to shed light on the yet  
121 unanswered question of how the MJO might impact the diurnal cycles of convection and precipi-  
122 tation over the Congo and investigates the physical mechanisms leading to the observed changes.  
123 The results of this analysis will fill the knowledge gap regarding the variability of Congo rainfall  
124 and convection and may ultimately help to answer open questions about the long-term drying trend  
125 over the Congo. The data used is presented in section 2, the methods are described in section 3,  
126 the results are presented in section 4, followed by a summary and conclusion in section 5.

## 127 2. Data

128 For this study, three different datasets were used, i.e., Gridded Satellite (GridSat-B1) (Knapp  
129 2008; Knapp et al. 2011), TRMM precipitation (Huffman et al. 2007), and ERA5 reanalysis data  
130 (Hersbach et al. 2020), where the time period 1985–2019 was investigated. Although the MJO  
131 impacts convection and precipitation during all seasons, the months October through March  
132 (ONDJFM) were chosen for the analysis because the MJO signal is stronger and the RMM ampli-  
133 tude is generally higher during these months (Zhang and Dong 2004; Raghavendra et al. 2020).  
134 Additionally, this period includes both the wet and dry seasons over the Congo since the analysis  
135 captures the entire December–February (DJF) dry season, the start of the March–May (MAM) wet  
136 season, and most of the September–November (SON) wet season (Nicholson 2018), resulting in  
137 the analysis capturing three wet months and three dry months. Note that the MJO's impacts on

139 convection do not differ significantly between the three dry vs. wet months and we therefore  
140 decided to combine these 6 months into one single ONDJFM study period for brevity and clarity.  
141 Comparing the modulation of convection by the MJO during all four seasons, i.e., DJF, MAM,  
142 JJA, and SON (not shown), also indicated similar results for all seasons besides JJA when the  
143 differences between the two MJO phases are more pronounced from noon through the afternoon  
144 instead of the nighttime and morning hours. The study domain, i.e., the Congo Basin, is defined  
145 as the area from 5°N to 5°S and 12°E to 30°E and is depicted by the black boxes in Fig. 1. The  
146 diurnal cycle data are indicated in Coordinated Universal Time (UTC).

147

### 148 *2.1 GridSat-B1 satellite data*

149 The GridSat-B1 infrared channel (11  $\mu\text{m}$ ) brightness temperature ( $T_b$ ) dataset derived from the  
150 International Satellite Cloud Climatology Project (ISCCP; Schiffer and Rossow 1983) was used  
151 in this study to identify convective clouds. This Climate Data Record quality, long-term  $T_b$  dataset  
152 was sampled from the European Meteorological (MET) series of geostationary satellites. Since the  
153 atmosphere is almost transparent at 11  $\mu\text{m}$ , the satellite measured radiance was utilized to derive  
154  $T_b$  for cloud top (i.e., cloudy-sky) or surface (i.e., clear-sky) temperatures. The dataset is available  
155 at a  $0.07^\circ \times 0.07^\circ$  spatial and 3-hourly temporal resolution from 1981 to present (Knapp 2008;  
156 Knapp et al. 2011). However, only the data from 1985–2019 was used here due to the high fre-  
157 quency of missing data between 1982 and 1985 (Raghavendra et al. 2020).

158

### 159 *2.2 TRMM precipitation data*

160 TRMM satellite precipitation estimates, i.e., TRMM 3B42 and TRMM 2A23, were analyzed  
161 to investigate the diurnal cycle of precipitation. The TRMM satellite was launched in November  
162 1997, carrying a precipitation radar (i.e., an active microwave sensor), allowing the sampling  
163 throughout the diurnal cycle (Zipser et al. 2006). For the TRMM 3B42, rainfall estimates were  
164 acquired from the NASA’s Goddard Earth Sciences Data and Information Services Center  
165 ([https://disc.gsfc.nasa.gov/datasets/TRMM\\_3B42\\_7/summary](https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary)), available from 1998 to 2019 at a  
166 3-hourly temporal resolution and a  $0.25^\circ \times 0.25^\circ$  spatial resolution. Studies such as Munzimi et al.  
167 (2015) and Nicholson et al. (2019) showed that the dataset performs well over the Congo. Addi-  
168 tionally, the TRMM precipitation radar rain characteristics (TRMM 2A23) version 7 orbital data  
169 were used to provide rain type classification information, i.e., stratiform and convective precipita-  
170 tion. The dataset was acquired from the University of Washington TRMM Database (UWTD)  
171 (<http://trmm.atmos.washington.edu>), available from 1998 to 2013 and interpolated to a  $0.05^\circ \times$   
172  $0.05^\circ$  spatial resolution and to a 1-hourly temporal resolution.

173 The differentiation between stratiform and convective precipitation in the TRMM 2A23 da-  
174 taset was made using an algorithm developed by Awaka et al. (1997), where the precipitation type  
175 was classified into “stratiform”, “convective” and “other” by using two different methods, i.e., the  
176 vertical profile method (V-method) and the horizontal pattern method (H-method). The V-method  
177 first attempts to detect a bright band (BB) and the precipitation is classified as stratiform if a BB  
178 is found. If no BB is detected, the algorithm looks for a strong radar echo which will classify the  
179 precipitation as convective. If neither a BB nor a strong radar echo is detected, the precipitation is  
180 classified as “other”. For the H-method, the radar first aims to detect a convective core and then  
181 classifies the precipitation type around the core by examining horizontal patterns of the maximum

reflectivity factor. The precipitation classification performed by the two methods is then merged and a final classification is made (Awka et al. 1997).

It is worth pointing out that the TRMM precipitation data is estimated during the passage of the TRMM satellite over the study region. Thus, the values are relative due to the low sampling frequency of TRMM which is about 0.5 times day<sup>-1</sup> near the equator, making it imperative to use measurements over several years to be able to sample the diurnal cycle (Jackson et al. 2009).

### 2.3 ERA5 reanalysis

The ERA5 reanalysis dataset (Hersbach et al. 2020) was used to obtain the variables needed to calculate the Gálvez-Davison Index (GDI), i.e., temperature and specific humidity data at 950 hPa, 850 hPa, 700 hPa, and 500 hPa (see section 3.3 for a more detailed explanation of the GDI). Additionally, divergence, vertical velocity, U and V wind, relative humidity, and temperature data were acquired in intervals of 50 hPa from 100 hPa to 1000 hPa. For comparison to the TRMM satellite precipitation, ERA5 total precipitation was obtained as well. The data was used at a 0.25° × 0.25° spatial resolution and an hourly temporal resolution from 1985–2019 to match the timespan utilized for the GridSat-B1 data. Due to the scarcity of surface observations (e.g., gauge stations and radiosonde networks) over the Congo, it is difficult to identify the most accurate reanalysis dataset over the region. However, it has been shown that the bias and root-mean-square error associated with the ERA-Interim reanalysis dataset is comparable with other reanalysis products over the region (Hua et al. 2019). Additionally, Gleixner et al. (2020) found that the correlation in temperature and precipitation between the ERA5 data and observations improved when compared to the ERA-Interim reanalysis data over Africa.

## 3. Methods

### 3.1 MJO Identification

The daily MJO real-time multivariable (RMM) phase index data (Wheeler and Hendon 2004) from the Bureau of Meteorology in Australia (<http://www.bom.gov.au/climate/mjo/>) was used to identify the phases of the MJO. The RMM index, based on a pair of empirical orthogonal functions (EOFs) of the combined fields of outgoing longwave radiation (OLR), 850 hPa and 200 hPa zonal winds averaged from 15°N to 15°S, is widely used to monitor the MJO (Wheeler and Hendon 2004). Days with an RMM index amplitude >1 were regarded as active MJO days, while days with an RMM index amplitude <1 were considered as inactive MJO days (LaFleur et al. 2015). RMM phases 1 and 2 were defined as the MJO enhanced convective phase, and phases 5 and 6 were considered as the MJO suppressed convective phases over the Congo (Gottschalck et al. 2010; Zaitchik 2016). A total of 912 days were identified as MJO enhanced days while 1148 days were identified as MJO suppressed days.

### 3.2 GridSat-B1 cloud fraction

To quantify convection, the cold cloud fraction (CCF) was derived from the GridSat-B1 data, by calculating the fraction of grid points with  $T_b < -50$  °C within the study domain (e.g., Raghavendra et al. 2018; Alber et al. 2021b). The CCF represents areas in which deep convection occurs since tropical deep convection is characterized by very cold  $T_b$  values (Taylor et al. 2017; Hart et al. 2019). Additionally, the cloud fractions with  $T_b > -50$  °C and  $T_b < -25$  °C and  $T_b > -25$  °C and  $T_b < 0$  °C were calculated to investigate the diurnal cycles of warmer clouds.

### 3.3 Gálvez-Davison Index

228 For comparison to the GridSat-B1 CCF, the GDI was derived from the ERA5 reanalysis data  
229 to estimate convection. The GDI is calculated by using temperature and specific humidity values  
230 at 4 different levels (i.e., 950 hPa, 850 hPa, 700 hPa, and 500 hPa), where ERA5 temperature and  
231 specific humidity data was used for the calculation in this study. The GDI is a thermodynamic  
232 index, developed by Michael Davison and José Gálvez at NOAA's Weather Prediction Center  
233 (WPC) (Gálvez and Davison 2016), aiming to improve forecasts of tropical convection since the  
234 skill of traditional stability indices is limited in the tropics. The GDI focusses on thermodynamic  
235 processes in the mid- and low troposphere rather than dynamical processes and consists of several  
236 different sub-indices evaluating different processes that dominate the variability of convection. It  
237 consists of three different sub-indices, the Column Buoyancy Index (CBI) considering the availa-  
238 bility of heat and moisture in the middle and lower troposphere, the Mid-Tropospheric Warming  
239 Index (MWI) accounting for the stabilizing and destabilizing effects of mid-level ridges and  
240 troughs, and the Inversion Index (II) analyzing the entrainment of dry air and stabilization associ-  
241 ated with trade wind inversions. The higher the GDI value, the more intense and more likely are  
242 thunderstorms and convection. Alber et al. (2021b) showed that trends in the GDI over the Congo  
243 are consistent with trends in CCF, and Miller et al. (2019) found that the GDI's skill is  
244 considerably higher in forecasting rainfall over Puerto Rico than other stability indices such as  
245 CAPE or the K-Index. A complete derivation of the GDI can be found in Gálvez and Davison  
246 (2016) and Alber et al. (2021b).

