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ABSTRACT

A generalized quantum master equation approach is introduced to describe electron transfer in molecular junctions that spans both the
off-resonant (tunneling) and resonant (hopping) transport regimes. The model builds on prior insights from scattering theory but is not
limited to a certain parameter range with regard to the strength of the molecule-electrode coupling. The framework is used to study the
simplest case of energy and charge transfer between the molecule and the electrodes for a single site noninteracting Anderson model in the
limit of symmetric and asymmetric coupling between the molecule and the electrodes. In the limit of elastic transport, the Landauer result is
recovered for the current by invoking a single active electron Ansatz and a binary collision approximation for the memory kernel. Inelastic
transport is considered by allowing the excitation of electron-hole pairs in the electrodes in tandem with charge transport. In the case of low
bias voltages where the Fermi levels of the electrodes remain below the molecular state, it is shown that the current arises from tunneling
and the molecule remains neutral. However, once the threshold is reached for aligning the fermi level of one electrode with the molecular
orbital, a small amount of charge transfer occurs with a negligible amount of hopping current. While inelasticity in the current has a minimal
impact on the shape of the current-voltage curve in the case of symmetric electrode coupling, the results for a slight asymmetry in coupling
demonstrate complete charge transfer and a significant drop in current. These results provide encouraging confirmation that the framework
can describe charge transport across a wide range of electrode-molecule coupling and provide a unique perspective for developing new master
equation treatments for energy and charge transport in molecular junctions. An extension of this work to account for inelastic scattering from
electron-vibrational coupling at the molecule is straightforward and will be the subject of subsequent work.
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. INTRODUCTION

Understanding electron transfer processes is crucial to the con-
tinued development of several technologies ranging from energy
storage” to artificial photosynthesis™' and organic electronics.
Accordingly, significant effort has been devoted to models for pre-
dicting the kinetics of electron transfer in these varied contexts.”
Marcus theory” has been widely applied to describe electron trans-
fer between an electron donor and an acceptor in a variety of
systems, including light-harvesting assemblies, "'’ photovoltaics, "
and other biological molecules.'”"* The theory has been employed
in recent years to describe currents between two electrodes bridged
by single molecules and self-assembled monolayers.'”'* Regarding
electron transport in molecular junctions, Marcus theory has been
invoked in the limit of high temperatures in the resonant transport

regime, where the energy level of the molecule is close to the Fermi
levels of the electrodes, and hopping transport is expected."”*’ In
the off-resonant transport regime, the electron transfer is character-
ized by coherent tunneling described within the Landauer-Biittiker
approach.”"”” In the Landauer model, the energy broadening of
the molecular states from coupling to the electronic continua in
the electrodes is taken into account through transmission functions
obtained from scattering theory”” or non-equilibrium Green’s func-
tion calculations.”* Beyond elastic scattering, transmission through a
molecular junction can be accompanied by energy exchange with the
vibrational degrees of freedom of the molecule, producing signatures
in the current that contain information about the molecule and its
orientation with respect to the electrodes.”” ** While inelastic elec-
tron tunneling spectroscopy’” * reveals additional insights into the
structure of the molecular junction, more extreme cases of energy
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accumulation can modify the junction itself by rupturing chemical
bonds™ ™ or driving mechanical motion.””

Inspired by both the potential applications of molecular
devices’ and the fundamental challenges of modeling open quan-
tum systems, substantial attention has been given to the devel-
opment of models spanning both the resonant and off-resonant
transport regimes.””"” Intense focus from the chemistry and physics
theory communities has led to a plethora of methods to describe
energy and charge transfer in molecular devices much too diverse
to adequately capture in the space allotted here. The reader is
directed to several excellent reviews for further discussion;””*'
however, some general categories of approaches will be briefly men-
tioned. Among these methods are those that can be considered
perturbative in their handling of interactions between the elec-
tronic degrees of freedom of the molecule and the electrodes (the
so-called electrode-molecule coupling) and between the scattering
charges and the vibrations of the molecule (often referred to as the
electron-phonon coupling; however, further distinction is required
when molecular vibrations are involved that also interact with a
separate phonon bath). Scattering theory approaches are conceptu-
ally simple, are computationally efficient, and have been successfully
applied to describe inelastic electron transfer in molecular junctions
in the off-resonant regime.””'* "’ Other perturbative approaches,
which properly account for the Fermi statistics of the electrons,
include quantum master equations (QMEs) ™ J and non-
equilibrium Green’s fucntion (NEGF) calculations.”* ** Generally,
the former are reserved for the case of weak electron-molecule
coupling and neglect level broadening, although efforts have been
reported to extend these approaches to the off-resonant case by
using dressed evolution operators”™* or memory functions calculated
from numerically exact approaches.”””’ With respect to the balance
between molecule—electrode coupling and electron-phonon cou-
pling, NEGF techniques have been explored to handle the strong
and weak limits of both interactions.*” Indeed, in the absence of
electron-phonon coupling, NEGF combined with density functional
theory (NEGF-DFT) has become the standard for first-principles
calculation of molecular conductance.’""'

Naturally, concerns over the limited ranges of perturbative
approaches can be alleviated by turning to numerically exact meth-
ods such as the hierarchical equations of motion (HEOM), %+ %
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) descriptions of the system+bath,"”*" and quantum
Monte Carlo.” "’ These methods have been extended to consider
coupling to multiple baths of Fermions and phonons exchanging
charge and energy with a molecular subsystem, though often in
the context of simplified model Hamiltonians.”"”> The cost of
the numerically exact nature of these methods often comes in the
form of the problems they can address, which have largely been
restricted to one or two molecular states and similarly few nuclear
coordinates. Advances in tensor train methods may provide a route
to efficiently expand the feasibility of these methods to include
additional molecular degrees of freedom.””” It should be noted that
the majority of studies discussed up to this point have focused on
a small number of quantized degrees of freedom on the molecule.
Within the context of electron transport, there remains a clear need
for semi-classical methods that allow the inclusion of a mixture
of quantized and classical nuclear degrees of freedom as might be
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needed to describe electrochemistry in a solvent environment.”’
Pioneering work along these lines includes the development of
surface hopping treatments that account explicitly for the continua
of electronic states’”’® or include the electrodes implicitly via
broadened master equations.

Advances in theoretical methods to model molecular junc-
tions have relied not only on pursuing approaches capable of
spanning off-resonant and resonant transport, but also on explor-
ing the connections between different techniques. These studies
often begin with the Anderson-Holstein model Hamiltonian and
introduce various Ansditze to bridge the transport regimes, i.e.,
weak to strong electrode coupling in the presence of a dissipative
environment.” """ Formal connections have been made between
techniques such as Green’s function calculations and the driven-
Liouville density matrix approach,” pseudo-particle NEGFs and
surface hopping,* and scattering techniques and NEGFs."*

While the development of numerically exact approaches con-
tinues and provides crucial benchmarks to new methods, there
remains an opportunity for more approximate models valid across
wide ranges of electrode-molecule coupling and electron-vibration
coupling at the molecule. In this work, we motivate a model for
electron transport through a molecular junction that builds on the
connection between scattering theory and quantum master equa-
tions. Our approach is inspired by similar studies carried out in the
context of gas phase molecular beam scattering”* " and can be con-
sidered an extension of previous work by one of the authors in the
off-resonant tunneling regime."” Our method accounts for all orders
of electrode-molecule coupling and emphasizes the key assumptions
made to derive Landauer’s expression for current starting from the
density matrix of the system and the Liouville equation. Our goal
in making this connection explicit is to advance new directions for
the development of quantum master equations to describe energy
and charge transport valid across broad ranges of electrode and
vibrational coupling strength. In this work, we shall focus on the
electrode-molecule coupling and begin our discussion in Sec. IT A
with the general Hamiltonian for a molecule adsorbed to a metal sur-
face. A Newns—Anderson type Hamiltonian is constructed using the
familiar system-bath orbital partitioning; however, the electronic
degrees of freedom are described with multi-electron configura-
tions rather than restricting attention to a single incoming electrode
orbital. We shall show that the retention of many-electron config-
urations leads naturally to the Pauli exclusion of scattering charges
from thermally occupied electrode orbitals neglected in prior treat-
ments. The transition from the full many electron states to the
language of orbitals will be accomplished by restricting attention to
single electron scattering events in what we term a single active elec-
tron Ansatz. Our present work will focus on a simple picture of a
single molecular level coupled to the electrodes in the absence of
vibrational coupling, although the model can be readily extended
to treat the molecular nuclear degrees of freedom and will be the
subject of a subsequent paper. With the system and bath degrees of
freedom defined, we shall motivate a generalized quantum master
equation (GQME)”"* to describe the transport of electrons through
the molecular bridge and derive the related current expressions in
both the non-Markov and Markovian limits. Finally, we turn our
attention to the connection with the Landauer expression for cur-
rent and show that its derivation from our density matrix treatment
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requires not only the expected Markov limit but also the assump-
tion of a binary collision approximation for the memory kernel in
the GQME. This binary collision approximation was evoked previ-
ously to describe collisions between gas molecules at low densities
in molecular beams”**" and is applied in this context under the
assumption of low densities of charge scatterers interacting with
the molecular bridge. Having thoroughly explored the assumptions
that connect the GQME to the Landauer result, this work provides
the foundation for investigating how each of the assumptions can
be relaxed to provide a new hierarchy of approximate equations of
motion for the molecular subsystem that can be tested against exact
methods in future work.

Il. THEORY
A. Description of the molecular junction

The prototypical molecular junction envisioned in this work
is shown in Fig. 1, where the voltage drop symmetrically displaces
the left and right electrode Fermi levels. The Anderson Hamiltonian
forms a logical starting point for discussing electron scattering from
the molecule attached to the electrodes, and a similar Hamiltonian
is developed here in the context of Hartree—Fock theory as discussed
in Appendix A. Within Hartree-Fock, the notion of charge trans-
fer between one-electron orbitals of the electrode and the adsorbate
arises naturally from partitioning the system into electrode and
molecular scattering regions. The single determinant description
possesses the known flaws of missing electron correlation in addition
to the assumption of Koopman’s theorem to describe charged states
of the molecule with frozen orbitals.”” The benefit of Hartree-Fock
is retention of exchange correlation, which will be vital to the subse-
quent discussion in Sec. 11 C of our modified self-energy expression.
In an attempt to overcome loss of correlation, the Anderson model
has been modified to include one-electron orbitals arising from
Kohn-Sham density functional theory'"®" and many-body molec-

ular charged states.”””’ Since the focus of this work is on the
|
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qualitative aspects of the theory to describe energy and charge trans-
fer in a molecular junction, the Hartree-Fock framework will be
used for simplicity with extensions to more sophisticated treatments
left to future studies. Combining Eqs. (A2) and (A7), the Hamilto-
nian describing the adsorbed molecule connected between the two
electrodes is

H= Z ey({Relec})e;Ey‘F Z ed({RmoIec})éIl&d

yeelec demolec

+ Z Vy,d({Relec}’ {Rmolcc})(e;&d + E;ey)
p,d
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Ieelec M Jemolec 2m; 7 Ieelec ‘RI - Rl‘
Jemolec
VAVAS YAV A
B _Zey 1
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where the first two terms correspond to the Fock spin orbital
energies for the electrode and molecular regions, respectively, the
third term represents the electronic coupling between these two
subsystems, and the remaining contributions describe the nuclear
degrees of freedom and their Coulomb repulsions. The dependence
of the Fock spin orbital energies and the electronic coupling on
nuclear coordinates is indicated explicitly by the notation in braces.
However, in keeping with the Born-Oppenheimer separation, the
coordinate dependence will be extracted from the orbital energies
and replaced with a potential energy function in the nuclear sub-
space. Focusing first on the electrode nuclei, it is anticipated that for
rapid relaxation of the collective electrode phonon degrees of free-
dom, a harmonic approximation will capture the essential physics.
However, such an approximation is less justified a priori for the
molecular degrees of freedom, where the nuclei can undergo large-
scale dynamics as a result of temporary localization of scattering
charges and energy accumulation.”””* Accounting for the differ-
ences between these two vibrational subsystems, the Hamiltonian is
written as

