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A fundamental problem in functional data analysis is to clas-

sify a functional observation based on training data. The

application of functional data classification has gained im-

mense popularity and utility across a wide array of disci-

plines, encompassing biology, engineering, environmental

science, medical science, neurology, social science, and be-

yond. The phenomenal growth of the application of func-

tional data classification indicates the urgent need for a sys-

tematic approach to develop efficient classification meth-

ods and scalable algorithmic implementations. Therefore,

we here conduct a comprehensive review of classification

methods for functional data. The review aims to bridge the

gap between the functional data analysis community and

the machine learning community, and to intrigue new prin-

ciples for functional data classification.

1 | INTRODUCTION

Functional data refer to curves or functions, wherein the data corresponding to each variable are represented as

smooth curves, surfaces, or hypersurfaces, evaluated at a finite subset of some intervals. These intervals may exist in

one dimension (1D), two dimensions (2D), or three dimensions (3D), such as a time period, a range of pixels or voxels,

and other applicable contexts. Frequently encountered forms of functional data encompass trajectories, time series

data, spatio-temporal data, and various other representations. Despite the diverse forms functional data may take,

their key characteristic lies in the existence of underlying functions, such as curves, which define the essential nature

of the data.

Compared with classical independent and identically distributed (i.i.d.) data, the distinguishing feature of func-

tional data is the presence of dependence and smoothness within each data curve. Instead of dealing with random

variables, functional data involves random processes, which necessitates the implicit consideration of an infinite-

dimensional function space. Functional data analysis (FDA) has become a topic of growing interest within the statistics
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community over recent decades, leading to a wealth of literature on the subject. For a comprehensive understanding

of FDA theory and methods, we refer the readers to the classic textbook by Ramsay and Silverman [2005], recent

monographs [Ferraty and Romain, 2011, Hsing and Eubank, 2015] and review papers Wang et al. [2016a], Morris

[2015]. Recently, to extend classification approaches frommultivariate data to functional ones, Jiang and Chen [2020]

reviewed the fundamental theory and methods on how to leverage dimension reduction (filtering) methods for func-

tional data settings. In this paper, we present several emerging and promising areas of functional data classification

that we anticipate will gain momentum in the near future and have a progressively significant impact across various

scientific domains.

The rest of this paper proceeds as follows. In Section 2, several motivation examples, including 1D, 2D and 3D

functional data, are provided. In Section 3, we introduce the preliminary ideas and notations for functional data and

classification. Reviews of density-based, regression-based, distance based, SVMs, and reproducing kernel methods

are provided in Section 4. Section 4 also includes review of classification methods for multivariate functional data and

robust classifiers. Evaluation criteria for functional data classifiers have been reviewed in Section 5. We include a table

of several open-source software and packages on functional data classification in Section 6. The paper concludes with

summary and discussions as provided in Section 7.

2 | MOTIVATION EXAMPLES

2.1 | 1D functional data

2.1.1 | TIMIT speech data

The TIMIT speech data was derived from the TIMIT Acoustic-Phonetic Continuous Speech Corpus database,

which was compiled by the National Technical Information Service under the United States Department of Commerce.

This database has garnered widespread recognition and serves as a vital resource for advancing research in speech

recognition and functional data classification [Ferraty and Vieu, 2003, Delaigle and Hall, 2012, Wang et al., 2023b].

From the digitized speech contained in the TIMIT database, five phonemes were extracted and transcribed as follows:

"sh" as in "she", "dcl" as in "dark", "iy" as the vowel sound in "she", "aa" as the vowel sound in "dark", and "ao" as

the initial vowel sound in "water". Prior to analysis, a log-periodogram transformation was applied to each speech

frame. This transformation facilitates the representation of speech data in a suitable format for speech recognition.

Moreover, each speech frame is represented by 400 samples, obtained through a 16-kHz sampling rate. From these

samples, the first 150 frequencies were retained for further analysis. To provide visual insight, Figure 1 presents 30 log-

periodograms for four phoneme classes, allowing for a comparative display of acoustic properties across the selected

phonemes.

2.1.2 | DTI data

The DTI dataset, available within the refund package in R, provides researchers with a valuable resource of diffu-

sion tensor imaging (DTI) data. DTI is an advanced imaging technique widely employed in neuroscience and medical

research to investigate the intricate structure and connectivity of white matter in the brain. Of particular interest

in the analysis of this dataset is classification of individuals into two distinct groups: those diagnosed with multiple

sclerosis (MS) and a control group. The classification is based on the examination of fractional anisotropy tract profiles

specifically pertaining to the corpus callosum (cca) and the right corticospinal tract (rcst). By analyzing the tract profiles
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imaging data, where the intensity value linked to each pixel is considered the value of a function at the corresponding

spatial location such that each image can be viewed as a realization of a random function. However, there is lack

of literature on such next-generation functional data classification. Hence, in the following, we mainly focus on the

one-dimensional (d = 1) functional data classification, unless we specify the value of dimension d .

3.1 | Formulation of functional data classification

In statistics, classification involves determiningwhich specific group a new observation belongs to, using a training

data set that includes samples with labeled groups. As a form of supervised learning, classification garners significant

attention in both statistics and machine learning communities due to its wide-ranging applications. For integer K ≥

2, we consider a K -class classification problem with the functional observations defined on space X. Let (Xi ,Yi ) ,

i = 1, . . . , n , be i.i.d. random pairs of observations, where Xi ∈ X andYi ∈ {1, . . . ,K }. For a new observation X , the

classification task is to predict the class labelY by a classifier C : X → {1, . . . ,K }, based on finite sample { (Xi ,Yi ) }
n
i=1.

