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GW approximation is one of the most popular parameter-free many-body methods that go beyond the limitations
of the standard density functional theory (DFT) to determine the excitation spectra for moderately correlated
materials and in particular the semiconductors. It is also the first step in developing the diagrammatic Monte
Carlo method into an electronic structure tool, which would offer a numerically exact solution to the solid-
state problem. While most electronic structure packages offer support for GW calculations for band-insulating
materials, the level of support for metallic systems is somewhat limited. This limitation can be partly attributed to
the relatively minor differences often observed between GW and DFT results in treating metallic systems, which
is not expected to persist to higher orders in perturbation theory. Describing metals within the GW framework
presents a challenge, as it requires accurate resolution of Fermi surface singularities, which, in turn, calls for
a dense momentum mesh. Here we implement the GW algorithm within the all-electron Linear Augmented
Plane Wave framework, where we pay special attention to the metallic systems, the convergence with respect
to momentum mesh, and proper treatment of the deep laying core states, as needed for the future variational
diagrammatic Monte Carlo implementation. Our improved algorithm for resolving Fermi surface singularities
allows us a stable and accurate analytic continuation of imaginary axis data, which is carried out for GW
excitation spectra throughout the Brillouin zone in both the metallic and insulating materials and is compared to
numerically more stable contour deformation integration technique. We compute band structures for elemental
metallic systems Li, Na, and Mg as well as for various narrow and wide bandgap insulators such as Si, BN, SiC,
MgO, LiF, ZnS, and CdS and compare our results with previous GW calculations and available experiments data.
Our results are in good agreement with the available literature. Thus our software allows users to compute full
bandstructures for metals and insulators using all-electron potential without downfolding to Wannier orbital
basis.

1. Introduction the most popular ab initio beyond-density functional theory (DFT) ap-
proaches in the condensed matter physics and materials science com-
munities.

There were early promising GW studies for weakly interacting

Perturbative expansion around the free electron limit is one of the
most common techniques used in the many-body theory. In ab-initio

solid state applications, the expansion is typically carried out in terms
of the single-particle Green’s function G, and the screened Coulomb in-
teraction W. When carried out at the first order approximation, and
W is computed by the bubble Feynman diagrams, the method is called
the GW approximation [1]. In widespread applications of this theory
to semiconductors, it was shown that such approximation predicts very
accurate band-gaps in semiconductors [2-8] and thus became one of
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metallic systems such as Na [9], but even 30 years later most elec-
tronic structure codes do not offer full support for GW band structure
calculation in metallic systems. There are a few notable exceptions, for
example the SPEX code [10-15], the ecalj package [16-20], and Flap-
WMBPT code [21]. There are several GW calculations for metals, which
used implementations that are not publicly available using pseudopo-
tentials [22-27] and all electron [28-34] basis set. GW calculations for
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metallic systems remain relatively uncommon when compared to their
widespread use in semiconductors. This is due in part to the small dif-
ferences between GW and DFT, as well as the considerable challenges
involved in achieving convergence in GW calculations for metals. Thus,
band structure comparison for metals between angle resolved photoe-
mission spectroscopy (ARPES) experiments and GW calculations is not
often seen in the literature, and the convergence of the band struc-
ture with momentum mesh is almost never studied. Perhaps such slow
progress towards GW predictions of band structures in metallic sys-
tems is due to the difficulty of resolving the singular excitations around
the Fermi surface, which require a large number of momentum points
and sophisticated and time consuming analytic contour integration, or
stable analytic continuation from the imaginary frequency to the real
frequency spectra. Thus it remained a major challenge to compute ac-
curate band-structure throughout the Brillouin zone for metallic systems
using GW approximation, which are converged with respect to the accu-
racy of the basis set and momentum space mesh. This situation impeded
the progress of computational materials design in general.

