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Abstract

Global change mediated shifts in ocean temperature and circulation patterns,
compounded by human activities, are leading to the expansion of marine oxygen
minimum zones (OMZs) with concomitant alterations in nutrient and climate-active
trace gas cycling. While many studies have reported distinct bacterial communities
within OMZs, much of this research compares across depths rather with oxygen status
and does not include eukayrotic microbes. Here, we investigated the Bay of Bengal
(BoB) OMZ, where low oxygen conditions are persistent, but trace levels of oxygen
remain (< 20 pM from 200 to 500m). As other environmental variables are similar
between OMZ and non-OMZ (NOZ) stations, we compared the abundance, diversity,
and community composition of several microbial groups (bacterioplankton,
Labyrinthulomycetes, and fungi) across oxygen levels. While prokaryote abundance
decreased with depth, no significant differences existed across oxygen groups. In
contrast, Labyrinthulomycetes abundance was significantly higher in non-OMZ
stations but did not change significantly with depth, while fungal abundance was patchy
without clear depth or oxygen-related trends. Bacterial and fungal diversity was lower
in OMZ stations at 500 meters, while Labyrinthulomycetes diversity only showed a
depth-related profile, decreasing below the euphotic zone. Surprisingly, previously
reported OMZ-associated bacterial taxa were not significantly more abundant at OMZ
stations. Furthermore, compared to the bacterioplankton, fewer Labyrinthulomycetes
and fungi taxa showed responses to oxygen status. Thus, this research identifies
stronger oxygen-level linkages within the bacterioplankton than in the examined

microeukaryotes.
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Introduction

Oceanic deoxygenation mediated by global change has decreased oxygen levels by
2% in the last 50 years [1-5]; with oxygen declines below critical thresholds predicted
to impact multiple marine biogeochemical cycles [6, 7]. This deoxygenation is
contributing to the expansion of Oxygen Minimum Zones (OMZs), generally defined
as midwater regions with oxygen concentrations less than 20 uM, which occur in upper
bathyal depths (200-1200 m) where limited mixing is combined with oxygen drawdown.
OMZs support complex microbial communities with distinct biogeochemical processes
and rates compared to oxygenated waters [8-11]. OMZs are widespread, including in
the eastern tropical North Pacific, the eastern tropical South Pacific, the Arabian Sea,
and the Bay of Bengal, among others [8, 12]. However, anthropocentric alterations of
the marine environment (e.g., ocean warming and eutrophication) are driving the
vertical and horizontal expansion of OMZs, which are predicted to expand by 7.0 = 5.6%
by 2100 (RCP8.5 scenario, relative to 1850-1900) [13-16]. In most OMZs, oxygen
concentrations are low enough to allow denitrification and/or anammox [17],
transforming biologically available nitrogen (NHs, NO3™ and NO2") to N2, which is lost
to the atmosphere and explaining 30-50% of fixed-nitrogen losses in OMZs [18-21].
Recent studies also suggest the presence of cryptic sulfur cycling in OMZs, where the
production and consumption of reduced sulfur occurs at nearly equivalent rates [22-24].
Drawdown of oxygen allows these processes to happen in the water column; moreover,
even low levels of oxygen may shape microbial communities and their functions in the

mesopelagic zone.

A recent analysis of TARA Oceans data found that vertical oxygen gradients
altered protist communities while exerting a modest effect on prokaryotes [25, 26].
However, these global-scale comparisons of microbial prokaryotes and eukaryotes
cannot disentangle the impacts of oxygen from other spatial and depth-related changes
in environmental variables, including temperature, pressure, nutrients, etc. [7, 12, 18,
25, 27-30]. Yet, determining oxygen’s effect on microbiomes is critical to predicting