More specifically, the classification rule based on finite sample is defined as Ĉn ≡ Ĉn ( (X1,Y1 ) , . . . , (Xn ,Yn ) ) . We

denote the prior probability πk = Ð (Y = k ) , and the posterior probabilities pk (x ) = Ð (Y = k |X = x ) , k = 1, . . . ,K .

3.2 | Dimension reduction

Compared to the classical multivariate data, the inherent infinite-dimensionality of functional data necessitates

the utilization of dimension reduction techniques to effectively process functional observations. These techniques are

imperative for almost all functional statistical tasks, including functional data classification. There are generally two

main strategies for processing functional data in classification tasks. The first involves dimension reduction techniques

on functional observation, which transform the functional data into a lower-dimensional representation that can be

analyzed using traditional multivariate data classification methods. Examples of this category include Functional Prin-

cipal Component Analysis (FPCA) [Müller, 2005, Leng and Müller, 2006] , basis expansion [Wang et al., 2023a,b],

partial least squares Preda et al. [2007], and other similar techniques. The second category involves methods that

preserve the full continuum of the functional data. These methods operate directly on the functional data without

reducing it to a lower-dimensional representation first. However, depending on the specific method employed, some

may still require dimension reduction. Examples of this category include distance-based methods and methods that

leverage the special function space structure, such as Reproducing Kernel Hilbert Space (RKHS) [Berrendero et al.,

2018, Sang et al., 2022].

As the most widely recognized and prevalent dimension reduction method for functional data, FPCA is highly

regarded for its exceptional effectiveness and interpretability. Let X (t ) , t ∈ T := [0, 1] be a random process with∫
T
ÅX (t )2d t < ∞. X (t ) has an unknown mean function µk (t ) and unknown covariance function Ω (t , t ′ ) , for t , t ′ ∈

T. By Mercer’s theorem [Mercer, 1909], the covariance function Ω (t , t ′ ) can be represented through the spectral

decomposition

Ω (t , t ′ ) =

∞∑

j=1

λjφj (t )φj (t
′ ),

where λ1 ≥ λ2 ≥ . . . ≥ 0 are nonnegative eigenvalues satisfying,
∑∞

j=1
λj < ∞, andφk (t ) is the corresponding orthonor-

mal eigenfunction, i.e.,
∫
t ∈T

φj (t )φk (t )d t = É (j = k ) , j , k , ∈ Î
+. Then, given n random curves {X1 (t ), . . . ,Xn (t ) }, by
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Karhunen-Loève expansion, Xi (t ) can be rewritten as

Xi (t ) = µ (t ) +

∞∑

j=1

ξi jφj (t ), i = 1, . . . , n,

where ξi j =

∫
T
(Xi (t ) − µ (t ) ) φj (t )d t are uncorrelated variables with mean 0 and variance λj , and ξi j are called

Functional Principal Component Scores (FPCS). In practice, FPCA leverages a truncated expansion using either a pre-

fixed function basis, such as wavelet basis [Zhu et al., 2012], Fourier basis [Wang et al., 2023b], spline basis [James

and Hastie, 2001], or embraces a data-adaptive eigenbasis [Delaigle and Hall, 2012, Dai et al., 2017]. This versatility

in choosing the basis allows FPCA to offer more flexibility and customization in representing functional data.

4 | METHODOLOGIES FOR FUNCTIONAL DATA CLASSIFICATION

In this section, we organize the functional classification into five main categories. In Section 4.1, we review the

density-based classifiers, where both Gaussian and non-Gaussian types of data are discussed. In Sections 4.2 and

4.3, we review the regression model-based and distance-based classifiers, including two major methods: centroid and

nearest neighbor, followed by discussions of the functional linear regression approach on the use of different link

functions. The RKHS will be discussed in Section 4.4. In Section 4.5, we further discuss the support vector machine

which can detect the classification boundary. Finally, we review several recently developed methods tailored for

multivariate and multidimensional functional data. These methods exemplify the continuous advancements in the

field and hold the potential to shape the future of functional data classification.

4.1 | Density-based classification

First proposed by Fisher [1936], discriminant analysis is a fundamental statistical technique to classify observa-

tions into pre-defined groups based on their measured characteristics or variables. This approach is motivated by the

principle of maximum likelihood, which seeks the parameter values that make the observed data most probable under

the assumed distribution. By assuming that the underlying data distribution follows a specific probabilistic form, such

as Gaussianity, the discriminant function is pre-specified and the goal of the training process is to estimate the param-

eters of this function. When confronted with violations of Gaussianity, parametric density estimation techniques may

not be adequate, and nonparametric methods such as kernel density estimation and neural networks can providemore

flexible alternatives. By utilizing nonparametric approaches, the resulting density estimates are not restricted to any

particular functional form, making them more adaptable to complex and diverse data distributions. In the rest of this

subsection, we review the development of functional classification methods under both Gaussian and non-Gaussian

assumptions.

4.1.1 | Functional observations with the Gaussian assumption

Under the Gaussian assumption, both observations in the time domain and the transformed correspondence in

the frequency domain are Gaussian. One common example is by assuming the first J FPCS ξJ = (ξ1, . . . , ξJ )
⊺ satisfies

ξJ |Y = k ∼ N (µk , Λk ),
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and the classifier is defined as

argmin
k=1...,K

(ξJ − µk ) Λ
−1
k (ξJ − µk ) + log ( |Λk | ) − 2 log πk .