2

Q;eelec

(VN+d’ ({Rmolec}) - VN({Rmulac}))eji, Edf

Jemolec d'>HOMO
. " A 212
+ Z (VN—d'({Rmolec}) - VN({Rmalec}))(l - Cd’cd') + Z 5.5 (2)
d'<HOMO Ieelec IRI - R]I

where the states of the molecule have been partitioned into a ref-
erence neutral electronic configuration with N electrons (in the
absence of an applied bias voltage), anionic states with an electron
added to a spin orbital above the HOMO, i.e., (N + d’), and cationic
states with an electron removed from a spin orbital equal to or lower
than the HOMO in energy, i.e., (N — d'). The nuclei of the electrodes
are described via phonon modes denoted by Q; with frequencies

Jemolec

wq, and creation/annihilation operators bt and b, respectively. In
writing Eq. (2), the vibronic state space arising from the molec-
ular region has been substantially narrowed to considering only
singly ionized charged states in order to connect with previous theo-
ries focused on one electron charge transfers. The nuclear potential
energy functions for the neutral state and charged states are given by
VN ({Rumotec })> Vsd ({Rmotec })> and Vy_ gz ({ Rinolec } ) respectively.
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FIG. 1. A prototypical two-contact molecular junction (upper) and a simple
schematic of the positions of the Fermi levels of the left and right electrodes at
a positive applied bias voltage (lower). The applied voltage is indicated by @, and
the position of the molecular state is indicated by eg.

Since it is assumed that the electrode phonon modes are not
perturbed greatly by their interaction with the molecule, they can
be treated as a thermal bath of a fixed temperature coupled to
the molecular subsystem. This distinction invites a revision of the
Hamiltonian to reflect the interaction between the vibrations of the
molecule and the average behavior of the phonon bath degrees of
freedom,”’

H= (H>ph0nan + (H - <H)phanon)’ (3)

where (-) phonon denotes a thermal average across the phonon modes.
The first term on the right-hand side of Eq. (3) describes the evo-
lution of the system subject to a mean field, while the second term
in parentheses captures the effect of explicit correlation between the
phonon bath dynamics and the molecular system. A further simpli-
fication is made in assuming that the electronic coupling in Eq. (2)
does not depend strongly on the phonon bath coordinates such that
only the molecular nuclear dependence is retained. As a result of
these modifications to the original Hamiltonian, a clear distinction
is made between the molecular degrees of freedom and the two sep-
arate baths present in the electrodes: the bath of scattering charges
and the bath of thermalized phonons,

n Ata afa prp 1
H= Z €y¢yCy + Z €qtyly + Z th,(bQ,hQ, + 5)
yeelec demolec Q;eelec
. . A \af
+Hy+ Y (Hyyo —Hy)ehiy
d’>HOMO

Y (A -Ax)(1- )
d'<HOMO

ats L oata 5 ph
+ Zd V‘y,d({Rmolec})(CI/Cd + chy) + Vfé,;’”"”, (4)
P

where V[S’g‘mo" = H — (H)phonon and the molecular nuclear Hamilto-
nians (Hy, Hy,4, and Hy_y) contain the mean field interaction
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with the electrode nuclei. Equation (4) can be viewed from the per-
spective of scattering theory as the separation of the system into an
asymptotic component whose free evolution is readily understood
and a scattering potential,

H _ HO + Vgg'”"le + V};gonon’ (5)

where Hy contains the first six terms of Eq. (4) and describes the
uncoupled evolution of the charges and vibrations in the electrode
and the molecular region. Conversely, the potentials V5™ and
V’s’gamn contain the interactions between the two subsystems of
the electrode and the molecule. The electronic coupling in Eq. (5)
between the electrode and the molecule, V&5, corresponds to the
seventh term in Eq. (4).

While Eq. (4) provides the necessary ingredients to describe
the electron transfer and nuclear dynamics in the molecular sub-
space driven by a current, we shall restrict attention in this
paper to the impact of the electronic coupling term, V™, and
shall neglect molecular vibrations. Neglecting molecular vibrations
clearly implies two assumptions: first, the potential energy sur-
faces present in the relevant charge states do not differ substantially
from the neutral state, and, second, the electronic coupling matrix
elements in Eq. (4), i.e., Vg ({Riolec } )> are independent of molec-
ular nuclear coordinates. When one keeps in mind that highly
conjugated 71-cloud systems are commonly used in molecular elec-
tronics and that strong coupling between molecular orbitals and the
electrode surface further delocalize charges, it is easy to envision
scenarios in which these limiting cases are applicable.”* Regarding
the electronic coupling, intuitively, there will be a strong depen-
dence on nuclear coordinates across the first few nanometers from
the electrode surface: the farther the nuclei are from the electrode,
the exponentially lower the overlap will be between the orbitals of
the molecule and electrode. However, if the molecule is strongly
adsorbed to the surface and does not undergo significant vibra-
tional dynamics during current transmission, the nuclei do not
explore much of the coordinate dependence of the electronic cou-
pling. Hence, the dependence on {Ry,i} can be dropped from the
electronic coupling. In the limit of neglecting electron-vibrational
coupling, the electronic Hamiltonian reduces to the noninteract-
ing Anderson form that will be the focus for the duration of this
work,

H=Y ity + Y etlta+ . Via(tta+ile,).  (6)

yeelec demolec y.d

B. Ensemble scattering theory and the equation
of motion for the driven system

Having derived the Hamiltonian for the entire electrodes plus
molecule system, their coupled evolution is described using the von
Neumann equation,’

LW ) = -ialw (o) - VW), )
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where we assume fi=1 throughout and W(t) is the density
operator containing the complete dynamics of the electrodes plus
molecule. The density operator is expressed as an extended ket
[W(t))) in the Liouville space notation, and the reader is directed
to Mukamel’s classic work’™ for further details on the connection
between the Liouville space and Hilbert space representations. In
Hilbert space, the evolution of the density operator results from
commutation with the free Hamiltonian Hy as well as the scattering
potential V. However, in the Liouville notation, these operations

are present in Eq. (7) via the superoperators Lo and V respectively.
Throughout this sectlon tetradic operators in Liouville space will
be denoted by double-hats in order to distinguish them from the
Hilbert space counterparts. While Eq. (7) is entirely equivalent
to the Schrédinger wave equation for the electrodes+molecule, a
partitioning technique will be used to focus attention on the effect
of scattering charges on the molecular degrees of freedom. Since the
goal of this work is to derive effective equations of motion in which
the bath degrees of freedom have been traced out, the reduced
density matrix formulation provides a natural framework.

The trace over the electronic states can be readily achieved
by introducing a projection operator to partition the system into a
subspace of interest evolving under the influence of the electrode
baths. The ubiquitous assumption of dissipative dynamics is that the
equilibrium state of the bath is maintained regardless of the energy
exchange with the molecular system.” Such an assumption can be
achieved by using the following projection defined in the basis of the
eigenstates of Ho:

P=3 Ip MM )) (M, M), (8)

MM’

where the sum is over all possible electronic populations and coher-
ences of the molecule labeled by electronic state indices, M and
M’, and pi * refers to the electrode degrees of freedom described
by a thermal distribution across the electronic states. In order to
account for the open system nature of the system, the electron den-
sity far from the adsorbed molecule is described by a grand canonical
ensemble operator,

elec _ €XP (_ﬁ[ZyeR eyh}; - MRZ},GR fl;z])

eq Zzlec

% €xp (_ﬁ[ZyEL 6Y"§ - AuLzyeL hﬂ)
Zzlec

, (©)

where f8 is defined by the Boltzmann constant kg and temperature
T, y is an electrode spin orbital, nf;(L) is the number operator for
the orbital, 41y ;) is the fixed chemical potential for the electrode far
outside of the scattering region, and the partition function is defined

by

Zity = Y ({n;‘<”}|exp(—ﬁ[ > i

(D) yeR(L)

~ray 3 (L)])|{ ) (10)

yeR(L)
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The notation {n‘;(L)} represents a configuration of the elec-

L)

trode with ¥, cp(r) ni,{( electrons distributed among the electrode

orbitals. Throughout this work, sums over { i’l};(L)} imply the inclu-
sion of all possible electrode electronic configurations with any
number of total electrons.

When operating on the full density matrix, the effect of the pro-
jection operator defined in Eq. (8) is to take a trace over the electrode
degrees of freedom and produce an element of the reduced density
matrix pertaining to the molecular states of Ho,

PIW (1)) = p) ok, M')) (M|

CATCR

IR NL

x {{n)

Z ‘pelecM’ M”))O’M’M’ (t) |peleca(t)))) (1 1)

NR}{T[;,”"}) |Ml>

where the Hilbert space definition for the Liouville matrix ele-
ment has been invoked and &(¢) is the reduced molecular density
operator.

By defining a projection operator and its complement,

O=7-P Nakajima” and Zwanzig’* demonstrated that an equa-
tion of motion can be written solely in terms of the P projected

subspace accounting for evolution in Q,

—iPLyPIW (D))

EaA b b(er) ARXA
- [ Pve e Fe Gy
0

d 2
£ Awn) =

w())dr,  (12)

where the projection of the system onto Q att=0is assumed to

be zero and the potential, V, does not couple the 73 subspace to
itself (consistent with the definitions in Sec. II A). Equation (12)
is none other than the generalized non-Markovian quantum mas-
ter equation for describing system-bath interactions whose solution
has been reviewed in detail by Mulvihill and Geva.”” The collec-
tion of operators in the integrand constitute the memory kernel for
the system-bath interaction whose evaluation is complicated by the

presence of a projection onto Q in the time evolution operator. Var-
ious systems of equations relating the projected evolution operator
to projection-free quantities in the time and frequency domains have
been pursued,” see Ref. 87 for a thorough discussion, and in what
follows, we shall discuss a slightly modified approach inspired by
observations from ensemble scattering theory in Liouville space.”"”
In Appendix B, we show that the memory kernel can be written
using a product of the projection-free transition and Meller super-
operators. To our knowledge, the connection between the memory
kernel and scattering theory superoperators has not been discussed
extensively in the past and represents an important formal result
that may provide new opportunities for harmonizing different meth-
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ods for modeling open quantum systems. The Liouville transition
operator in Eq. (12) describes scattering driven by the system-bath
interaction, while the Meller operators provide a type of scaling fac-
tor that accounts for the projection restriction on the evolution in
Eq. (12).