the impacts of deoxygenation on future ocean microbiomes and biogeochemical rates
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[31]. Furthermore, while prokaryotes have long been considered to be the major engines
of marine biogeochemical cycles [32], their eukaryotic counterparts can be critical
ecological players through their metabolic activities and their influence on prokaryotes
[33]. Although eukaryotes exhibit less metabolic flexibility [34, 35] and potentially less
resilience with environmental change [36, 37], their distinct metabolic abilities may
complement those of the prokaryotes [34]. While most metazoans are absent from
anoxic waters, diverse microeukaryotes, including protists, fungi, and zooplankton,
inhabit OMZs; thus, oxygen levels can potentially shape their community composition
[25, 38, 39]. These microeukaryotes are vital components of aquatic food webs in the
surface and deep-ocean ecosystems and are proposed to play critical ecological roles in
coastal OMZs through predatory or symbiotic interactions with prokaryotes [25, 40].
Additionally, prior studies on OMZ microeukaryotes revealed significantly different
communities in oxic and anoxic/hypoxic waters [16, 25, 28-30, 40-47]. Some
eukaryotes are also likely facultative anaerobes [7], with fungal sequences representing
a substantial fraction of 18S rRNA gene libraries from anaerobic environments, and
protozoa, including some ciliates and foraminifera can use nitrate as a terminal electron
acceptor [48]. Compared with OMZ prokaryotes, the population structure and
composition of pelagic microeukaryotes in these oxygen-depleted environments remain

largely unknown.

Most OMZ studies currently focus on comparisons between depths within a given
station, which may conflate oxygen status with other depth-related environmental
factors. Considering the critical importance of oxygen for microbially-mediated
biogeochemical cycling, the responses of microbial groups to oxygen levels are an
understudied research area. To that end, we focus on the microbiome of the Bay of
Bengal (BoB) OMZ, where the mesopelagic (200 to 1000 m) exhibits consistent low-
oxygen (<20 uM). The BoB generally retains low oxygen levels despite riverine inputs
of freshwater, which carry large fertilizer loads, enhancing primary productivity in
surface waters and increasing oxygen demand in the water column [49]. However, this

OMZ is comparatively weaker than other permanent OMZs due to the deeper
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remineralization depth of mineral-rich particulate organic matter [50, 51].
Consequently, in comparison with other OMZs, the BoB exhibits lower levels of
denitrification and anammox, which can occur at low levels of oxygen (< 20 pM) but
become significant only with functional anoxia (< 1 uM). These characteristics make
the BoB a good case study of global-change mediated deoxygenation, yielding insights
into how microbial communities respond to localized oxygen depletion, specifically in

restructuring microbial eukaryotic communities.

2. Materials and methods
2.1 Sample sites and collection

A research cruise on the R/V Shiyan 3 sampled the Eastern Indian Ocean from
March 25 to April 30, 2018. A conductivity-temperature-depth (CTD, Seabird SBE-
911) rosette equipped with 8 L Niskin bottles was used to collect water samples as
previously described [52]. Samples from 8§ stations at up to 10 depths ranging from 5
to 2,000 m were selected for the current study (Table S1, Fig. S1). Environmental
factors, including temperature, pH, salinity, nutrients, CTD-based chlorophyll a
fluorescence, and dissolved oxygen, were measured using previously described
methods [9, 52, 53]. In addition, nucleic acid samples were collected by filtering 2 L of
water through 0.22 um polycarbonate Isopore membranes, which were then flash-

frozen in liquid nitrogen onboard and stored at -80 °C until DNA extraction.

2.2 DNA extraction, library preparation, and pyrosequencing

Total DNA was extracted using the E.Z.N.A water DNA kit (OMEGA, USA). The
extracted DNA was suspended in 100 pL of sterile water and stored at -20 °C until
subsequent processing. A total of 59 DNA samples were selected for bacterial and
fungal community analysis, while 56 samples were processed for Labyrinthulomycetes
community analysis (Table S1).

Labyrinthulomycetes-targeted 18S rRNA gene amplification employed the
barcoded primers LABY-A (5'-GGGATCGAAGATGATTAG-3") and LABY-Y (5'-
CWCRAACTTCCTTCCGGT-3"), following previously established protocols [52, 54]
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The PCR mixture contained 0.2 U of KOD FX Neo DNA Taq polymerase (TOYOBO,
Osaka, Japan), 50 ng of template DNA, and a final concentration of 0.3 pM of each
primer, 1x KOD FX Neo Buffer, and 400 uM of each dNTP. Thermocycling consisted
of an initial denaturation at 95 °C for 5 min, followed by 25 cycles of 95 °C for 30 s,
50 °C for 30 s, 72 °C for 40 s, and a final extension at 72 °C for 7 min. The samples
were pooled and then cleaned using the E.Z.N.A.™ Cycle-Pure Kit (Omega) column,
followed by gel purification using the Monarch DNA Gel Extraction Kit.

