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Abstract

We study distributed estimation and learning problems in a networked environ-
ment where agents exchange information to estimate unknown statistical properties
of random variables from their privately observed samples. The agents can collec-
tively estimate the unknown quantities by exchanging information about their private
observations, but they also face privacy risks. Our novel algorithms extend the exist-
ing distributed estimation literature and enable the participating agents to estimate a
complete sufficient statistic from private signals acquired offline or online over time and
to preserve the privacy of their signals and network neighborhoods. This is achieved
through linear aggregation schemes with adjusted randomization schemes that add noise
to the exchanged estimates subject to differential privacy (DP) constraints, both in an
offline and online manner. We provide convergence rate analysis and tight finite-time
convergence bounds. We show that the noise that minimizes the convergence time to
the best estimates is the Laplace noise, with parameters corresponding to each agent’s
sensitivity to their signal and network characteristics. Our algorithms are amenable
to dynamic topologies and balancing privacy and accuracy trade-offs. Finally, to sup-
plement and validate our theoretical results, we run experiments on real-world data
from the US Power Grid Network and electric consumption data from German House-
holds to estimate the average power consumption of power stations and households
under all privacy regimes and show that our method outperforms existing first-order,
privacy-aware, distributed optimization methods.
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1 Introduction

Differential privacy (DP) is a gold standard in privacy-preserving algorithm design that
limits what an adversary (or any observer) can learn about the inputs to an algorithm by
observing its outputs (Dwork, 2011; Dwork and Roth, 2014), according to a privacy budget
that is usually denoted by €. It requires that given the output, the probability that any pair
of adjacent inputs generate the observed output should be virtually the same. Adding noise

to the input data helps enforce this standard in different settings — e.g., for distributed



learning — but the added noise can also degrade our performance, e.g., lowering the quality
of distributed estimation and collective learning for which agents exchange information.

This paper provides aggregation algorithms that facilitate distributed estimate and
learning among networked agents while accommodating their privacy needs (e.g., protect-
ing their private or private signals and network neighborhoods). Each algorithm implies a
different tradeoff between its quality of collective learning and how much privacy protection
it affords the participating agents (i.e., their privacy budgets). Our performance metrics
reflect how distributional features of the private signals and the nature of privacy needs for
individual agents determine the learning quality and requisite noise.

Decentralized decision-making and distributed learning problems arise naturally in a
variety of applications ranging from sensor and robotic networks in precision agriculture,
digital health, and military operations to the Internet of things and social networks (Bullo
et al., 2009; Jackson, 2008); see Section 1.2 for a detailed literature review. We are particu-
larly interested in distributed estimation problems that arise in smart grids with distributed
generation and energy resources. Notably, a recent report from National Academies of Sci-
ences, Engineering, and Medicine (2023a,b) suggests that net metering practices should be
revised to reflect the value of distributed electricity generation, such as rooftop solar panels.
Net metering compensates customers for the electricity they provide to the grid through
distributed generation. The report notes that net metering has facilitated the embrace of
distributed generation in states where it has been put into effect, resulting in levels surpass-
ing 10% in a few states and projected to rise in both these and other states. Additionally,
the report emphasizes the need to revisit and evolve net metering policies to support the
deployment of distributed generation that adds value in reducing fossil fuel use, enhancing
resilience, and improving equity. In this context, each customer faces an individual privacy
risk in sharing their estimates since revealing exact measurements can pose security risks
that can be leveraged by an adversary (e.g., understanding when someone is at their home,
daily habits, family illness, etc.), and, therefore, developing privacy-preserving methods that
support decentralized decision making in such setups is critical.

This paper introduces novel algorithms designed for the distributed estimation of the
expected value of sufficient statistics in an exponential family distribution. The proposed
methods leverage signals received by individual agents, who maintain and update estimates

based on both these signals and information from their local neighborhood. Our contribu-



tions to the existing literature on distributed optimization include new privacy-aware dis-
tributed estimation algorithms that exhibit faster convergence rates compared to established
first-order methods (cf. Rizk et al. (2023)). Notably, our algorithms safeguard the infor-
mation in agents’ signals and local neighborhood estimates, ensuring optimal convergence
times to true estimates. Furthermore, in contrast to existing approaches, our algorithms
can support privacy-aware estimation within an online learning framework, accommodate
dynamic topologies, and balance privacy and accuracy by distributing the privacy budget
among agents. Finally, we verify our proposed algorithms on real-world datasets and show

that they outperform existing first-order methods.

1.1 Main Results

Summary of main notations. We use barred bold letters to denote vectors (e.g., ) and
bold letters to indicate vector components (e.g., ; is a component of ). We use capital
letters to denote matrices (e.g., A) and small letters to represent their entries (e.g., ai;).
We use small letters to denote scalars. We denote the n x 1 column vector of all ones by 1.
Summary of the Problem Setup (see Section 2.2). We consider a network of n
agents indexed by [n] = {1,...,n} whose interconnections are characterized by a symmet-
ric, doubly-stochastic, adjacency matrix A. This adjacency structure, encoded by graph
neighborhoods, N; = {j : ai; # 0}, i € [n], may be a consequence of geospatial constraints
such as sensing and communication range or geographic proximity; it can also be a reflec-
tion of how the network has evolved and other engineering considerations, e.g., which nodes
belong to which countries or companies in a multi-party network. The adjacency weights
may also result from geoeconomic constraints such as access to local trade and business
intelligence (contracts, sales, and filled orders). In the case of social networks, they can also
represent the presence of influence and mutual interactions among individuals.

Given the adjacency structure A, at every round ¢ € {1,2,3,...}, each agent i receives a
private signal s;; that is sampled from an exponential family distribution with the natural
sufficient statistic £(-) € R and a common, unknown parameter § belonging to a measurable
set ©. The goal of the agents is to collectively estimate the common value of Eg [£(s)]
by combining their samples. This is achieved through a consensus algorithm by forming
an estimate v;; and exchanging it with their network neighbors in a distributed manner

respecting the adjacency structure of A. The agents also want to control the information



that is leaked about their signals and the estimates of their neighbors {v;+—1}jen;. They
add noise d;; to their updates. The noise level should be high enough not to violate an e
differential privacy budget. Briefly, we say that a mechanism M is e-DP when for any pair
of “adjacent” inputs (i.e., private signals or private signals and neighboring estimates), the
logarithm of the probability ratio of any output in the range space of M being resulted from
either of the adjacent inputs is bounded by e: |log(P[M(s) € R]/P[M(s’) € R])| < e, for all
adjacent pairs (s and s’) in the input domain and any subset R of the output range space.
Our specific notion of adjacency between the input pairs will be determined by the nature of
information leaks, i.e., private signals or private signals and network neighborhoods, against

which the exchanged estimates (v;) are being protected (Figure 1).
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Figure 1: Two types of DP protections considered in this paper are signal DP, M?®, and network
DP, MY. The private signal of agent i at round ¢ is denoted by s;, d;; corresponds to the
noise added from agent ¢ at round ¢, and v;; corresponds to the estimate of agent ¢ at round ¢.
Our theoretical guarantees delineate the relationship between communication resources (¢ rounds),
privacy budget (e-DP), and total error (TE). Signal and network DP imply different performance
tradeoffs as detailed in Table 1.

Theoretical Contributions (Sections 3.1 and 4). In this paper, we provide bounds
for the convergence of the DP estimates ¥y = (vit)igjn] to the desired value Ty := Tmy,

where my = Eg [£(s)]. We decompose the total error as follows:

Elllz, —mylly] < Elllmy —mll)] +  Ellm —myl,)
—_——

Total Error (TE) Cost of Privacy (CoP)  Cost of Decentralization (CoD)

Here, 11, = (4it)ic[n) corresponds to the vector of non-private estimates. The first term cor-
responds to the “Cost of Privacy” (CoP), the estimation cost incurred by the e-DP noising.
The second term corresponds to the expected error from running the non-private distributed
learning algorithm and, therefore, measures the “Cost of Decentralization” (CoD). In Sec-
tion 3, when we consider “offline” estimation of 1my from a fixed collection of initial signals

available at the beginning (¢t = 0), we replace my by the best possible estimate — the mini-



mum variance unbiased estimate (MVUE) — of an omniscient observer who has centralized
access to all the private signals.
Our goal is to find differentially private aggregation mechanisms M with fast convergence

guarantees that minimize CoP parametrized by noise distributions {D;;} , of the

i€[n]t>

agents and subject to their e differential privacy budget constraints, i.e., “s.t. e-DP”:

CoP(M) = inf o U — Tl - 1
oPM) Dirhicinpoey st =DP (737 el lI7e = Fl,] (1)

From now on, we will refer to this optimal value as the cost of privacy. In our analysis, the
CoP and CoD are proportional to the signal and noise variance. The convergence rate also
depends on the number of nodes n and the spectral gap 5* of the doubly-stochastic adjacency
matrix A, which dictates the convergence rate of A’ to its limiting matrix (117)/n, as
t — o0.

Subsequently, the noise distribution can be optimized by minimizing the weighted vari-
ances of the noise terms in the upper bounds subject to DP constraints. Our main results
are summarized in Table 1. These consist of minimum variance unbiased estimation (Sec-
tion 3) and online learning (Section 4) of expected values under (i) protection of the private
signals (Signal DP), and (%) protection of the private signals and the local neighborhoods
(Network DP). The following Informal Theorem summarizes our theoretical contributions

along with Table 1:

Informal Theorem. If A = maxgscs ’di(si?)

is the global sensitivity of € at
time t, and [aij]?,jzl are the weights of the adjacency matriz, then the upper

bound in CoP is minimized by the Laplace noise with parameters % for the case
max{max;en; aij,A}
>

of Signal DP, and parameters for the case of network DP.