247

### 248 *3.4 Diurnal cycle calculation*

249 To quantify the impacts of the MJO on the diurnal cycles of convection and precipitation, the  
250 diurnal cycles of the GridSat-B1 CCF, the ERA5 derived GDI, and TRMM and ERA5 precipita-  
251 tion for the MJO enhanced and suppressed phases were calculated. To highlight the impacts of the  
252 MJO on the diurnal cycle of convection, the relative mean differences (RMD) between MJO en-  
253 hanced and suppressed phases were further calculated by dividing the difference between the two  
254 phases by the climatological mean, resulting in a dimensionless quantity. To calculate the diurnal  
255 cycles for different variables, the discrete Fourier transform (DFT) was applied to the anomaly  
256 data using a fast Fourier transform (FFT) and a 3–24-hour spectral filter was applied. Additionally,  
257 the 95% confidence intervals of the diurnal cycles were derived by multiplying the standard error  
258 with the 95% probability intervals at each timestep. The diurnal cycles of convective and stratiform  
259 precipitation derived from the TRMM 2A23 data were calculated by dividing the stratiform and  
260 convective precipitation fraction, respectively, by the daily sum of all precipitation, resulting in  
261 the stratiform and convective precipitation data being displayed as percentage of the daily total  
262 precipitation. As suggested by Negri et al. (2002), a 4-hour smoothing was then applied to reduce  
263 errors due to the high sampling variability of the TRMM data. Because of the high frequency of  
264 missing values in the TRMM 2A23 dataset, the diurnal cycles of stratiform and convective precipi-  
265 tation were calculated using climatological means and were not derived using Fourier analysis.  
266 To investigate the physical mechanisms leading to the observed changes in precipitation and deep  
267 convection, the time-height cross sections of divergence, relative humidity, wind speed, and tem-  
268 perature were calculated for the MJO suppressed and enhanced phases, where the according values  
269 were averaged over all MJO enhanced days and all MJO suppressed days, respectively. Addition-  
270 ally, the difference between the two MJO phases for each variable was computed separately. To  
271 highlight the variations across the day, the diurnal variations of the differences were calculated as

272 follows: For each pressure level, the diurnal average of the difference was calculated first. Then,  
273 the diurnal average was subtracted from the difference at each hour and according pressure level.  
274

## 275 4. Results

### 276 4.1 Spatial and temporal anomalies associated with the MJO phases

277 The MJO enhanced and suppressed phases are associated with different cloud and rainfall  
278 anomaly patterns over the Congo rainforest (Figs. 1a–d). During the MJO suppressed phase, a  
279 decrease in CCF and precipitation (up to 2 mm day<sup>-1</sup> across some parts of the Congo Basin) can  
280 be observed over the study region, with the exception of a very small area of slightly increased  
281 values along the western rift valley (Figs. 1a and c) and some small areas of increased precipitation  
282 areas scattered through the study region. During the enhanced phase, CCF and precipitation are  
283 increased over most of the study area, except for the same area along the western rift valley  
284 showing slightly decreased CCF values (Fig. 1b), and smaller patches of decreased precipitation  
285 throughout the study domain (Fig. 1d). Precipitation increases by up to 1.5 mm day<sup>-1</sup> in some parts  
286 of the study area. The anomalies along the western rift valley could be a result of the unique  
287 topography in that region, where the altitude increases more than 1000 m from the Congo Basin  
288 up to the East African Highlands. It is also worth noting the strong MJO induced precipitation  
289 anomalies outside the study domain along the gulf of Guinea, which could be an area of future  
290 research, where Zatichik (2017) suggests that the influence of the MJO on West African rainfall  
291 might be linked to African Easterly Wave activity during boreal summer.

292 As for the temporal variations of the number of enhanced and suppressed MJO days, Fig. 1e  
293 shows that the number of suppressed MJO days have been increasing from 1985–2019, while the  
294 number of enhanced MJO days have been decreasing slightly but insignificantly. As suggested by  
295 Raghavendra et al. (2020), the increase in MJO suppressed days could be a contributing factor to  
296 the decrease in precipitation and therefore the drying trend observed over the region. In Fig. 1f,  
297 the temporal variability of MJO enhanced and suppressed days is shown by month. The total  
298 number of suppressed MJO days per month varies between 161 (March) and 218 (January). For  
299 the enhanced phase, the numbers range from 110 days (December) to 203 days (March).  
300

### 301 4.2 Influence of the MJO on the diurnal cycles of convection and rainfall

302 The diurnal cycles of CCF and the GDI, indicating deep convection, are shown in Figs. 2a and  
303 b for the MJO enhanced convective (blue) and suppressed convective (red) phases as well as the  
304 climatology (black). Convection peaks in the afternoon, followed by a decrease in clouds during  
305 the night and a minimum in the morning, where the CCF and GDI values are generally higher  
306 during the MJO enhanced phase and lower during the suppressed phase, as would be expected.  
307 According to the purple line representing the RMD between the two MJO phases (right y-axis),  
308 the difference is lowest in the afternoon (0.2 for the CCF and 0.095 for the GDI) and increases  
309 during the nighttime until it peaks at 09:00 UTC for the CCF (0.65) and at 07:00 UTC for the GDI  
310 (0.12). The small difference in timing between the CCF and the GDI could be the result of the fact  
311 that the GDI was developed for the operational analysis and forecasting of tropical convection,  
312 and the atmosphere is evaluated before convection occurs, where radiative and evaporative cooling  
313 induced by clouds will weaken the GDI. Therefore, the GDI is showing the highest values right  
314 before peak convection.

315 In addition to the analysis of MJO induced changes on cold clouds (i.e., CCF), the impacts of  
316 the MJO on warmer cloud fractions were investigated next, where Figs. 2c and d show the diurnal  
317 cycles of cloud fractions with T<sub>b</sub> between -50°C and -25°C (Fig. 2c), and -25°C and 0°C (Fig.

318 2d) for both MJO phases. The cloud fraction with  $T_b$  between  $-50^{\circ}\text{C}$  and  $-25^{\circ}\text{C}$  peaks at 21:00  
319 UTC during the suppressed phase and at 00:00 UTC during the enhanced phase, indicating a  
320 slightly delayed peak during the enhanced phase. A minimum is recorded at 09:00 UTC for both  
321 phases. For the cloud fractions with  $T_b$  between  $-25^{\circ}\text{C}$  and  $0^{\circ}\text{C}$ , the maximum is slightly later at  
322 03:00 UTC while the minimum is shown at 15:00 UTC for both phases. The RMDs between the  
323 enhanced and suppressed MJO phase are significant ( $p<0.05$ ) at all times for both cloud fractions,  
324 where the difference is highest at 09:00 UTC for the colder cloud fraction and at 12:00 UTC for  
325 the warmer fraction. These consistently and significantly higher fractions of clouds with cloud top  
326 temperatures higher than  $-50^{\circ}\text{C}$  during the MJO enhanced phase suggest that the MJO not only  
327 affects very cold clouds (i.e., CCF in Fig. 2a) but also greatly impacts warmer clouds.  
328

329 In Fig. 3a and b, the impacts of the MJO on TRMM and ERA5 precipitation are analyzed,  
330 showing a peak in precipitation in the afternoon at 15:00 UTC for the TRMM and at 14:00 UTC  
331 for the ERA5 data, where precipitation amounts are generally higher for the ERA5 when compared  
332 to the TRMM data. A morning minimum is recorded at 09:00 UTC for TRMM, and at 06:00 UTC  
333 for the ERA5 data, which is consistent with the diurnal variations of the CCF and the GDI. As  
334 expected, the amount of precipitation is generally higher during the MJO enhanced phase, where  
335 the RMD between the two MJO phases is highest through the nighttime and the early morning for  
336 both datasets, with the difference peaking at 09:00 UTC for TRMM and at 07:00 UTC for ERA5,  
337 similar to the timing of the RMD of CCF and the GDI. Thus, the largest differences in precipitation  
338 and convective clouds between both MJO phases seem to occur during the nighttime and morning,  
339 when convective processes weaken. During this dissipating stage, the anvil cloud reaches maximal  
340 horizontal extent and begins to weaken, while the optical thickness of the cloud decreases, cloud  
341 top temperatures begin to increase, and the precipitation changes from convective to more  
342 stratiform. Therefore, the impacts of the MJO on stratiform and convective precipitation were  
343 investigated separately in a next step. Figures 3c and 3d show the diurnal cycles of convective (Fig.  
344 3c) and stratiform (Fig. 3d) precipitation for the MJO enhanced and suppressed phases. The  
345 convective and stratiform precipitation is indicated as fractions of the daily sum of all precipitation,  
346 where 59.6% of all precipitation was classified as convective, 36.3% was classified as stratiform,  
347 and 4.1% was classified as other. Please note that the TRMM convective and stratiform precipita-  
348 tion data is available from 1998 to 2013 only, while the TRMM total precipitation is available  
349 from 1998 to 2019. Although the years 1998 to 2019 were used in this study for the TRMM total  
350 precipitation, the diurnal cycle of total precipitation is similar when using the timespan 1998 to  
351 2013 only.