Bacterial 16S rRNA gene amplicons were constructed using the barcoded primer
pair 338F (5'-ACTCCTACGGGAGGCAGCA-3") and 806R (5'-
GGACTACHVGGGTWTCTAAT-3"), targeting the V3-V4 region of the 16S rRNA
gene as described previously [55]. Fungal ITS amplicons were generated using the
barcoded primer pair ITS1-F/ITS2 (ITS1-F: 5'-CTTGGTCATTTAGAGGAAGTAA-3'
and ITS2: 5-GCTGCGTTCTTCATCGATGC-3") [56]. PCR amplification and
thermocycling were performed as previously described [57]. The bacterial and fungal
PCR samples were purified following gel excision using the same kit as above. All
amplicons were paired-end sequenced using 2 x 250 nt on an Illumina HiSeq 2500
platform by a commercial sequencing facility (Biomarker Technology Corporation,
Beijing, China). The raw sequences were deposited in NCBI under BioProject

PRINA794046.

2.3 Quantification of prokaryote, Labyrinthulomycetes, and fungal abundances.
The cell abundances of prokaryotes and Labyrinthulomycetes were quantified
using a BD FACS Calibur Flow Cytometer per established methodologies [52, 54, 58].
Specifically, prokaryotes were identified using the DNA dye SYBR-I green (Molecular
Probes, USA) while Labyrinthulomycetes were quantified using the
Labyrinthulomycetes-specific dual fluorescent dye acriflavine-HCI (Sigma, Germany).
Green-fluorescent polystyrene latex beads (Molecular Probes, USA) were used as an
internal standard to normalize the cell counts. The total abundance of fungal ITS gene
copies per liter of seawater was determined by quantitative PCR following a previously

established protocol [57].
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2.4 Sequence processing

Bacterioplankton, Labyrinthulomycetes, and fungi sequences were imported into
the QIIME 2 (v. qiime2-2020.6) bioinformatics platform [59] using
SampleData[PairedEndSequencesWithQuality] for bacterioplankton and
Labyrinthulomycetes, while the single-end forward sequences of fungi were imported
in the SampleData[SequencesWithQuality] using "qiime tools import" method. The
primers for bacterioplankton and Labyrinthulomycetes were removed using the
Cutadapt plugin [60]. Due to limitations in the ability of Cutadapt to entirely remove
fungal primers, the fungal primers were concurrently trimmed by using the "trim"
parameter to remove 22 nt during the denoising process. Paired-end reads were merged
if they exhibited an overlap > 10 bp with a maximum of 1 bp mismatch. Different
plugins were employed to perform quality filtering, denoising, and chimera removal.
Specifically, Deblur was applied to denoise the bacterial sequences [61], while DADA2
was used to denoise the Labyrinthulomycetes and fungal datasets, based on prior
research [58, 62].

The taxonomies of amplicon sequence variants (ASVs) were identified using
classifiers trained with the "q2-feature-classifier" method [63]. The taxonomic
annotations of bacterial, Labyrinthulomycetes, and fungal ASVs were based on the
SILVA rRNA (16S/18S) and UNITE (ITS) databases, respectively [64, 65]. ASVs with
a total abundance below 10 were removed from the Labyrinthulomycetes and those
below 30 were removed from the bacterioplankton and fungi ASV tables. Furthermore,
bacterial ASVs occurring in less than 2 samples or annotated as mitochondria were
excluded from the ASV table. Using sequence annotations of Labyrinthulomyctes,
ASVs belonging to other groups were removed before rarefaction and analysis. As all
ITS sequences were assigned to fungi, no additional filtering was performed for fungal
ASVs. The filtered sequences were then rarefied based on the lowest sequence count
observed across all samples. Specifically, rarefaction was performed to the following
sequence depths: bacterioplankton (5,536), Labyrinthulomycetes (1,565), and fungi
(33.,464).
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2.5 Microbial community analysis