Combining the results from Appendix B with Eq. (12), we
obtain a non-Markovian equation of motion that remains exact as it
preserves the full frequency dependence of the Fourier-transformed
memory kernel,

d z A A 4
EP‘W(t))) =—iPLyP|

w(t))) - Tirfoth[: dwe™ "
x PT (@) PO (@) PIW(t - 1)), (13)

where 7 and Q correspond to the projection-free transition and
Moller superoperators, respectively, and are defined in terms of
Liouville-Green’s superoperator in Appendix B. The equation of
motion can be written more explicitly in terms of the reduced
molecular density operator as

d ’ ’ i t oo ot
EUM’M (t) = —iwypr ™™™ (8) - ifo al‘r[oo dwe™

x (M, M| T(0) PO (@)oot - 1)) (14)

For the present case, we shall follow the example of Ref. 96 and
consider the Markov limit of the above expression. The elimination
of the history-dependence in Eq. (14) represents an approximation
based on the assumed speed of bath relaxation in comparison with
the strength of the coupling to the molecular degrees of freedom.”
Mathematically, the Markov approximation is enforced by assuming
that the Liouville matrix elements in Eq. (14) are relatively indepen-
dent of frequency and selecting a representative value of w for their
evaluation, i.e., wo.”" Extracting the transition and Meller superop-
erators from the frequency integral produces a delta function that
collapses the history kernel. A caution should be noted that in taking
the limit of w — wo, careful consideration is required when wo = 0.
In such cases, we encountered terms for which the limit is divergent
for the matrix elements themselves; however, the limit of the inte-
gral over frequency remains convergent. Such terms contribute to
the memory of the system and thus were also excluded from the final
matrix elements when we take the Markov limit. The subsequent
Markovian master equation is given by

%ﬁ\wa))) — iDL PIW () iP T (w0) PO (w0) PIW (1)),

(15)

where wo will be taken as the frequency corresponding to the energy
difference in the Liouville ket upon which the scattering superop-
erator acts, in the same manner as the parameterized transition
operator in Hilbert space.”” Since these terms correspond to the
parameterized version of the Moller operator on the frequency
shell, we have replaced the inverse of the Moller operator with its
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conjugate in accordance with the discussion in Appendix B. The
definition of the projection operator can be used to write the Marko-
vian equation of motion in terms of the reduced molecular density
matrix,

d . o
x MM () = "wM,M'UMM ()

(M, M| T (w00) PO (@0)pf0(1))),  (16)

where the first term corresponds to the free coherent evolution of the
molecular states and, the second term contains the Liouville transi-
tion superoperator, 7 (wo),” describing all the scattering transitions
between the eigenstates of Hy driven by the electrode bath degrees
of freedom. Equations (14) and (15) remain exact in their treatment
of the electrode-molecule coupling and provide the foundation for
our approach to developing approximate equations of motion for
electron transport.

Before concluding this section, we draw attention to the distinc-
tion between the projection-free transition superoperator shown in
Eq. (14) and the full memory kernel shown in Eq. (12). If one were
to replace the Moller operator in Eqgs. (14) and (15) by unity, the
first term in its perturbative expansion, the memory kernel would
simply be approximated by the projection free transition superop-
erator. The relevance of this substitution was previously explored in
the context of gas phase ensemble scattering’ "’ and later adapted
to electron transport by Sparpaglione and Mukamel.”” As discussed
by Snider,” the use of a projection-free transition matrix corre-
sponds to a subtle statement on how the bath interacts with the
system. By keeping the projection free superoperator, scattering
from bath interactions is reduced to individually coherent molec-
ular collisions in the limit of low bath particle density. Hence, this
approximation was coined a binary collision treatment in which the
bath is assumed to interact with the molecular subsystem one scat-
tering particle at a time. Indeed, this was the approach assumed by
one of the authors in a previous study of electron scattering from
molecular junctions in what amounts to the same binary collision
approximation,”””” and we shall show that it is inherent in the Lan-
dauer model. While a reasonable approximation for low density
gas collisions, the assumption of binary collisions is less intuitive
in the case of electrode baths where one should consider not only
the fully coherent collision of the molecule with individual bath par-
ticles but also the possibility of multiple bath particles scattering
from the molecule during a given time interval.”*”’ Nevertheless, we
shall show that this binary collision treatment is vital to deriving the
Landauer expression for current from the GQME and agrees with
the scattering description used to interpret the Landauer current
expression.

C. Evaluation of the electronic transition matrix
elements: The single active electron Ansatz

As outlined in Appendix B within the Markov approximation,
the electronic transition matrix elements in Liouville space can be
related to their Hilbert space analogs via
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1

where we have evaluated the tetradic matrix element at the fre-
quency of the density operator upon which it acts, in accord with
Egs. (15) and (B17). The transition operators in Hilbert space, T'(E),
are on the energy shell and defined in terms of the electronic degrees
of freedom of the electrode and molecule. P{n);(L)} in Eq. (17) are
the probabilities of finding the electrodes in a given incoming elec-
tron configuration, see Eq. (9), and o™"M” (¢) is an element of the
reduced density matrix in the basis of molecular electronic states.
The above transition matrix elements are similar to those presented
in previous work;'*"" however, it will be shown subsequently that
recasting this problem within second quantization and accounting
for the multi-electron nature of the electrodes allows us to go beyond
the assumption of noninteracting electrodes often invoked in studies
of the Anderson model.""

Up to this point, projection operators have been discussed
within Liouville space as a means of distinguishing the electrode
baths from the driven molecular subsystem. Having shifted to
Hilbert space operators in Eq. (17), a new set of projections will
be introduced to distinguish between different molecular states.
Returning to the discussion in Sec. III A, attention will first be
restricted to an incoming reference neutral state for the molecule,
denoted |N), and charged states that are either cationic, [N — d), or
anionic, [N + d), in nature. As a result, we shall define Hilbert space
projections with respect to the neutral incoming state as

e T IG5
(Y

o- ¥ (z N - A )
(g

d<HOMO

x(N—d{n;/R}{n;/L}‘er SN+ d{n  {n)" )

HOMO

), (18)

where multiply charged states of the molecule have been excluded in
accordance with the discussions in Sec. II A and Appendix A. Note

x (N +d{n)™ 3 {n)"

w0\ B + Equmy ety = Eve = By o,y — i1 Ener + By gty — Ent — Eguy oty + i1

17)

that in these projectors, the multi-electron nature of the electrodes
is accounted for in the sense that all distributions of any number
of electrons are allowed in the electrode orbitals. In our view, these
projectors overcome an important limitation present in prior studies
that treated the scattering electrons as a gas phase beam of elec-
trons rather than a Fermi sea of charges in the electrodes.”® Given
the resolution of the identity in terms of P and Q, the transition
matrix elements in Eq. (17) require the evaluation of four types of
matrix elements: PT. (E)P, QT.(E)P, QT.(E)Q, and PT.(E)Q. Each
of these matrix elements can be written in terms of projected Green’s
operators,’

PT(E)P = PV P + PV QG(E)QVE™" P,  (19)

where the scattering potential is the electronic coupling V™. The
projected Green’s operator contains a modified effective potential
and is written as

QG(E)Q = Q(E' - Ay - QU™ P(E" - i)
x PUGQ) (20)

where the superscript “+” implies a similar limit as that shown in
Eq. (17), Ho is comprised of the sum over Fock orbital energies,
and the remaining terms comprise the self-energy operator. The
self-energy present in Eq. (20) accounts for all levels of interac-
tion between the molecular charged states and the electrode orbitals
and is clearly not diagonal in the electrode state space. As a result,
the above Green’s matrix remains explicitly dependent on the elec-
trode configurations and is infinite in size. Since retaining an infinite
matrix is computationally infeasible, a compromise will be struck
between accounting for the multi-electron nature of the electrodes
and keeping the self-energy diagonal in the electrode state space.
This compromise can be shown to rely on a single active electron
(SAE) Ansatz for the self-energy as discussed in Appendix C. In
Appendix C, we show that the SAE treatment neglects contributions
to the self-energy from the correlated transfer of multiple electrons
while retaining the impact of the Pauli exclusion principle on the
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coupling between the continuum and the molecular orbital. As a
result, the SAE Ansatz allows for extension of our model to account
for interacting electrode electrons. Within the SAE Ansatz, the self-
energy can be described in terms of anionic and cationic operators
in the subspace of the molecule,

Qvggmolep(EJr _ HO)*lpvggmoleQ
SAE
Y N ) el
{Yl;’k},{”;"‘}
d,d’>HOMO
X (E+ —EnN — E{n;/k}{n;/L})(N + d, {n;’R}{n;'/L}‘
Y IN=d i ) ES)
3y
d,d’<HOMO

X (E+ - EN - E{n;’lk}{n;’lL})<N— d, {n;’R}{n;'/L} N (21)

where £ and £ are defined with respect to Eq. (C2). It should
be noted that within the SAE Ansatz, the self-energy operator does
not couple spin orbitals of different spin orientation. As a result, the
projected Green’s operators also do not couple different spin states
of the system and the treatment of spin in our calculation leads to a
trivial introduction of factors of 2 in evaluating the transition matrix
elements. We shall return to this point in the discussion of the simple
one-site model subsequently.

While the above self-energies look similar to the previous
operators derived from standard scattering theory treatments, the
inclusion of the multielectron nature of the electrodes fundamen-
tally alters their behavior with respect to incoming electron energies.
For the purpose of emphasizing this distinction, we will invoke two
additional assumptions often used in the molecular conductance lit-
erature. First, we assume that the electronic coupling elements only
depend on the energy of the related electrode orbital; hence, Vg will
be replaced with V5 (¢;). Furthermore, we shall invoke the wideband
limit in which we assume that the density of electronic states in the
electrodes is fairly constant across the energy range of interest. The
wideband limit is used to justify dropping the energy dependence
of the electronic coupling term, leaving us with constant parameters
describing the coupling between each molecular spin orbital, d, and
the right/left electrode, Vf/ L Hence, the summations over electrode
orbitals will be replaced with integrals over electronic energies, and
the self-energy operators in Eq. (21) can be written as

+) (gt

gd’,d(E - En _E{n;’R}{n;’L})
R<.R max 1- fr(e)

~ leVdPR_/};R T _Ev_E 1 - _dé‘j

N {n;’R}{n;’L} (:“J

‘min

EL
L. max
+ ViV, Lf
aVabLl |
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1-fu(e
_ file) de|, (22)
- En —E{n;m}{n;m) — €
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In our wideband limit expressions for the self-energy, the Pauli
exclusion restrictions on the sums over the electrode orbitals are
enforced by Fermi functions, f(¢), evaluated in the limit of zero tem-
perature. The presence of these Fermi functions is fully justified in
the limit of zero temperature; however, their inclusion at finite tem-
perature is an approximate enforcement of the Fermi statistics that
agrees with our assumption of rapid thermalization in the electrodes.
The density of states, pp,;, in the right (R) and left (L) electrodes
provides a simple scaling factor within the wideband limit. The inte-
gration over energy can be split into real- and imaginary-valued
contributions using a standard contour integral,””

fEf\ax (1 - fR(e,-))dej
+
ER E" -En-— E{n;/k){n;m} —€

PV fEﬁux (l - fR(é‘j))dEj
ER E-En —E{y,;m}{y,;m} —€j

- i7T(1 —fR(E—EN —E(,,)r’m}{n;m})), (24)

where P.V. denotes the principal value for the integral in question.
The first term in Eq. (24) produces a level shift, and the second
term broadens the level in energy as a result of coupling between
the electronic states of the molecule and the electrode. However, in
contrast to previous scattering treatments, both of these quantities
now depend on voltage through the presence of the Fermi functions.
Justification for the incorporation of the electrode orbital occupa-
tions in the evaluation of the self-energies provides an opportunity to
assess the impact of assuming noninteracting electrodes and is con-
sidered in Sec. I1I. Furthermore, it should be noted that the energy
dependence of the self-energy accounted for in this work has an
entirely different origin from the expansion beyond the wideband
limit carried out by Erpenbeck et al.'’" In their work band stud-
ies, edges were introduced creating an energy dependence to the
level broadening. In our case, the energy dependence arises from
accounting for the multi-electron nature of the electrodes. One can
envision a regime in which the voltage of the system and alignment
of the molecular orbitals result in the disappearance of the lifetime all
together, pushing the transition from resonance-mediated tunneling
to charging of the molecule. This transition will be demonstrated in
application to a simple one-site model below in Sec. I11.