352 The convective precipitation fractions for the MJO enhanced and suppressed phases are simi-  
353 lar, where a minimum is recorded at around 06:00 UTC for both MJO phases. For the enhanced  
354 phase, a first maximum occurs around 14:00 UTC (4.0%) with a second smaller peak at 20:00  
355 UTC (3.6%). During the suppressed phase, a first maximum is recorded around 14:00 UTC (4.5%),  
356 followed by a second peak at 22:00 UTC (4.3%). The stratiform precipitation fraction exhibits a  
357 minimum at 14:00 UTC during the enhanced phase (0.7%) and 15:00 UTC during the suppressed  
358 phase (0.6%), followed by an increase in precipitation with a maximum at 22:00 UTC during the  
359 suppressed phase (2.1%). For the enhanced MJO phase, a first maximum is recorded at 23:00 UTC  
360 (1.6%), followed by a second peak at 10:00 UTC (1.7%). The difference between the two phases  
361 is highest at that time, where the difference is significant ( $p<0.05$ ) between 09:00 and 12:00 UTC.  
362 These results suggest that the difference in precipitation between the MJO enhanced and

363 suppressed phase shown in Fig. 3a is mainly due to the difference in the stratiform precipitation.  
364 Thus, the MJO may impact the stratiform precipitation more than convective precipitation.  
365

#### 366 4.3 Possible physical mechanisms responsible for the MJO induced modulations

367 To investigate the underlying physical processes leading to the observed differences in the  
368 diurnal cycles of precipitation and convection between the MJO enhanced and suppressed phases,  
369 two variables relevant to vertical circulation, i.e., horizontal divergence and vertical velocity, were  
370 investigated next (Fig. 4). Divergence and vertical velocity profiles are useful to gain information  
371 about heating profiles since they are tightly coupled and play an important role in large-scale trop-  
372 ical dynamics (Mapes and Lin 2005). The vertical and diurnal structures of divergence shown in  
373 Figs. 4a and 4c are similar for both MJO phases. For the upper tropospheric levels (100 hPa to 300  
374 hPa), divergence is prominent during all hours of the day with the strongest values in the evening.  
375 From 300 hPa to 400 hPa, a band of convergent air motion is recorded. In the mid-levels from 400  
376 hPa to 700 hPa, divergent air motion is evident through the nighttime and the early afternoon,  
377 where divergence is strongest between 08:00 UTC and 12:00 UTC. During the afternoon and even-  
378 ing, the airflow changes from divergent to convergent. In the levels below 700 hPa, the airflow is  
379 convergent during all times of day. The contour lines show that the biggest anomalies are recorded  
380 in the upper levels during all times of day and during the morning hours in the mid-levels, where  
381 divergence is anomalously strong in the mid-levels during the suppressed phase and in the upper  
382 levels during the enhanced phase.

383 Looking at the time-height cross sections of vertical velocity (Figs. 4b and 4d), the diurnal  
384 patterns are similar during both MJO phases as well. The figures indicate evening and nighttime  
385 subsidence in the lowest levels (900 hPa – 1000 hPa), uplift in the low and mid-levels (600 hPa –  
386 1000 hPa) from the late morning through the early afternoon, and strong rising motion during the  
387 afternoon and evening from the mid through the upper levels (200 hPa – 700 hPa). Additionally,  
388 there is subsidence evident during the suppressed phase from 100 hPa to 500 hPa from around  
389 03:00 to 10:00 UTC, while the air motion is neutral or lightly upward during the enhanced phase  
390 at the same time and levels, besides a small area of subsidence at 100 hPa. This may lead to shall-  
391 lower convection and faster dissipation of the stratiform precipitation portions of the clouds during  
392 the suppressed phase. According to the contour lines, the largest anomalies for both phases are  
393 occurring around 400 hPa in the morning hours.  
394

395 Although the vertical and diurnal divergence and vertical velocity structures are similar during  
396 the MJO enhanced and suppressed phase, important differences between the two phases can be  
397 observed, mostly related to the strength of the airflow, where Figs. 4e and 4f highlight those dif-  
398 ferences. Fig. 4e shows stronger upper-level divergence during all times of the day and weaker  
399 mid-level divergence at night during the MJO enhanced phase. Additionally, mid-level conver-  
400 gence is stronger in the afternoon and evening during the enhanced phase. These results suggest  
401 deeper convection and stronger stratiform precipitation portions of deep convection when the MJO  
402 is in its enhanced phase. The contour lines in Fig. 4e show variation from the diurnal average of  
403 the anomalies at each level and hour, highlighting the diurnal variations of the differences between  
404 the two MJO phases. For the upper levels, the variations are greatest from 03:00 UTC to 05:00  
405 UTC, indicating that the differences are greatest during the nighttime. For the mid-levels, the dif-  
406 ferences are enhanced from around 09:00 UTC to 13:00 UTC, and for the lower levels, they are  
407 strongest from 00:00 UTC to 03:00 UTC. Overall, the differences in divergence between the two  
408 MJO phases are largest in the upper levels, followed by the mid and lower levels. In the upper and

409 lower levels, the differences are strongest during the nighttime. For the mid-levels, the differences  
410 are largest during the mid-morning, which is consistent with the time of peak changes in convec-  
411 tion and precipitation shown in Figs. 2 and 3.

412 For the vertical velocity, the difference cross section (Fig. 4f) shows that there is generally  
413 more upward air motion during the enhanced phase from 100 hPa to around 700 hPa during all  
414 times of day, where the difference is most pronounced from about 09:00 UTC to 13:00 UTC. To  
415 a smaller extent, there is more subsidence during the enhanced phase in the lower levels. As shown  
416 by the contour lines indicating the variations across the day, the difference between the two MJO  
417 phases is largest from 09:00 UTC to 13:00 UTC from 400 hPa to 600 hPa, which is consistent with  
418 the time of the largest differences in precipitation and convection shown in Fig. 2. In the levels  
419 below 700 hPa, the largest differences are recorded from the evening through the early morning.

420 In summary, upward air motion is stronger during the MJO enhanced phase when compared  
421 to the suppressed phase, especially in the mid-levels and around noon. Additionally, upper-level  
422 divergence is stronger during the MJO enhanced phase. During the suppressed phase, nighttime  
423 and morning mid- and upper-level subsidence and mid-level divergence are pronounced. Regard-  
424 ing the diurnal variations, the largest differences in divergence and vertical velocity between the  
425 two MJO phases occur from the late morning through the early afternoon in the mid-levels which  
426 is consistent with the time of the largest differences in precipitation and convection, and during  
427 the nighttime in the lower (divergence and vertical velocity) and upper (divergence only) levels.  
428 Furthermore, the timing of peak TRMM and ERA5 precipitation and GridSat-B1 CCF is consistent  
429 with the strong upward vertical velocities as well as enhanced convergence in the low- and mid-  
430 levels and strong divergence in the upper levels derived from the ERA5 data, indicating that the  
431 two satellite datasets are generally consistent with the ERA5 reanalysis data.

432 To better explain the different impacts of the MJO on stratiform and convective precipitation,  
433 the time-height cross sections for wind speed, humidity, and temperature are shown in Fig. 5 since  
434 previous studies (e.g., Schumacher and Houze 2003, 2006; Lin et al. 2004) suggest that wind shear  
435 and relative humidity play an important role in the formation of stratiform precipitation, and deep  
436 convection may also impact the temperature in the troposphere (Johnston et al. 2018). The diurnal  
437 wind speed patterns are relatively similar during both MJO phases (Figs. 5a and 5d). However, the  
438 diurnal structures are weaker during the enhanced phase, with the two areas of higher wind speed  
439 in the morning and nighttime around 700 hPa decreasing during the enhanced phase when com-  
440 pared to the suppressed phase. The contour lines, indicating the anomalies during the respective  
441 MJO phase, show the largest anomalies in the upper levels during both phases. Additionally, Fig.  
442 5g shows that wind speeds are generally weaker in the mid-level and stronger in the upper and  
443 lower levels during the enhanced phase. This may contribute to the increased production of strati-  
444 form precipitation during the enhanced phase since weaker mid-level winds may increase strati-  
445 form rain by decreasing entrainment in stratiform clouds through decreased sublimation and evap-  
446 oration (Schumacher and Houze 2006). Furthermore, vertical wind shear appears to be stronger  
447 during the enhanced phase, which contributes to convective organization (Anber et al. 2014; Robe  
448 and Emmanuel 2001) and may also increase stratiform precipitation (Saxen and Rutledge 2000).  
449 The diurnal variations of the differences between the two MJO phases (contour lines in Fig. 5g)  
450 are relatively small, where the highest differences in wind speed are recorded from 18:00 UTC to  
451 21:00 UTC in the upper levels, from 05:00 UTC to 10:00 UTC in the mid-levels, and from 00:00  
452 UTC to 05:00 UTC in the lowest levels. The observed decrease in wind speed in the mid-levels  
453

454 during the enhanced phase, which is most pronounced during the mornings, might be another con-  
455 tributing factor to the increased stratiform precipitation during the morning.

456 The relative humidity profiles (Figs. 5b, 5e, and 5h) show generally higher relative humidity  
457 during the enhanced phase. The contour lines in Figs. 5b and 5e, as well as the shading in Fig. 5h  
458 indicate that the differences between the two MJO phases are greatest in the upper levels around  
459 400hPa. Similar to the wind speed, the diurnal structures of relative humidity are weakened during  
460 the enhanced phase, where the area of lower relative humidity around 400hPa is less pronounced  
461 during the enhanced phase. According to the contour lines in Fig. 5h indicating the diurnal varia-  
462 tions of the difference, the highest differences are recorded in the evening from 100 hPa to 600  
463 hPa, from 03:00 UTC to 10:00 UTC from 600 hPa to 800 hPa, and from 12:00 UTC to 15:00 UTC  
464 from 800 hPa to 1000 hPa. Thus, the higher relative humidity during the MJO enhanced phase,  
465 especially in the upper and mid-levels during the nighttime and morning, may help in enhancing  
466 precipitation during the MJO enhanced phase. The observed higher relative humidity during the  
467 enhanced phase may also be contributing to the observed increase in stratiform precipitation during  
468 that phase, since studies such as Schumacher and Houze (2006) propose that a moist atmosphere  
469 may assist stratiform growth.