Alpha diversity indices, including Shannon diversity, Pielou's evenness, and
richness (observed ASVs), were calculated using the g2-diversity plugin in QIIME 2.
The differences in microbial community abundance and diversity between depths and
stations were compared using the Kruskal-Wallis test and ANOVA following a
normality check, respectively, using SPSS (version 26 for Windows; IBM). Nonmetric
multidimensional scaling (NMDS) ordination was used to compare the microbial
composition from different depths and oxygen regions based on Bray-Curtis
community dissimilarity, calculated using the core-metrics-phylogenetic pipeline in
QIIME 2. For statistical analysis, beta-diversity distances (Bray-Curtis) were analyzed
by single permutational multivariate ANOVA (PERMANOVA) with depth as a factor,
using the adonis function in R. To identify discriminative taxa based on oxygen status,
we analyzed the 100 most abundant bacterioplankton ASVs and the 50 most abundant
ASVs for eukaryotes (Labyrinthulomycetes and fungi) at 200m and 500m using
DESeq2. Significance was defined by log2 fold changes exceeding 2 and p-values less
than 0.05 [66]. For the DESeq2 analysis of photoautotrophs in surface waters, we
additionally applied a consistent relative abundance threshold of > 0.05% to minimize

bias induced by low sequence counts.

3. Results and discussion
3.1 Environmental parameters

To investigate vertical and horizontal oxygen gradients, we compared dissolved
oxygen (DO) concentrations across 8 stations in the Bay of Bengal. In general, the
vertical profiles of DO concentrations displayed two distinct patterns (Fig. 1); the first
group (stations 1107, 1202, 1205, and 1208) consistently displayed low DO
concentrations (< 20 uM, mean ~10.51 uM) below the oxycline (predicted oxygen
minimum zone, 200-500 m), while the second set of stations (1105, 1302, [313, and 1501)
showed statistically higher DO concentrations (>20 uM, mean ~ 53.01 uM) for the same
depths (One-way ANOVA, p < 0.05, Table S2) [67]. Based on these results, we
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classified stations using data from 200 m and 500 m depths where the oxygen
divergence occurred, into the oxygen minimum zone (OMZ, < 20 pM DO) or non-
oxygen minimum zone (NOZ, >20 uM DO). This 20 uM threshold corresponds to
'microbial hypoxia' where oxygen levels influence microbial biogeochemical cycles,
and inhibit anaerobic processes (e.g. denitrification) [67-70]. Although it contains a
large and permanent marine OMZ, the Bay of Bengal generally exhibits detectable
oxygen, in contrast with other OMZs (i.e., Eastern Tropical North Pacific, Eastern
Tropical South Pacific, and Arabian Sea) where levels reach functional anoxia, e.g., <
1 uM DO [71, 72]. Although denitrifiers and bacteria that perform anammox are
observed in the Bay of Bengal, mediating low but significant fixed nitrogen loss, these

rates are inhibited by the persistent water column oxygen [49].

In this system, several environmental factors exhibited depth-dependent patterns
(Fig. S1), which could potentially influence the microbiome [8, 73]; temperature,
salinity, pH, density, chlorophyll, and nutrients (silicate, phosphate, nitrate, total
phosphate) were significantly correlated with depth (Spearman, p < 0.05, Table S3),
likely along with unmeasured factors such as organic matter flux and lability. To
separate oxygen from these other depth-related environmental variables (Spearman, p
< 0.05, Table S3), we compared oxygen minimum zone stations to nearby stations
outside the OMZ. While the dissolved oxygen (DO) concentrations at 100, 200, 500,
and 1,000 m were significantly lower in OMZ compared to NOZ stations (One-way
ANOVA, p <0.01, Table S2), other environmental factors (e.g., temperature, salinity,
deep chlorophyll maximum, pH, and nutrients) were not significantly different at these
depths (Table S2). Although OMZs are generally considered sites for the dissimilatory
reduction of oxidized nitrogen compounds [74], our findings suggest a similar

environmental context aside from oxygen levels.