Moreover, whenever the global sensitivity A is unbounded, something that happens to a
variety of sufficient statistics £, we rely on the smooth sensitivity introduced by Nissim et al.
(2007) and derive the same algorithms (but with parameters depending on the smooth sensi-
tivity instead of A), which achieve (g, §)-DP, namely using the smooth sensitivity introduces
a compromise in the e-DP guarantee by a small information leakage probability d, relaxing
the DP constraint for a mechanism M as follows: PM(s) € R] < e*P[M(s’) € R] + 9, for

all adjacent input pairs (s and s’) and all subsets R of the output range space.



Table 1: Total Error Bounds. A is the maximum signal sensitivity (absolute value of the derivative
of £(1)), M, = m?>]<|§(si)|, a = max;+; a;; is the maximum non-diagonal entry of the adjacency
i€n

matrix A, and f* = max{A3(A4), | \.(A)|} is the spectral gap of A. The blue terms are due to
privacy constraints (CoP), and the red terms are due to decentralization (CoD).

Minimum Variance Unbiased Estimation = Online Learning of Expected Values

Signal DP Theorem 3.1 Theorem 4.1
O (n(8)" (2 + M) + 2) 0 (Z (& +VVE®G)))
Network DP Corollary 3.2 Theorem 4.2

o~

o (n(ﬁ*)t (max{:,A} + M,,) n max{Ea,A}) 0 (% (max{:,A} + \/W))

Experiments (Section 5). We conduct experiments with two real-world datasets
motivated by decentralized decision problems in power grids (see Section 1). The first
dataset considers the daily consumption of several German Households over three years
(Milojkovic, 2018), and the second one considers the US Power Grid network from Watts and
Strogatz (1998). Our experiments show that we can achieve (g, 0)-DP while not significantly
sacrificing convergence compared to the non-private baselines. The results also indicate the
increased challenges in ensuring network DP compared to Signal DP and the importance of
distributional features of the signals, in particular, having sufficient statistics with bounded
derivatives.

Code and Data. For reproducibility, we supplement the manuscript with our code and
data, which can be found at: https://github.com/papachristoumarios/dp-distribut

ed-estimation.

1.2 Related Work

Our results relate to different bodies of literature across the engineering, statistics, and
economics disciplines, and in what follows, we shall expand upon these relations.

Decentralized Decision Making and Distributed Learning have attracted a large
body of literature over the years, with notable examples of Borkar and Varaiya (1982); Tsit-
siklis and Athans (1984); Tsitsiklis (1993); Papachristou and Rahimian (2024). Recently,
there has been a renewed interest in this topic due to its applications to sensor and robotic
networks (Chamberland and Veeravalli, 2003; Olfati-Saber and Shamma, 2005; Kar et al.,
2012; Atanasov et al., 2014b,a) and emergence of a new literature considering networks

of sensor and computational units (Shahrampour et al., 2015; Nedi¢ et al., 2015, 2017).
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Other relevant results investigate the formation and evolution of estimates in social net-
works and subsequent shaping of the individual and mass behavior through social learning
(Krishnamurthy and Poor, 2013; Wang and Djuric, 2015; Lalitha et al., 2014; Rahimian
and Jadbabaie, 2016a,c). Obtaining a global consensus by combining noisy and unreliable
locally sensed data is a crucial step in many wireless sensor network applications; subse-
quently, many sensor fusion schemes offer good recipes to address this requirement (Xiao
et al., 2005, 2006). In many such applications, each sensor estimates the field using its
local measurements, and then, the sensors initiate distributed optimization to fuse their
local forecast. If all the data from every sensor in the network can be collected in a fusion
center, then a jointly optimal decision is readily available by solving the global optimization
problem given all the data (Alexandru et al., 2020). However, many practical considera-
tions limit the applicability of such a centralized solution. This gives rise to the distributed
sensing problems that include distributed network consensus or agreement (Aumann, 1976;
Geanakoplos and Polemarchakis, 1982; Borkar and Varaiya, 1982), and distributed averag-
ing (Dimakis et al., 2008); with close relations to the consensus and coordination problems
that are studied in the distributed control theory (Jadbabaie et al., 2003; Mesbahi and
Egerstedt, 2010; Bullo et al., 2009). Our work contributes to this body of work by providing
a privacy-aware method for distributed estimation over a network.

The work most importantly connected to our work is the work of Rizk et al. (2023), which
introduces a first-order DP method for distributed optimization over a network of agents.
While their work presents a general first-order method for DP distributed optimization,
which is suitable for a larger family of optimization problems that include MVUE, adapting
their method to our task comes with important trade-offs in the quality of the estimation, as
running their method results in significantly higher error (up to 1000x more; see Figure 7) for
the MVUE task due to the repeated inclusion of the signal in the belief updates. Moreover,
contrary to ours, their method does not support the online learning regime. Finally, the
concept of “graph-homomorphic noise” proposed in their paper is equivalent to the Network
DP regime of our paper.

Differential privacy is a modern definition of data privacy encompassing many previous
definitions, such as K-anonymity. A mechanism is differentially private if it maps similar
records to the same value with equal probability. One consequence of the definition is that it

guarantees that the outcome of a statistical analysis will be identical whether the individual



chooses to participate in the social learning process. Many previously proposed mechanisms
can be shown to be differentially private, such as randomized response (Warner, 1965),
the Laplace mechanism, and the Gaussian mechanism. The randomized response algorithm
originally proposed by Warner (1965) consists of randomly perturbing binary responses, and
it allows the population means to be recovered while giving individual respondents plausible
deniability — an instance of adding noise to data.

Statistical disclosure control of donated data, e.g., submitting recommendations to a
public policy agency or submitting online product reviews to an e-commerce platform, re-
quires safeguarding donors’ privacy against adversarial attacks where standard anonymiza-
tion techniques are shown to be vulnerable to various kinds of identification (Barbaro
et al., 2006), linkage and cross-referencing (Sweeney, 2015; Narayanan and Shmatikov, 2008;
Sweeney, 1997), and statistical difference and re-identification attacks (Kumar et al., 2007).
Here, we propose to analyze the efficiency of distributed estimation where agents learn from
each other’s actions protected by the gold standard of differential piracy (Dwork, 2011) to
optimize statistical precision against the privacy risks to data donors who engage in social
learning.

DP can be implemented using central or local schemes. In centralized DP implemen-
tations, individual data are collected, and privacy noise is added to data aggregates, used,
e.g., in the U.S. Census Bureau’s Disclosure Avoidance system (US Census, 2020). In local
implementations, DP noising is done as data is being collected. Local methods forego the
need for any trusted parties and typically provide more fundamental protection that can
withstand a broader range future infiltration, e.g., even a government subpoena for data
cannot violate the privacy protection when collected data is itself subject to privacy noising
— e.g., Google, LinkedIn, and Apple’s DP noising of their user data (Apple Differential
Privacy Team, 2017; Erlingsson, 2014; Cardoso and Rogers, 2022; Rogers et al., 2020), cf.
(Wilson et al., 2020; Guevara, 2019).

Regarding privacy and networks, Koufogiannis and Pappas (2017) present a privacy-
preserving mechanism to enable private data to diffuse over social networks, where a user
wants to access another user’s data and provide privacy guarantees on the privacy leak, which
depends on the shortest path between two users in the network. Alexandru and Pappas
(2021) study the problem of private weighted sum aggregation with secret weights, where

a central authority wants to compute the weighted sum of the local data of some agents



under multiple privacy regimes. Rahimian et al. (2023a,b) study influence maximization
using samples of network nodes that are collected in a DP manner.

Our work contributes to the above line of work by introducing a novel DP mechanism
for distributed estimation and learning of exponential family distributions. Particularly,
to the best of our knowledge, in the online learning regime, our algorithm introduces a
novel weighting scheme that can protect both the individual signals and the neighboring
beliefs, which can efficiently learn the expected value of the sufficient statistic. Moreover,
we also provably derive the optimal distributions that minimize the convergence time of
the algorithm and show that they are the Laplace distributions with appropriately chosen
parameters.

Cyber-Physical Systems (e.g., energy, transportation systems, healthcare systems, etc.)
correspond to the building blocks of modern information and communication technologies,
whose privacy and security are crucial for the function of such technologies. There have been
multiple methods, such as encryption and K-anonymity, to achieve privacy and security in
cyber-physical systems (Hassan et al., 2019; Zhang et al., 2016; Kontar et al., 2021). By
incorporating differential privacy techniques, such as noise injection or data aggregation,
into the design and operation of cyber-physical systems, privacy risks can be mitigated
while preserving the utility of the collected data. This ensures that individual privacy
is protected, as the data released from these systems cannot be used to infer sensitive
information about specific individuals. Moreover, the application of differential privacy
to cyber-physical systems enables the collection and analysis of data at scale, allowing
for improved system performance, anomaly detection, and predictive maintenance while
maintaining the trust of individuals and protecting their privacy in an increasingly connected
world (Li et al., 2010; Gowtham and Ahila, 2017; Xu et al., 2017). Our method’s efficiency,
e.g., compared to Rizk et al. (2023); see Section 5 and Appendix B, makes it suitable for
several large-scale data applications.