Although the previous discussion focused on the evaluation
of PT(E*)P, the same approach can be used to calculate the
QT(E*)Q projected operator. Previous measurements of current
through molecular junctions have demonstrated the importance of
accounting for charge transfer to the molecule under an applied bias
voltage.”""*'"" In the language of scattering theory, charge trans-
fer is described by non-zero projections of the system onto the
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Q-subspace and the introduction of charged scattering states. Hence,
not only does one need to consider incoming scattering states in
P but also from Q under finite voltage. The evaluation of the
projected Green’s operator for QT(E*)Q requires

PG@(E)p = }A)(E‘r _ HO _ I")chmaleQA(EJr _ HO),I

A Ao A1
x OV* ’”"ZEP) , (25)

where Hy carries the same meaning as discussed in Eq. (20) and the
self-energy contains two scattering interactions that will take the sys-
tem from the P subspace and back again with respect to the incoming
molecular configuration. Following the same reasoning as used in
the SAE Ansatz for the incoming neutral state, the self-energy for
the incoming charged states can be written as (see Appendix C)

p *ggmoleQA(E+ _ HO)*IQAvggmolep
SAE
D O
{4y
X (EJr —En— E{n;rk}{nyL})<N, {n;’R}{n;'/LH
+ Z |N, {n;/R}{n;llL})H(*)
{”;’!R}’{y’;rl.}

R L

X (EJr —EN _E{n;rk}{n;rL})<N,{n;,l }{n;'/ }|, (26)
where the two self-energy contributions now describe the broad-
ening of the neutral state via scattering from the negatively
(+1 electron) or positively (-1 electron) charged states, respectively.
In the wideband limit,
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An important difference in the self-energy for incoming charged
states vs neutral states comes from the change in the Pauli exclu-
sion restriction, which flips the occupied/unoccupied orbital Fermi
functions in comparison with Egs. (22) and (23).
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Having applied the SAE Ansatz to PTP and QTQ, what remains
is the consideration of the cross terms describing the transitions
between the subspaces as a result of the electrode-molecule cou-
pling, i.e., QTP and PTQ. Considering the former, it can be shown
that

QATE (E+)p _ Qvggmolep 4 QV;EMOICP(E+ _ HO)—l
% PvggmoleQ"G“E(EJr)Q‘Vggmolep’ (29)

where the same SAE Ansatz will be taken for the self-energy in the
projected Green’s operator. The additional VGoV term appearing
to the right of the projected Green’s operator opens the possibil-
ity for electron-hole pair generation in the electrodes in tandem
with charge transfer across the junction and thus presents an even
deeper foray into the impact of interacting electrodes. While allow-
ing this scattering channel may seem a violation of the spirit of
the SAE model (since we consider two electrons being swapped
between the electrode and molecule), it is critical to do so in order
to provide an inelastic channel for charge transfer.”” This point will
be discussed further in Sec. 1], where we show that if one were
to neglect electron-hole pair generation, only the elastic channels
would remain in the absence of electron-vibrational coupling and
the description would be limited to the off-resonance tunneling
regime.

D. Current and the single active electron Ansatz

In this final section on our theoretical framework, we turn our
attention to the expression for current through a driven molecular
junction. The current can be defined as the time rate of change of
the number of electrons present in one electrode of the system. We
shall assume that there are only two contacts forming a minimal
molecular device, see Fig. 1, and the operator to count the number
of electrons in the left electrode is defined by

Ni=3 y, (30)
y'el

where the sum runs over the electrode spin orbitals. The rate of
change of the expectation value of Ny is then proportional to the
current,

1) = ~gen

Ne|[W (1))
L
{3t} M \YeL

d

| Gy iy MOy iy won ] e

=—qe

where g, is the magnitude of the electron charge. The above sums
over M pertain to the electronic indices for the states of the molecule.
The time rate of change for the density matrix is provided by either
Eq. (14) or Eq. (15) with the modification that the projection onto
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populations removes the free propagation term. For example, the
non-Markovian result yields

Dy ), MUY (W (0)))
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where the full transition and Moller superoperators describing
interactions with both electrode baths have been replaced with
their electronic equivalents. According to Eq. (B14), the transi-
tion superoperator matrix elements will require the evaluation of
six integrals. However, as discussed in Appendix D, the trace over
molecular states allows us to write this expression in a more intu-
itive form directly related to the change in occupation of the left
electrode,

—oo

MMM oy’ =0

P{n;R}P{n;I;},ZL(nf;I - n;Lr) > lim fm de|: !
Yy €.

e+waM7E{,,§}{n:,,} +in
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T7(e)|M{ny }{n)})

1 1
x _
|:e+ w-Ey *E{n;k}{n;L,} +in  e—Eyp —E{V,;R}{n:ﬂ —in’

where the sum over the left electrode orbitals accounts for the change
in occupation from the incoming state ({n;} }) to the final state
({ni, }). The various free Green’s operators from Eq. (D7) have been
written explicitly by inserting resolutions of the identity between
operators evaluated at e and € + w. The Markovian form of Eq. (33) is
found by evaluating the superoperators at the frequency wo = w7,
as discussed in Sec. 11 B,
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x lim :
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While the above results for the time-dependent current through the
junction retain any number of electron transfers during each scat-
tering interaction, we will restrict attention to the transfer of one
electron into or out of the electrode orbitals in keeping with the SAE
Ansatz discussed in Sec. II C. Within our limited state space, the
addition of an electron to the left electrode can only arise from the
donation of an electron from the molecule in the resonant trans-
port regime or by direct tunneling from an orbital located in the

] (M M7 (@)t - 7)), (33)

right electrode in the off-resonant regime. Similarly, the removal of
an electron from the left electrode has to be connected to electron
transfer to the molecule in the resonant regime or comes from an
orbital in the right electrode via tunneling off-resonant. Since both
transition matrix elements in Eqgs. (33) and (34) connect the same
initial and final electrode configurations, it can be shown that coher-
ence terms between different charged states, i.e., cationic, anionic,
and neutral states, are prohibited. Similarly, the SAE Ansatz will pre-
vent switches in spin state for the transferred electron, leading to an
additional multiplication of the current through a given orbital by a
factor of 2 as shown below for the one-site model.

11l. APPLICATION TO A ONE-SITE MODEL: BINARY
COLLISIONS AND THE LANDAUER LIMIT

A. Elastic scattering and recovery of the Landauer
picture

In order to make the connection with the Landauer formalism,
we shall restrict attention to scattering involving a single anionic
molecular state, [N + d), in which the lone electron can be either
spin up or spin down. As mentioned in the conclusion of Sec. I D,
the coherence terms between the neutral and charged states are
eliminated within the single active electron Ansatz. Hence, the equa-
tion of motion for the neutral state population in the Markov limit
becomes

%UN,N(t) = —i{(N,N| T (@0) PO (w0) o N, NY )™ (1)

—i{(N,N| T (w0) PO (w0)
x |poeN + d,N + d))ya™ N (), (35)
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where the trace over the electron spin is also implied for the charge
state population. Equation (35) is a non-trivial semi-classical rate
equation as it contains products of hopping and tunneling pathways
that connect the molecular populations. The first term in Eq. (35)
includes the product of tetradics representing Liouville space path-
ways coupling the charged state to the neutral state (corresponding
to hopping transport), as well as the product of tetradics connect-
ing the neutral state to itself (corresponding to tunneling when
accompanied by changes in the electrode orbital occupancies). The
interpretation of the two terms in the equation of motion is more
straightforward in the binary collision approximation where the
Moller operators are replaced by unity (as discussed in Sec. II B).
Within a binary collision treatment for the memory kernel, the
two terms in Eq. (35) map readily to the two different mechanisms
for charge transport in a molecular junction: off-resonant tunnel-
ing in the first term and resonant charge transfer in the second

((N.N| T (w0)lpig NN)) = 3 P{nR}P{nL}(N{”y}{”

ARTICLE pubs.aip.org/aip/jcp

term from hopping between the charged and neutral states of the
molecule. Within the Landauer picture of electron conduction, path-
ways that include hopping-type transport are necessarily neglected,
and as a result, we shall demonstrate that the binary approximation
is necessary to connect our approach to the Landauer model.

In the binary collision treatment of the bath, our equation of
motion for the neutral state population becomes

EUN,N(t) __

0 i (N, NI T (w0) "N N (1)

— i{(N,N| T (@0) [p2N + d, N + d)) o™ N (p).
(36)
The evaluation of the transition superoperator matrix elements

requires the evaluation of their Hilbert space counterparts. For
example,
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where additional factors of 2 have been introduced to account for
the two possible spin contributions from the scattering charge. The
transmission functions have been introduced in the wideband limit
to simplify the notation,

vivi [

—_a 4 | (38)
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The self-energy for the charge state in the wideband limit is given by

Eaaler) = pr(Vi) f%
j
#pulVi) [% (39)

The above integrals in the self-energy can be solved with an appro-
priate contour and, in the limit of low temperature, can be approx-
imated by simple expressions for the level width and shift. While
the transmission functions in Eq. (37) look very similar to those
expected for elastic tunneling, it should be noted that the retention
of the Fermi functions in the self-energy provides a correction to
the assumption of noninteracting electrodes. If we remove the Fermi
functions from Eq. (39), we recover the exact same form for the

self-energy in the noninteracting limit ¢mployed in prior scattering
treatments and NEGF calculations,”*'"

Eaq = A—inpL(V5)? - inpr(V5)?, (40)

where A is the real-valued energy shift of the molecular level and
the sum of the imaginary components from the left and right elec-
trodes provides the total width of the molecular state. The level shift
evaluates to zero if the energy limits on the principal value integral
are assumed symmetric and is often ignored altogether in qualitative
studies.

In Fig. 2, we demonstrate the impact of including the volt-
age dependence of the self-energy, via the Fermi functions, on the
transmission functions. We assume the following values for the var-
ious parameters: the initial Fermi levels of the electrodes are set to
EL = EX = 2.40 eV, and the bias voltage, @, between the electrodes
is included by symmetrically dlsplacm% the chemical potentlals of
the left and right electrodes, i.e., yr = Ef + = and pr = EX — 2. The
location of the LUMO orbital, ¢, is set to 2.90 eV, and the tem-
perature is taken to be 25 K. For integrals across electron energies
in the electrodes, cutoffs of 10 eV are used to represent the band
limits located far from ey; see Fig. 1. The strength of the coupling
to the left electrode is accounted for by Ty, = 7pr(V#)? and ranges
from 0.0023 to 0.04571 eV in accord with NEGF-DFT calculations
on gold-fullerene-gold molecular junctions.’® For the moment, we
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shall also assume that the molecule is coupled equally to the right
electrode, that is, 'r = I, resulting in the total level broadening
spanning I' ~ kT to T' > 10kgT at the low temperatures considered.
Figure 2 demonstrates the differences in the transmission func-
tion caused by evaluating the self-energy according to Eq. (39) vs
the energy-independent form in Eq. (40). In particular, attention
is drawn to the case of bias voltage near the threshold voltage for
charge transfer to the molecular bridge, i.e., the onset of resonant
transport. At voltages where the Fermi levels of both electrodes
remain below the molecular bridge state, the width of the transmis-
sion peak is the same as that predicted from the constant self-energy
expression. However, once the bias voltage pushes the left Fermi
level above the molecular state (1.0 V and higher), the full width
at half maximum of the transmission peak reduces by half and the
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amplitude of the peak increases by a factor of 4, producing a larger
transmission curve. The change in width results from the left elec-
trode being blocked from contributing to the broadening of the
charged state by the Pauli exclusion of the scattering charges. The
impact of adding the Fermi functions in the self-energy is also to pro-
duce a bigger level shift that varies with the applied voltage through
the Fermi functions. On a final note, the presence of the sharp fea-
ture in Fig. 2 in the 0.9 V transmission function is directly related to
the zero temperature limit of the real part of the self-energy, which
goes to infinity when the incoming electron energy aligns with the
Fermi level of the left electrode; see Eq. (39).