3.2 Abundance of prokaryotes, Labyrinthulomycetes, and fungi
To better understand microbial community responses to oxygen minimum zones

in the Bay of Bengal, we first quantified the abundance of prokaryotes,
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Labyrinthulomycetes, and fungi with depth and across oxygen levels (Fig. S2). The
observed decrease in prokaryote cell abundance with depth (5-25 m average = 1.41x10°
cells mL!, 75-1,000 m average = 2.79x10° cells mL™") is consistent with previous
reports in multiple ocean regions [75]. Yet, we did not identify a significant difference
in prokaryote abundance with oxygen status (OMZ vs NOZ, Kruskal Wallis test, Fig.
S2A at 200 and 500 m), suggesting a limited impact of localized oxygen depletion. In
contrast with the prokaryotes, Labyrinthulomycetes abundance was significantly higher
in the NOZ stations (857.78 cells mL™! vs 116.46 cells mL"!, Kruskal Wallis test, p <
0.05, Fig. S2B averaged at 200 and 500 m). In contrast with a previous study that
observed a five-fold enrichment of Labyrinthulomycetes in OMZ depths compared to
well-oxygenated surface samples in the North Atlantic Ocean [76]. Additionally, there
is no clear Labyrinthulomycetes increase with depth (Figure S2B), as has been reported
previously [52]. Similarly, we observed no significant differences in fungal abundance
with depth or oxygen status (Fig. S2C, Kruskal Wallis, p > 0.05); however, high
variability in fungal abundance was observed between depths and stations, which may
reflect the distribution of fungi's preferred resources, including particles and
phytoplankton [77] (Fig. S2C). While fungi are generally considered obligate aerobes,
prior research suggests at least a tolerance of reduced oxygen and anaerobic
environments [78-84]. The observed high microeukaryote between-station variability
(Fig 2B, C) is consistent with prior research in aerobic coastal and pelagic regions [76,
77]. In general, microeukaryotic communities are less strongly associated with
commonly measured environmental factors than bacterioplankton [85], and their
distributions may more closely reflect the availability of specific resources, for example,

particulate organic matter [77, 86].

3.3 Community characteristics of bacterioplankton, Labyrinthulomycetes, and
fungi

To gain greater insight into the structure and composition of microbial
communities in the Bay of Bengal, we compared the diversity metrics of these three

microbial groups across depths and oxygen categories (Fig. S3). These microbial
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groups exhibited distinct vertical diversity patterns, with the bacterioplankton
exhibiting both a clear depth-related pattern in beta diversity (Fig. 2A) and the highest
alpha diversity in the deep euphotic zone (100 and 200 m) (Fig S3A-C). Although depth
also significantly impacted the community structure of Labyrinthulomycetes and fungi
(PERMANOVA, p < 0.001), we observed clusters within a given depth rather than a
consistent trend with depth (Fig. 2B, C). For example, the Labyrinthulomycetes
exhibited separation of euphotic versus aphotic zone samples, while fungi communities
in the surface ocean (< 75 m) are distinct from deeper samples (Fig. 2B, C). Consistent
with previous reports, bacterial diversity indices were lower in the euphotic zone (0-
200 m) than in the aphotic zone (>200 m, average Shannon diversity: 5.86 vs. 7.17,
richness: 393.68 vs. 643.38, and evenness: 0.68 vs. 0.77; Fig S3A-C), whereas the trend
isreversed for Labyrinthulomycetes (average Shannon diversity: 4.45 vs 2.64, richness:
74.91 vs 22.62, and evenness: 0.719 vs 0.597; Fig. S3D-E) [52]. In contrast with the
other two microbial groups, only fungal richness declined slightly with increasing depth
(Fig. S3H), with no depth-related trends for Shannon diversity and evenness (Fig. S3G,
I). While these results suggest that microeukaryotic groups respond differently to depth-
related environmental factors (e.g., temperature, pressure, nutrients), given strong
correlations among environmental factors, we cannot identify the proximal driver of
these microbiome patterns [87]. Our findings highlight the need to compare
microbiomes across stations with distinct oxygen statuses at the same depths to
minimize the confounding effects of environmental factors that co-vary with depth (as

in [40, 88, 89]).