James and Hastie [2001] first considered the representation of functional observations using splines basis, and they

applied multivariate Linear Discriminant Analysis (LDA) to the spline coefficients to construct the classifier. In order

to overcome the limitations imposed by the spline basis, Delaigle and Hall [2012] advocated the centroid method

through the incorporation of FPCA. As a data-driven technique, it is suited to capture the underlying patterns of the

data. This method is essentially equivalent to Functional LDA (FLDA) [James and Hastie, 2001] under certain sce-

narios. Subsequently, Delaigle and Hall [2013] proposed the centroid method in functional Quadratic Discriminant

Analysis (FQDA) to further address heteroscedasticity. Similar FQDA procedure can be found in Wang et al. [2023b],

where they employed the Fourier basis to extract the FPCS. Yu et al. [2022] focused on non-stationary Gaussian pro-

cess, where they vectorized the functional observations as high-dimensional Gaussian data in a multivariate setup

and performed posterior inference to establish the classifier. Gaussianity is crucial for the conventional LDA and

quadratic discriminant analysis (QDA), and same conclusion can be obtained in functional classification. When Gaus-

sian assumption is invalid, these functional LDA and QDA based classifiers incur large empirical risks. For example,

Wang et al. [2023b] evaluated the numerical performance of their proposed classifier with popular functional QDA

under non-Gaussian process situations. The functional QDA has larger empirical misclassification error rates than the

proposed classifier which is free of the assumption of the Gaussianity.

4.1.2 | Distribution-free discrimination analysis

In the absence of the Gaussian assumption, nonparametric methodologies are often adopted. One of the most

commonly used scheme is to approximate pk (x ) by its finite counterpart

pk ≈
πk fk (ξJ )∑K
ℓ=1

πℓ fℓ (ξJ )
,

where J is the number of truncation, ξJ are the first J selected FPCS, fk is the density function given X in the k -th

class, k = 1, . . . ,K . Hall et al. [2001], Bongiorno and Goia [2016], Dai et al. [2017], and Zhang and Sakhanenko [2019]

employed the kernel density estimation methods to obtain
{
f̂k (ξJ )

}K
k=1

by considering independent FPCS, where

f̂k (ξJ ) =
∏J

j=1
f̂k j (ξj ) , and f̂k j are density function estimators for the j -th FPCS in the k -th group. To overcome the

restrictive independence assumption, Wang et al. [2023a] additionally took into account a broader scenario encom-

passing situations where intricate {pk }
K
k=1 are present. Particularly, pk incorporate convoluted interactions among

FPCS. To tackle the complexity, they utilized the powerful deep neural networks (DNN) to construct the classifiers.

Interestingly, due to the computational burden, most of the nonparametric discriminant analysis works have to assume

independence among the features. However, it is natural to assume the independence between principal components

for functional data classification, which can be seen as a distinctive advantage of FDA.

To account for the inherent continuity of functional data, Ferraty and Vieu [2003] proposed a kernel-type estima-

tor p̂k ,h (x ) =

∑n
i=1

É(Yi =k )Λ
(
h−1d (Xi ,x )

)

∑n
i=1

Λ (h−1d (Xi ,x ) )
, where Λ is the kernel function, h is the bandwidth, and d (Xi , x ) is some semi-

metric to measure distance between functional observation Xi and x . Unlike the direct estimation of {fℓ (xJ ) }
K
ℓ=1,

they considered L2 (T) space, where X admits the FPCA expansion, and the distance d (Xi , x ) is thus approximated

by its truncated version dJ (Xi , x ) =

√
∑J

j=1

[∫
T
(Xi (t ) − x (t ) ) φj (t )d t

]2
. Based on the same idea, Chang et al. [2014]
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considered a wavelet-based distance with certain thresholds, and the proposed classifier has better performance for

noisy image data in their numerical studies. In Meister [2016], the functional data are considered as realisations of

random variables which take their values in a general Polishmetric space. They further imposed certain metric entropy

constraints on this space; but no algebraic properties are required.

4.2 | Regression-based methods

A regression model is constructed linking class identities with functional predictors, frequently through gener-

alized linear models. The model parameters are estimated and used for classification. In general, functional linear

regression constructs the model on the inner product ⟨β ,X ⟩, where β ≡ β (t ) is the decision boundary to be esti-

mated. It also inherently intertwines with the discriminant analysis, where β is considered as the discrimination curve.

This scheme enables direct applicability of multivariate classification techniques, making it a powerful tool for analyz-

ing the infinite-dimensional functional data. Commonly, the dimension reduction is employed on the inner product,

where the
∫
T
β (t )X (t )d t is estimated by its finite counterpart.

Generalized functional linear regression is an extension of functional linear regression that allows for themodeling

of functional data with labeled responses. For instance, one can model functional logistic regression as

log

(
p1 (X )

p2 (X )

)
= α +

∫

T
β (t )X (t )d t ,

where α ∈ Ò and X ( ·) , β ( ·) ∈ L2. Müller [2005] considered the generalized functional linear model for the sparse

functional data, where the integral is estimated by the first J truncated FPCS. With the similar idea, Leng and Müller

[2006] applied the functional logistic regression to temporal gene expression data. Preda et al. [2007] used partial

least square regression to estimate the discriminant coefficient functions. Araki et al. [2009] considered a finite rep-

resentation using Gaussian basis functions, where the regularization has been utilized to control the smoothness and

sparsity. Li and Ghosal [2018] considered unordered multinomial probit, ordered multinomial probit and multinomial

logistic regression models via Bayesian approach, where the conditional probability pk is approximated by some cu-

mulative distribution function of
∫
T
β (t )X (t )d t . Müller [2005] considered the so-called generalized functional linear

model to the case of sparse longitudinal predictors through the FPCA method. Goldsmith et al. [2011] extended

Müller [2005]’s work by proposing a penalized functional regression approach. They smoothed the covariance oper-

ators using a large number of eigenvectors to capture the variability of the functional predictors, and modeled the

functional regression parameters as penalized splines. This provided a unified framework for functional regression in

many settings, including when functions are measured with errors, at equal or unequal intervals, at a dense or sparse

set of points, and to multiple functional regressors observed at one or multiple levels. Zhu et al. [2010] performed

classification of complex, high-dimensional functional data using the Functional Mixed Model (FMM) framework. The

FMM relates a functional response to a set of predictors through functional fixed and random effects, which allows it

to account for various factors and between-function correlations.