The accuracy, precision, and scaling of GW calculation, which re-
quires non-local and dynamical self-energy of electron, has considerably
improved over the years [35,36,8,37-44,10,45]. On the other hand, bet-
ter treatment of dynamical self-energy has been achieved in Dynamical
Mean Field Theory community [46-48], which allows us to reanalyze
the predictive power of GW approximation in metallic systems, and per-
haps point towards the need of including so-called vertex corrections.
Recently an alternative point of view to vertex corrections is gaining
popularity, namely, Monte Carlo summation of high order Feynman di-
agrams, which are visited by importance sampling techniques [49-57].
In the quest to develop such a diagrammatic Monte Carlo technique,
that can achieve chemical accuracy in solid state applications, very ac-
curate GW implementation with all electron algorithm is needed as the
first step. In alternative plane wave implementations, the systematic er-
ror due to approximate treatment of core electrons could obscure the
improvement brought about by very expensive calculation of the vertex
corrections. The Python implementation of GW developed here [58],
will be used for developing such a systematic diagrammatic Monte
Carlo expansion method in the future. As a proof of concept, such high
order Feynman expansion method has been recently developed for the
simpler but related problem of the electron gas, for which numerically
converged results can be obtained in a moderately correlated regime of
metallic system [49,50], and holds great promise for more widespread
applications in solid state systems.

Here we describe the implementation of GW approximation within
the all-electron LAPW framework, paying special attention to metallic
systems for which GW calculations are difficult to converge and band
structure throughout the Brillouin zone is painful to compute. [58] We
overcame the problem with a more stable implementation of the tetra-
hedron method, and an improved algorithm for frequency convolution
on the Matsubara axis, which allowed us a stable analytic continua-
tion of imaginary axis data by Pade approximation. We crosschecked
the Pade analytic continuation by implementing more expensive but
more accurate contour deformation integration technique [59-63] To
produce the band structure plots along the high symmetry direction in
momentum space, we implemented two complementary techniques: the
interpolation method as described in Refs. [64,65], as well as wannier-
ization method using maximally localized wannier functions [66,67].
Finally, we also present a method for numerically efficient manipulation
and storage of Matsubara quantities using optimized Singular-Value-
Decomposition-basis (section 2.5). This package is built upon the Gap2
code [68,35] as a foundation, which also served as the accuracy bench-
mark at the early stages of development.

This paper is organized as follows. The next section is devoted to
the method and presents the setup of perturbation theory in section 2.1,
followed by the description of the method we use to compute the polar-
ization in Sec. 2.2, and the self-energy in Sec. 2.3, both are computed
in the eigenbasis of the Coulomb repulsion. In Sec. 2.4 we discuss the
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implementation of the product basis, which allows one to write polar-
ization and the Coulomb interaction in two-dimensional matrix form.
In Sec. 2.5 we describe the new algorithm for efficient manipulation of
the frequency-dependent quantities G and W. Finally, in Sec. 2.6.4 we
present techniques to plot the quasiparticle spectra, from analytic con-
tinuation to contour integration technique, and interpolation of band
structure using Wannier interpolation as well as minimizing smoothness
of bands across the Brillouin zone. We also study the quality of diagonal
approximation and compare it to the matrix form of self-energy, and we
check the quality of the Pade analytic continuation and compare it to
the contour integration technique.

In Sec. 3 we compare our implementation of GyW, and GW,, for
insulators with other previously published results, while in Sec. 3.2 we
show band structures of several metals within G, W, approach.

2. Method
2.1. Setup of the perturbation theory

Here we concentrate on a diagrammatic point of view of the elec-
tronic structure problem, sketching the algorithm in a way in which
the extension to higher order diagrams is emphasized, as needed for fu-
ture Variational Diagrammatic Monte Carlo studies [49]. We mention
in passing that our implementation starts from Wien2k implementa-
tion [69] of Kohn-Sham orbitals, and closely follows the algorithm of
Gap2 code [35,68], and also Ref. [10]. Some details can also be found
in Ref. [45]. Apart from a few bugs found in the Gap2 code, which are
detailed here [58], the output of our PyGW code and Gap2 code is iden-
tical for identical input, therefore we managed to reproduce results of
Ref. [45]. However, we detail below several improvements of the algo-
rithm, which allows one to treat not only semiconductors but metals as
well.