Therefore, to better understand the impacts of OMZs on the microbiome, we
specifically compared stations with different oxygen levels at OMZ-relevant depths
(200 and 500 m). At these depths, bacterial alpha diversity indices (i.e., Shannon's
diversity, richness, and evenness) were significantly lower in the OMZ versus NOZ
stations at 500 m (e.g., Richness average = 669.33 vs 720, Fig. S3A-C; Table S4; One-
way ANOVA, p < 0.05). This finding is consistent with the reported declines in

prokaryotic diversity from oxygen-rich surface water to the permanent OMZ in the
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Eastern Tropical North Pacific [90] but differs from recent findings that ocean
deoxygenation could enhance prokaryotic diversity in regions where oxygen levels
decline to 20 pM, which was based on comparison across different depths [91, 92]. At
these DO concentrations, acrobic and anaerobic processes may co-occur in OMZ waters,
and lead to the increase in diversity [93, 94]. Unexpectedly, bacterial alpha diversity
did not differ at 200 m (Table S4) with oxygen status, even though the divergence in
mean oxygen level was more significant at 200 m than at 500 m (47.02 versus 37.98
uM DO, respectively). Thus, other factors may obscure general relationships between

diversity and oxygen status.

While diversity did not significantly differ with oxygen status for fungi (200 m) or
Labyrinthulomycetes (200 and 500 m;Fig. S3 D-I; Table S4), fungal diversity metrics
(i.e., Shannon’s diversity and Pielou's evenness) were lower in OMZ versus NOZ
stations at 500 m (Fig. S3 G-I; Table S4; One-way ANOVA, p < 0.05). Overall, these
observations align with negative correlations between bacterial richness and DO in
seasonal OMZs [89-91, 95] but suggest that OMZ fungi are potentially less diverse [96,
97]. Taken together, our findings suggest that oxygen can potentially decrease both
bacterial and fungal diversity; however, Labyrinthulomycetes diversity, while
exhibiting vertical patterns, shows a minimal response to oxygen levels. Thus, these
results validate our approach of within-depth comparisons due to the robust depth
partitioning among the bacterioplankton and to avoid the biases introduced by

comparisons between anoxic/hypoxic zone with the overlying or underlying waters.

To obtain a more nuanced understanding of how microbial phylotypes respond to
OMZ conditions, we compared the 100 most abundant Amplicon Sequence Variants
(ASVs) for bacterioplankton and the 50 most abundant ASVs for Labyrinthulomycetes
and fungi at OMZ depths (Fig. 3, Fig. S4, S5). For bacterial taxa, samples clustered by
depth (Fig. 3) as in the NMDS (Fig. 2A); but, within a given depth, the community
further clusters with oxygen status, with the exception of NOZ samples from 500 m