470 The temperature profiles (Figs. 5c and 5f) show similar structures overall, with generally colder  
471 temperatures during the MJO enhanced phase where the greatest differences are recorded in the  
472 afternoon and early evening below 800 hPa (Fig. 5i). Deep convection during the MJO enhanced  
473 phase could lead to atmospheric cooling and cold convective downdrafts, resulting in a transport  
474 of cold air to the lower levels and subsequently lowering the air temperature near the surface.  
475 Additionally, evaporative and radiative cooling could also be contributing factors to the lower  
476 temperatures during the MJO enhanced phase (Schiro and Neelin 2017; Rooney et al. 2019).

477 Overall, the higher relative humidity and the lower wind speed in the mid-levels in the morning  
478 during the enhanced phase could both be factors contributing to the development of increased  
479 stratiform precipitation in the morning with convective cooling possibly leading to the observed  
480 lower temperatures during the enhanced phase.

## 481 5. Summary and Discussion

482 This study analyzes the impacts of the MJO on the diurnal cycles of convection and  
483 precipitation from 1985–2019, using TRMM and GridSat-B1 satellite as well as ERA5 reanalysis  
484 data. Additionally, the physical mechanisms leading to the observed differences in the diurnal  
485 cycles between the MJO enhanced and suppressed phases are investigated using ERA5 vertical  
486 velocity, divergence, wind speed, relative humidity, temperature, and TRMM total, stratiform and  
487 convective precipitation data. Results show that the differences between the MJO enhanced and  
488 suppressed phases are largest during the nighttime and morning hours when convection is weakest  
489 and are possibly the result of circulation changes due to the MJO. Figure 6 summarizes the most  
490 important processes observed during the MJO enhanced and suppressed convective phase,  
491 respectively, and highlights the differences in clouds, precipitation, horizontal divergence, and  
492 vertical velocity between the two MJO phases, where the green arrows indicate the processes that  
493 are most important for the respective MJO phase compared to the other phase. During the MJO  
494 suppressed phase (Fig. 6a), subsidence is evident in the upper and mid-levels during the nighttime  
495 and morning hours (Fig. 4b), accompanied by strong divergence in the mid-levels (Fig. 4a). The  
496 observed subsidence and divergence may suppress convection, enhance the decay of convective  
497 clouds and the dissipation of the anvil while also inhibiting the vertical growth of new convective  
498 cores and vertical updrafts in the mid and upper levels. This will eventually result in more shallow  
499

500 convection and weakened stratiform precipitation portions of deep convection, ultimately leading  
501 to a decrease in stratiform precipitation (Fig. 3). During the enhanced phase (Fig. 6b), divergence  
502 in the upper levels is stronger, while nighttime and morning divergence in the mid-levels is much  
503 weaker (Fig. 4c). The air motion is generally upward with no observed subsidence in the mid- and  
504 upper levels (Fig. 4d), which may lead to the weaker mid-level divergence. This is possibly causing  
505 a slower decay of older convective clouds and dissipation of anvils during the nighttime and morn-  
506 ing, and may encourage the growth of new convective cores, resulting in larger anvils and en-  
507 hanced stratiform precipitation rates (Fig. 3). Additionally, mid-level rising air motions and con-  
508 vergence are enhanced in the afternoon and evening (Fig. 4d), which is possibly contributing to  
509 the increased and deeper afternoon convection as well as the increased precipitation amounts.  
510

511 The above-described observed impacts of the MJO on the diurnal cycles of precipitation and  
512 convection over the Congo differ somewhat from the MJO's influence on other tropical regions  
513 close to the MJO's center. Oh et al. (2011) analyzed the impacts of the MJO on the diurnal cycle  
514 of rainfall over the western MC and found the largest impacts over land to occur during peak  
515 convection in the afternoon and not during the morning, showing an increased hourly maximum  
516 rain rate during the MJO enhanced phase when compared to the suppressed phase. The observed  
517 changes are attributed to anomalous low-level winds during the respective MJO phase, interacting  
518 with the monsoonal flow over the MC. Liu et al. (2022) also found the MJO to be interacting with  
519 the American and African monsoons through different mechanisms, for example by exciting Kel-  
520 vin waves and mid-latitude teleconnections. While we found small changes in the diurnal ampli-  
521 tudes of precipitation or convection, Lu et al. (2019) showed that the difference between the MJO  
522 enhanced and suppressed phase over the MC mainly reveals itself in variations of the diurnal am-  
523 plitude of precipitation, where the amplitude is larger during the enhanced phase and smaller dur-  
524 ing the suppressed phase. The differences are mainly attributed to changes in wind and moisture  
525 convergence and divergence patterns. Naoko et al. (2017) also observed a difference in the ampli-  
526 tude of the diurnal rainfall rates between both MJO phases over the MC, together with a delayed  
527 peak in rainfall during the MJO enhanced phase. Similar to our results, Naoko et al. (2017) also  
528 observed enhanced stratiform precipitation after peak convective rainfall during the enhanced  
529 phase, which might be causing the observed delay in peak rainfall. They conclude that convection  
530 is more organized during the MJO enhanced phase, leading to increased formation of stratiform  
531 anvil clouds with greater horizontal extents, which will contribute to increased total rainfall rates.  
532 The differences in the MJO's impacts over the Congo from other tropical regions such as the MC  
533 could be the result of differences in topography, where the MC consists of multiple islands of  
534 different sizes surrounded by the ocean, while the Congo basin sits in the center of the African  
535 continent containing dense tropical rainforest promoting intense convection, surrounded by land  
536 on three sides and the Atlantic Ocean in the west.  
537

538 A limitation of this study is the usage of regional averaging over the entire study domain for  
539 the diurnal cycles and the atmospheric fields. This domain-wide averaging does not account for  
540 the fact that convection and precipitation varies spatially across the Congo basin and does not  
541 exclude grid-points which may not be raining. If including only the rainy points, for example dur-  
542 ing the enhanced phase, the specific divergence and vertical velocity patterns might be more pro-  
543 nounced when compared to including all grid points. Additionally, while this study discovers the  
544 impacts of the MJO on the diurnal cycles of convection and precipitation and explores some phys-  
545 ical mechanisms leading to the observed changes, further work is needed to fully understand how

546 the MJO modulates the diurnal variabilities of convection and rainfall. For example, explaining  
547 why the MJO is influencing the stratiform and convective precipitation differently could enhance  
548 our understanding about the MJO's impact on precipitation and may help to better resolve and  
549 simulate the MJO and associated variabilities in rainfall and convection, ultimately improving pre-  
550 dictions of MJO modulated rainfall. Additional analysis on the impacts of the MJO on storm life-  
551 time and initiation using high spatial and temporal resolutions data could also be useful to under-  
552 stand variations in the frequency, intensity, and duration of convective systems due to the MJO.  
553

554 Overall, the results presented above answer the question of how the MJO, the most dominant  
555 intraseasonal variability in the tropics, impacts convection and precipitation over the Congo from  
556 a diurnal perspective and improve our understanding about factors influencing the diurnal cycle of  
557 convection and rainfall over tropical rainforests. Our findings are not only useful in identifying the  
558 main drivers of the observed long-term and large-scale drying trend that has been stressing the  
559 Congo Basin but also help in improving weather forecasts and model development. For example,  
560 one major finding of this study is that the impact of the MJO on convection and rainfall is greatest  
561 in the morning hours, influencing the stratiform portion of the rain more than the convective pre-  
562 cipitation. Since the changes in rainfall and convection are largest during the morning hours when  
563 rainfall totals are usually lowest, the MJO could be used to predict exceptionally high precipitation  
564 rates in the morning. Additionally, considering that the MJO modulates convective and stratiform  
565 precipitation differently could help to predict the modulation of rainfall by the MJO more accu-  
566 rately.  
567

### 568 Acknowledgements

569 This work is supported by the National Science Foundation (NSF [AGS-1854486](#)). We thank  
570 Dr. Ajay Raghavendra for the insightful discussions that contributed to this study and helped to  
571 improve the quality of the work.  
572

### 573 References

574 Alaka, G. J., and Maloney, E. D., 2012. The influence of the MJO on upstream precursors to Af-  
575 rican easterly waves. *J. Climate*, 25(9), 3219-3236.  
576 Alber, K., Zhou, L., and Raghavendra, A., 2021a. A shift in the diurnal timing and intensity of  
577 deep convection over the Congo Basin during the past 40 years. *Atmos. Res.*, 264, 0169-8095.  
578 Alber, K., Raghavendra, A., Zhou, L., Jiang, Y., Sussman, H.S., Solimine, S.L., 2021b. Analyz-  
579 ing intensifying thunderstorms over the Congo Basin using the Gálvez-Davison index from  
580 1983–2018. *Clim. Dyn.*, 56, pp. 949-967.  
581 Alsdorf, D. et al., 2016. Opportunities for hydrologic research in the Congo Basin. *Rev. Ge-  
582 ophys.* 54:378–409.  
583 Anber, U., S. Wang, and A. H. Sobel, 2014. Response of atmospheric convection to vertical wind  
584 shear: Cloud-system resolving simulations with parameterized large-scale circulation. Part I:  
585 Specified radiative cooling. *J. Atmos. Sci.*, 71, 2976–2993.  
586 Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997. Rain type classification algorithm for  
587 TRMM precipitation radar. *JOURNAL OF APPLIED METEOROLOGY VOLUME 42 IEEE*  
588 *1997 Int. Geoscience and Remote Sensing Symp.*, Singapore, Japan, Institute of Electrical and  
589 Electronics Engineers, 1633–1635.  
590 Berhane, F., and Zaitchik, B., 2014. Modulation of daily precipitation over East Africa by the  
591 Madden–Julian Oscillation. *J. Clim.*, 27:6016–6034.