4.3 | Distance-based approaches

Distance-based classifiers are a popular category of classification methods that rely on measuring the distances

between observations in a feature space to make predictions. They become particularly useful in functional classi-

fication problems, where the distances between observations are typically unique to the associated function space.

Distance-based classifiers find significant utility in functional classification problems because functional data often
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has a potentially infinite-dimensional structure andmeasuring the distances between observations can be an effective

way to capture the underlying variability and structure of the data. As will be discussed further below, distance-based

methods, including centroid classifiers and nearest neighbor, serve as valuable tools for analyzing functional data.

4.3.1 | Centroid classifier

The centroid classifier calculates the distance between the functional observations and the centroids of each

classes, which is conceptually simple and interpretable. Specifically, the centroid for the k -th class is given by X̄k =

n−1
k

∑n
i=1

Xi É(Yi = k ) , and the centroid classifier assigns the new data X to the group with the minimal d (X , X̄k ) .

Delaigle and Hall [2012] and Delaigle and Hall [2013] proposed the functional centroid classifier, where the distance

is constructed by the absolute difference of inner products. See Galeano et al. [2015] for a similar setup in conjunc-

tion with the functional Mahalanobis semidistance. Li and Xiao [2019] utilized FLDA to refine their design process by

identifying the optimal sampling time points for accurately classifying functional data. Kraus and Stefanucci [2019]

reformulated the centroid method as an optimization problem and searched the solution by the conjugate gradient

method with early stopping. Chen and Jiang [2018] proposed the sensible FLDA to address the situation when the

functional data is generated by a model with multiplicative random effects, such that both the between- and within-

class covariance functions were taken into consideration. Darabi and Hosseini-Nasab [2020] introduced a weighted

version of the centroid classifier that is based on projection functions and can lead to asymptotically perfect classifi-

cation.

4.3.2 | Nearest neighbor classifier

The nearest neighbor classifier, another notable distance-based classifier for multivariate data, is frequently em-

ployed in classification tasks wherein the objective is to prognosticate the class label of an incoming observation by

drawing on the labels of its neighboring data points. The concept of the nearest neighbor algorithm is inherently trans-

ferrable to functional data as the distancemetric d ( ·, · ) used by the classifier can be expressed in terms of the distance

between functions. Specifically, one chooses q closest data X (1) , . . . ,X (q ) by computing the distances d (X ,Xi ) , and

the class label of X is decided by the majority vote of the labels of q instances. The definition of the k-NN classifier

can be easily translated to the functional setup by replacing the usual Euclidean distance in Ò
d with an appropriate

functional metric D . For example, Galeano et al. [2015] defined the functional Mahalanobis semi-distance between

X1 (t ) and X2 (t ) as D (X1,X2 ) =
(∑K

k=1
(ω1k − ω2k )

2

)1/2
, where ωi k , i = 1, 2 and k = 1, 2, . . . ,K , are the standardized

FPCS of X1 (t ) and X2 (t ) , respectively. Another straightforward implementation strategy is to perform nearest neigh-

bor classification based on the finite number of projection coefficients or FPCS directly. The inherent robustness of

the nearest neighbor classifier against extreme data points renders it a highly valuable alternative to the centroid clas-

sifier. However, this advantage comes at the cost of an increased computational burden. Notably, when considering

the binary classification, the nearest neighbor procedure can be seen as a case of the plug-in estimator of pk (x ) , such

that

p̂k (x ) = q−1
n∑

i=1

É
(
Xi ∈ δq (x )

)
Yi ,

where δq (x ) is the set of q nearest neighbors of x .

Biau et al. [2005] used the first coefficients of a Fourier series expansion of Xi (t ) , and perform nearest neighbor

classifier under a finite dimension. Cérou and Guyader [2006] explored the nearest neighbor classifier in infinite



Shuoyang Wang et al. 11

dimensional metric space, and argued that the weak convergence of nearest neighbor classifier holds only if themetric

space is separable with some regular conditions. Subsequently, Biau et al. [2010] considered some separable Banach

space and provided various examples such as Sobolev spaces, Besov spaces, and RKHS. Baíllo and Cuesta-Albertos

[2011] further showed the consistency of the nearest neighbor rule for the Gaussian families. Galeano et al. [2015]

established the nearest neighbor classifier using functional Mahalanobis semidistance.

4.4 | Reproducing kernel

RKHS is a special type of Hilbert space that is equipped with a reproducing kernel, which is a positive definite

function that plays a role similar to the inner product in the Hilbert space. Particularly, for a Hilbert space H of

functions defined on domain T, a reproducing kernel r ( ·, · ) satisfies X (t ) = ⟨r (t , ),X ⟩ for [X ∈ H. Equipped with

the reproducing kernel, one can define H as a RKHS if the span of r ( ·, · ) is dense in H. The reproducing kernel allows

for the efficient computation of inner products between functions, which is important for many machine learning

algorithms that involve computing distances or similarities between data. The RKHS allows for a more flexible and

powerful representation of functions, and the use of kernel-based methods offers a more efficient way to deal with

the intrinsically infinite-dimensional functional data.