The building blocks in our setup for the perturbation theory are
the Green’s functions in the Kohn-Sham basis Gy ; = prreym— and the

Coulomb repulsion is written in its eigenbasis. The former depends on
the Kohn-Sham eigenvalues ¢ ;, while for the latter, we will introduce
the so-called product basis [70], which is an orthogonal (and over-
complete) basis that faithfully represents products of two Kohn-Sham
orbitals, and is here called y,(r). Here r stands for the real space vec-
tor, and q is momentum in the first Brillouin zone. The technical details
of how to achieve that within LAPW basis are discussed in section 2.4.
Once such product basis yJ(r) is constructed, we compute the matrix
elements between two Kohn-Sham orbitals and this basis functions:
M,k q) =( ;(0‘,‘|y/k’,-w;_q’j). Similarly, we compute the matrix elements
of the Coulomb repulsion on this basis v,,(q) = (74 V(@) ;(;;), and sub-
sequently, we determine the square root of the Coulomb repulsion in its
eigenbasis as \/Tq)m 5 =Uay NNY Z » where v, are eigenvalues and U,
are eigenvectors of the Coulomb repulsion.

The interaction between four Kohn-Sham orbitals, in which y;,
Wir—_q are incoming, and Wl:ﬁ—q,j’ W;:’,i’ are outgoing electrons, takes
the form

Wi Vi —q " VDV Wi @
and can be evaluated in the product basis by

D Wi 2 (0@ v ) @
ah

which can be expressed with the above-defined matrix elements as
DM (K@) vge(@) M5k, q). ®)
ap

We can now associate a square-root of the Coulomb repulsion with each
pair of the Kohn-Sham orbitals and rewrite this product in the above-
defined eigenbasis of the Coulomb repulsion as
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Fig. 1. Building blocks of the perturbation theory around DFT starting point.
Here ¢ ; are energies of the Kohn-Sham orbitals, and M (k,q) are matrix ele-
ments defined in the text.
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If we now define the new matrix elements of the form

Mk q=VoU'Mk,q) 5)

we see that the Coulomb repulsion between the two incoming w;,
Vir—q, and the two outgoing W:—qj’ v, , Kohn-Sham orbitals can in
general be written as the product of two matrices

M), & M,k q). ©)
1

and hence each three-point vertex can be associated with the matrix ele-
ment M, 1,;(k, @), where index / is associated with the bosonic-interaction
propagator, and i, j with the two Kohn-Sham bands (See Fig. 1). We em-
phasize that for the perturbative expansion, we only need M and the
Kohn-Sham eigenvalues ¢y ; to evaluate the expansion. The matrix ele-
ments of the Coulomb repulsion are hence absorbed into the definition
of M and should no longer appear in the calculation. The advantage
of this approach was pointed out in Refs. [10]: when the product ba-
sis is increased in size so that it becomes more and more precise and
complete, there are more and more eigenvalues of the Coulomb repul-
sion (v;), which are extremely small, and such components can safely
be neglected when constructing M. As the linear dimension of the ma-
trix M increases with increasing the energy cutoff for the plane-waves,
and the number of radial functions in the spheres, the dimension of M
increases much slower or saturates with increasing the size of the ba-
sis. As our calculations only depend on M, this saves a considerable
amount of computational time.

We want to point out that for the future diagrammatic Monte Carlo
calculations, only the matrix 2\7,‘,- ;(k.q) will need to be stored, apart
from Kohn-Sham eigenvalues ¢y ;, to evaluate the Feynman diagram of
arbitrary order. However, storing this object in memory will still be a
great challenge, as it depends on the dimension of the Coulomb eigen-
basis /, the square of the number of bands, and also both the fermionic
and bosonic momentum. We envision that this matrix M will need to
be stored on a more coarse momentum mesh, and some type of inter-
polation to a denser mesh of fermionic propagators, which depend on
gi,; and describe the details of the Fermi surface, will need to be imple-
mented.

Finally, let us mention that the single-particle counter-term in this
expansion is the Kohn-Sham exchange-correlation potential, which is
evaluated in the band-basis by

Vi = (wia |V i) @

At the lowest order GW approximation, this potential just needs to be
subtracted, and the GW self-energy needs to be added to the Kohn-Sham
eigenvalues. At the higher-order expansion, such a counter-term can be,
for example, grouped with the occurrence of exchange sub-diagram in
each Feynman diagram, as implemented in Ref. [49].
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Fig. 2. Polarization diagram at the lowest order is the bubble, here expressed
in the product basis | 7). The product of polarization and Coulomb interaction
can be expressed in the Coulomb eigenbasis in terms of M matrix elements
only.