592 Feng, Z., Leung, L.R., Liu, N., Wang, J., Houze Jr, R.A., Li, J., Hardin, J.C., Chen, D. and Guo,  
593 J., 2021. A global high-resolution mesoscale convective system database using satellite-de-  
594 rived cloud tops, surface precipitation, and tracking. *Journal of Geophysical Research: Atmos-*  
595 *pheres*, 126(8), p.e2020JD034202.

596 Gálvez, J.M., and Davison, M., 2016. The Gálvez-Davison Index for Tropical Convection.  
597 [https://www.wpc.ncep.noaa.gov/international/gdi/GDI\\_Manuscript\\_V20161021.pdf](https://www.wpc.ncep.noaa.gov/international/gdi/GDI_Manuscript_V20161021.pdf). Ac-  
598 cessed December 2022.

599 Gleixner, S., Demissie, T., Diro, G.T., 2020. Did ERA5 improve temperature and precipitation  
600 reanalysis over East Africa? *Atmosphere*, 2020 (11), p. 996.

601 Hart, N. C., Reason, C. J., and Fauchereau, N., 2013. Cloud bands over southern Africa: Season-  
602 ality, contribution to rainfall variability and modulation by the MJO. *Clim. Dyn.*, 41, 1199-  
603 1212.

604 Hart, N.C., Washington, R., and Maidment R.I., 2019. Deep convection over Africa: annual cycle,  
605 ENSO, and trends in the hotspots. *J. Clim.*, 32, 8791-8811.

606 Hartman, A.T., 2021. Tracking mesoscale convective systems in central equatorial Africa. *Inter-*  
607 *national Journal of Climatology*, 41(1), 469– 482.

608 Hendon, H. H., and Woodberry, K., 1993. The diurnal cycle of tropical convection. *J. Geophys.*  
609 *Res.*, 98, 16 523–16 637.

610 Hersbach, H., et al., 2020. The ERA5 global reanalysis *Q. J. R. Meteorol. Soc.*, pp. 1-51.

611 Houze Jr., R. A., 1997. Stratiform precipitation in regions of convection: A meteorological para-  
612 dox? *Bull. Amer. Meteor. Soc.*, 78:2179–2196.

613 Hua, W., Zhou, L., Chen, H., Nicholson, S.E., Jiang, Y., and Raghavendra, A., 2016. Possible  
614 causes of the Central Equatorial African long-term drought. *Environ. Res. Lett.* 11:124002.

615 Nicholson, S.E., 2018. The ITCZ and the seasonal cycle over equatorial Africa. *Bull. Am. Mete-  
616 orol. Soc.*, 30 (2018), pp. 337-348.

617 Hua, W., Zhou, L., Nicholson, S.E., Chen, H., Qin, M., 2019. Assessing reanalysis data for un-  
618 derstanding rainfall climatology and variability over Central Equatorial Africa. *Clim. Dyn.*,  
619 53, pp. 651-669.

620 Hua, W., Zhou, L., Chen, H., Nicholson, S.E., Jiang, Y., Raghavendra, A., 2018. Understanding  
621 the Central Equatorial African long-term drought using AMIP-type simulations. *Clim. Dyn.*,  
622 50:1115–1128.

623 Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman,  
624 K.P., and Stocker, E.F., 2007. The TRMM multisatellite precipitation analysis (TMPA):  
625 quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. *J. Hydrome-  
626 teorol.* 8 38–55.

627 Jackson, B., S. E. Nicholson, and D. Klotter, 2009. Mesoscale convective systems over western  
628 equatorial Africa and their relationship to large-scale circulation. *Mon. Wea. Rev.*, 137,  
629 1272–1294.

630 Jiang, Y., Zhou, L., Tucker, C.J., Raghavendra, A., Hua, W., Liu, Y., Joiner, J., 2019. Wide-  
631 spread increase of boreal summer dry season length over the Congo rainforest. *Nat. Climate  
632 Change* 9:617–622.

633 Jiang, Y., Zhou L., Roundy, P.E., Hua, W., and Raghavendra, A., 2021. Increasing Influence of  
634 Indian Ocean Dipole on Precipitation Over Central Equatorial Africa. *Geophys. Res. Lett.*, 48,  
635 e2020GL092370.

636 Johnston, B. R., F. Xie, and C. Liu, 2018. The effects of deep convection on regional temperature  
637 structure in the tropical upper troposphere and lower stratosphere. *J. Geophys. Res. Atmos.*,

638 123, 1585–1603.

639 Kim, H. M., Webster, P.J., Hoyos, C.D., and Kang, I-S., 2008. Sensitivity of MJO simulation and  
640 predictability to sea surface temperature variability. *J. Climate*, 21, 5304–5317.

641 Knapp, K.R., 2008. Scientific data stewardship of International Satellite Cloud Climatology Pro-  
642 ject B1 global geostationary observations. *J. Appl. Remote. Sens.* 2, 023548.

643 Knapp, K.R., et al., 2011. Globally gridded satellite observations for climate studies. *Bull. Am.*  
644 *Meteorol. Soc.* 92, 893–907.

645 Lazri, M., Ameur, S., Brucker, J. M., and Ouallouche, F., 2014. Convective rainfall estimation  
646 from MSG/SEVIRI data based on different development phase duration of convective systems  
647 (growth phase and decay phase); *Atmos. Res.*, 147–148 38–50.

648 Lin, J., B. E. Mapes, M. Zhang, and M. Newman, 2004. Stratiform precipitation, vertical heating  
649 profiles, and the Madden-Julian Oscillation, *J. Atmos. Sci.*, 61, 296–309.

650 Lindesay, J. A., 1988: South African rainfall, the Southern Oscillation and a Southern Hemisphere  
651 semi-annual cycle. *Int. J. Climatol.*, 8, 17–30.

652 Liu, F., Wang, B., Ouyang, Y. et al., 2022. Intraseasonal variability of global land monsoon pre-  
653 cipitation and its recent trend. *npj Clim. Atmos. Sci.* 5, 30.

654 Lu, J., Li, T., and Wang, L., 2019. Precipitation diurnal cycle over the Maritime Continent modu-  
655 lated by the MJO. *Clim Dyn* 53, 6489–6501.

656 Madden, R.A., and Julian, P.R., 1971. Detection of a 40–50 day oscillation in the zonal wind in  
657 the tropical Pacific. *J. Atmos. Sci.*, 28, 702–708.

658 Madden, R. A., and Julian, P. R., 1972. Description of global-scale circulation cells in the tropics  
659 with a 40–50 day period. *J. Atmos. Sci.*, 29, 1109–1123.

660 Mapes, B. E., and Lin, J., 2005. Doppler radar observations of mesoscale wind divergences in  
661 regions of tropical convection. *Mon. Wea. Rev.*, 133, 1808–1824.

662 Maybee, B., Ward, N., Hirons, L. C., and Marsham, J. H., 2022. Importance of Madden–Julian  
663 oscillation phase to the interannual variability of East African rainfall. *Atmos. Sci. Lett*, e1148.

664 Miller et al., 2019: An Empirical Study of the Relationship between Seasonal Precipitation and  
665 Thermodynamic Environment in Puerto Rico. *Weather and Forecasting*. 34, 277-288.

666 Munzimi, Y., Hansen, M., Adusei, B., and Senay, G., 2015. Characterizing Congo Basin rainfall  
667 and climate using TRMM satellite data and limited rain gauge ground observations *J. Appl.*  
668 *Meteor. Climatol.*, 54, 541–56.

669 Negri, A.J., Bell, T.L., Xu, L., 2002. Sampling of the diurnal cycle of precipitation using TRMM.  
670 *J. Atmos. Ocean. Technol.*, 19, pp. 1333-1344.

671 Nesbitt, S. W., and E. J. Zipser, 2003. The diurnal cycle of rainfall and convective intensity to  
672 three years of TRMM measurements. *J. Climate*, 16, 1456–1475.

673 Nicholson, S. E., 2018. The ITCZ and the seasonal cycle over equatorial Africa. *Bull. Am. Mete-  
674 orol. Soc.* 30:337–348.

675 Nicholson, S. E., Klotter, D., Zhou, L., and Hua, W., 2019. Validation of satellite precipitation  
676 estimates over the Congo Basin *J. Hydrometeor.* 20 631–56.

677 Oh, J.-H., Kim, K.-Y., and Lim, G.-H., 2012. Impact of MJO on the diurnal cycle of rainfall over  
678 the western Maritime Continent in the austral summer. *Clim. Dyn.*, 38, 1167–1180.

679 Ogallo, L. J., 1988: Relationships between seasonal rainfall in East Africa and the Southern Oscil-  
680 lation. *J. Climatol.*, 8, 31–43.

681 Otto, F. E. L., Jones, R. G., Halladay, K., and Allen, M. R., 2013. Attribution of changes in pre-  
682 cipitation patterns in African rainforests. *Philosophical Transactions of the Royal Society*  
683 *B*, 368(1625), 20120299.

684 Qian, J.-H., Robertson, A.W., and Moron, V., 2010. Interactions among ENSO, the monsoon and  
685 diurnal cycle in rainfall variability over Java, Indonesia. *J. Atmos. Sci.*, 67, 3509–3524.

686 Pohl, B., and Camberlin, P., 2006. Influence of the Madden–Julian Oscillation on East African  
687 rainfall. I: intraseasonal variability and regional dependency. *Q. J. R. Meteorol. Soc.*  
688 132:2521–2539.