Shin [2008] extended the multivariate Fisher’s linear discriminant analysis, which is based on the spectral decom-

position of the linear operator defined on RKHS associated with a second-order stochastic process. Yao et al. [2016]

used the representer theorem to construct the decision function with a finite sample. Berrendero et al. [2018] pro-

vided a formalized theory for binary functional classification, and the system was established by explicitly calculating

the Radon-Nikodym derivatives between Gaussian measures that are absolutely continuous. Torrecilla et al. [2020]

further extended the homoscedastic setting to a heteroscedastic setting of Gaussian processes, and discussed the

optimal discrimination rules more comprehensively. Berrendero et al. [2023] explored the RKHS as an alternative

formulation to the L2-based model for functional logistic regression. Sang et al. [2022] extended the multivariate

distance-weighted discrimination based classifier under RKHS.

4.5 | Support vector machine

As an important algorithm in machine learning, the extension to functional Support Vector Machine (SVM) aims

to find the decision boundary β ( ·) that best separates the different classes of functional observations by maximizing

the margin. Rossi and Villab [2006] first introduced SVM to classify functional data with linear decision boundaries.

In addition, the functional-adjusted kernels was also taken into consideration to address the nonlinear separation. Li

and Yu [2008] applied the SVM to a LDA-projected subspace, where the reduced-dimensional subspace is obtained

by conventional LDA. Wu and Liu [2013] used the robust truncated-hinge-loss SVM by truncated FPCS to handle

sparse and irregularly observed functional data and longitudinal data. The approach proposed by Yao et al. [2016]

involved extending probability-enhanced effective dimension reduction to functional predictors by using functional

cumulative slicing. Subsequently, they applied the resulting surrogates to a weighted SVM.

4.6 | Robust functional data classification methods

The development of robust classifiers is motivated by the pursuit of acquiring reliable estimates for class mem-

berships. Cuevas et al. [2006] first introduced the concept of data depth into functional data classification. The idea

of data depth, which has been investigated in i.i.d. data and multivariate data, has a notable advantage in developing
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robust estimators for a “location parameter” in high-dimensional or functional frameworks. For instance, when the def-

inition of depth is available, definition of robust estimators such as the median and trimmed means is straightforward.

In terms of classification, the utilization of data depth is to assign a coming datum according to its relative depth in the

training samples. Cuevas et al. [2006] considered five different proposals on data depth, namely, the Fraiman-Muniz

Depth [Fraiman and Muniz, 2001], the h-mode depth, and three random projection methods inspired by the work of

Cuesta-Albertos et al. [2007]. Some other depthed-based classification methods are proposed in López-Pintado and

Romo [2005], Kwon et al. [2016], Sguera et al. [2014], Hlubinka et al. [2015], and Hubert et al. [2015]. Beyaztas and

Shang [2022] proposed a robust functional partial least squares (FPLS) method which produces robust estimates of

the regression coefficients in a scalar-on multiple-function regression model. The M-estimator and Tukey’s bisquare

loss function were used to solve the regression problem of a scalar response on the extracted FPLS components and

to approximate the regression coefficient function. Zhu et al. [2012] proposed a robust, wavelet-based functional

mixed model which permits potentially heavier tails for features of the functions indexed by particular wavelet coeffi-

cients, leading to a down-weighting of outliers that consequently makes the method robust to outlying functions or

regions of functions.

4.7 | Classifiers for multivariate functional data

A multivariate functional datum is defined as a finite dimensional vector where each component is a univariate

function. A simple approach to handle functional data consists of discretization of the multivariate function then

apply multivariate techniques to the resulting vector. However, functional data are intrinsically infinite dimensional

and have properties that differentiate them from multivariate data. Examples of multivariate functional cases include

gait data and hand writing data [Ramsay and Silverman, 2005], height and weight of children by age [López-Pintado

et al., 2014] and electrocardiogram data [Dai and Genton, 2019].

The variation between different groups of curves in functional data classification usually arises from variations in

the data’s diverse patterns or shapess. By extending the depth-based scalar outlyingness to an outlyingness matrix,

which contains pure information of shape variation of a curve, Dai and Genton [2018] proposed classifiers for both

univariate andmultivariate functional data. Moindjié et al. [2022] considered partial least square classification and tree

partial least square-based methods for multivariate functional data which are defined in different domains. Blanquero

et al. [2019] considered the time as a continuous variable, and they searched for the global solution using a surrogate of

the number ofmisclassified data, namely the correlation between the SVMscore and the actual class. When predictors

consist of multiple functions, some of which may be redundant. We also note that in functional data classification,

functional observations are often contaminated by various systematic effects. These effects may lead to classification

bias. Hence, selecting a subset of the functions can reduce the cost of data collection for future observations, andmay

improve classification accuracy. Zhu et al. [2010] proposed a Bayesian hierarchical model with selection of functional

predictors for complex functional data classification problems, where multiple functional predictors are influenced by

random batch effects and fixed effects.
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5 | EVALUATION OF FUNCTIONAL CLASSIFIERS

When evaluating a classifier, it is customary to employ two principal benchmarks. The first benchmark entails

evaluating the misclassification risk

R (Ĉn ) = Ð (Y , C (X ) | (X1,Y1 ) , . . . , (Xn ,Yn ) ) ,

which utilizes a straightforward and intuitive method that quantifies the probability of erroneous classifications. The

second benchmark involves analyzing the consistency of the classifier with the Bayes classifier, a highly regarded

approach that provides a measure of the classifier’s proximity to the optimal classification strategy, thereby offering

greater reliability and insight into the performance. Particularly, a classifier is consistent if its misclassification risk

converges to the Bayesian risk, such that

ER (Ĉn ) − R (C ∗ ) → 0, as n → ∞,

where C ∗ (x ) = argmaxk=1,...,K pk (x ) is the naive Bayesian classifier. In the following subsections, we delve into the

intriguing phenomenon of "perfect classification", which is exclusively encountered in functional data classification,

as elucidated in Section 5.1. Additionally, we thoroughly examine literature to shed light on the minimax optimal

classifier in Section 5.2.