Returning to the evaluation of Eq. (37), the first two transition
matrix elements can be combined using the optical theorem and
converted to rate expressions,

R L £ - R L
(N{”y}{”y'}|(Te(EN + E{nﬁ}{ng,)) - Tl(EN + E{n;ﬁ}{ng,)))|N{"y}{”y’})
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FIG. 2. Transmission function for electron transport from one side of the junction
in Fig. 1 to the other with T, = 0.010 35 eV. The results are shown as a function
of incoming electron energies for two different bias voltages: below resonance
(0.9 V, black solid) and above resonance (1.2 V, red dotted). A comparison is also
made with the transmission function using a constant self-energy that neglects
bias voltage dependence (blue dotted-dashed).

where the first rate on the right-hand side of Eq. (41) corresponds to
electrons tunneling from one electrode to the other and the second
rate expression describes charge hopping onto the molecule. Once
again factors of 2 have been added that arise from the trace over
electron spin states for the scattering charge. It can be shown that the

2
R L 2 R L
[2|(N{"y}{"y'}|T(EN + By ) )IN{my })| S(E sy ity ~ Egry iy

2
T(Ey + E{n;ﬁ}{n;ﬁ})|N{”;R}{"f}>‘ 8(ea+ Equgy oy = E{n;k}{n;,%})]’ 1)

tunneling portion in Eq. (41) cancels exactly with the contributions
from the transmission functions in Eq. (37). Thus, the only contri-
bution that produces a change in the population of the neutral state
is the hopping term that transfers an electron from the electrode to
the molecular bridge,

({N,N|T (w0)|pi N, N))
(N +d{m}{n)}

2
X NG} my 1) 0Cea + Egugy oy = Brey o). (42)

= —4mi

T(EN + E{n;k}{ﬂ;e})

In the absence of additional scattering channels, such as the
electron-hole pair mechanism discussed in Sec. III B, it can be
shown that the above rate evaluates to zero. That these rates should
be zero is confirmed by the fact that the charged state looks like a
bound state of the system in the absence of any other degrees of
freedom and hence should be annihilated by the application of the
scattering operators. The mathematical evaluation of Eq. (42) con-
firms this assessment. Hence, the equation of motion for the neutral
state population becomes

%GN’N(t) = —i{(N,N| T (w0) PN + d,N + d)) o™ (1), (43)
However, the last remaining term coupling the charged state popu-
lation to the neutral state can also be shown to be zero for the same
reason discussed above, namely that this looks like a matrix element
between bound states in the absence of additional scattering chan-
nels. As a result, for purely elastic scattering, there will be no change
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in the population of the neutral or charged states of the system, and
unless the molecule is initially charged, it will remain entirely neu-
tral regardless of the applied bias voltage. This seems a curious result
that independent of the voltage applied to the system, the molecule
never becomes charged but is consistent with the limitation of the
Landauer model to only describing electron tunneling currents in
the off-resonant regime.

Given that the density matrix does not change and remains 1 in
the neutral state and 0 in the charged state, the expression for current
becomes

I=—dnqe 3 PupPeoy ) (my = nyf)
y'el

U}
Ol
2
x (N{ry }{nyy }| T(En + E{W;RH”;L,})|N{n;R}{n;€})‘
OBy oty = Epy o)) (44)

where an additional factor of 2 has been included to account for
the two different electron spins that can be transferred through the
molecule. Having expressed the current in terms of the differences
in occupation of the left electrode before and after the charge scat-
tering, we can limit attention to the two transmission functions that
describe electron transfer from right to left (+1 electron to the left)
and from left to right (—1 electron to the left). The summation in
Eq. (44) reduces to similar expressions as those found in the final two
terms of Eq. (37), weighted by +1 for the Tr, and Tyr terms, respec-
tively. Converting the summation over electrode orbitals to integrals
over energy, we regain the familiar Landauer form,

1=4nq. [deprpitu(e)(file) ~fale)). (49

However, as pointed out for the transmission function in Fig. 2, the
retention of the voltage dependence of the self-energy provides a
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quantitative modification from the purely noninteracting electrode
model. As shown in Fig. 3, the expected current is now approxi-
mately twice that given by the noninteracting self-energy of Eq. (40).
The increase in current is directly related to the observed growth of
the transmission peak when the left broadening is removed from the
self-energy above 1.0 V, increasing the area under the curve by an
overall factor of 2.

In summary, we have demonstrated the connection between
our framework and the Landauer approach to current transmis-
sion in molecular devices. In so doing, we have emphasized how
our work connects with previous discussions and improves upon
them. Namely, we have explored the impact of accounting for Pauli
exclusion of electrons in the electrodes and the simplest exten-
sion beyond a fully noninteracting electrode model. In addition, we
have emphasized that the reduction to the Landauer picture not
only requires the assumption of elastic scattering through the junc-
tion but also carries an inherent assumption about the system-bath
interaction, which may not be valid across a wide range of para-
meter space. Hence, while efforts to extend the Landauer picture
to inelastic scattering are important, they likely miss additional
impacts of the strong system-bath interaction arising from the
treatment of the full memory kernel in a many-electron picture.
The impact of the inelasticity will be explored subsequently in the
Markov limit.

B. Beyond Landauer: Binary collisions
with inelastic scattering

Here, we explore the impact of including an inelastic channel
for charge transport: electron-hole pair excitations in the electrodes
coupled to charge transfer. For positive applied bias voltages, there
are two scenarios considered in Fig. 4. In the case of transition-
ing from the neutral state of the molecule to the charged state, an
electron-hole pair is generated in the left electrode by virtue of two
charge transfers between the electrode and molecule. In the second

I (A

FIG. 3. Current-voltage characteristics calculated with the Landauer formula, Eq. (45), using the self-energy expression with the Fermi functions (black solid) and without

consideration of the Fermi functions in the self-energy (blue dotted-dashed).
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case, a transition from the charged state back to the neutral state is
allowed by creating an electron-hole pair in the right electrode that
absorbs some of the energy from the scattered electron. It is impor-
tant to note that this mechanism of electron-hole pair generation
is distinct from nonadiabatic excitation of electron-hole pairs from
the nuclear motion of the molecule’® and is unlikely to effectively
compete with nonadiabatic effects in the presence of strong vibra-
tional coupling. Nevertheless, in the absence of electron-vibrational

QT(E)N, {m 3 {ni}) = 30 (N + d{m)" ~j} ()}
JjeR

le

i
Ji’
D

LI el

where the transition matrix elements now connect an incoming neu-
tral molecular state with a charged state. The first two terms on the
right-hand side of Eq. (46) vanish, as discussed in Sec. III A, but
the latter two contributions persist and allow for population trans-
fer. The electron-hole pair rates will carry a strong dependence on
the bias voltage as a result of containing three Fermi functions aris-
ing from the electrode configuration probabilities, P 'y and P iy
Y

and the repeated application of V™. The implied triple integrals
in Eq. (46) can be simplified by invoking the low temperature limit
of the Fermi functions as step functions. For example, when ® > 0,
E% > €4, and EX < ¢, we find

((N+d,N + dlf'glpi;ECN,N)) ~ 8mi(pr )’ (Vi) _[desz(el)

X T,‘L(el)(

1
Ei-¢ Eé_ed).
(47)

IN) = N +d) IN +d) > |N)

ﬁ n @

FIG. 4. Diagrams for the generation of electron-hole pairs in the electrodes con-
comitant with electron transfer to (left panel) or from (right panel) the molecule
represented by the single site in the middle. In both cases, the left and right elec-
trodes are filled to their respective Fermi levels as determined by their chemical
potentials, ¢4, and up, respectively.
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coupling, the inclusion of this inelastic channel warrants consider-
ation as it changes the evolution of the molecular subsystem and
points to the general impact of inelasticity in our framework. In
order to accommodate electron-hole pair excitation, we shall retain
our use of the SAE Ansatz for the projected Green’s operators in the
relevant transition matrix elements but shall extend the description
by allowing a second electron to be exchanged in the final electrode
configurations,

TE(EN + E{n;R}{n;l;})‘N, {n}’/R} n;{'})
+ SN+ d{n {0l — | Te(Bn + Egny gy )|N {03 {07 })
y y e {3 gy 5 Uy Y

L
> (N+d{m—j+j - Hny}
j"eR

'fe(EN + E{n;x}{n;l;})|N, {n;R}{n;l/})

(N + d{n;,R}{l’l;lf -1+ l, - l"}‘Tg(EN + E{n;R}{n;l;})|N) {n;R}{ﬂ;€}>, (46)

A factor of 4 is introduced in the rate expression above when tracing
out the various spin contributions from the two electrons involved
from the left electrode. The integrals over the left electrode orbital
energies preceding Eq. (47) evaluate to zero when the bias is insuf-
ficient to create the resonance condition, i.e., Ex < ;. A similar
expression to Eq. (47) can be shown for electron-hole pair gener-
ation in the right electrode when the bias voltage is reversed such
that @ < 0 and the right electrode Fermi level is higher than the
molecular level. Thus, between both electrodes, there are rates of
charge transfer to the neutral molecular subspace that are acti-
vated by different bias voltage conditions. The rates are zero for the
incoming neutral state whenever both the Fermi levels are below the
charged state energy. However, once one of the Fermi levels crosses
the molecular level, the channel is opened and charge exchange is
allowed.

Similar results to Eq. (47) can be obtained for the charged
incoming scattering state of the molecule; see the right panel of
Fig. 4. In this case, the electron transferring off of the molecule
loses energy to the generation of electron-hole pairs if the Fermi
level resides below €,. Naturally, the ordering of the Fermi func-
tions invoked changes in comparison with the description of the left
panel in Fig. 4 and, as a result, so too does the nature of the bias volt-
age dependence. The rates for electron transfer from the incoming
charged molecule to the electrodes will be zero if the Fermi levels
are both above the bridge orbital since the inelastic channel only
becomes available when excitations from below the Fermi level are
allowed and there are unoccupied electrode orbitals near the bridge
level. For example, when @ > 0, ER < es,and Ek > ¢,

((NNIT gty N + duN + d)) = 4i(oa) (VE)? [ dei(1- fule))

P 1 1
7
(48)
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where the transmission function for the charged state looks very
similar to Eq. (38), albeit with the appropriately changed self-energy
function,

yRyR 2
d'd . (49)

Top=|——d7d
RR= s = € —T(ej)

As shown in Fig. 5, the behavior of the charged state transmis-
sion functions differs from those of the neutral state with respect to
changes in the applied bias voltage. In the reverse of the neutral state

case, the charged state transmission depends on the self-energy of

the neutral state and only allows broadening by coupling to occu-

pied electrode orbitals. The physics is the same as the broadening of

the charged state discussed in Sec. III A, namely it is the coupling
of the molecular state to the continuum that gives rise to the finite
level energy width. However, in this case, the broadening is caused
by electron transfer to the molecule rather than from it. Hence, when
the Fermi level of the electrode is above the molecular orbital, it can
contribute to the broadening, but when it is below the molecular
orbital, it cannot; see Eq. (27). When both the Fermi levels are below
€4, the broadening vanishes entirely and the charge state represents
a true bound state of the system and would produce a singularity in
the transmission function. The changes in broadening with applied
bias voltage are shown in Fig. 5, where at voltages above resonance,
EE > ¢,, the left electrode can contribute to the broadening and pro-
duced a well-behaved peak. However, at voltages below resonance,
the broadening only comes from the tail of the Fermi function that
declines exponentially with bias and thus begins to approach a true
singularity. In comparison with the constant self-energy result, the

peak at 1.2 V differs in a manner similar to that seen in the case of
the neutral transmission peak in Fig. 2, namely it is narrower and of

larger amplitude than the predicted function if the Fermi statistics in
the electrodes are ignored.
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FIG. 5. Transmission function for electron transport via the charged state of the
molecule with Tr =T, = 0.01035 eV. The results are shown as a function of
incoming electron energies for two different bias voltages: below resonance (0.9 V,
black solid) and above resonance (1.2 V, red dotted). The result for 0.9 V has been
scaled by a factor of 1000 for graphing purposes. A comparison is also made with
the transmission function using a constant self-energy that neglects bias voltage
dependence (blue dotted-dashed).
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FIG. 6. Population transfer between the neutral (blue) and anionic (red) charged
states of the molecule as a function of applied voltage for T'r = T, = 0.0023 eV
(solid), 0.010 35 eV (dashed), and 0.045 71 eV (dotted-dashed).