Federated Learning (FL) is a collaborative learning paradigm for decentralized op-
timization without the need to collect all data points in a central server for gradient cal-
culations (McMahan and Thakurta, 2022; Kontar et al., 2021), with many applications in
mind: distributed training of ML models (Bonawitz et al., 2021; Shi et al., 2023; Yue et al.,
2022), healthcare (Kaissis et al., 2020), wireless communications (Niknam et al., 2020), etc.

While more general than the setup we consider here, it suffers from issues in terms of com-



munication and privacy. Existing privacy-preserving FL methods (cf. Rizk et al. (2023))
usually adopt the instance-level differential privacy (DP), which provides a rigorous privacy
guarantee but with several bottlenecks (Truong et al., 2021). Truex et al. (2019) proposed a
privacy-aware FL system that combines DP with secure multiparty computation, which uti-
lizes less noise without sacrificing privacy as the number of federating parties increases and
produces models with high accuracy. Other FL methods, such as Zhang et al. (2022), ac-
commodate differentially private updates via incorporating gradient clipping before adding
privacy noise to achieve good performance subject to privacy constraints.

Contrary to most of these methods, which are first-order optimization methods that are
suitable to a large variety of losses compared to our method, our zero-order belief updates
for the MVUE are simple, more efficient, and have significantly lower error than first-order
methods (see Figure 7 for comparison with Rizk et al. (2023)). Moreover, our method can
learn from data that arrive in an online way, whereas methods such as Rizk et al. (2023);
Zhang et al. (2022) are offline. Finally, most of these approaches rely on SGD. In contrast,
our method focuses more on the decision-theoretic and statistical problem of estimating
the expected value of the sufficient statistics of signals generated by an exponential family

distribution.

2 Differential Privacy Protections in a Distributed Infor-

mation Environment

2.1 The Distributed Information Aggregation Problem Setting

Let © be any measurable set, and in particular, not necessarily finite. Consider a network
of n agents and suppose that each agent i € [n| observes an i.i.d. samples s; from a
common distribution £(-|f) over a measurable sample space S (For simplicity in our proofs,
we consider the simple case of 1D signals, i.e., § C R. Extending to multi-dimensional signals
(i.e., S C R®) is straightforward and considers the ¢, norm of the partial derivatives.).
We assume that ¢(:|#) belongs to a one-parameter exponential family so that it admits a

probability density or mass function that can be expressed as
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0(s]6) = 7(s)e™O) E(s) () (2)

where £(s) € R is a measurable function acting as a complete sufficient statistic for the
i.i.d. random samples s;, and o : © — R is a mapping from the parameter space © to the
real line R, 7(s) > 0 is a positive weighting function, and s(a) :=In [ 7(s)e®()ds is a
normalization factor known as the log-partition function. In (2), £(-) is ziesomplete sufficient
statistic for 6. It is further true that )", £(s;) is a complete sufficient statistic given the
n i.i.d. signals that the agents have received (Bickel and Doksum, 2015, Section 1.6.1).
In particular, any inferences that involve the unknown parameter # based on the observed
signals 3 = (8i);cn) can be equivalently performed given » 1" | £(s;). The agents aim to
estimate the expected value of {(-): my = E [£(s;)], with as little variance as possible. The
Lehmann-Scheffé theory — cf. (Casella and Berger, 2002, Theorem 7.5.1) — implies that
any function of the complete sufficient statistic that is unbiased for my is the almost surely
unique minimum variance unbiased estimator of my. In particular, the minimum variance
unbiased estimator of my given the initial data sets of all nodes in the network is given by:
mg = (1/n) 3711 £(s0).

For concreteness, we can consider a group of n suppliers whose private signals consist
of their contracts, sales orders, and fulfillment data. These suppliers would benefit from
aggregating their private information to better estimate market conditions captured by the
unknown parameter 6, e.g., to predict future demand. However, sharing their private signals
would violate the privacy of their customers and clients. In Section 2.2, we explain how the
agents can compute the best (minimum variance) unbiased estimator of my using average
consensus algorithms Olshevsky (2014) that guarantee convergence to the average of the

initial values without direct access to each other’s private signals.

2.2 The Information Exchange Model

We consider an undirected network graph and let the undirected network G(V = [n], £) which
corresponds to a Markov chain with a doubly-stochastic symmetric adjacency/transition
matrix A = [a;;]7;_; with the uniform stationary distribution. For instance, such an adja-

cency matrix A = [aij];»fj:l can defined according to the Metropolis-Hastings weights (Boyd
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Algorithm 1: Non-Private Distributed Minimum Variance Unbiased Estimation

The agents initialize with: p;0 = £(s;), and in any future time period the agents
communicate their values and update them according to the following rule:

Mit = Qi i1 + Z Qij g t—1- (3)
JEN;

Algorithm 2: Non-Private Online Learning of Expected Values

Initializing p; o arbitrarily, in any future time period ¢ > 1 the agents observe a signal
8; ¢+, communicate their current values p; ;—1, and update their beliefs to p; ¢, according
to the following rule:

t—1

1
Hit = Qg M t—1 + Z ijit—1 | + Zf(si,t)- (4)

JEN;

et al., 2004): a;; = 1/ max{deg(i),deg(j)} if (j,4) € £, and [A];; = 0 otherwise for i # j;
furthermore, a; =1 — > ot Qi - This choice of weights leads to a Markov chain where the
stationary distribution is the uniform distribution (Boyd et al., 2004), and the agents can
set these weights locally based on their own and neighboring degrees without the global
knowledge of the network structure. For choices of A that yield the fastest mixing Markov
chain (but may not be locally adjustable), see Boyd et al. (2004).

The mechanisms for convergence, in this case, rely on the product of stochastic matrices,
similar to the mixing of Markov chains (cf. Levin et al. (2009); Shahrampour et al. (2015));
hence, many available results on mixing rates of Markov chains can be employed to provide
finite time grantees after 7' iteration of the average consensus algorithm for fixed 7. Such
results often rely on the eigenstructure (eigenvalues/eigenvectors) of the communication
matrix A, and the facts that it is a primitive matrix and its ordered eigenvalues satisfy
—1 < M(4) < Mm1(A) < ..o < Ai(A) = 1, as a consequence of the Perron-Frobenius
theory (Seneta, 2006, Theorems 1.5 and 1.7).

Moreover, another mechanism considers learning the expected values in an online way
where agents receive signals at every round and then update their estimate by averaging
the estimates of their neighbors, their own estimate, and the new signals (see Algorithm 2).

The 1/t discounting provided in the above algorithm enables learning the expected values

my = Eg[{(s)] asymptotically almost surely with a variance that scales as O(1/t); i.e.,

12



linearly in time. As shown in Rahimian and Jadbabaie (2016b), the variance upper bound
comprises two terms. The former term considers the rate at which the Markov chain with
transition matrix A is mixing and is governed by the spectral gap, i.e., the second largest
magnitude of the eigenvalues of A. The latter term captures the diminishing variance of the
estimates with the increasing number of samples gathered by all the agents in the network.

Now that we have the necessary background in distributed estimation, we present the
two DP protection mechanisms that our paper considers: the Signal DP and the Network

DP.

2.3 Differential Privacy Protections

2.3.1 Definitions and Mechanisms

In this paper, we consider two methods for differential privacy and refer to them as Signal
Differential Privacy (Signal DP) and Network Differential Privacy (Network DP). Both
algorithms are local in principle; the agents simply add noise to their estimates to achieve a
desired privacy guarantee. Roughly, Signal DP adds noise to protect the signal s;; of each
agent, and Network DP adds noise to protect the signal s;; of each agent, as well as the
estimates {v;;—1};en; of her neighbors from round ¢ — 1. We assume that the non-private

network dynamics evolve as

Wit = Fii(piz—1) + Gig ({Hj,t—l}j€M> + H;(sit), (5)

for each agent i € [n], and t > 1, where F; : R = R, G;; : R% — R, and Hi;:S — Rare
functions determined by the learning algorithm, and correspond to the information from the
agent’s own estimate, the information from the neighboring estimates, and the information
from the agent’s private signal respectively. To achieve differential privacy, each agent adds
some amount of noise d;; drawn from a distribution D;; to their estimate and reports the
noisy estimate to their neighbors. The agent can either aim to protect only their private
signal — which we call Signal DP and denote by M®—, or protect their network connections

and their private signal — which we call Network DP and denote by M” . The noisy dynamics
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are:

Signal DP ,r‘\/l‘f’jt

—
Vit =Fi1(Vig—1) + Gt ({Vj,t—l}jeM) + Hi(sit) +diy (6)

In Equation (6) and Figure 1, we have outlined the dynamics of the two types of privacy

protections. Formally, the two types of mechanisms can also be written as

¢M§t(8i,t) = H;i(sit) +dig, (Mft)

%\4% (Si,t7 {Vj,t—l}j€M> = Hi,t<3i,t) + Gi,t <{Vj,t—1}j€Ni> + di,t7 (va;)

and the e-DP requirement is denoted as
P [tus, (si0) = ]
log e
P [Yes, (510) = ]

log (]P’ [wMg\ft (Si,ty{l/j,t—l}jejvi) = z] )

P [QPM{‘Q (Sg,m {V;,t—l}jej\[i) J"}

< ¢ for all siyt,s;)t € S s.t. Hsm - s§7t|{1 <1

S e for all (Si,h {Vj’t_l}jeNi) , (S;,ty {V;atfl}je./\[i) cS x Rdeg(i)

sit || (st Bethiem) = (shes (a1} je0) |, <1

for all z € R.