5.1 | Perfect classification phenomenon

Delaigle and Hall [2012] reported a unique phenomenon called “perfect classification”, wherein the misclassifica-

tion error for binary classification can reach a value of zero. To be specific, they considered one-dimensional functional

data X (t ) with domain T ⊂ Ò, such that X (t ) is generated from Π1 with the prior probability π , and from Π2 with

the prior probability 1 − π . The expectation operators {Ek }k=1,2 for the two classes are assumed to be E1 (X ) = 0

and E2 (X ) = µ (t ) , and the covariance function Ω of X is the same for both populations. To align the information

of µ and the considered function space
{
φj (t )

}
, µ is assumed to be decomposed as µ (t ) =

∑∞
j=1

µjφj (t ) . Within the

established framework, Delaigle and Hall [2012] unveiled the perfect classification property for the sequence space

Θ =



(π, λ1, µ1, λ2, µ2, . . .) : π ∈ (0, 1) , λ1 ≥ λ2 ≥ . . . ,

∞∑

j=1

λj < ∞,

∞∑

j=1

λ−1j µ2j = ∞



.

See Figure 5 for data visualization of both the perfect and imperfect classification examples. Given the intrinsically

infinite dimensionality of functional data, it is conceivable that the minimal misclassification error within a specific

function space can be reduced to zero. However, it is crucial to emphasize that achieving such an outcome in prac-

tice with finite dimensional data is highly impractical, except in exceedingly rare and anomalous situations that may

be regarded as pathological. Consequently, this attribute underscores the substantial distinction between functional

data and multivariate data. To address this problem, Delaigle and Hall [2012] initially proposed the centroid classifier.

The benefit of the method lies in its sole reliance on the estimation of the mean and variance of the principal compo-

nents, and it holds for both Gaussian and non-Gaussian functional data when Θ is taken into account. However, for

Gaussian functional data, Delaigle and Hall [2012] claimed that the proposed centroid classifier is optimal only when
∑∞

j=1
λ−2
j

µ2
j
< ∞, which resides in the “imperfect classification” situation. In another word, it cannot be assured that
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F IGURE 5 Illustration of both perfect and imperfect classification phenomenons. Left: perfect classification;

Right: imperfect classification. Red curves: samples from the first class of functional data; Blue curves: samples from

the second class of functional data.

the centroid classifier is optimal when confronted with the perfect classification scenario. For centroid classifier, when

the condition for perfect classification is satisfied, it is uncertain if centroid classifier is optimal. When the condition

of imperfect classification is met, it can be proved that the centroid classifier has the smallest misclassification risk

among all classifiers.

Delaigle and Hall [2013] conducted further investigations into the phenomenon of perfect classification, specifi-

cally exploring scenarios where covariance functions exhibit variations. Berrendero et al. [2018] delivered similar re-

sults to validate the phenomenon in the viewof RKHS, and they explained the vanishing Bayes risk by themutual singu-

larity of the two probability measures Ð1 and Ð2 of the populations. Particularly, let Ðk be the conditional distribution

of X |Y = k , k = 1, 2. Ð1 and Ð2 are equivalent, denoted by Ð1 ∼ Ð2, which indicates that Ð1 (B ) = 0 ⇐⇒ Ð2 (B ) = 0,

for any Borel set B ; Ð1 and Ð2 are mutually singular, denoted by Ð1 ⊥⊥ Ð2, which indicates that there exists a Borel set

B , such thatÐ1 (B ) = 1 andÐ2 (B ) = 0. When two processes are Gaussian, Berrendero et al. [2018] aligned the perfect

classification to mutual singularity and imperfect classification to measure equivalence, which provides an alternative

viewpoint on the fundamental nature of the “perfect classification”.

When the eigen-systems of the two classes have the common eigenfunctions, i.e. φ
(1)

j
= φ

(2)

j
, j = 1, . . ., with

eigenvalues
{
λ
(1)

j

}
j
and

{
λ
(2)

j

}
j
, respectively, the relationship of Π1 and Π2 is fully determined by the sequence

{(
µj , λ

(1)

j
, λ

(2)

j

)}∞
j=1

. In this degenerated scenario, Dai et al. [2017] demonstrated the necessary condition for the

perfect classification in an explicit form, which is

∞∑

j=1

µ2j /λ
(2)

j
= ∞ or

∞∑

j=1

(
λ
(1)

j
/λ

(2)

j
− 1

)2
= ∞. (1)

It implies that perfect classification is only achievable when the two populations are sufficiently separated from each

other in the sense that the infinite series that characterizes the distance between the mean functions or covariance

functions is divergent. Furthermore, conditions in Equation (1) is not necessary for perfect classification. For example,

it also happens when one class is Gaussian and the other is Lapalce, and both of them have the same parameters in

Equation (1) (see Theorem 2 in Dai et al. [2017]).

While perfect classification offers the intriguing advantage of zero misclassification risk at the population level,

the existing body of literature fails to address the rate of convergence for a specific classifier constructed from finite
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samples, such as those on the order of n . Consequently, evaluating the performance of various classifiers under

perfect classification is often challenging. Furthermore, when contrasted with imperfect classification (where, for

instance, both series converge), perfect classification represents a fundamentally simpler task, with the patterns of

the two classes easily discernible in most practical scenarios.