Having derived rate expressions for the charge transfer between
the molecule and the electrodes, the evolution of the molecular
density matrix simplifies to propagating two coupled differential
equations for the molecular populations. While integrating the equa-
tions of motion can be carried out with standard Runge-Kutta
methods, the dynamics approaching the steady state show relatively
monotonic changes in state populations. As such, we restrict atten-
tion in Fig. 6 to the final steady-state populations of the neutral
and charged states as a function of applied bias voltage and the
electrode-molecule coupling strength. Following our observation
that the inelastic channel only activates at the threshold condi-
tion (Ef > e;), the populations of the neutral and charged state
remain unchanged up to 1.0 V. Once resonance is reached with the
molecular level, the amount of charge transferred to the molecule
depends on the competition between the rates discussed previously
in Eqgs. (47) and (48). For all three coupling strengths considered
in Fig. 6, an initial transfer of charge to the molecule at threshold
decays with increasing voltage. The reason for the drop off in popu-
lation transfer with bias is demonstrated in comparing the different
behaviors of the two processes in Fig. 4. The rate for electron trans-
fer from the molecule results from electron-hole pairs generated in
the right electrode and includes all the possible excitations that range
from 0 to e; — EX. As the bias increases and pushes EX lower, the win-
dow of available electron-hole pair excitations expands and the rate
increases. In contrast, the rate for charge transfer to the molecule is
supported by electrons with energy between that of the molecular
level and the Fermi level of the left electrode. The energy range from
€4 to E% will remain much smaller than that of the right electrode
process. In the case of the smallest coupling, this disparity in integra-
tion ranges is offset by the sharpness of the resonance peak, which
is well captured even within the smaller range selected in the left
electrode and produces the largest initial transfer to the molecule.
As the level broadening increases with increasing coupling strength,
the transmission functions present in Eqs. (47) and (48) show a more
gradual variation in the relevant integration ranges, and, hence, the
changes in the amount of population transfer are more gradual as a
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function of bias voltage. From consideration of the behavior of the
rates for charge transfer, the symmetric nature of the coupling to
the right and left electrodes argues for the lack of charge buildup on
the molecule. We shall show in Sec 111 C that breaking this symme-
try gives rise to more substantial and sustained population transfer
to the charged state.

Given the steady-state populations as a function of bias volt-
age, we now turn to the behavior of the current beyond the limit of
elastic transmission. Starting from Eq. (34), the current retains the
Landauer terms discussed in Sec. III A but now also accounts for
charge transfer to and from the molecular subspace,

1) = ange. [ despupiTas (o) (fu(en) = fu(e)on(e)
wanq. [deiprpiThu(en) (fu(e) - fi(@))owsansat)
+8mqc(pu)* (VE)' [ derfu(enTua(er)

x (; ;)UN,N(t) ~dnqe(pr)’ (Vi)*

Ei-€¢ Ei-e

X fdel(l —fL(é‘z))TgL(el)(ﬁ -

# o (f)
E}: e N+d,N+d >
(50)

where the first two terms correspond to off-resonant scattering and
the third and fourth terms correspond to redox processes. At the
positive bias voltages considered, the final term in Eq. (50) does
not contribute. The identification of the various terms by their scat-
tering description provides a natural decomposition of the current
into coherent tunneling and the sequential hopping mechanisms.”’
Figure 7 shows the results for current through the symmetrically
coupled molecular junction and the evolution of the contributions
from the various terms in Eq. (50). Clearly, below resonance with
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the molecular level, the current arises solely from coherent scatter-
ing involving the neutral state. However, once the Fermi level of
the left electrode reaches the molecular orbital, population transfer
occurs between the neutral and charged states and the current now
arises from the sum of coherent tunneling via both routes. Since the
molecule is symmetrically coupled to the two electrodes, the over-
all shape of the current-voltage curve does not differ substantially
from that seen in Fig. 3. The contribution from the electron hop-
ping term is shown in the inset of Fig. 7 and remains orders of
magnitude smaller than the two coherent tunneling contributions.
The reason for the disparate magnitudes in these contributions arises
from the differing powers of electrode-molecule coupling present in
the transition matrix elements for electron-hole pair creation (V / )

vs elastic tunneling (V3 /1)

In summary, we have illustrated the impact of inelastic scatter-
ing within the binary collision approximation as a first look at trans-
port beyond the Landauer picture. By inclusion of electron-hole pair
generation with the charge transmission, we have seen the onset of
charge transfer to the molecule as the bias voltage pushes the left
electrode’s Fermi level past the molecular orbital. Hence, our frame-
work captures both limits of charge tunneling through the molecule
and charge transfer to the molecule.

C. Asymmetric coupling and molecular
charge transfer

As a final test case, we also consider the impact of varying the
coupling between the left and right electrodes. In this asymmetric
junction, the coupling to the right electrode was reduced as com-
pared to the left by factors of 2, 5, and 10, i, V5/VE =2,5,10.
Beyond a simple numerical exercise, such a difference in cou-
pling strengths could be reflective of molecular junctions formed in
scanning tunneling microscope experiments and in self-assembled
monolayers where the molecule is chemisorbed to one electrode and
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FIG. 7. Total steady-state current (black solid) is shown as a function of applied voltage in the molecular junction in addition to the coherent tunneling contributions from the
neutral (blue dashed) and charged (green dotted-dashed) states. The inset shows the contributions of the hopping transport term from Eq. (50) (red solid). The coupling

strength in this case was g = I, = 0.01035 eV.
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FIG. 8. Steady-state population for the neutral (blue) and charged (red) states as a
function of applied bias for the asymmetric junction with vg /V§ = 2 (dashed) and
5 (solid). The case of V&/V& = 10 lies on the same curves as the result for 5 and
is not reproduced here.

only weakly physisorbed to the other.” The variation in the cou-
pling strength is squared in the expressions for I'r and I'z, meaning
that even small differences can lead to substantial changes in steady-
state populations. From Fig. 4, it is clear that decreasing the right
electrode coupling will significantly diminish the rate of electron
transfer from the molecule in the charged state and should shift the
steady-state populations. Figure 8 shows that nearly complete ini-
tial transfer of the population to the charged state is achieved in the
case where the coupling to the left is twice that to the right elec-
trode, followed by the same decline in charged state population with
increasing bias voltage seen in Fig. 6. However, once the coupling
differs by a factor of 5 or more, the population transfer is complete

3.5 T T T
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and the molecule becomes fully charged once the molecular level is
crossed by the left electrode Fermi level. In this case, the flow of pop-
ulation is decidedly one way and no further changes in steady-state
distributions are seen after 1.0 V. Qualitatively, the scenario shown
in Fig. 8 for the factor of 5 asymmetry resembles a redox event in
which the molecule transitions from a neutral to charged state in a
small bias voltage window and further demonstrates the potential
of this ensemble scattering description to span both tunneling and
redox processes in a consistent framework.

The current through the asymmetric junction is shown in Fig. 9
for the case where the left electrode coupling is five times greater
than the coupling to the right. Clearly, the overall current is now less
than it was for the symmetric case as a result of the smaller value for
VE However, in the asymmetric case, there is also a significant drop
in total current accompanied by the switch to the charged state. The
drop in current can be rationalized based on the differences in the
behavior of the transmission functions for the neutral and charged
states discussed in Secs. III A and I1I B. In the case of transmis-
sion through the neutral state, we can see from Eq. (39) that the
broadening of the molecular level will be dictated by the coupling
to the right electrode since it is weighted by [1 — fr(€;)] and the left
electrode’s contribution is eliminated by [1 — fz(¢;)]. For tunneling
through the charged state, Eq. (27) shows that the switch in Fermi
functions changes the contributions from the left and right elec-
trodes in comparison with the neutral state. For the charged states
transmission, the contribution to the level width from the right elec-
trode is eliminated since it is weighted by the Fermi function that
will be evaluated at an energy above the right electrode Fermi level
in Eq. (50). Thus, for the charged state transmission, the broaden-
ing arises solely from the left electrode. Since the coupling to the
left electrode is stronger than the right in this asymmetric case, the
broadening of the charged state is greater and a smaller and flatter
transmission peak results. The net result is that the current through
the charged state is suppressed relative to the neutral state, and once
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FIG. 9. Total steady-state current (black solid) is shown as a function of applied voltage in the molecular junction in addition to the coherent tunneling contributions from the
neutral (blue dashed) and charged (green dotted-dashed) states. The contribution from the hopping term of Eq. (50) remains negligible (red solid), and the coupling strength

in this case was I', = 25T'r = 0.01035 eV.

J. Chem. Phys. 160, 184109 (2024); doi: 10.1063/5.0201430
Published under an exclusive license by AIP Publishing

160, 184109-17

8%:25:%1 ¥20Z AInr 92


https://pubs.aip.org/aip/jcp

The Journal

of Chemical Physics

an electron has attached itself to the molecule, the current is reduced.
The drop in current with increasing voltage is an example of negative
differential conductance, the presence of which has been ascribed to
the onset of redox states in molecular junctions.'’> While the mag-
nitude of the effect seen here is much smaller than reported from
experiment, it is interesting that such an effect is recovered within
our simple model and its appearance is tied closely to the inclusion
of the many-electron nature of the electrodes via our treatment of
the self-energy.