2.2. Polarization

The dielectric function in matrix form is e = 1 — \/Vo P+/V,, where
P is the polarization (Fig. 2). At the lowest order W, approximation,
the polarization is evaluated as the bubble diagram, which can also be
evaluated in the eigenbasis of the Coulomb repulsion, in which it takes
the form

l-¢qi0,= WVVePVe

~, 1 1 1 ~
=N, ) M (kq— ) - - - My, q)
g :,Zk Lij p ; [0, + f— &y [0, = iQ +p—e_q;

Fleneqy =) — flErs = 1) —
Sy XMy, ®)

N M kg e
where f is the Fermi function of the form f(x) = [exp(x/T)+ 1]7!, and
indices i, j run over Kohn-Sham bands, N, is 2 or 1 depending on
whether the bands contain the spin degeneracy (for example in the
presence of the spin-orbit coupling). It is worth emphasizing that the
size of €4, matrix is smaller than the size of the product basis, be-
cause only the eigenvalues of the Coulomb repulsion (v;), which are
finite, contribute to this matrix. Once the matrix € is calculated, we in-
vert it in this eigenbasis of the Coulomb repulsion, where the matrix is
the smallest.

In the presence of time reversal symmetry or inversion center, the
inner part of the Eq. (8) can be rewritten in a more convenient way
for computation, such that the band k, i is occupied and the k —q, j is
empty, in which case the polarization takes the form

S e — WS (—€_q; + 1) 2(ex; — €x_g;)
Q2 + (g, — ek,qj)2

PG, j.k,Q,) = 9

This form emphasizes that the Polarization has even symmetry with re-
spect to frequency, and is real. However, the matrix elements 1\7,‘,- (K, q)
are in general complex, therefore the polarization is a complex (Hermi-
tian) quantity on the imaginary axis. We use this form for the tetrahe-
dron method, evaluating fmm d3kP(i, j,k,Q,), which is implemented
similarly as in Gap2 code [35], except that we compute all Matsub-
ara frequency points using exactly the same tetrahedron setup, and
precompute common parts shared for all Matsubara frequencies, and
we group terms which are nearly singular to achieve better cancella-
tion of errors, following ideas from Ref. [71], and [72]. In addition,
there is a considerable simplification of the tetrahedron method for the
case where one of the two bands i,j in the sum is very far from the
Fermi level, and therefore only one of the two bands needs to be inter-
polated, in which case Eq. (9) can use the single-particle tetrahedron
coefficients, i.e., those that are used to evaluate the densities of states.
This reduces the memory requirement in computing the polarization
function, as only a limited number of bands around the Fermi level
need the sophisticated treatment, while for most of the bands away
from the Fermi level, the polarization function Eq. (9) can be evalu-



K. Haule and S. Mandal

Was

Zmll

Ei,i’ (k7 ZUJ)

M.k, q) @ =" M,k q)

(e

Fig. 3. The self-energy diagram at the lowest order GW approximation can
also be expressed in terms of matrix elements of M, the dielectric matrix ¢, and
the single-particle Green’s function.

ated on the fly. The tetrahedron method implemented here, with the
innermost loop over Matsubara points, is faster, hence we can afford
more Matsubara points. More importantly, the self-energy computed in
this way has more uniform frequency dependence, therefore the ana-
lytic continuation of the Matsubara self-energy by the standard Pade
approximation is now stable, and we can use all computed Matsubara
points for Pade analytic continuation, rather than just a couple (for ex-
ample the two-pole approximation with four Pade coefficients is most
common in other implementations [10,35]).

2.3. Self-energy

The dynamic correlation self-energy within GW approximation
(Fig. 3) is the convolution of the single-particle Green’s function, and
the dynamic part of the screened interaction W — Vo = Vo(e™! — 1),
which takes the form

. 1 *
= ki) === D Wiy ) WiV 7))
iQy.q..2f

Xy IWVeleg = DVVelxa) G (o, = i%,)

1 '3 — 'y
=== ) Mukaey -DM;, ke
iQ,,.q.4.0.0"

X Gy_y (0, = 1) (10)

Note that as before, we expressed the self-energy also in terms of the

matrix-elements M, written in the eigenbasis of the Coulomb repulsion,

which is smaller in dimension than the product basis. The exchange self-

energy is obtained from the above expression by replacing (53 =Dy

with 6, , and it takes the form !

(K iw,) == Y M, ;(K.Q)M;
a.j.!