689 Raghavendra, A., Zhou, L., Jiang, Y., Hua, W., 2018. Increasing extent and intensity of thunder-  
690 storms observed over the Congo Basin from 1982 to 2016. *Atmos. Res.*, 213:17–26.

691 Raghavendra, A., Zhou, L., Roundy, P.E. et al., 2020. The MJO’s impact on rainfall trends over  
692 the Congo rainforest. *Clim. Dyn.*, 54, 2683–2695.

693 Rauniyar, S.P., and Walsh, K.J.E., 2011. Scale interaction of the diurnal cycle of rainfall over the  
694 Maritime Continent and Australia: Influence of the MJO. *J. Climate*, 24, 325–348.

695 Rauniyar, S. P., and Walsh, K. J. E., 2013. Influence of ENSO on the diurnal cycle of rainfall over  
696 the Maritime Continent and Australia. *J. Climate*, 26, 1304–1321.

697 Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective  
698 equilibrium states. *J. Atmos. Sci.*, 58, 1427–1445.

699 Rooney, G. G., N. P. M. Van Lipzig, and W. Thiery, 2018. Estimating the effect of rainfall on the  
700 surface temperature of a tropical lake. *Hydrol. Earth Syst. Sci.*, 22, 6357–6369.

701 Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T., 1999. A dipole mode in  
702 the tropical Indian Ocean. *Nature*, 401(6751), 360–363.

703 Sakaeda, N., Kiladis, G., and Dias, J., 2017. The diurnal cycle of tropical cloudiness and rainfall  
704 associated with the Madden–Julian oscillation. *J. Climate*, 30, 3999–4020.

705 Schiffer, R.A., and Rossow, W.B., 1983. The International Satellite Cloud Climatology Project  
706 (ISCCP): the first project of the World Climate Research Program. *Bull. Amer. Meteor. Soc.*  
707 64, 779–784.

708 Schiro, K. A., and J. D. Neelin, 2018. Tropical continental downdraft characteristics: Mesoscale  
709 systems versus unorganized convection. *Atmos. Chem. Phys.*, 18, 1997–2010.

710 Schumacher, C., and Houze, R. A., 2006. Stratiform precipitation production over sub-Saharan  
711 Africa and the tropical East Atlantic as observed by TRMM, *Q. J. R. Meteorol. Soc.*, 132(620), 2235–2255.

712 Schumacher, C., and R. A. Houze Jr. (2003), Stratiform rain in the tropics as seen by the TRMM  
713 Precipitation Radar, *J. Clim.*, 16, 1739–1756.

714 Shaaban, A. A., and Roundy, P. E., 2017. OLR perspective on the Indian ocean dipole with appli-  
715 cation to East African precipitation. *Quarterly Journal of the Royal Meteorological Society*, 143(705), 1828–1843.

716 Sossa, A., Liebmann, B., Bladé, I., Allured, D., Hendon, H.H., Peterson, P. and Hoell, A., 2017.  
717 Statistical connection between the Madden–Julian oscillation and large daily precipitation  
718 events in West Africa. *Journal of Climate*, 30(6), pp.1999-2010.

719 Slingo, J., Inness, P., Neale, P., Woolnough, S., and Yang, G.Y., 2003. Scale interactions on diur-  
720 nal to seasonal timescales and their relevance to model systematic errors. *Ann. Ge-  
721 ophys.*, 46, 139–155.

722 Sui, C.-H., Lau, and K.-M., 1992. Multiscale phenomena in the tropical atmosphere over the  
723 western Pacific. *Mon. Wea. Rev.*, 120, 407–430.

724 Sui, C.-H., Lau, K.-M., Takayabu, Y.N., and Short, D.A., 1997. Diurnal variations in tropical  
725 oceanic cumulus convection during TOGA COARE. *J. Atmos. Sci.*, 54, 639–655.

726 Suzuki, T., 2009. Diurnal cycle of deep convection in super clusters embedded in the Madden–  
727 Julian oscillation. *J. Geophys. Res.*, 114, D22102.

728

729

730 Talib, J., Taylor, C.M., Harris, B.L. and Wainwright, C.M., 2023. Surface-driven amplification  
731 of MJO circulation anomalies across East Africa and its influence on the Turkana jet. Quarterly  
732 Journal of the Royal Meteorological Society.

733 Taylor, C.M., Belusic, D., Guichard, F., Parker, D.J., Vischel, T., Bock, O., Harris, P.H., Janicot,  
734 S., Klein, C., Panthou, G., 2017. Frequency of extreme Sahelian storms tripled since 1982 in  
735 satellite observations. *Nature*, 544, pp. 475-478.

736 Taylor, C.M., Fink, A.H., Klein, C., Parker, D.J., Guichard, F., Harris, P.P. and Knapp, K.R.,  
737 2018. Earlier seasonal onset of intense mesoscale convective systems in the Congo Basin  
738 since 1999. *Geophysical Research Letters*, 45(24), pp.13-458.

739 Tian, B., Soden, B.J., and Wu, X., 2004. Diurnal cycle of convection, clouds and water vapor in  
740 the tropical upper troposphere: Satellites versus a general circulation model. *J. Geophys.*  
741 *Res.*, 109, D10101.

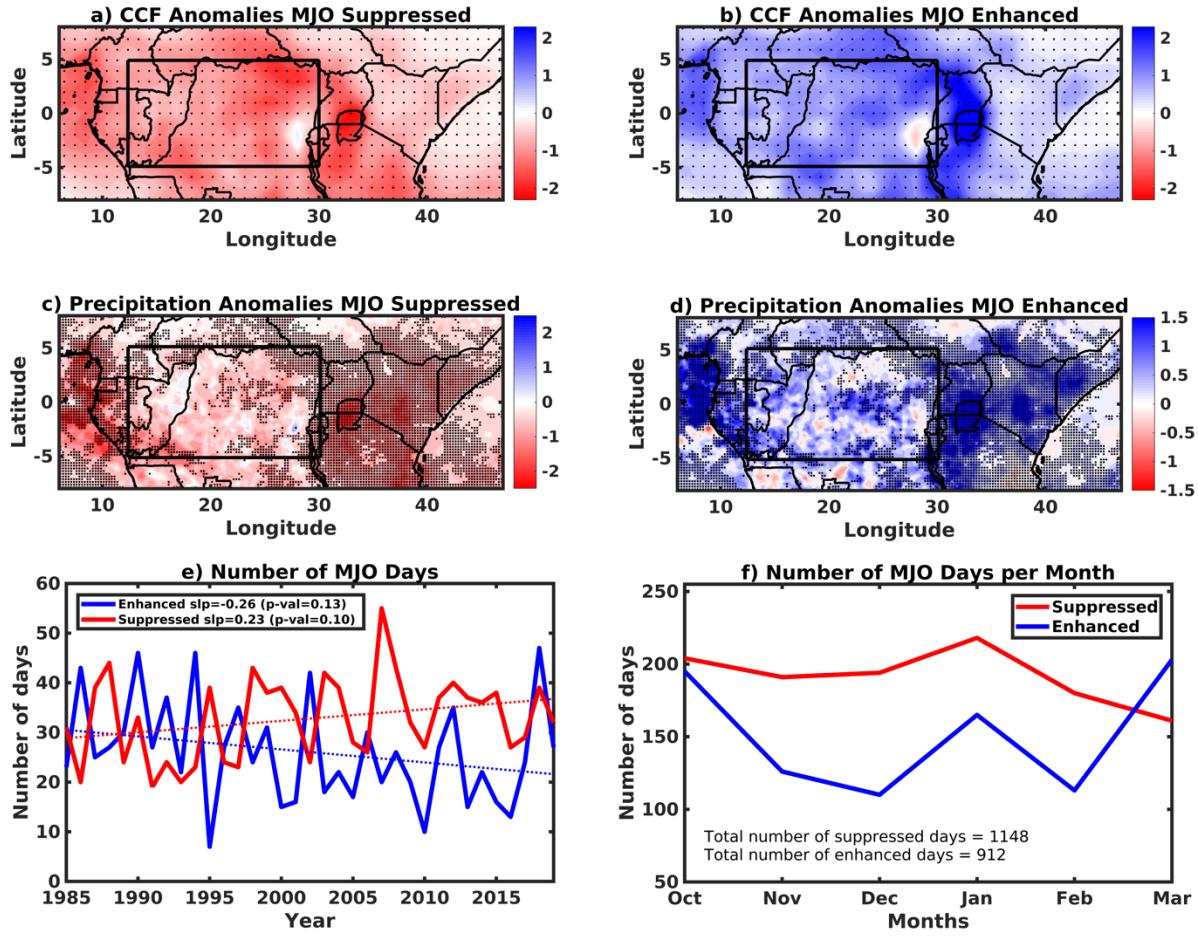
742 Vashisht, A., and Zaitchik, B., 2022. Modulation of East African boreal fall rainfall: combined  
743 effects of the Madden–Julian oscillation (MJO) and El Niño–Southern oscillation (ENSO). *J.*  
744 *of Clim.*, 35, 2019–2034.