IV. CONCLUSION

In this work, we have introduced a novel generalized quan-
tum master equation inspired by ensemble scattering theory to
describe electron transfer in molecular junctions capable of span-
ning both the off-resonant tunneling regime and the on-resonant
charging of the molecule. An important formal result from this
investigation is the connection shown between the memory kernel
and the Liouville transition and Meller superoperators. This frame-
work forms a bridge between previous efforts focused on quan-
tum master equations and scattering descriptions largely applied
in two limiting regimes of charge transfer: coherent tunneling and
sequential hopping. The important aspects of our generalized quan-
tum master equation approach are its inclusion of all orders of
electrode-molecule coupling, derivation of equations of motion for
both Markovian and non-Markovian bath dynamics, inclusion of
the many-electron nature of the electrodes via the voltage depen-
dence of the self-energy expressions, and demonstrated connection
to the Landauer picture in the appropriate limits. Regarding the
final point, we have shown that the Landauer theory is recovered
by invoking both the limit of elastic scattering and the binary colli-
sion approximation for the memory kernel in the master equation.
The latter of these two points provides an interesting direction
for future work in the development of approximate treatments for
charge transport in molecular junctions that remain capable of span-
ning tunneling and hopping regimes. While this work has relied
heavily on formal derivations, a simple one-site model was used to
demonstrate the ability for the framework to capture the essential
physics in the off-resonant and resonant transport regimes in the
absence of vibrational coupling. There are many future directions to
consider: the impact of the binary collision and Markovian approx-
imations, the inclusion of vibrational effects on the current, and the
role of interference from multiple charged states. We anticipate that
this initial work will form the basis for continued development of
novel master equations to describe charge transport in open quan-
tum systems ranging from molecular junctions to electrochemical
environments.
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APPENDIX A: THE NONINTERACTING
ANDERSON HAMILTONIAN

Here, the explicit connection between the noninteracting
Anderson model for charge transfer and the general Hamiltonian
for a molecule attached between two electrode surfaces is clarified
to emphasize the assumptions made along the way. It will be shown
that the simplifications introduced in deriving expressions for the
current and the evolution of the density matrix for a molecular
junction in Sec. Il flow from the same system-bath partitioning
used to simplify the model Hamiltonian. In general, the molecule
+ electrodes system is described by

IR RE)

i x#]

>

1
Jemolecule

R

Ieelectrodes

2me |r, - rJ|

Z + I 5
— —v
7 - Ry oMy R

Ieelectrodes

1 2 Z1Zy

e

Jemolecule ZM] Ieelectrodes |RI - R/|
Jemolecule

% + i, (A1)

17 celeatrodes IR = Rr'| J.J' emolecule Ry = Ry|
where atomic units are assumed and the electronic and nuclear
indices are distinguished by lower-case and upper-case letters,
respectively, with Z( referring to the charge on the nucleus I(J),
fi(j) is the position vector for electron i(j), and R}( 7y is the posi-
tion vector for nucleus I(J). In the spirit of the Born-Oppenheimer
approximation, we can rewrite the Hamiltonian in the following
form:

1V
oM R

H = I:IE({Rmulea}) {Relec}) + z
Ieelectrode
1, 77
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where the electronic Hamiltonian, H, is defined by the first four
terms in Eq. (A1) and depends parametrically on the nuclear coor-
dinates of the molecule, {R,,i. }> and the electrodes, { R, }. Given
the electronic Hamiltonian, the basis set chosen to describe the adi-
abatic electronic wavefunction consists of atom-centered orbitals
from two separate Fock equations: one for the bulk electrode unper-
turbed by the presence of the adsorbed molecule and the other for
the molecular region neglecting the influence of the bulk electrode.
In this system-bath type of partitioning, one can include the first
several layers of the electrodes in the electronic structure calculation
for the molecular region to incorporate a portion of the electrode
non-perturbatively."*" The influence of the remainder of the semi-
infinite electrodes will be accounted for via the self-energy discussed
in Sec. I11. Following a Hartree-Fock treatment for the entire sys-
tem, the electronic wavefunction is described by Slater determinants
of the following form:*

A 1
<£a£ﬁ~~~|H6‘EuEﬂ~u) = Z €y + Z €y — Z
yeelectrodes 3’ emolecule y.{eelectrodes
1
-5 2 %r l68) + 3
y'.{emolecule

3’ emolecule
Ieelectrodes

Z
(%"mm’%r Z

where the summations over electrons in Eq. (A1) have been replaced
by sums over occupied orbitals ascribed to either the bulk electrodes
or molecular scattering regions according to the Hartree-Fock cal-
culation from which they arise. The first two terms in Eq. (A4) are
summations over Fock orbital energies that are corrected to give the
total Hartree—Fock energies for the isolated subsystems. The cor-
rection terms, third through sixth in Eq. (A4), will be neglected
subsequently because the focus in Sec. 11 will be on Green’s oper-
ators, including differences in state energies. Hence, these terms
for the neutral and singly charged states can be assumed compa-
rable and not carried along explicitly. The last four terms on the
right-hand side of Eq. (A4) correspond to the interaction between
the charge distributions of the two separate subsystems: electron
densities from orbitals in the electrode interacting with the nuclear
charges in the molecule, the electron density on the molecule inter-
acting with the nuclear charges of the electrode, and, finally, the
Coulomb/exchange interaction between the electron clouds of the
electrode and molecule individually. These types of interactions are
similar to those used to describe dipole scattering of electrons from
molecules'’"'"” and have been shown to be negligible for inelas-
tic currents in comparison with resonance scattering via molecular
states.”® Hence, the contribution of these mean-field interactions
between the system and bath electrons will be ignored in crafting
the Hamiltonian.

3’ emolecule
(eelectrodes
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|&a (x1)Ep(x2) - - - Eulx,))s (A3)

where the coordinates of electron n are indicated by x,, there are a
total of N, electrons in the system, and the spin orbitals are given by
the & functions, which are labeled with lower case Greek letters. The
above state vector implies the normalized weighting of all possible
permutations of the orbital indices among the electrons.

To account for charge transfer, Slater determinants are
included for a reference neutral state and charge transferred states
in which electrons have been removed from one orbital in the bulk
electrodes and placed in a vacant orbital of the molecular region or
vice versa. Starting with the neutral reference state energy, it can
be shown that the various summations in Eq. (A1) can be divided
to enforce the partitioning of the matrix element into contributions
from the electrode and molecular subsystems,

1 1 1
(5yfz|m\fy5c>+5 > (fyf(|m|fzfy)

y.(eelectrodes
X (& le‘, &)= > <sy||ﬁ il
y’.{emolecule yeelectrodes
Jemolecule
(& fz|‘, ‘\f - X fz||- ‘|f¢f ) (A4)

y’ emolecule
(eelectrodes

If the same set of spin orbitals are retained in both the ground
and charge-transferred determinants, greatly simplified matrix ele-
ments can be derived for the energy of the charge-transferred states
and their coupling to the ground state. The practice of reusing the
same basis set of orbitals to describe the charge-transferred states
is equivalent to Koopman’s theorem and assumes that the occupied
and unoccupied Fock orbitals from the ground state calculation do
not deviate substantially when an extra electron is added to or sub-
tracted from the molecule.”” While lacking in quantitative accuracy,
such an assumption provides a useful starting point. The matrix ele-
ments describing the coupling between charge-transferred states are
then given by

<£¢x£ﬁ cee f«/ . ‘|H2|£zx£/3 e E,/ .. )
= (fv"ﬁmmeculeky') - 2 (& || ‘ ‘ )
Ieelectrode
+ Z <£ E}’ r | |€ EY)
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where the determinants differ by an electron exchanged between
the orbitals &, and E”/ and F,ocue is the Fock operator for the
molecule. Given that the orbitals involved in the exchange could
come from either the electrodes or the adsorbate, there are three
classes of matrix elements to consider for £, and 5;4’: both orbitals
are in an electrode, both orbitals are on the molecule, or one
orbital is localized on the electrode with the other on the molecule.
Physically, the first two scenarios correspond to the same type of
mean field charge—charge interactions discarded in the discussion
of Eq. (A4) and will similarly be neglected here. The third class
of transitions describe the charge exchange between the molecule
and the electrodes, which is the process of fundamental interest to
our discussion. Since the orbitals have been constructed from the
Fock operators for the subsystems and can be orthogonalized with
respect to each other, the first term in Eq. (A5) does not contribute
to the coupling. One obtains an expression for a coupling operator
connecting the neutral and charge-transferred states,

(fagﬂ .. ~’f«/ .. '|He|£o¢s/3 .. ~E// .. )

Zi
== Y =T X (Gl
Ieelectrode ‘1"1 - R1| yeelectrode |r 3 |
PR
yeelectrode
=V (A6)

where the operator P permutes the two orbitals on its right-hand
side to give the correct exchange correlation. The common substitu-
tion of Vs has been used to describe the matrix element coupling
orbitals {,; and ¢, through an operator defined exclusively by the
electrodes’ electronic structure. Equation (A6) completes our goal of
connecting the general Hamiltonian to the noninteracting Anderson
model within Hartree-Fock theory,

He = Z EV({R@Iec})CyCV + Z ed({Rmalzc})chd

+ Z d({Rmalec} {Relcc})(cycd + C;Cy) (A7)

where ¢ and ¢ correspond to the annihilation and creation opera-
tors for the Fock orbitals, y indicates an orbital from the electrodes,
d corresponds to adsorbate orbitals, and the dependence of the
orbital energies and couplings on nuclear coordinates is indicated
in braces.

APPENDIX B: RELATING THE MEMORY KERNEL
TO SCATTERING THEORY IN LIOUVILLE SPACE

Here, we shall demonstrate the validity of the superoperator
product for the memory kernel introduced in Eq. (14) and the con-
nection between the relevant superoperators and their Hilbert space
counterparts used in Sec. [ C. The detailed derivation of these results
is appropriate given that our product form for the memory kernel
makes a unique connection to the operators from scattering theory
and the time-independent description of the Moller superoperator

ARTICLE pubs.aip.org/aip/jcp

is not readily found in the literature. We begin by introducing a

projected Green’s operator, Go(w), as the Fourier transform of the
projected evolution operator,

e(T)e—i‘r( -9 7’) _ Lfoo dwe—iw-r : —
21 J oo w' - L+ VP

i o —iwt A +
= a‘[w dwe " Go(w™), (B1)

where 9(1) is the Heaviside function and the usual infinitesi-
mal, “+ix,” has been added to the frequency denoted by the “+”
superscript.” The evaluation of the memory kernel in Eq. (

becomes

d 2 S i t
SPWW)) = —iPLAWE) - - [ dr
x[ d0PVAGa(w) OVPIW (1 - 1)), (B2)

which contains a frequency-dependent collection of operators remi-
niscent of the transition superoperator, except for the projection that

remains onto the Q subspace. In analogy to the description of the
Hilbert space Green’s operator, the projected Green’s superoperator
can be expanded as

éQ(er) = ! x ! R fj'f) *1 %32
-L w'-L ot - L+ VP
= G( Y = G0 VPGo(w0"), (B3)

where the projection-free Green’s superoperator, G(w"), has been
introduced. Substituting this result into the expression for the
memory kernel in Eq. (B2) yields an insightful expression as
follows:

PYOGa(w”) QPP = PT(w")P(1 - Pha(w) OVP), (BY)

where the memory kernel has been written in terms of the
projection-free transition superoperator for the system-bath inter-
action [see Eq. (B8)] and a second term that acts as a correction
to the projection-free result. As discussed in Sec. II B, dropping the
projected Green’s superoperator on the right-hand side of Eq. (B4)
amounts to restricting the bath interactions to single collisions and
ignores the possibility of multiple particle scattering events during
a given interval of time. Hence, we view the term in parentheses
in Eq. (B4) as a correction to the simple binary collision picture™
to account for multiple sequential scattering events. With some
additional work, it can be shown that the correction term can be

connected to the Moller superoperator in Liouville space, Q(w)

= 7i'+ é(w)f),

9

Go(@") QVP = PO(w*) P - P- P(0") VPGo(wh) OVP
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The derivation is completed by introducing the inverse of the
Moller operator on both sides of Eq. (B5) to write the projected
Green’s operator as

5

Vh=P- PO (0P (B6)

O

Plo(w”)

Hence, we obtain our final compact result for the memory
kernel,

PVOGo(0) OVP = PT () PPO ()P (B7)

It should be noted that in the special case that the frequencies chosen
for the evaluation of the matrix element of the Moller superopera-
tor are restricted to “on the frequency shell,”* the norm conversing
property of the Moller operator (neglecting potential bound states)
implies that the inverse is equal to the Hermitian conjugate, that

is, Q7" (w) = QT (w). In the case of the Markov limit discussed
below, the memory kernel could then be written as a product
of the transition superoperator and the conjugate of the Moller
operator.