Central vs. Local Privacy. In a local privacy scheme, the DP noise of the measurements
can occur at the agent level by adding noise to the collected signals. Noise may be added to
the signals after measurement to protect them against the revelations of belief exchange. The
central scheme assumes a trusted environment where signal measurements can be collected
without privacy concerns, but to the extent that protecting signals from the revelations of

beliefs exchange is concerned, these methods would be equivalent.

3 Minimum Variance Unbiased Estimation

3.1 Minimum Variance Unbiased Estimation with Signal DP

We present our first algorithm, which considers Minimum Variance Unbiased Estimation

(MVUE). In this task, we aim to learn the MVUE of my, i.e., to construct the estimate
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my = (1/n) > &(s;) through local information exchange. The non-private version of this
algorithm is presented in Algorithm 1 according to which, the agents start with some private

signals {s; }c[y), calculate the sufficient statistics {£(s;)}ic[5,) and then exchange these initial

log(nMn/p))
log(1/8*)

steps to p-accuracy, which depends on the number of nodes n, the maximum absolute value

estimates with their local neighbors. Algorithm 1 converges to myg in t = O <

M, of the sufficient statistics, and the spectral gap 8* of the transition matrix A.

In its DP version, the algorithm proceeds similarly to the non-DP case, except each
agent ¢ adds noise d; to their sufficient statistic £(s;). As we show later, to respect e-DP,
the noise d; depends on the agent’s realized signal s;, the sufficient statistics £(+), and the

privacy budget . We provide the algorithm for the differentially private in Algorithm 3:

Algorithm 3: Minimum Variance Unbiased Estimation with Signal/Network DP

The agents initialize with v; o = £(s;) +d; where d; ~ D; (D; is an appropriately chosen
noise distribution), and in any future time period the agents communicate their values
and update them according to the following rule:

Vit = Qi Vig—1 + E aiVji—1- (7)
JEN;

Regarding convergence, in Theorem 3.1, we prove that the convergence error is incurred
due to two sources. The first source of error is the error due to the omniscient observer,
which is the same as in the non-DP case, and the second source of error is incurred due
to the privacy noise. Briefly, the latter term can be roughly decomposed to correspond
to two terms: the former term is due to estimating the minimum variance unbiased es-
timator due to the noise, i.e. (1/n)3 ;" d; and is vanishing with a rate proportional to
log (3°1, V[d;]) /log(1/B*), and an additional non-vanishing term which is due to the mean
squared error of (1/n) > ;" | d; which corresponds to the sum of the variances of the signals.

To minimize the convergence error, it suffices to minimize each variance V [d;] subject to
e-DP constraints. By following recent results on the DP literature (cf. Koufogiannis et al.
(2015)) we deduce that the variance minimizing distribution under e-DP constraints are the
Laplace distributions with parameters A /e, where A corresponds to the signal sensitivity

(see below) and ¢ is the privacy budget. We present our Theorem (proved in Appendix A.1):

Theorem 3.1 (Minimum Variance Unbiased Estimation with Signal DP). The following
hold for Algorithm 3:
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1. For all t and any zero-mean zero-mean distributions

E [[7¢ — 1mgll2] < (1+ v/ (n = 1)(8%)")

> Vids]+v/n(n—1)(B) M,, (8)
j=1

where M, = m?:)]( |€(s;)| and B* = max{A2(A), |An(A)|}.
ren

2. The optimal distributions {Dj}ic[n that minimize the MSE for each agent are the
Laplace distribution with parameters A/e where A is the global sensitivity of & Subse-
quently, TE(M?®) = O (n(8*)" (M, + %) + %)

Proof Sketch. We do an eigendecomposition on A and prove that since the noise is indepen-
dent among agents, we can show that E [[|[7y — . ||3] = Yo VIdi] 3o A7(A)g;;. By us-
ing Jensen’s inequality, we can show that E [|[7y — f[|2] < />°0_, V [d}] (1+Vn—1(8%)").
To minimize the convergence time, it suffices to minimize the variance of d; ~ D; subject

to privacy constraints for all j € [n], resulting in an optimization problem which we resolve

by applying the main result of Koufogiannis et al. (2015). O

Finally, we note that similarly, in the multi-dimensional case, the sensitivity would be

A = maxses [|Vs(8) |-

A Note about Global Sensitivity of £&. In the above Theorem, it is tempting to think
that the local sensitivity of each agent, i.e., A& = |d{(s;)/ds;i| can be used to calibrate
the noise distribution that preserves differential privacy and has the minimum variance.
However, as it has been shown in Nissim et al. (2007), releasing noise that depends on
the local sensitivity can compromise the signal. However, there are cases where global
sensitivity is unsuitable for the learning task. For instance, in many distributions, such as
the log-normal distribution, the global sensitivity may be unbounded (e.g., £(s) = log s for
the log-normal and the sensitivity is 400 in this case). A possible solution for this situation
and many exponential family distributions is to use another sensitivity instead of the global
sensitivity. (Nissim et al., 2007, Definition 2.2) proposes the use of the y-smooth sensitivity.
The way of constructing the y-smooth sensitivity is to calculate

Sz (s) = max {e-vk max  |¢(s) — g(s)\} .

k>0 s':||s’—s|1=k

Using the Laplace mechanism with parameters 257 (s)/e for v = ¢/(2log(2/6)) would
guarantee (g,9)-DP; see (Nissim et al., 2007, Corollary 2.4).
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For example, we will consider the case of mean estimation in a log-normal distribution
with known variance, a common task in many sensor networks, as we argue in Section 5.
The sufficient statistic in this case is £(8) = log s, and the local sensitivity at distance k can
be computed to be k/s. Therefore, the smooth sensitivity is (note the global sensitivity in

this case is unbounded):

, for s> 0. 9)

_ark 1 2log(2/9)
x = pZ\ - 27O\
S¢(8) = max {6 }

s evs €ecs

If agents have access to several signals, and the exact formula of £ is not known, the
sensitivity can still be approximated via samples as shown in Wood and Zhang (1996).
Remark for Network DP. Note that to achieve Network DP, one natural algorithm is
to add noise d;; at each round of Algorithm 3 at a high enough level to protect both the
network neighborhoods and the private signals. The issue with this algorithm is that it is

divergent, i.e., E [HEH;} — 00, because the estimate at time ¢ is 7, = A€ + ZtT_:lo A"d;_,

and its mean squared error, i.e., E [HZ?% ATd;_, z], grows linearly with n and ¢. To
avoid the accumulation of the DP noise, we should limit the DP noising to the initial
step, which will achieve a bounded error because the mixing matrix, A, is doubly stochas-
tic. To this end, we choose the noise level to satisfy e-DP with the aim of protecting
both signals and network connections — and run Algorithm 3 at the new noise level.
The error of this algorithm will be identical to the error bound of Theorem 3.1. How-
ever, the sensitivity of the noise should be set to accommodate both network and signal
dependencies as follows: AVZMN = max {A, max;cn; a;j}, and the optimal distributions
will be Df = Lap (max {A, max;ecn; a;j}/€); see Corollary 3.2. In the case that A is un-
bounded, we can replace A with the smooth sensitivity accounting for the network effects,
i.e., max {max#i aij, Sgﬂ(si)} for each signal s; and get an (g, 0)-DP algorithm. Note that
private signals will remain DP-protected by the post-processing immunity of the Laplace
mechanism. In Appendix A.2, we use induction to show that Network DP is preserved at
the € level for all times ¢ when the mixing matrix A is non-singular. The following corollary

sumimarizes our results:

Corollary 3.2 (Total Error of Minimum Variance Unbiased Estimation with Network DP).

Assume the mizing matriz A is non-singular, let A be the global sensitivity of &, and a =
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max;.; a;;. The Total Error of Algorithm 3 with Network DP satisfies

TEMY) =0 <n(5*)t (Mn + maX{:’A}> + maX{a’A}> .

3

Tightness of Analysis. We note that the above analysis is tight because there exists
an instance for which the upper bound is precisely achieved (for any noise distribution).
To show this, consider the complete graph K, which corresponds to weights a;; = 1/n for
all i,j € [n] with a spectral gap of zero, and s; ~ N(0,1). The network dynamics on the
complete graph converge in one iteration, and it is straightforward to show that the total
error (TE) converges to 1/e as n — oo for any noise distributions subject to e-DP constraints
(by the central limit theorem), i.e., Equation (A.1) in the Supplementary Materials holds
with equality.

4 Online Learning of Expected Values

4.1 Privacy Frameworks

We consider the online learning framework where the agents aim to learn the common
expected value my = Eg [£(s)] of the sufficient statistics of their signal distributions. In this
regime, the agents observe signals s; ; at every time ¢ > 1 and update their estimates v; ; by
weighing the information content of their most recent private signals, {(s; ), their previous
estimates, v;;_1, and the estimates of their neighbors, {v;+—1}jen;. The mechanisms that
we analyze in this section will accommodate two types of privacy needs with convergence

and e-DP guarantees for the agents:

M?: Signal DP (Algorithm 4). Here the agent adds noise to privatize their belief v; ¢ with
respect to their signal. To assert the consistency of the estimator, the agent averages
her previous estimate and the estimates of her neighbors with weight (¢ — 1)/t and
her signal with weight 1/¢, similarly to Algorithm 2. Therefore, the local sensitivity of
this mechanism is the sensitivity of the sufficient statistic weighted by 1/¢ and equals
AV%S = %

MY Network DP (Algorithm 5). Here we consider the protection of the agent’s signals s;
together with their local neighborhood, namely the neighboring beliefs {I/ji_l}j Ny

We note that when deciding the noise level at time ¢, we do not need to include the
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agent’s own belief from time ¢ —1 in the DP protection; v; ;1 including all the private
signals up to and including at time ¢t — 1 remain protected by the property of the post-

processing immunity. If we were to use Algorithm 4 for Network DP the sensitivity

A t-1

of the mechanism would be max{ T 1

max;e\; aij} which approaches 1 as t — oo
and violates the consistency of the estimator v;;. For this reason, we need to adapt
the weighting scheme of Algorithm 4 to be consistent and respect Network DP. We

give more details of the altered algorithm (Algorithm 5) in Section 4.3.