[,,-/j(k’ q)f(ek—q,j - /’4)

The frequency convolution of the dielectric matrix with the single-
particle Green’s function can be simplified if we take into account that
the polarization is even in frequency Q,, (Eq. (9)), hence dielectric ma-
trix is also an even function, and therefore
=, (k, iw,)

i

(ed =) pliow, — &g =i
~ ~ 1 Q, ; n q.J m
== Y M,;&oM;, koY —

- ,(11)
q.j.Ll" ﬁ iQ,, (’wn - ék—q,j)z + an

i.e., the odd component of the convolution vanishes, and we are left
with the sum that falls-off as 1/Qj, because (¢, — 1) falls off as 1/Q2.
Here &, =g — u. At zero temperature, we can replace the Matsubara
sum % Yo, With the integral % /=2 dQ hence the inner-convolution in
Eq. (11) can be computed by

00 _1 .
1 /dQ(EiQ =Dy pliow, — &g ;)

- 12
(iwn - gk—q,j )2 + QZ ( )

V4
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To carry out this integral, we spline the quantity (6[_91 —1)(Q%+1), which
has a nice property that saturates at infinity with vanishing first deriva-
tive and also has extremum at zero frequency. We use a vanishing first
derivative at infinity and a vanishing second derivative at zero, as the
boundary condition for the spline. To achieve even better converging
integral, we add and subtract a constant such that when Q = w,, the in-
tegrand vanishes. Let us denote (63 = 1)y = 8 (iQ), then the integral
Eq. (12) can be written as

L
dQ S Q) g —i®,)

lim _— = 13
L>1 T (iw, — ﬂfk—q,j )2 +Q2 13)
0
by =00 [ (SR — Sy(iwy)
_q i — 1 - 0]

lim k—q,j n /dQ mn n n (14)

L>1 T (i®, = &_q ;) +Q?

0

S
+Mman<;>
T

Skqj 1@y

Using the spline for S,/(1 + Q?), we can afford 10-times or 20-times
more frequency points Q that the dielectric matrix is calculated on.
For both meshes, to compute the dielectric matrix and performing the
integral in Eq. (14), we use a tangent mesh. This mesh is well-suited
for representing Lorentzian function, and is defined by the equation
Q = wtan[x(xr — 26) — n/2 + §], where 6 and w are parameters op-
timized for each represented function, and x is a uniformly spaced
mesh in the interval [—1,1]. Here we want to point out that replacing

arctan (ﬁ) in Eq. (14) with +x/2 is not precise enough when
Ek—q,j ~in

quantities are known on a finite mesh with cutoff L. This is because iw
can also assume large values, resulting in a ratio within the arctan func-
tion that may not necessarily be very large. While it may be tempting
to assume that for sufficiently large values of L, the values of .S would
saturate, allowing for the extension of the quadrature to infinity (a prac-
tice employed in, for instance, the Gap2 code), our investigations have
revealed that results exhibit greater numerical stability when extrap-
olation is avoided. Instead, employing Matsubara points with a cutoff
value consistent with that used in calculating ¢, yields superior numer-
ical stability.

The correlation self-energy Eq. (11) is either computed on the Mat-
subara axis, or directly on the real axis using the contour deformation
technique (See section 2.6.2 for details). When the self-energy is com-
puted on the imaginary axis, it requires analytic continuation to the real
frequency in order to plot band-structure at finite frequency. We man-
aged to implement the tetrahedron method in a stable way so that all
Matsubara frequencies iQ,, are computed in exactly the same way up
to machine precision, therefore we find that standard Pade approxima-
tion [73] is very stable and can be used to plot self-energy on the real
axis at frequencies of interest.

2.4. Product basis within LAPW

The construction of the product basis | y,) has been detailed in prior
works, for instance, in [70,10,35]. Therefore, here we will provide only
a concise summary. As is customary in the LAPW basis, the space is
divided into the muffin-tin (MT) part around each nucleus and the in-
terstitial space in between. Each part of the space has its specific basis
functions: plane waves in the interstitial region and radial functions
in the MT space. In our implementation, plane waves are utilized ex-
clusively in the interstitial space, while radial functions are employed
solely in the MT space. This approach not only facilitates the elimina-
tion of linear dependence within the basis but also allows for the use
of a more compact product basis. We note that in our approach the
product basis functions |y,) are orthonormal in the MT part, and are
also made orthonormal in the interstitial part, which differs from many
other implementations, for example Ref. [70,10]. We also note that the
two parts of the space are treated with its own basis, and therefore func-
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tions |y, ) are not continuous across the MT-sphere boundary, similarly
to most prior implementations [70,10,35].