(Fig. 3), supporting a bacterioplankton response to OMZ conditions. DESeq?2 identified
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15 bacterial ASVs as OMZ-associated across both 200 m and 500 m samples (Fig. 3).
ASVs associated with OMZ conditions (200 m) belong to the SUP05, SAR324,
SAR202, SAR406, and SARII1 clade II, Ruegeria, Marinobacter, and the family
Microtrichaceae. Members of the SAR324, SAR202, SAR406, and SARI11 clade II
were previously reported in OMZs [12, 98-101] and play pivotal roles in global
biogeochemical cycles and inhabit diverse metabolic niches [8]. For example, SAR324,
SARI11, and SAR406 lineages contain coxMSL genes [102-104], encoding putative
carbon monoxide dehydrogenases, which catalyze the oxidation of carbon monoxide to
CO», allowing microbial survival in extreme habitats [102-105]. SAR202 is capable of
degrading recalcitrant dissolved organic matter (DOM) [106], while SUP0S5 can oxidize
sulfur compounds in hydrothermal sulfur-rich plumes [107]. Members of Ruegeria spp.
are prevalent in oxygen-depleted waters and the Arabian Sea OMZ, where they actively
participate in dimethylsulfoniopropionate (DMSP) metabolism [108]. Members of
Marinobacter spp. have been identified as the dominant genus among culturable
isolates in the Bay of Bengal OMZ and are assumed to degrade hydrocarbons [109].
Nocardioides taxa were identified as the primary methanotrophs in the Eastern Tropical
North Pacific OMZ off central Mexico [110], and members of Alcanivorax recognized
as hydrocarbon degraders in the sediments below the OMZ in the Bay of Bengal [111].
However, phylotypes previously found in OMZs, including taxa affiliated with the
phylum Planctomycetes, the genus Nitrospina, and Candidatus Scalindua [12, 112],
which play critical roles in anammox and nitrite oxidization [73, 89, 91, 92, 95, 112-
114], were not identified as OMZ-associated as they either did not meet the abundance
criteria (100 most abundant) or were not specific to OMZ stations. Interestingly, ASVs
of SARI11 clade 1V, clade 11, SAR406 clade, Nocardioides, Pseudohongiella, and the
family Microtrichaceae are significantly enriched at 200 m in NOZ stations. In contrast,
at 500 meters, NOZ-associated taxa included ASVs belonging to Prochlorococcus
MIT9313, family Micavibrionaceae, LS-NOB (Low-Salinity Nitrite-Oxidizing
Bacteria, belonging to the family Nitrospinaceae), Chloroplasts, and Candidatus
Actinomarina (Table S5). Notably, LS-NOB, presumed nitrite oxidizers [89], were

detected as NOZ specialists, suggesting an association with depth and the nutricline
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rather than low oxygen conditions. The NOZ-associated photoautotrophs, far below the
euphotic zone (500 m), are likely export production, which is surprising as export might
be assumed to be higher in OMZ stations. However, total photoautotrophs were a higher
fraction of libraries in NOZ surface waters (Kruskal-Wallis test, p < 0.05), but no
photoautotrophic taxa were identified as significantly different between surface
samples of NOZ and OMZ stations, suggesting similar primary producer communities.
While an ASV affiliated with low-light Prochlorococcus was identified as NOZ-
associated (500 m), its relative abundance was higher in the photic zone (a peak of
13.49% of library abundance at 100 m versus 6.74% at 500 m), suggesting export as its
source.

Compared to bacterial groups, Labyrinthulomycetes, and fungi displayed less clear
clustering with either depth or oxygen level (Fig. S4, S5), and fewer taxa associated
with oxygen status. At 200 m, a Labyrinthulomycetes phylotype affiliated with
Aurantiochytrium was identified as an OMZ specialist, while 3 ASVs from unclassified
Labyrinthulomycetes and Thraustochytriaceae were identified as OMZ associated at
500 m (Fig. S4, Table S6). Notably, Aurantiochytrium is a saprophytic clade that uses
decaying phytoplankton as a carbon source [115-121], and can lead to hypoxia
following phytoplankton blooms [68]. In contrast, members of Thraustochytriaceae are
considered to complement bacterial decomposition and potentially degrade recalcitrant
organic material in the deep ocean [52]. These findings suggest distinct carbon sources
in OMZ stations or highlight other differences (e.g., ocean physics) between sites with
distinct oxygen profiles. However, a different Aurantiochytrium ASV was identified as
NOZ associated (Fig. S4), suggesting differing within-clade tolerances to OMZ/NOZ
conditions. NOZ-associated Labyrinthulomycetes belong to the genus Aplanochytrium,
which co-occurs with phytoplankton and may rely on exported organic matter [122-
126]. Compared to Labyrinthulomycetes, fungi demonstrate a more limited response to
OMZ conditions with only a single NOZ-associated ASV, and 2 and 3 taxa identified
as OMZ-associated at 200 and 500 m, respectively (Fig. S5, Table S6). Although recent
studies in permanently anoxic habitats have found novel fungal clades (e.g., LKM

group, uncultured fungi), which are restricted to low-oxygen environments [127-129],
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OMZ specialists were only identified at the kingdom level, providing further evidence
of previously-undescribed fungal phylotypes from the deep-sea, especially in extreme
niches such as OMZs [130-132]. Interestingly, denitrifying Fusarium (Ascomycota)
fungi [129] are observed here (although they are not OMZ-associated) despite the
absence of denitrification in the BoB OMZ (Figure S5). However, as microbial
eukaryote communities have a high beta diversity, it may be necessary to sample more

extensively to identify OMZ diagnostic taxa.