Algorithm 4: Online Learning of Expected Values with Signal DP
In any time period ¢ > 1 the agents observe a signal s;;, and update their estimates

according to the following rule:

t—1 1
Vipg =—— | @i Vit + Z a;jVii—1 | + E(f(si,t) +diy), (10)
JEN;

where d; ; ~ D;; is appropriately chosen noise.

4.2 Online Learning of Expected Values with Signal DP

Here we will analyze the performance of Algorithm 4 where agents only protect their signals
and present the corresponding error analysis. The error of the estimates v;; compared to
the expected value my = Egy [£(s)], again consists of two terms; one due to decentralization
and the statistics of the signals themselves (CoD), and another due to the variances of the
added DP noise variables (CoP). Each of these two terms decays at a rate of 1/v/t. They,
in turn, can be bounded by the sum of two terms: a constant that is due to the principal
eigenvalue of A and represents the convergence of the sample average to my, and n — 1
terms due to |A;(A)| for 2 < i < n which dictate the convergence of the estimates v;; to
their sample average. The latter depends on the number of nodes n and the spectral gap

B* of matrix A. We formalize our results as follows (proved in Appendix A.3):

Theorem 4.1 (Online Learning of Expected Values with Signal DP). The following hold
for Algorithm 4 and mechanism M :
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1. For every time t, and all distributions {Dj1}ic[n)>1 we have that

n t—1
B (171 tmolly) < 1 | VARG + | 303 Vidye] (” %)
7j=17=0

2. The optimal distributions {D},}ic[n) =1 are Df, = Lap (A/e), where A is the global
sensitivity. Moreover, we have: TE(M®) = O <% (x/V [£(s)] + %))

Proof Sketch. We note that 7, = % Zt;:lo AT(€,__+di_.). We decompose A as A = QAQT
where A is the eigenvalue matrix and @ is the orthonormal eigenvector matrix, and upper
bound E {Hﬁt - ﬁtHg} as a weighted sum of powers of the eigenvalues of A and the sum of
the variances of d;_,, i.e., E {Hft —ﬁtHg} < EY Zi_:{) AT (AE [HEHHQ. We apply
the Cauchy-Schwarz inequality again and bound this term with the sum of all variances
across all agents j € [n] and all the rounds 0 < 7 < ¢ — 1, plus the sum of the powers of
the eigenvalues of A, ie., > 1, EtT_:lo A?7(A). The latter term is decomposed into a term
that depends on the principal eigenvalue A;(A) = 1 and n — 1 terms that are dominated by
the spectral gap f*. We do the same analysis for @, — 1my, and we finally apply Jensen’s
inequality and the triangle inequality to get the final bound. To optimize the bound, it
suffices to minimize the variances V [d; ;] for all 0 <7 < ¢t —1 and ¢ € [n] subject to e-DP
constraints. The optimal noise distributions are derived by solving the same optimization

problems as in Theorem 3.1 for all i € [n| and all £ > 1. Calculating the bound for Laplace

noise with parameters A /e gives the upper bound on TE(M?®). O

4.3 Online Learning of Expected Values with Network DP

Above, we briefly discussed why a learning algorithm that puts weights % on the network
predictions and % on the private signal would not work (and in fact, the dynamics become
divergent in that case). In Algorithm 5, we present a different learning scheme that uses
weights % for the private signals and neighboring observations and 1 — %(2 — ay;) for the
previous beliefs of the agent. The motivation behind this learning scheme is that the sen-
sitivity is now going to be AV{}{‘N = %max {max;ecp; a;;, A} which goes to zero, instead of
max {% max;en; @ij, %A} which approaches 1. The drawback is that the added self-weight

on one’s own beliefs at every time step will slow down the mixing time and convergence. In

the sequel, we present Algorithm 5 and analyze its performance.
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Algorithm 5: Online Learning of Expected Values with Network DP

In any time period ¢ > 1 the agents observe a signal s;; and update their estimates
according to the following rule:

1 1 1
Vit = <1 - 2(2 - aii)) Vig-1+ D aiviea +E(sig) | + Edi,tv (11)
JEN;

where d; ; ~ D;; is appropriately chosen noise.

We can write the above system in matrix notation as v; = (B(t) — %I) Vi_1+ %Et + %Et
where b;;(t) = 1 — (1 — a;;) and b;;(t) = La;; for all j # i. First, we study the convergence
of Algorithm 5 when no noise is added, i.e., d; = 0. Note that similarly to Algorithm 4,
the error term is comprised of two terms, one owing to the principal eigenvalues of C(t) =
B(t) — 11, i.e., A;(C(t)) = 1 — 1/t which controls the convergence of the sample average of
the estimates to my, and n — 1 terms due to [A\;(C(t))| which control the convergence of the

estimates v; ; to their sample average.

Theorem 4.2 (Online Learning of Expected Values with Network DP). For Algorithm 5,
the following hold:

1. For allt > 1 and all distributions {Di}icin)¢>1, we have that

n t—1
E (7~ imgl] < 1 VAV EG) + (| D03V ldii] (1+ ”—1>.

i=1 7=0 3 —2p~

2. The optimal distributions { D}, }icn),i>1 that minimize the MSE bound subject to e-DP
are the Laplace Distributions with parameters max {max;ecn; a;j, A}/e. Moreover, if

A is the global sensitivity and a = max;+; a;;, then

TEMY) =0 (% <m{“‘X{SA} +/V [g(s)])> .

Proof Sketch. Our proof (Appendix A.4) follows a similar analysis to Theorem 4.1. We
first note that C(t) can be written as C(t) = 521 + 1A, and therefore shares the same
eigenvectors with A and has eigenvalues \;(C(t)) = 52 4+ 1);(4). We define ®(t) =
Ht;:lo C(7), and show that \;(®(t)) < t*(4)=2 Moreover, T; = 1 Zt;:lo O(1)(&_. +di_,).
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Figure 2: Distribution of Daily Consumption (in kWh) for the GEM House openData with log-
normal fits is shown on the left (for all measurements and Day 0 measurements), followed by a
visualization of the generated random geometric network with p = 0.1. The next two figures show
the US Power Network degree distribution with log-normal fit, followed by its visualization.

By using the bound on the eigenvalues of ®(7) for 0 < 7 < t — 1 and by applying the
same analysis as in Theorem 4.1, we decompose E [Hft - ﬁt”%} and get that the sum of
the powers of the eigenvalues consists of a term due to the principal eigenvalues, which
decays with the rate 1/t> and n — 1 terms that decay as % We finally deduce
that E |7, — m|5] < %\/Zle SV [dig o] (1 + 4/ %) The same bound holds for

q; = B, — Imy, and by applying Jensen’s inequality and the triangle inequality, we get the

error bound. The optimization of the noise variables follows similar logic to Theorem 4.1,

with a different sensitivity. O

Tightness of analysis. @ We note that the analysis is tight, and the tight example is
precisely the same as the example we provided for MV UE.
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5 Real-World Experiments

Datasets and Real-World Scenarios. To showcase the effectiveness of our algorithms,
i.e., convergence to the actual estimates subject to (¢,d)-DP, we conduct two experiments
that correspond to the estimation of power consumption in the electric grid.

The first case considers estimating power consumption via electricity measurements of
individual households. Consumption behavior is considered highly sensitive. It can reveal
compromising information about daily habits and family illnesses or pose a security threat
if exploited by an adversary, e.g., to coordinate attack time. Here, we assume that each
household faces a privacy risk in sharing their measurements, and they may decide to mit-
igate the privacy risks by adding noise to their estimates. The ability to estimate average
consumption in a distributed manner is useful for distributed load balancing and deciding
generation plans.

For this scenario, we consider the GEM House openData dataset Milojkovic (2018),
which contains power consumption measurements of n = 969 individual households over
T = 1096 days (i.e., three years). The dataset contains cumulative power consumption
measurements c¢;; for each particular day. To extract the actual measurements (in kWh)
s;+ we take the differences between consecutive days and divide by 10'0 (see Section 3.2.1
of Milojkovic (2018)), ie., sj; = %. We observe that s;; follows a log-normal
distribution with mean g = 1.67 and standard deviation o = 1.04, as shown in Figure 2.
Moreover, in this dataset, the network structure is absent. For this reason, we generate a
random geometric graph, i.e., we generate n = 969 nodes randomly distributed in [0,1]?
and connect nodes with a distance at most p = 0.1. Random geometric graphs have been
used to model sensor networks Kenniche and Ravelomananana (2010) and correspond to a
straightforward criterion for determining links since they connect nearby households. For a
fixed random seed (seed = 0), the network contains m = 13,236 edges and is visualized in
Figure 2.