5.2 | Minimax optimality

Generally, the efficacy of a classifier based on its risk convergence to the the Bayesian classifier is considered a

fundamental metric. However, when two classifiers demonstrate similar convergence, relying solely on the measure

of consistency becomes a challenging endeavor for determining the superior one. Therefore, employing additional

criteria becomes imperative to make a more informed decision regarding the better classifier. Furthermore, when

presented with a proficient classifier, one is invariably intrigued by its capacity to attain the optimal convergence

rate that remains unattainable for any other classifier, except the Bayesian classifier. See Yang [1999], Mammen and

Tsybakov [1999], Tsybakov [2004] for multivariate data classification.

Suppose G is the class of measurable functions, such that the naive Bayesian classifier C ∗ ∈ G. Define the

Minimax Excess Misclassification Risk (MEMR) as

inf
Ĉn

sup
C ∗∈G

E [R (Ĉn ) − R (C ∗ ) ],

where the infimum is taken over all functional classifiers constructed using the training samples. MEMR offers a

theoretical comprehension of the extent to which the Bayes risk can be approximated using finite training samples.

Naturally, given any generic classifier C̃n , it has

inf
Ĉn

sup
C ∗∈G

E [R (Ĉn ) − R (C ∗ ) ] ≤ sup
C ∗∈G

E [R (C̃n ) − R (C ∗ ) ],

such that the excess risk automatically bounds theMEMR from above. A rich body of literature has discussed the rates

in different scenarios, see Biau et al. [2010], Baíllo and Cuesta-Albertos [2011], Meister [2016], Wang et al. [2023b,a].

Nonetheless, deriving the lower bound of convergence often proves challenging due to its exhaustive consideration

of all potential classifiers. Any classifier is minimax optimal if and only if its excess risk matches the lower bound of

MEMR. In the subsequent subsections, we highlight some selected work of functional data classification with regards

to the minimax optimality across different function spaces.

5.2.1 | Gaussian functional data setting

Here we summarize the minimax optimality of FQDA and Functional Deep Neural Network (FDNN) proposed by

Wang et al. [2023b], where they considered Gaussian process with the decomposition

X (t ) =

∞∑

j=1

ξjφj (t ), ξj ∼ N
(
µk j , λ

(k )

j

)
, k = 1, 2,

under the k -th group and t ⊂ Ò
d with d ≥ 2. Moreover, they explored the imperfect classification scenario, where

both
∑∞

j=1

(
µ1j − µ2j

)2
/λ

(2)

j
and

∑∞
j=1

(
λ
(1)

j
/λ

(2)

j
− 1

)2
are convergent. Besides, the square-integrable mean functions

and bounded Ωk result in another two convergent sequences:
∑∞

j=1
µ2
k j

and
∑∞

j=1
λ
(k )

j
. In order to explicate the decay
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rate of the four sequences, the authors undertake an assessment using two distinct sequence spaces: the hyper-

rectangle and Sobolev ball. For the sake of clarity, we will concentrate solely on the Sobolev ball scenario, while

acknowledging that the hyperrectangle method holds true in an analogous fashion. For any decay rate ν ∈ (0, 1) ,

by denoting Sobolev ball Sν
=

{
a = (a1, a2, . . .) :

∑∞
j=1

|aj |j
ν ≤ M

}
for some M > 0, Wang et al. [2023b] consid-

ered the parameter space Θ(ν1, ν2 ) := { θ :
{
µ2
1j
∨ µ2

2j

}
j ≥1

∈ Sν1 ,

{
λ
(1)

j
∨ λ

(2)

j

}
j ≥1

∈ Sν1 ,

{(
µ1j − µ2j

)2
/λ

(2)

j

}
j ≥1

∈

Sν2 ,

{
(λ

(1)

j
/λ

(2)

j
− 1)2

}
j ≥1

∈ Sν2 }, where ν1 governs the separation of the two populations, and ν2 governs the

smoothness of the mean functions and covariance functions. By further assuming that X
(k )

i
(t1 ), . . . ,X

(k )

i
(tM ) , i =

1, . . . , nk , k = 1, 2 are observed on evenly spaced t1, . . . , tM ∈ T, Wang et al. [2023b] showed that the convergence

rate is in the order of n when the functional data are fully observed. Given that the complete trajectory of the data

is observed, the contribution of smoothness is deemed to be negligible, thereby rendering the rate of separation be-

tween the two populations as the primary determining factor. For a finiteM , a crucial threshold denoted byM ∗ can be

identified, marking a phase transition point at which the convergence rate is equivalent to that of the fully observed

functional data when the value of M exceeds M ∗, with the rate then becoming solely dependent on the sample size

n . Conversely, when M is less than M ∗, the rate is entirely contingent upon the value of M itself, as M −ν1ν2/(1+ν2 ) .

In order to achieve the EMER, Wang et al. [2023b] found that FQDA, which utilizes the truncated quadratic

discriminant function under the Gaussianity to approximate Bayesian classifier, is a minimax optimal approach for

both fully observed and discretely observed data, provided that the truncation parameter is determined to be opti-

mal. Moreover, they showed that the with a carefully selected network structure, FDNN is also minimax optimal up

to a log factor. These findings highlight the theoretical exploration into the minimax optimality of functional classi-

fiers. Nonetheless, the parameter under consideration lacks the necessary generality, and its extension to the perfect

classification scenario is not feasible.