In the MT part, the Kohn-Sham wave functions are expanded in
terms of the solutions of the radial Schrodinger’s equation (at certain
energy close to the center of the band) u, its energy derivative i,;, and
several local orbitals uf”. Here [ is the orbital momentum quantum num-
ber. Let’s denote all these functions with an index «, i.e., uy. The product
of the two Kohn-Sham functions spans the Hilbert space which contains
all products of such functions uy u;“,/. However, we can also order these
products in terms of the orbital quantum number L for the products,
corresponding to the two-particle orbital momentum L. Further, we
know that the triangular identity must be satisfied, so that for a given
two-particle momentum L only those single-particle momenta /, I’ that
satisfy |/ — 1’| < L <1+’ can contribute. We can thus construct a lim-
ited, yet significant number of products for each L, which we denote
0,1, where n runs over all possible products uj u;‘}', that satisfy trian-
gular inequality. We then compute overlap between these functions
0,y = (0, |0,y ) and diagonalize it O = UAU'. Note that here each
L is treated independently, and in practice, we can neglect L which
are larger than some cutoff (when only p orbitals are occupied, L =6 is
very accurate, and L = 10 is converged within a fraction of a percent,
hence 2(/ +2) < L <2(I +4) is good, where / is maximum momentum for
occupied single-particle orbital).

The eigenvectors with the eigenvalues larger than some cutoff (for
example 10~*) are assumed to be linearly independent, and are used to
construct final product basis functions, i.e.,

L
V Aa
where U is defined above as the eigenvector of the overlap (0 =UAU ).

Finally, the three dimensional basis functions on the lattice at momen-
tum q are constructed with the help of the spherical harmonics:

0g2) = D 100 1) Uy ——> (15)

(r(IU(a,LM)MT = Ua,L(r)YLM(f)
where MT means the muffin-tin part of the space. In the interstitial
space, we use plane waves of reciprocal vectors G, i.e.,

(ralFG), = —=¢ 0"
Vv

where V is the volume of the unit cell. Notice that the Bloch’s phase
/" is used in the interstitial, but not in the muffin-tin spheres.

As it is convenient to work with the orthonormal basis, we diagonal-
ize the interstitial basis as well. Just as above we compute the overlap

Ogrg=—— [ eCCrad (16)

cell
T
=d661 = ). / G603, 17)
M,

where I denotes integral over the interstitial space, and MT, the
muffin-tin space of any atom « in the unit cell. We then diagonalize the
overlap O = UAU, and then construct the orthogonalized plane wave
basis as

_ - I

l76)1 GZ 1Z6')1 U Ve 18)
Note that here we added U' on the right-hand side, as opposed to
Eq. (15), because there is no small eigenvalue in the overlap between
plane-waves, and we do not reduce the basis by dropping U'. However,
including U' has a useful effect, namely, the resulting orthogonalized
plane waves are gauge invariant, in the sense that they are independent
of the arbitrary phase (unitary transformation) of eigenvectors, when
diagonalizing complex overlap with many degenerate eigenvalues.

Finally, we want to emphasize that the resulting piece-wise basis,
constructed by
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L) = { | Xa,Lm) TEMT 19)

lxg)y rel

is orthonormal, because both parts are orthonormal, and are valid
only in their respective parts of the 3D space. This basis (denoted by
| x4)) was used in the previous chapter to construct the matrix for the
Coulomb repulsion and the dielectric function.

2.5. SVD frequency basis

We also implemented GW using the minimal frequency basis, ob-
tained by singular-value decomposition of the analytic continuation
kernel, the invention of Ref. [47]. Below we will describe the algo-
rithm in which the frequency dependence of the dielectric matrix can
be handled within the minimal basis for bosonic quantities like W (iQ).
The algorithm was successfully used in the context of Dynamical Mean
Field Theory impurity solvers, and in diagrammatic Monte Carlo calcu-
lations, but to our knowledge not yet in the context of the GW method.
The power of the method is that a very complex imaginary axis func-
tion can be represented in terms of a relatively small number of basis
functions, and we will show below how to use it to store W, Q) and
speed up the bottleneck of the current GW implementation. However,
our current tests show that for materials tested in this report, namely,
wide band metals and semiconductors, W (iQ2) is surprisingly feature-
less function, and a spline with around 32-64 points on an imaginary
axis can describe it with precision around 1077, On the other hand, the
SVD basis also requires around 30 functions for the same 10~!° preci-
sion, hence we did not manage to achieve considerable speedup with
the SVD basis. We note, however, that an SVD basis with 30 functions
should be able to describe functions with more complex behavior, in
which splines might not perform equally well. The tests on narrow-band
metals would probably be more interesting tests of this approach.