745 Yang, G.-Y., and Slingo, J., 2001. The diurnal cycle in the tropics. *Mon. Wea.*  
746 *Rev.*, 129, 784– 801.

747 Wang, C., 2018. A review of ENSO theories. *National Science Review*, 5(6), 813–825.

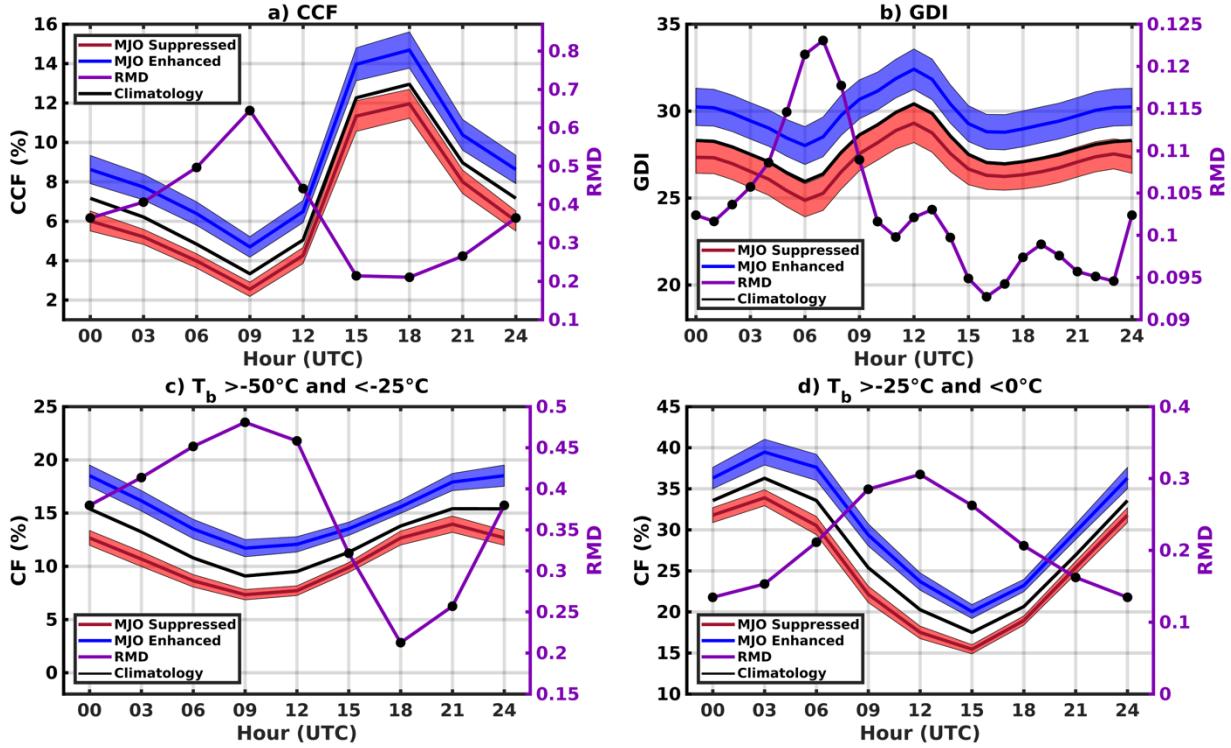
748 Washington, R., James, R., Pearce, H., Pokam, W.M., and Moufouma-Okia, W., 2013. Congo  
749 Basin rainfall climatology: can we believe the climate models? *Phil. Trans. R. Soc. B.*, 368,  
750 20120296.

751 Zaitchik, B.F., 2017. Madden-Julian Oscillation impacts on tropical African precipitation. *Atmos.*  
752 *Res.*, 184, pp. 88-102.


753 Zhang, C., and Dong, M., 2004. Seasonality of the Madden–Julian oscillation. *J. Clim.* 17:3169–  
754 3180.

755 Zhang, C., 2005. Madden–Julian Oscillation. *Rev. Geophys.*, 43, RG2003.

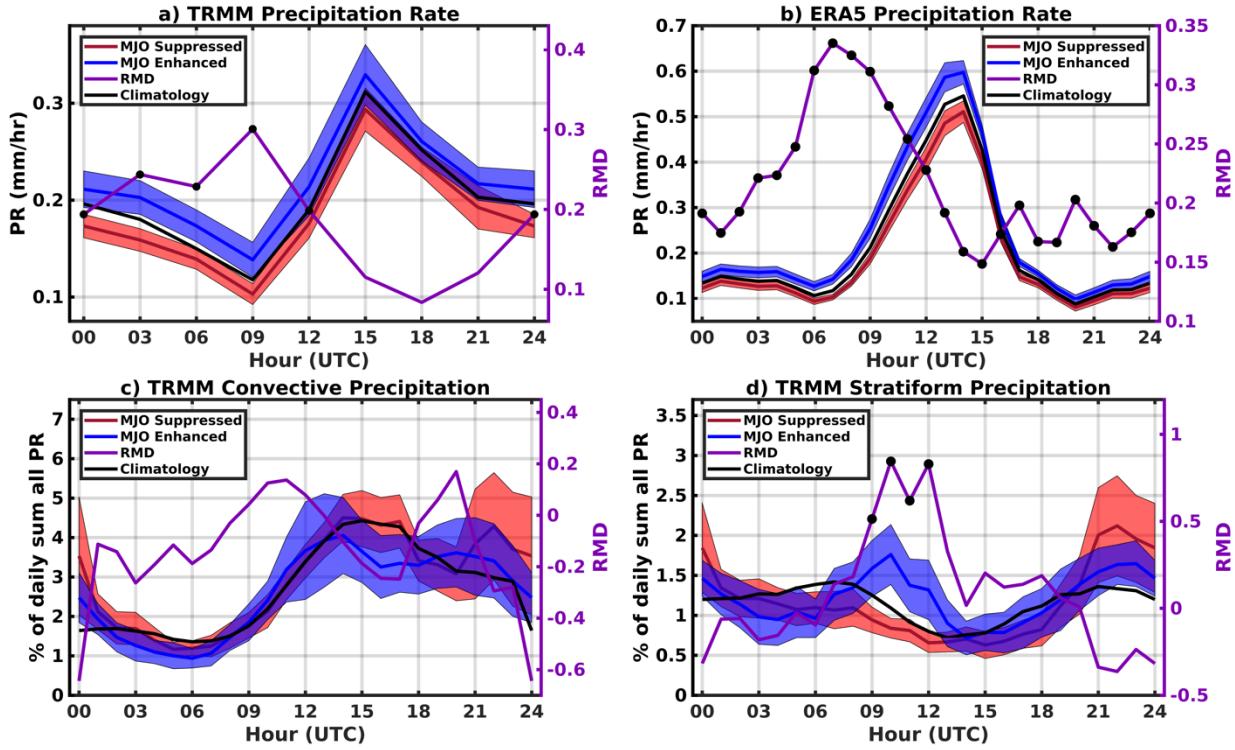
756 Zhou L et al., 2014. Widespread decline of Congo rainforest greenness in the past decade. *Nature*  
757 509:86–90.


758 Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense  
759 thunderstorms on earth? *Bull. Amer. Meteor. Soc.*, 87, 1057–1071.

760  
761 **Figures**

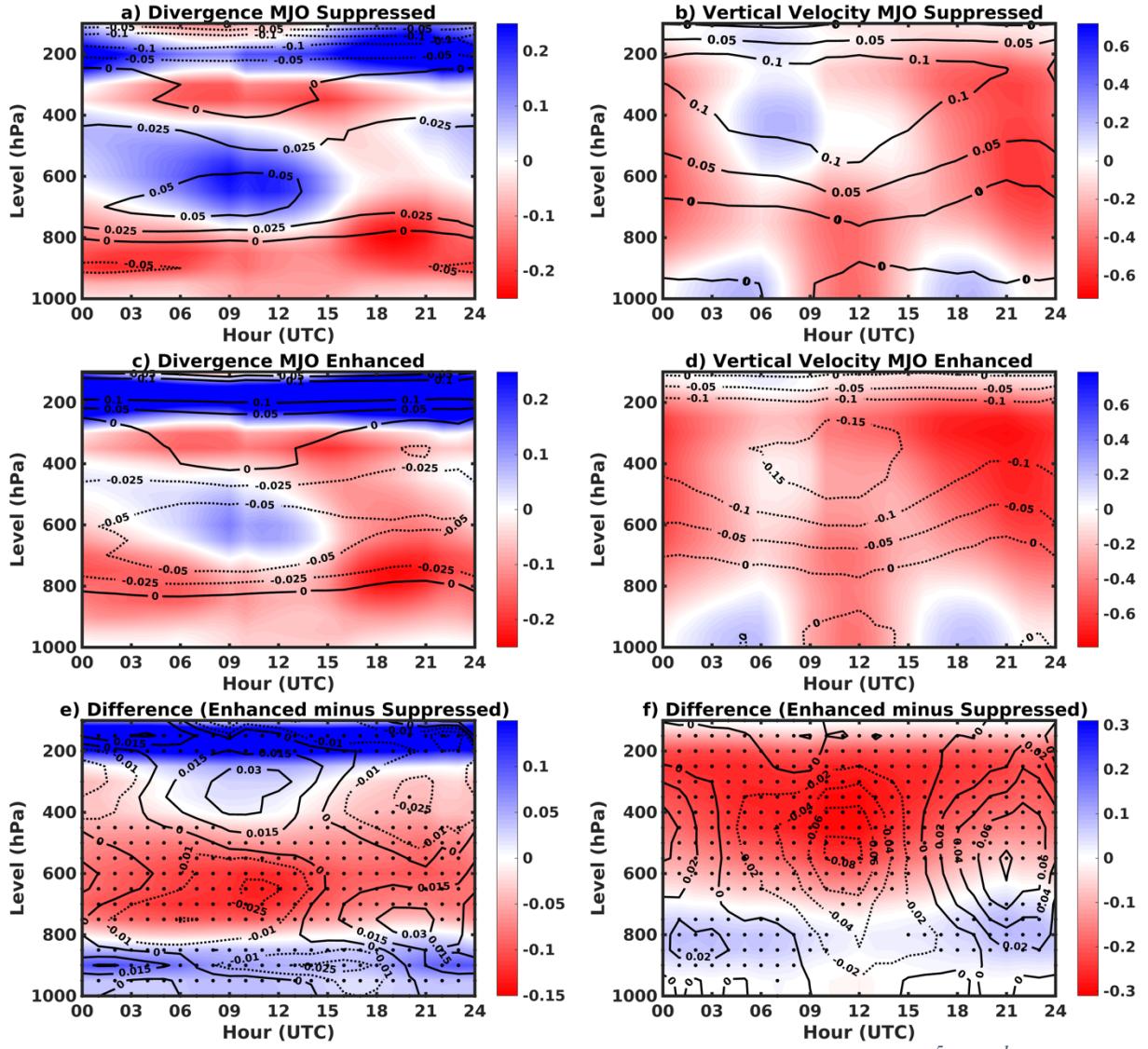


762  
763  
764  
765  
766  
767  
768  
769  
770


Figure 1: (a-d): Anomalies of (a), (b) 3-hourly GridSat-B1 CCF (%) and (c), (d) daily TRMM precipitation (mm) for the MJO enhanced phase (top) and the MJO suppressed phase (middle) from 1985–2019. The study region (i.e., the Congo Basin) is represented by the black box. The black dots indicate that the values during the enhanced and suppressed phase are significantly different from each other at  $p < 0.05$  (determined using a two-sample ttest). (e): Interannual variability of the number of enhanced (blue) and suppressed (red) MJO days over the study region. (f): Number of enhanced (blue) and suppressed (blue) MJO days per month from 1985–2019 averaged over the study region.