5.2.2 | Non-Gaussian functional data setting

Building upon the same framework, Wang et al. [2023a] undertook a more in-depth investigation into the realm

of minimax optimality, extending beyond the scope of Gaussian functional data. In particular, they assume that the

log-likelihood ratio belongs to a complex function space defined by Hölder smoothness, which extends from the

parametric context in Wang et al. [2023b] to a non-parametric problem. For instance, Wang et al. [2023a] provided

an example with student’s t distribution, such that

X (t ) =

∞∑

j=1

ξjφj (t ), ξj ∼ tνk j , k = 1, 2,

where νk j is the degree of freedom for the j th score and k th group. The log-likelihood function is thus written as

∑∞
j=1

{
log e j −

ν1j +1

2
log

(
1 +

ξ2
j

ν1j

)
+

ν2j +1

2
log

(
1 +

ξ2
j

ν2j

)}
, where e j is some constant only depending on νk j . This discrim-

inant function markedly differs from the Gaussian case. When contemplating a broad spectrum of discriminant func-

tions, it becomes essential to approach them in a non-parametric manner. In particular, they established the EMER

and validated the minimax optimality of the considered FDNN classifiers.

Different from Wang et al. [2023b] and Wang et al. [2023a], which describe the function space by defining the

distribution of each principle component in its decomposed form, Meister [2016] adopted a holistic perspective and

kept the full continuum of the function, imposing both smoothness conditions and complexity constraints on the

considered function space. They have shown that by the general argument that the excess mass is bounded from
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above by the integrated squared regression risk. According to their theories, the proposed Nadaraya–Watson type

classifier does not require knowledge of the smoothness degree parameter and, still, it leads to the optimal speed of

convergence. Kraus and Stefanucci [2019] proposed regularized linear classifiers with domain selection and showed

that possibly zero misclassification rate can be achieved despite that the training set consists of incomplete functions

observed on different subsets of the domain.

6 | OPEN-SOURCE SOFTWARE

Unlike most machine learning areas that have abundant open-source software and data repositories, there has

been relatively limited emphasis on promoting open FDA resources. As a consequence, comparing existing classifiers

and evaluating new algorithms becomes challenging. Nevertheless, we make an earnest attempt to list publicly avail-

able R functions and packages in Table 1. In terms of computational cost, we evaluate both computational complexity

and efficiency within a moderate sample size context. When compared to alternative methods, it is worth noting that

DNN exhibits the highest model complexity and comparatively lower computational efficiency. Nevertheless, the uti-

lization of dimensional reduction strategies as described inWang et al. [2023a] andWang and Cao [2023] substantially

mitigates the computational burden, resulting in a more moderate level of computational cost.

TABLE 1 Prevalent R functions and packages for functional classifiers

method function package platform cost

kernel method [Ferraty and Vieu, 2006] classif.kernel fda.usc CRAN low

k–nearest neighbour [Ferraty and Vieu, 2006] classif.knn fda.usc CRAN low

generalized additive model [Ramsay and Silverman, 2005] classif.gsam fda.usc CRAN low

DD-Classifier [Mosler and Mozharovskyi, 2017] ddalphaf.classify ddalpha CRAN low

FDNN [Wang et al., 2023a] M_dnn.1d,M_dnn.2d — GitHub moderate

multi-class FDNN [Wang and Cao, 2023] mfdnn.1d , mfdnn.2d — GitHub moderate

7 | DISCUSSION

The main objective of our review is to develop an overarching understanding of existing functional data classifica-

tion methods, emphasizing their similarities, differences, and connections with conventional multivariate classification

approaches. We also introduce a new series classification methods under the framework of popular deep neural net-

works. We place emphasis on the works that are based on 2D and 3D functional data. Notably, we delve into a

comprehensive discussion of the evaluation criteria employed in the functional data approach, particularly those that

incorporate the increasingly popular DNN approach. We aim to help connect the machine learning, computer science

and many other applied science communities with the challenges and opportunities in analyzing functional data. The

investigation of classification problems can inspire other related research areas. For instance, results from functional

data classification problems may benefit data collection and design. Given a pilot study with functional data that have
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known classes and may be either densely or sparsely observed, Li and Xiao [2020] identified the optimal sampling

time points to collect observations for a new subject using linear discriminant analysis.

Despite progress being made in this field, existing methods often involve a single or finite number of random

functions observed in the same domain. In practical applications, multivariate functional data are neither restricted

to lie on the same interval nor to have one-dimensional domains. For example, Delaigle and Hall [2013] considered

classification of functional data when the training curves are not observed on the same interval. Happ and Greven

[2018] explored some complex functional data that consist of functions and images from a brain imaging dataset. The

integration of these data types has opened up new research areas, specifically focusing on how classification can be

effectively conducted on such data. Furthermore, as the number of random functions increases, both basis-based and

FPCA-based classification algorithms face a significant increase in computational burden. Recently, Xue et al. [2023]

tackled classification of high-dimensional functional data, in which each observation is potentially associated with a

large number of functional processes. They proposed a penalized classifier and established discriminant set inclusion

consistency in the sense that the classification responsible functional predictors include those of the underlying opti-

mal classifier. Their work also sheds some light on the high-dimensional FDA from the classification point of view. All

these developments suggest a promising research direction that seeks to address the challenges presented by high-

dimensional and complex functional data, prompting the need for further research endeavors in this domain. Another

promising future direction is the classification for dependent functional data Hörmann and Kokoszka [2010], Cao

[2014], Cao and Wang [2018]. There are two popular types of dependent functional data structures: time series of

curves and spatially distributed curves. Examples include daily curves of financial transaction data and daily patterns

of geophysical and environmental data. Kokoszka [2012] reviewed recent research on dependent functional data. To

the best of our knowledge, there is lack of literature on dependent functional data classification. Exploration in this

research direction would benefit both FDA and classification domains.
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