The second dataset examines estimating power consumption in the US Power Grid
Network from Watts and Strogatz (1998). In this case, we hypothesize that each power
station faces a privacy risk — for example, vulnerability to a cyber attack — in sharing
their measurements and decides to reduce its privacy risk by adding noise. The network
contains n = 4,941 nodes and m = 6,594 edges. Figure 2 shows the power network

and its degree distribution. Here we artificially generate i.i.d. signals for 7' = 100 as
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Minimum Variance Unbiased Estimation (German Households Consumption) with Signal DP
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Figure 3: Sample Paths for MVUE with Signal DP. Note the large error in the case of the German
household dataset is because protecting households with low (near zero) consumption rates even at
a relatively high privacy budget (¢ = 10) comes at a huge cost to accuracy.

s8;+ ~ LogNormal(y = 10,0 = 1).

Estimation Tasks. In both cases, the task is to estimate each log-normal distribution’s
mean 4 in two scenarios. In the first scenario, we estimate the mean only from the initial
measurements, i.e., estimate finyvug = M Figure 3 presents some sample paths for
this task as the horizon ¢ varies, and Figure 7 presents the final MSE after T" for various values
of the privacy budget €. In the second scenario, we estimate the mean with online learning
(OL) to estimate fior, = % — E[log s] = por. We run simulations in both
regimes where we want to protect the signal and the network connections. Because in this
case the global sensitivity is unbounded, we use the smooth signal sensitivities Sg‘ﬁ(siyt) =
%&2’:5) for each signal s;+ with 6 = 0.01. The resulting algorithms are (g,0)-DP (see
Section 3.1).

Comparison with Rizk et al. (2023). Finally, in Appendix B we explain the adaptation
of Rizk et al. (2023) first-order DP consensus algorithm to both MVUE and OL tasks.
Figure 7 shows the comparison of MSE performances between our algorithms and Rizk
et al. (2023) given the same privacy budget per agent. Compared to Rizk et al. (2023), our
method is able to achieve significantly smaller MSE under the same total privacy budget;
~ 1000x smaller for both datasets. While Rizk et al. (2023)’s algorithm are applicable

to a broader set of tasks than the MVUE and OL estimation setups presented here, their
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Minimum Variance Unbiased Estimation (German Households Consumption) with Network DP
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Figure 4: Sample Paths for MVUE with Network DP. Note that even requiring a moderate accuracy
in the case of the German household dataset comes at a high cost to privacy (¢ = 1), pointing to
the challenges of maintaining privacy when sensitivities cannot be locally bounded (some household

consumption values are close to zero).

Online Learning of Expected Values (German Households Consumption) with Signal DP
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Estimates without DP Estimates with DP (g = 1.0)

— =]l

12 4 124 — |5t — sl
102 4

10 4 104

10! 4§

Sample paths pj ¢
Sample paths v;,¢
Mean Squared Error

0 25 s 75 100 0 25 S0 75 100 100 101 102

Round ¢
Figure 5: Sample Paths for Online Learning of Expected Values with Signal DP. Choosing ¢ large
enough leads to a convergent behavior for the German household dataset, but no meaningful privacy

protection can be afforded in that case (¢ = 10).
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Online Learning of Expected Values (German Households Consumption) with Network DP
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Figure 6: Sample Paths for the Online Learning of Expected Values with Network DP. Protecting
network neighborhoods is a harder task than protecting private signals. While almost perfect signal
DP can be achieved with reasonable accuracy for the US power grid network (¢ = 1 in Figure 5), even
moderate protection of network neighborhoods (¢ = 1) come at a noticeable cost to accuracy. Privacy
protection for network neighborhoods in the case of German households is further complicated by
the existence of almost zero signals with locally unbounded sensitivity and no meaningful protections
is accomplished (¢ = 10). Privacy and accuracy, in this case, become conflicting criteria that cannot
be reconciled.

inclusion of private signals at every iteration entails DP noising at every step of the iteration

and comes at a higher cost to accuracy.

6 Discussion and Conclusion

Results and Insights. In all cases of signal DP with the US power grid network, the DP
noise did not affect the convergence rate in practice for this choice of signals, privacy budget
g, and information leakage probability d. Also, we observe that Algorithm 4 converges
faster than Algorithm 5 (even in the absence of DP noise) because of the underlying mixing
matrices, which are %A, and C(t) = %I + %A respectively. Moreover, both of these
algorithms converge faster (with and without DP noise) than Algorithm 3. This is expected
since Algorithm 3 has access to n samples in total, while Algorithms 4 and 5 have access
to nt signals and can bring the estimation error down by a 1/t factor. Comparison of
Signal DP (Figures 3 and 5) with Network DP (Figures 4 and 6) for MVUE and online

learning tasks points to the increased difficulty of ensuring network DP: network privacy
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protections are harder to achieve and they imply signal protections automatically. On the
other hand, when the local sensitivities can grow large — as with the German household
dataset — maintaining privacy for households with low consumption comes at a huge cost
to accuracy (see, e.g., Figure 5). This is because for the log-normal distribution, d¢(s)/ds
grows unbounded as s — 0.

Extensions. @ We extend our algorithms to address additional forms of heterogeneity.
Specifically, in Appendix C, we show how our algorithms can provably converge under
minimal assumptions when the network topology is changing dynamically (Appendix C.1)
and when the corresponding topology is directed (Appendix C.2). These scenarios are
pertinent to real-world sensor networks since sensors and communications can fail, corre-
sponding to dynamically changing networks with asymmetries (cf. Touri and Nédic (2009)).
Moreover, to balance the trade-offs between accuracy and privacy, the agents can resort to
heterogeneous privacy budgets {€; };c|,) and improve their collective estimation performance
while maintaining a minimum privacy protection (capping the individual privacy budgets at
€i,max). The possibility to accommodate heterogeneous budgets in the local DP setting leads
to interesting design choices for improving the collective learning performance, e.g., using
personalized DP methods Acharya et al. (2024); Jorgensen et al. (2015). In Appendix C.3,
we provide both centralized and decentralized schemes to allocate privacy budgets to op-
timize their collective accuracy subject to individual privacy budget caps and test their
performance on the German Households dataset (cf. Supplementary Figure 3).

Conclusion. Our paper focuses on distributed estimation and learning in a networked
environment subject to privacy constraints. The aim is to estimate the statistical properties
of unknown random variables based on observed data. Our aggregation methods aim to
combine the observed data efficiently without requiring explicit coordination beyond the
local neighborhood of each agent. This allows for estimating a complete sufficient statistic
using either offline or online signals provided to the agents. To preserve privacy, agents add
noise to their estimates, adhering to a differential privacy budget (e-DP) to safeguard the
privacy of either their signals (signal DP) or their signals and network neighborhoods (Net-
work DP). Our algorithms employ linear aggregation schemes that combine the observations
of all agents while incorporating the added noise, either online or offline. We prove that
the estimation error bounds depend on two terms: the first term corresponds to the error

incurred due to the aggregation scheme (which we call Cost of Decentralization) and can be
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Figure 7: MSE plots vs. varying privacy budget ¢ for the German Households dataset and the US
Power Grid Dataset. We compare with the first-order method of Rizk et al. (2023) with a learning
rate of n = 0.001 (see Appendix B). The solid lines represent the CoP, and the dashed lines represent
the Total Error.

controlled by the mixing rate of the doubly-stochastic adjacency weights, and the second
term corresponds to the error due to the DP noising (which we call Cost of Privacy). We
prove that under all cases (see also Section 1.1), the noise distributions that minimize the
convergence rate correspond to the Laplace distributions with parameters that depend on
the (local or global) signal sensitivities, the network structure, and the differential privacy
budget . Finally, we test our algorithms and validate our theory in numerical experiments.

When sensitivities are locally bounded, signal DP can be achieved efficiently with a
graceful accuracy loss over a decreasing privacy budget. This is facilitated by the post-
processing immunity of DP (Dwork and Roth, 2014, Proposition 2.1) that no future leaks

are possible after adequate noising of the private signals and indicates the resilience of linear
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aggregation schemes to DP noising. However, achieving network DP with noising of esti-
mates is significantly more challenging, and while individual noisy estimates are protected
against a one-time attack, network information can still leak over time across multiple es-
timates. The composition property (Dwork and Roth, 2014, Chapter 3) implies that we
can protect the network neighborhoods at e-DP level against an adversary who eavesdrops
k times by protecting individual estimates at ¢/k-DP level. Such protection can be chal-
lenging if an adversary can eavesdrop on the estimates for a long time or has simultaneous
access to estimates of multiple agents. In such cases, a fast convergence rate (using the
fastest mixing weights) can limit communications and help agents maintain privacy without

completely sacrificing the accuracy of their estimates.
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Supplementary Material

A Proofs
A.1 Proof of Theorem 3.1

Proof. Since A is real and symmetric, we can do an eigen decomposition of A as A = QAQT
where @) is an orthonormal eigenvector matrix, and A s the diagonal eigenvalue matrix.
We have that |7y — @,[|3 = |QA'QTd|3 = Y7, A?(A)(g! d)*. Note that E [(g7 d)?] =
E [Z;‘:l q%d? + ZlSj<k§n qijqikdjdk} E {Z 1 qw } = >, qZ]V [d;]. Therefore
E |7 - @3] = i Vidi]doh, )\?t(A)qij. Since for all 2 < i < n we have that
|Ai(A)| < 5*, and by using Jensen’s inequality we get that

E [Hvt _ﬁt‘b] < Z V AQt qz] < Z \/ ‘)‘t ‘ql]’

3,j=1 1,j=1

zi:\/TMU‘ + B* Z F’qw‘
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SV Id) (14 Vi 1(57Y).