Having shown the relevance of the operators from Liouville
space scattering theory, we conclude this section with the connec-
tion between the Liouville and Hilbert space representations. The

form for 7~ was reported originally by Fano who leveraged the con-
volution representation for Green’s superoperator.'’” We revisit the
highlights of this derivation here*® as these expressions will prove
useful in Sec. I D and demonstrate the means by which expressions
for the Moller superoperator may be obtained. Consider a general
matrix element of the superoperator,

((C.D|T ()4, B)) = ((C. DIVIA, B)) + ((C, D| VG(w) V1A, B)),

(B8)

where the general indices A, B, C,D are used to indicate the states
of Hy. Using the definitions for the action of the superoperators in
terms of their Hilbert space counterparts,’”

((C,D|VIA, BY) = (C|V|A4)p5 — (B|V T|D)dsc

(CDIG@IAB) =+ [ de(CG(e + )A)BIG! (€)ID),

(B9)

where dac denotes the Kronecker delta between state labels A and
C and the usual Hilbert space matrix elements are implied by the
single bra—ket notation. After inserting the resolution of the iden-
tity between the operators in Eq. (B8), and with some additional
rearrangement, one can find
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f €(ClG(e + w)|A) 71 |D).
(B10)

Using the Hilbert space equivalent to Eq. (B8) and the identities
G(e)V = Go(e)T(¢) and VG(e) = T(€)Go(e), one can show that
the Liouville matrix element becomes

(C.DIT(w)la, B))
= (C|V|A)dps - (B|V T|D)oac + i[: de(C|T(e + w)]A)
< (Bl (@)D) - 5 [ de(cIVIaNBIG (e)|D)
@1 (D)
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1
"2 -
1
rf
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-  de(ClG(e + w)|A) BV |D). (B11)

The integrals containing only Green’s matrix elements as a function
of energy can be replaced by the identity operator using the contour
result,”

1o
%[m deGl(e) =1 (B12)

Hence, these terms will cancel with the first two matrix elements of
the scattering potential on the right-hand side of Eq. (B10),
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Finally, the substitution for Green’s operator in terms of 1" allows us to write

(eI F@laB) = 5= [ de(cli(e+ w)a)B

X(BGO

%f

(e)T (e)GS(e)|D) - —1[ de(C\Go(e + w)T(e +w)|A)(B

530ID) + - [ de(ClGo(e + @)ANBIT (OID) + o [ delclT(e+ w)la)

55(e) T (o)D)

e(CIT (e + w)Go(e + w)|AN(BIT T () G (€) D)

f e(ClGo(e+ ) T(e+ w)Go(e + w)|ANB|TT(€)|D). (B14)

This equation will provide a useful starting point for developing
the expression for current, where the first two terms on the right-
hand side can be rewritten using a generalized optical theorem
(see Appendix D). The form quoted by Fano and Ben Reuven for
the transition superoperator matrix element is found by using the
following identity for the free Green’s matrix and the transition

86,107

operator with singularities in different half-planes:™

zimf: de(C|T(e + w)|A)BIG (€)ID) = (CIT(Ep + w)|A) .
(B15)

The result for the off-the-frequency shell Liouville element is then
given by

((C.D| T (w)|A, B))
= (C|T(Ep + w)|A)dsp — (B\TT(EC - ©)|D)bac

1
+—11mf —;
27quv74>0 oo €+w-— Ec+117 e—Ep-in
x(C )
1 1
x[ — - ,,:I. (B16)
e+w—-Es+in e—-Ep—in

We shall also make use of the Markov limit for Eq. (B16) for which
we take w = wasp,

Q e mvle (E+ _ HO)—lpvggmoleQ _ z
iy |jer
d>HOMO

+ Z QV‘; male|N {f’l”R}{n"L+l}>E

leL*
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= (CIT(Ea)|A)380 — (B|T" (Ep)[D)3sc
. [ 1
— lim — - -
n—0| Ea —Ec+in Ep—Ep-—in
x (C|T Y(B|T T (Eg)|D). (B17)

Following a similar approach to that shown above for the
transition superoperator, the expression for the Moller superoper-
ator can also be derived using Green’s superoperator convolution
integral and the relationship G(¢) = Go(€)Q(e),

€+ w— EA +in
(€)ID).
(B18)

((C,D|é(w)|A,B)) = —0a,c0BD + fhm / [
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With the Markov limit again given by evaluating the expression at
WAB>

((C. DI (waB)|A, B)) = ~84c05.0 + (CIQ(E)|A)(BIQ (Es)[D).
(B19)

APPENDIX C: DERIVATION OF THE SELF-ENERGY
WITHIN THE SINGLE ACTIVE ELECTRON ANSATZ

Evaluating the self-energy term from Eq. (20), we obtain two

sets of scattering interactions,
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where the first two terms correspond to the anion of the molecule
donating an electron to the electrodes and the second set of terms
show the cation taking on a charge from either electrode. The
form for the electronic coupling, see Eq. (4), restricts the allowed
transitions to electrode configurations that differ by one electron.
Furthermore, Pauli exclusion restricts transitions between electrode
configurations to orbitals that are either originally vacant (denoted
by * in the first two terms) or previously occupied (denoted by
** in the second set of terms) for electron donation and removal,
respectively. The sums over the electrode orbitals j and ! correspond
to the right and left electrode orbitals, and the occupation num-
bers for the orbitals also appear due to the action of the respective
creation/annihilation operator.

The application of the second electron scattering interaction in
all four terms of Eq. (C1) connects each initial anion and cation
state with all possible singly charged states of the molecule and
generates several new electrode configurations. Recall that multiply
charged states have been excluded by our choice of the projection
operators and system Hamiltonian in Sec. II A. With respect to

QVEEMOZEP(E+ _ Ho)_li’\?gg’”"leé SAE Z
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(N =d, {n)"}{ny"}], (C1)

the electrode configurations, the second scattering interaction con-
nects the initial state with configurations that have been altered
by up to two orbital occupations. For example, application of the
second scattering potential to the first term in Eq. (C1) produces

electrode configurations described by |N +d {n)+ - j'}{n;iL}>
and |N— d {n)"+j+ j'}{n;',L}>. Contrasting these possibilities
with the incoming scattering state characterized by P reveals that
these matrix elements require the correlated movement of two elec-
trons between the electrode and molecular subsystem: in general,
one electron has been added/removed from the molecular subspace
and a second electron has also been displaced from its original
orbital. In the context of previous electron scattering treatments,
these terms are excluded by the focus on a single electron event
and will be dropped from our current discussion in favor of a
“single active electron” (SAE) Ansatz for the self-energy. It can be
shown that this Ansatz is equivalent to the requirement that the self-
energy be diagonal with respect to the electrode configuration and
decouples the different charged states of the system,
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P i Terymeer] LRLACALLS

The same line of argument can be used for simplifying the self-energy arising from incoming charged states present in Eq. (25). One can
show that, similar to Eq. (C1), the electrode configuration can be changed by the addition/subtraction of electrons from the available orbitals
as the molecule transitions from the neutral state to a charged state [in the opposite order of Eq. (C1)] and that the assumption of a diagonal
self-energy in the electrode configuration amounts to neglecting the motion of additional electrons during the scattering event. The difference
between evaluating Eqs. (20) and (25) comes from the difference in the incoming states and the Pauli exclusion restrictions on the relevant

sums,
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where the same notation appears as in Eq. (C2), where
denotes a restriction on the summation to orbitals that are orig-
inally occupied and * denotes a restriction on the summation to
unoccupied electrode orbitals that can accept an electron from
the molecule.

APPENDIX D: A GENERALIZED OPTICAL THEOREM
FOR THE CURRENT EXPRESSION

While the optical theorem is an important relationship in scat-
tering descriptions,'"” a slightly generalized version is required in the
discussion of Sec. I D to obtain the desired form for the current. It
can be shown that proving the norm conservation of Eqgs. (14) and
(15) also relies on this generalized optical theorem to connect the
first two integrals in Eq. (B14) to the remaining four. We motivate
our form for the optical theorem following the derivation presented
by Levine”” and start with the expansion for the transition operator
in Hilbert space,

T(EY) = V+ VGo(EN)T(EY), (D1)

where V is the scattering potential, Gy is the free Green’s operator,
and E* corresponds to the appropriate incoming energy state with
the boundary condition designated by “+.” If we consider the evalu-
ation of the transition operator at two different energies, E4 and Eg,
it can be seen that

[+ Go(ES) T (E5)] V[ + Go(ES) T(ED)]
= T1(ER) [+ Go(ES) T(ED)]
= [T+ Go(ES) T (E5)] T(ED), (D2)

where the scattering potential is assumed to be real valued such that
VT = V. From the above, it follows that
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(N ("3

, (C3)

T(E}) - 11(B) = T (B[ Go(ED) - GL(ED) | T(ED). (D3)

In the context of the current expression, the first two terms in
Eq. (B14) contribute the following to Eq. (32):

(Z i’l;/)P{n;R}P{an,}
Tl 3 Ay \y'el !

> {[: de(Mry ()| (e + ) M (%) ()
x (M {n) } i} Gh ()| M{ny }{ny })

+ [: de(M{nI;}{nt,} Go(e + w)|M’{n;R}{n;€}>
x (M () {n)

where the indices follow the nomenclature used throughout this
work, e.g., M denotes the states of the molecular subsystem and
the electrode configurations are noted by the {n"*} indices. We
can eliminate summations by recognizing that the free Green’s
operator is diagonal in state space and performing some minor
rearrangement,

= nk |Pruy P - oode
{n';;n;,}(y'za y) ) wM,,ZM,,{LQ
x (M {m}H [ Gl T (e + @) + TT(e)Go(e + ) ]
x M {ny iy 3 H(M M| (D5)

1 (&) |M{ny Honp ) J(M M), (D4)

The key step is now to make use of the relationship in Eq. (D3)
between the transition operator and its conjugate when combined
with the respective free Green’s operator,

GH ()T ()G (e) T (e + w)|M'{ny }{ny})

G T (@M}l )

T7(e)Gh ()T (e + w)Gole + w)|M'{ny} {n)})
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Using the same relationships from Appendix B, one can show that
the third and fourth integrals evaluate to zero. In specific, the prod-
uct of the free Green’s operator and the transition operator evaluated
at the same energy can be replaced by VG(e + w), or the equiv-

= X Xy |PenPuy X {—f de(M" {ny}{n}
M M el

{3t} \yeL

ARTICLE pubs.aip.org/aip/jcp

alent expression for the conjugates, and one is left with integrals
over Green’s operator, which reduce to the identity and cancel one
another. We are then left with the result that Eq. (D4) can be replaced
with

GHETT ()G ()T (e + w)|M'{r) }{n:})

e(M" {ny }{n }|Gi (e) T (€)Go(e + @) T(e + w)|M' {ny }{ny; })

+[:d (
s [ de(M" (s} ()
fo

T7(e)Gh ()T (e + w)Go(e + w)|M'{ny}{n}})

e(M" {ny }{ny 3| T (€)Go(e + w) T'(e + w)Go(e + w)|M'{nI;}{n;‘:})}((M',M"L D7)

Changing the labels on the electrode configurations by swapping
{ny} for {n;*}, we can now see that the contribution from the first
two integrals in Eq. (B14) will look very similar to the remaining four
integrals from Eq. (B14) that contribute to the current. The only dif-
ference will be that they are opposite in sign and contain a sum over
the orbital occupations in the primed electrode configuration (the
initial configuration operated on in the transition matrix element)
rather than the sum over occupations in the final electrode config-
uration after the scattering event. Hence, we obtain the difference
formula for current shown in Sec. I1 D.
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