771  
772  
773  
774  
775  
776  
777  
778


Figure 2: Diurnal cycles of (a) GridSat-B1 CCF, (b) ERA5 GDI, (c) cloud fractions with  $T_b$  between  $>-50^\circ\text{C}$  and  $-25^\circ\text{C}$ , and (d) cloud fractions with  $T_b$  between  $>-25^\circ\text{C}$  and  $0^\circ\text{C}$  averaged over the study region from 1985–2019. The red line shows the distribution for the MJO suppressed phase, the blue line shows the distribution for the MJO enhanced phase, and the black line indicates the climatology, and the purple line represents the RMD between the enhanced and suppressed phase (right y-axis). The 95% confidence intervals are indicated by the blue and red shadings. The black dots indicate that the difference is significant at  $p < 0.05$ .

779



780  
 781 *Figure 3: Diurnal cycles of (a) TRMM precipitation (1998–2019), (b) ERA5 precipitation (1985–*  
 782 *2019), (c) TRMM convective precipitation contributions to the daily sum (1998–2013), and (d)*  
 783 *TRMM stratiform precipitation contributions to the daily sum (1998–2013) averaged over the*  
 784 *study region. The red line represents the distribution for the MJO suppressed phase, the blue line*  
 785 *shows the distribution for the MJO enhanced phase, the black line indicates the climatology, and*  
 786 *the purple line represents the RMD between the enhanced and suppressed phase (right y-axis).*  
 787 *The 95% confidence intervals are indicated by the blue and red shadings. The black dots indicate*  
 788 *that the difference is significant at  $p < 0.05$ . A 4-hour smoothing was applied to the data TRMM*  
 789 *convective and stratiform precipitation data due to the high spatial variability of the TRMM 2A23*  
 790 *sampling.*

791



794 *Figure 4: (a-d): Time-height cross sections of (a), (c) ERA5 divergence ( $10^{-5} \times s^{-1}$ ) and (b), (d)*  
 795 *ERA5 vertical velocity ( $10^{-1} \times Pa s^{-1}$ ) for the MJO suppressed phase (top) and the MJO enhanced*  
 796 *phase (middle), averaged over the study region from 1985–2019. The shading represents the*  
 797 *values averaged over all MJO suppressed days and all MJO enhanced days, respectively. The black*  
 798 *contour lines indicate the anomalies (i.e., the difference between the MJO enhanced/suppressed*  
 799 *days and all days during ONDJFM). (e-f): Difference between the MJO enhanced and suppressed*  
 800 *phase for (e) ERA5 divergence and (f) ERA5 vertical velocity (shading) where the black dots in-*  
 801 *dicate that the difference is significant at  $p < 0.05$ . The contour lines show the diurnal variations*  
 802 *of the difference.*

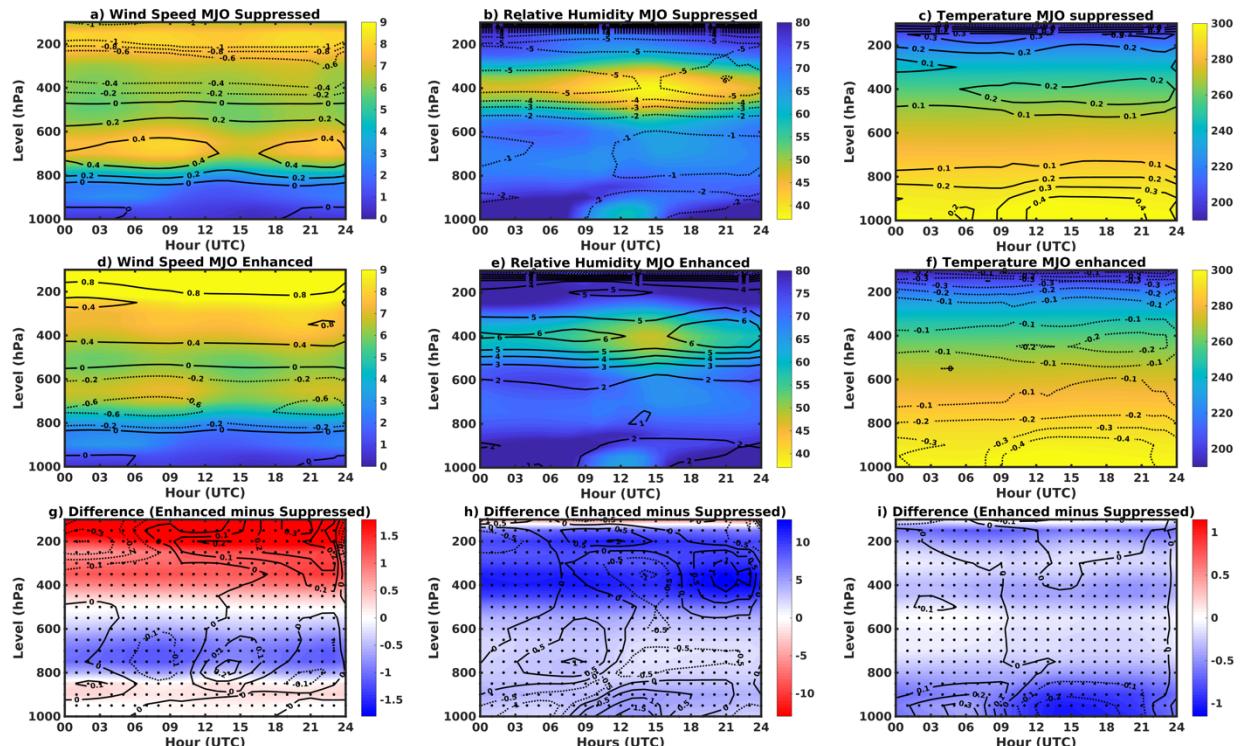



Figure 5: (a-f) Time-height cross section of (a), (d) ERA5 wind speed ( $ms^{-1}$ ), (b), (e) ERA5 relative humidity (%), and (c), (f) ERA5 temperature for the MJO suppressed phase (top) and the MJO enhanced phase (middle), averaged over the study region from 1985–2019. The shading represents the values averaged over all MJO suppressed days and all MJO enhanced days, respectively. The black contour lines indicate the anomalies (i.e., the difference between the MJO enhanced/suppressed days and all days during ONDJFM). (g-i): Difference between the MJO enhanced and suppressed phase for (g) ERA5 wind speed, (h) ERA5 relative humidity, and (i) ERA5 temperature (shading) where the black dots indicate that the difference is significant at  $p < 0.05$ . The contour lines show the diurnal variations of the difference.

805  
806  
807  
808  
809  
810  
811  
812  
813  
814

815

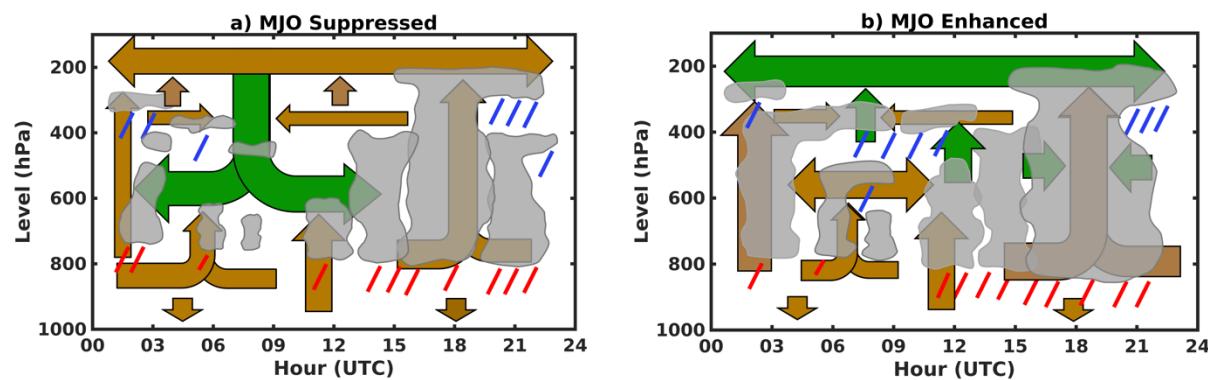

816  
817  
818  
819  
820

Figure 6: Schematic of the diurnal cycle for (a) the MJO suppressed and (b) the MJO enhanced phase, for clouds, rainfall, and air motions (i.e., divergence and vertical motions), where the green colored arrows indicate dominant processes during the respective MJO phase compared to the other MJO phase, and the brown arrows indicate less important processes for the respective

821 phase. Convective precipitation is indicated by the red lines at the bottom of the convective clouds  
822 and stratiform precipitation is represented by the blue lines at the anvils.

823  
824