To minimize the upper bound on the MSE for each agent j, it suffices to minimize the
variance of d; ~ Dj, subject to differential privacy constraints. We assume that the PDF of
Dj — denoted by pg,(-) € A(R) — is differentiable everywhere in R. The differential privacy
constraint is equivalent to

d

d
o Towpa(t €y << =
8j

‘cipdj (t—&(s))| < epa, (t —&(s5)),
J

for all t € R and s; € S. Letting u =t — £(s;) we get that, in order to satisfy e-DP,

‘ dpa;(u)| e
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du
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where A = maxgcgs ‘ 5527 | is the global sensitivity of . We have that
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s.t. /pdj (t)dt =1,
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From Theorem 6 of Koufogiannis et al. (2015) we get that the optimal solution to the
above problem is the Laplace distribution with scale A; = A/e,

€ €
To derive the upper bound on the error note that by Theorem 3 of Rahimian and Jadbabaie
(2016b) we have that E [||m, — Imgll2] < /n(n —1)(8*)!M,, and also E [||@, — 7¢l]2] <

\/ 2j=1 V[dj](1 + v — 1(B*)Y). Applying the triangle inequality yields the final result,

ie.,

E [[7: — Tmgll2] < v/n(n — 1)(8)" My + ZV [d;)(1+ vn —1(8%)"). (A.1)

7=1

Using the optimal distributions D} = Lap(A/e) in (8) gives the claimed upper bound
on TE(M?). O

A.2 Proof of Corollary 3.2 (DP preservation across time)

To derive the DP guarantee for the MVUE for round ¢, we will do an induction. Specifically,
we want to prove that for all Z = (@1, ..., x,) € R™ we have for all i € [n],

10 ]P’[I/i,t = a:l]
#\ P, = i

for all adjacent pairs of signals and beliefs, i.e.,

S,

<1
1

‘(Szﬁ {ji-1}jen;) — (si {’/J/‘,t—1}je/\fi)
We proceed with the induction as follows:

e For ¢t = 1, the result is held by the construction of the noise and the definition of DP.

e For time ¢ € N, we assume that ’log (P[w‘t:w”M <eforall T = (x1,...,T,) € R™

P[ug’t:wi]

e For time ¢ + 1, we have that for all i € [n],

log [ EWitt1 =il ) | _
P[Vz(,t—i-l = x;]




which holds by applying the definition of the MVUE update, the fact that A is non-
singular, and the inductive hypothesis for ¢.

A.3 Proof of Theorem 4.1
Proof. Similarly to Theorem 3.1, we decompose A as A = QAQ”T and get that
2

t—1
_ 1 —
7 — 13 = HtQZA di— Q"

n t—1

t2 Z Z )\2T at_T)Q'

i=1 7=0

2

We take expectations and apply Cauchy-Schwarz to get

n t—1
E |7 - 3] < ZZLA E [[d|3) (A.2)
1 n t—1 n t—1
§2<1+ZZA2T ) >N Vidj—r
=2 =0 j=17=0
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By Jensen’s inequality, we get that

n t—1
E[\vt—utllg]si<1+ 1f(_51)2> NSV dg—).

j=17=0

Also note that the dynamics of g, = @, — 1my obey

t—1 1
q; = 714% 1+ (ft—]lma)-

By following the same analysis as Equation (A.2) we get that

E[uut—utuﬂs\/f(H 12(‘;)2) VIEGs),

and then, the triangle inequality yields



n t—1

E[Hut—nmenﬂs1<1+ 1?[@) VAT + [ S0V idy ]

j=17=0

To optimize the upper bound of Equation (A.2), for every index 0 < 7 < t—1 and agent
j € [n] we need to find the zero mean distribution D; 41 with minimum variance subject
to differential privacy constraints. We follow the same methodology as Theorem 3.1 and
arrive at the optimization problem

: 2 2
min Ed-.,- 1~D; d<7.+1 = / u pd.T+1(u)du
pdj,-r+1 (-YEA(R) 3,7+ J [ E ] R Js

s.t. /dejﬂrl(u)du =1,
£
|p£ij7,.+1(u)‘ S Zpd‘j’T+1 (U), \V/U S R.

The optimal distribution is derived identically to Theorem 3.1, and equals D]*-J 41 =
Lap(%) forall je[n]and 0 <7 <t—1.

A.4 Proof of Theorem 4.2

Proof. Let C(t) = B(t) — 1, and let ®(t) = HtT_:lo C(1). Note that C(t) can be written

as tC(t) = (t —2)I + A, and we can infer that the eigenvalues of C(t) satisfy \;(C(t)) =
1+ M, and that {C(7)} ey and A have the same eigenvectors. Therefore,

t—1 t
Ai(@(t) = [T M(C(1)) < exp (Z A<AT)—2> < A2
7=0

=1

Similarly to Theorem 4.1, we have the following.

A4



n t—1

E [Hft —ﬁtllﬂ 2 ZZ)‘ [ 1 di- 7) }

355 ><w-~m>
< 12 Z/ 27(A) 4dT> S E [Hdt Al }

< Ez/ o) ()
<3 (3o e -

.1 <1+3n—2[13*>§1@ [E=H
() (EE )

Applying Jensen’s inequality, we get that

n t—1
1 n—1
B (17~ gl < 3 S0 Vi (14555 )

=1 7=0

Similarly, by considering the dynamics of g, = &, — 1my we get that

Bl — tmal) < |/ VST (14555 )

The triangle inequality yields the final error bound.

To derive the optimal distributions, note that at each round ¢, the optimal action for
agent ¢ is to minimize V [d;;] subject to DP constraints. By following the analysis sim-
ilar to Theorem 3.1, we deduce that the optimal noise to add is Laplace with parameter
max{max;en; a;j, A}/e.

O]

B Algorithm of Rizk et al. (2023)

We adapt the framework of Rizk et al. (2023) to our problem, for which the identification
of the MVUE My can be formulated as

n

™My = argmin 2i Z (m —&(s4))?.

meR n =
=1 Ji(m)
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The private dynamics for updating the beliefs 7; can be found by simplifying the con-
sensus algorithm given in Equations (24)-(26) of Rizk et al. (2023):

Vie = aii(Vig-1 + i) + O i (Vjao1 + Gij) + diy — n(vig-1 — £(si)).
JEN;

Here, 7 is the learning rate, d;; is noise used to protect the private signal, and g;;,
{gij+} jen, are noise terms used to protect own and the neighboring beliefs. As a first
difference, we observe that Rizk et al. (2023) uses (n + m)T noise variables, whereas our
method uses just n noise variables, which makes our method easier to implement for the
MVUE task. It is easy to observe that these dynamics converge slower than our dynamics
for two reasons: (i) the privacy protections are added separately for the signal and each
neighboring belief, and (ii) the beliefs are always using information from the signals since
the method is first-order, thus requiring noise to be added at each iteration.

For this reason, the authors consider graph-homomorphic noise, i.e., noise of the form
gijt = Qi for all j # ¢ and g;; = —IZZ” gi: where g;; are noise variables. Rewriting the
dynamics in this form, we get the following update:

Vig = (ai —n)Vig—1 + Z aijVji—1 +n&(si) + dig.
JEN;

Given a privacy budget €, in order to make a fair comparison with our algorithm,
TSt i .
w) for Signal DP, and d;; ~

the noise variable should be chosen as d;; ~ Lap( -

T'max{max;; a;; nS¢ . (si)}

Lap
€, and the noise is added T times at each iteration, the initial budget needs to be divided
by T

We run the same experiments as in Section 5 with the method of Rizk et al. (2023) and
compare with our method using the same values of the privacy budget € and a learning rate
n = 0.001 to get the results in Figure 7.

) for Network DP. Here, since the per-agent privacy budget is

3

C Extensions to Dynamic and Directed Networks and
Heterogeneous Privacy Budgets

C.1 Dynamic Networks

In this problem, the agents observe a sequence of dynamic networks {G(t) };en, for example,
due to corrupted links, noisy communications, other agents choosing not to share their
measurements, power failures etc. These dynamic networks correspond to a sequence of
doubly stochastic matrices { A(t) }+en. A choice for the weights are the modified Metropolis-
Hastings (MH) weights:

1 . .
ais(t) = | TR OaE G I (C:3)
1_Zj€Maij(t)7 J=1
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This is a natural choice of weights since they can be easily and efficiently computed by
the agents in a distributed manner (e.g., in a sensor network) from the knowledge of own
and neighboring degrees, thus requiring minimal memory to be stored for each agent. Below
we will show that the MVUE and the OL algorithms converge under minimal assumptions
for the time-varying MH weights.

MVUE. We can prove that if Gy contain no isolated nodes, the beliefs would converge to
my as a direct consequence of (Chazelle, 2011, Theorem 1.4), i.e.

Proposition C.1. If G; contains no isolated nodes for allt € N, for accuracy 0 < p < 1/2,
the dynamics with the modified MH weights of Equation (C.3) will converge to the MVUE,

my, in
- { 2000(My + Afe) (bg M, + A/E) 2n20(n)}
P P
steps.

Proof. The proof follows from applying Theorem 1.4 of Chazelle (2011), since max;; a;; <
1/2, the graph is undirected, and the diameter of the points is at most 2(M,, + A/e). O

Note that the above convergence rate is exponentially worse than the

_  (log (n(Mn + AJe)/p)
t=0 ~
log(1/5*)
convergence time that we obtain for static networks.