We can only speculate as to the mechanisms that might allow microeukaryote
resistance to changes in oxygen levels. However, in fungi and other eukaryotic
microorganisms, there are two de-nitrification pathways; one is typically localized to
mitochondria and usually occurs under low O conditions, while the other, often
referred to as ammonia fermentation, is localized in the cytosol [133] and is activated
under strict anoxic conditions. The latter pathway involves the reduction of nitrate to
ammonium using a reductant generated by the catabolic oxidation of ethanol (the donor
of electrons) and concomitant acetate synthesis coupled to substrate-level
phosphorylation [134]. As limited information is available on the response mechanism
of micro-eukaryotes in marine OMZs, there are likely other mechanisms which may be
better revealed by genomes and transcriptomes of microeukaryotes. Thus, we propose
further research on this question as a topic of future study. Furthermore, given the
limited research on microeukaryote ecology in low-oxygen environments, extrapolating
our BOB findings to other OMZs may be challenging due to between-site differences,
e.g., strict anoxic conditions. Despite these limitations, this study provides a window
into the complexity of the eukaryotic microbial communities in marine hypoxic

environments.

CONCLUSIONS

Our study sheds light on the much stronger relationships of bacteria versus the selected

microeukaryotic communities with the Bay of Bengal oxygen minimum zone (OMZ),
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a low but not anoxic environment, that is relevant to predicting the impacts of ocean
deoxygenation. Across these three microbial groups, we observed a sharp contrast
between the bacterioplankton and the two microeukaryotic groups: the bacterioplankton
exhibit the most robust patterns in terms of depth and oxygen status. This observation
is consistent with previous reports, as microeukaryotes (esp. fungi) generally display
weaker environmental associations than bacterioplankton [34, 52, 77]. However, they
could also be less sensitive to oxygen levels than the bacterioplankton, reflecting their
associations with low-oxygen particulate microenvironments even in NOZs [133]. To
clarify these relationships, future work could focus on microeukaryote colonization of
particulate material and assessment of these microeukaryotes’ activity across different
microenvironments and depths. As the BoB is distinct among OMZs in that trace
oxygen levels remain, new research could compare microeukaryotes across a range of
oxygen levels in the deep ocean to further clarify their potential responses to ocean

deoxygenation on a changing planet.
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Figure 1. Map and vertical dissolved oxygen (DO) profile of the sampling stations. A. The map
displays the distribution of sampling stations. The stations marked with red dots (1208, 1205, 1202,
1107) were identified as the oxygen minimum zone (OMZ), characterized by persistently low
oxygen levels between 200 m and 500 m. Stations indicated by green dots (1105, 1302, 1313, 1501)
were identified as non-oxygen minimum zone (NOZ). B. Dissolved oxygen (DO) profiles of the
stations. OMZ refers to stations in the oxygen minimum zone, where oxygen levels remained
consistently below 20 uM at 200-500 m. The NOZ group represents the profiles of stations, with
oxygen levels above 20 uM in the same depth range. Sampling station positions were plotted using
the Ocean Data View software (https://odv.awi.de), accessed on 3rd June 2020.
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Figure 3. Heatmap of the 100 most abundant bacterial taxa at 200 and 500 m. The heatmap
displays the 100 most abundant bacterial Amplicon Sequence Variants (ASVs). ASVs (rows) and
samples (columns) are clustered using Ward's hierarchical agglomerative method based on
Euclidean distance. ASVs are colored by phylum. Samples are labeled across the top by depth (Blue:
200m; Dark blue: 500m) and oxygen minimum zone status (Red: OMZ; Green: NOZ). ASVs
associated with different oxygen concentrations (Red: OMZ; Green: NOZ) at each depth were
assessed using DESeq?2 (p<0.05).