Online Learning. For the online learning regime, we can follow the approach presented
in Touri and Nédic (2009). For this, we consider the following update rule:

t—1 1 1 -~ -
- Vi + ;A(t)ﬁt_l + n (& +dy) . (C.4)

2=

We show that under reasonable assumptions on the graph sequence, the above algorithm
converges to 1my almost surely.

Proposition C.2. If G; contains no isolated nodes for all t € N, and there exists an
integer B such that Ui(zg)fl G, is strongly connected for every t € N, then the dynamics
of Equation (C.4) with the modified MH weights of Equation (C.3) converge to 1my almost
surely.

Proof. The dynamics have the form of the dynamics of Touri and Nédic (2009). We will show
the result by showing that the assumptions of Touri and Nédic (2009) hold. Specifically, all
non-zero elements of A(t) have value at least 1/(2n), a;;(t) > 1/2 for all i € [n],t € N by our
hypothesis, there exists an integer B such that Ui(jjg)fl G, is strongly connected for every
t € N by our hypothesis, > 72, 1/t = oo, and > ;°, 1/t* < co. Thus, by Proposition 2 of
Touri and Nédic (2009), the beliefs converge almost surely to 1my as t — co. Furthermore,
we can show that the dependence on ¢ becomes slower, i.e., from ¢~ /2 when the network is
static to t~1/"° when the network is dynamic.

O]
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C.2 Directed Networks

We can also consider extensions of our results to directed graphs, i.e., when a;; # aj; in
general. Such asymmetries can arise due to systemic heterogeneities, e.g., varying accuracy
and reliability of sensors in a sensor network or imbalances caused by influence dynamics
in a social network. The adjacency weights in such cases are no longer doubly stochastic,
making the MVUE dynamics in Equations (3) and (7) to converge to my = qi & where
q, is the stationary distribution of the Markov chain with transition matrix A, satisfying
Aq, =g, and g7 1 = 1. Unlike the doubly stochastic case, the stationary distribution is not
necessarily uniform, in which case the aggregate converges to a weighted average of £(s;)
that is no longer minimum variance. To analyze the convergence rate of the algorithms with
asymmetric adjacency weights, we cannot use tools from the theory of doubly-stochastic
matrices anymore, and we need to rely on different tools from the analysis of convergence of
non-reversible Markov chains. The results of Chatterjee (2023) extend the notion of spectral
gap and can make this analysis possible. However, these results come with significant
technicalities, using substantially different analytical steps that are beyond the scope of
our present work. More limited conclusions about the asymptotic rates and finite-time
convergence can be asserted in special cases by applying existing results such as Touri and

Neédic (2009).

C.3 Heterogeneous Privacy Budgets

Our algorithms extend easily to the case where each agent has their own privacy budget
g;, e.g., due to their differing energy consumption levels. In this case, it is easy to show
that all of the results can be updated to accommodate heterogeneous €; and the smooth
sensitivities A;, as shown in Table 1 below.

Supplementary Table 1: Total Error Bounds for heterogeneous privacy budgets {€;};c[,). The blue
terms are due to privacy constraints (CoP), and the red terms are due to decentralization (CoD).
Here M,, and * are the same as in Table 1, and {A;}c[,) are the smooth sensitivities for each agent
which can be set as A; = Sgﬁ(si) for the case of Signal DP and A; = max {maxj# @ij, Sgﬂ(si)}
for the case of Network DP.

Minimum Variance Unbiased Estimation Online Learning of Expected Values

O((BY M+ 1+ (BT, 2)  O(ZHVTEE)]+ 5, 2)

The possibility of heterogeneous privacy budgets opens new avenues to explore the al-
location of an overall privacy budget (ne) while respecting individual budgets {&; max }ic[n]-
Such a situation may arise, e.g., to limit overall information leakage against an adversary
that can eavesdrop on some or all of the communications. Suppose that each agent wants to
maintain €;-DP and suppose that there is an adversary that eavesdrops on all of the beliefs
(this also covers the cases where the adversary has access to a subset W of the [n], such as
in the case of a targeted attack to a large part of the network). Note that all of the results
presented so far protect against information leakage about a single agent’s signals (or their
network neighborhoods) when their reports v;; are compromised. However, if the goal is to
protect the private signals against an adversary that can eavesdrop simultaneously on all
or a subset of agents, then each individual agent’s report can be regarded as a data release
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Minimum Variance Unbiased Estimation (German Households Consumption) with Network DP
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Supplementary Figure 1: Sample Paths for MVUE and OL for the German Households Dataset with

heterogeneous budgets (centralized solution). For the OL case, we plot the optimal privacy overhead
Sy ?; which we compare with the lower bound Y7 | AE", and the upper bound Y7 | Eﬁfax.

about the vector of all signals that needs to be protected at the ne-DP level, in addition
to the individual-level €; max-DP protections required by each agent. If the adversary can
eavesdrop on all of the signals, then the resulting mechanism that protects the joint dis-
tribution of the signals can be thought of as a mechanism TM® which adds n-dimensional
noise d to the sufficient statistics and each dimension i € [n] of the noise corresponds to

di,t, i.e.,
S p— J—
M (S1,ty---58n1) =& +dy

Then, if A; is the sensitivity for each agent i, the noise has PDF":

(u Up) ﬁsie sl!u\ x e . Ezlu\
e = xp | ——|u; xp | — —|u;
pﬁt 1, y Un 1l 2A1 p Az ) p . Az 7
Now, consider a pair (S1¢,...,Snt), (s’lyt, ..+, 8y,) of sets of signals such that
H(sLt, cey Snt) — (8/1,t7 . 3;17,5)“1 < 1.

Then, we have that for all © € R™:
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Minimum Variance Unbiased Estimation (German Households Consumption) with Network DP
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Supplementary Figure 2: Sample Paths for MVUE and OL for the German Households Dataset with
heterogeneous budgets (decentralized solution). For the OL case we plot the optimal privacy over—
head Y77 | £ A Wthh we compare with the lower bound Y7, 2 >:, and the upper bound " | ﬁ.

Pg (Et - f)
pa, (& — @)

8l

S
| POMit(s1y,. .. 804) = B
P[w W(s’l’t, e ng) =T

&

= 1> < (lesh) — @l — [é(si0) — )
i=1 1
Z € (i) — (sf)|
< Zsi Hsii - S;—thI
i=1
n
2 e | malsic = sicl,
n
< 261‘- (C.5)
=1

Now suppose we want to protect the vector of all beliefs against the eavesdropper at the
ne-DP level (assuming an average privacy budget of € per agent for the overall protection of
the vector of all private signals). The noise that is added to individual estimates also works
to protect the entire vector of all estimates against the eavesdropper and to achieve the
latter at the ne level, Equation (C.5) indicates that it is sufficient to ensure that > e; < ne.
On the other hand, given g; privacy level at every agent ¢, we also want to minimize the
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Supplementary Figure 3: MSE Plots for the German Households Dataset with heterogeneous privacy
budgets. We note that compared to the homogeneous case, using heterogeneous budgets reduces
the MSE.

accuracy loss by reducing > ; A;/e; while ensuring that individual privacy budgets do not
exceed a preset maximum: vece; < €; max for all 2. The subsequent optimization problem
to allocate individual privacy budgets can be formulated as follows:

min A (C.6)

€1,...,En>0 ‘ €;

n
s.t. Zei < ne.
i=1

g; < €4, max Vi € [n]

Following KKT conditions Boyd et al. (2005), Equation (C.6) admits a closed-form
solution. The solution indicates that by allowing heterogeneous privacy budgets and taking
into account individual smooth sensitivities in the optimal allocation, we can improve the
total error. These observations are summarized below:

Proposition C.3. The following hold:

1. If S0 | €imax > ne, then the optimal solution to Equation (C.6) is

X = min {s L e A }
i 7,/nax
2 jetn VA

min;e(n) A

for all i € [n]. Moreover, the improvement over ) ;' | =t satisfies maxiepn] A <
n Ay
=1 g,

== <L
=1 ¢

2. If Y0 | €imax < ne then the optimal solution is € = €; max for all i € [n].
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In a large network making individual nodes aware of their allocated budgets based on
their smooth sensitivities is difficult to achieve in a central manner. The following formula-
tion of the allocation problem arrives at a sub-optimal solution that satisfies the ne global
privacy budget constraint by imposing n additional constraints in the local neighborhoods:
aii€; + Eje N, Bij€j < e, Vi € [n]. The advantage of these constraints is that they can
be verified locally, and satisfying them implies the ne global budget constraint in Equa-
tion (C.6). The subsequent optimization problem is given in Equation (C.7). It allows
individuals to learn their allocated budgets in a distributed manner by running distributed
gradient descent, which is guaranteed to converge since the problem is convex (Sayed et al.,
2014, Chapter 7).

n

A

min — (C.7)
€1,...,En>0 2 E€;
=1
s.t. a€; + Z a;j€; < €, Vi € [n]
JEN;

& S €, max; Vi € [TL]

Numerical Experiment. We test our method with the German Households dataset.
Specifically, we set a per-agent average budget of € = 1 for MVUE and ¢ = 10 for OL. We
put a maximum individual budget cap of €; max = 10 in both cases. We report the sample
paths in Supplementary Figures 1 and 2, and observe that the dynamics converge faster
compared to the homogeneous case (cf. Figure 4). In Supplementary Figure 3, we present
an MSE plot where the MSE is plotted as a function of €, and observe that the algorithm with
the heterogeneous thresholds has smaller MSE compared to the homogeneous thresholds.
These results confirm our theoretical observations in Proposition C.3.
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