The slowest part in our implementation is the computation of the
dielectric matrix ¢, and in particular its rotation from the band-basis to
the product basis. If we denote P(i, j,k, Q) in Eq. (9) as p;;(k, q,iQ), we
can rewrite Eq. (8) by

(A =ey = Y M}, (k. qp,; (K q, 1My (K, q) (20)
ijk

Here i, j are Kohn-Sham band indices, and /, I’ are Coulomb eigenbasis
indices. We note that the dimension of the Coulomb eigenbasis / is sub-
stantially smaller than the square of the number of bands, i.e., i ® j. As
this matrix-matrix multiplication takes most of the computational time
and needs to be performed for many Matsubara frequencies, it is de-
sirable to find a more compact representation for p; (K. q,iQ), so that
Eq. (20) would need to be performed only a few times. The basic idea is
to rewrite polarization in the band basis p;;(k, q,iQ) in terms of a small
number of svd-basis functions, similarly as in Ref. [47]. The analytic
continuation from Matsubara to real frequency is

A
G(iQ) = / ‘j; _();) @1

where A(x) is the spectral representation of the correlation function on
the real axis. The same equation can be written in discretized form as
G, =YK, ;A;, where the kernel takes the form:

n,i
Ax;4/AQ
K, =KQ,.x)= ———— ! "

22
iQ, —x; (22)

and AQ, and Ax; is the distance between the points on the imaginary
and the real axis and G, = 1/AQ,G(iQ2). Note that the kernel for the
analytic continuation has to be proportional to K, ; « Ax;/(iQ, — x;), but
it could be multiplied by an arbitrary separable weight function, which
will only modify the metric in which the resulting singular functions
are orthonormal.

We have chosen a normalization such that the resulting imaginary
axis singular-vectors will be automatically normalized using a standard
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metric [ U, (iQU, (iQ)dQ = 5, 4, as it will be shown below. It is also im-
portant to recognize that the two meshes (on the real and the imaginary
axes) are not equal. The real frequency mesh only needs to extend up
to the selected high-energy cutoff (say L). This also required to be very
precise in this interval with many points, as these functions strongly os-
cillate on the real axis. In contrast, the imaginary axis mesh needs to
extend far beyond the scale of L. However as the functions are more
smooth, a fewer points are typically needed. The rational for having
a larger energy cutoff on the imaginary axis lies in the fact that any
feature on the real axis, which is bounded in the interval |x| < L, will
taper off slowly on the imaginary axis with a behavior like 1/(L? + Q2)
for bosonic quantities. However, quantities on the imaginary axis are
very smooth, and in particular, tails require a small number of points
distributed in the logarithmic mesh.

It is obvious from Egs. (21) and (22) that \/AQ, G(iQ,)=Y; K, ; A(x)).
Next, we perform the singular-value decomposition of the Kernel K, ;
Eq. (22), and obtain K(Q,,x;) = X, #,(iQ,)s,V,(x;), where s, are the
singular values, and u,(iQ,)/1/AQ, = U,(iQ,) are the desired SVD-basis
functions. Now we see that

N UfliQ,) Uy (19,)AQ, = ¥ 11, (iQ, )1ty (1) = 84 o1
n n

because of the unitarity of the singular eigenvectors u,(i€,), which
proves that SVD-basis functions are an orthonormal basis. As it turns
out, only a small number of singular values s, are nonzero, because the
Kernel for analytic continuation is known to be singular. Consequently
this SVD-basis is the minimal orthonormal basis for representing Mat-
subara quantities. We use a fine tangents mesh on the real frequency
axis x;, and a different more coarse tangents mesh combined with log-
arithmic tails on the Matsubara axis for Q,, and we can afford here
a large number of real-frequency points (thousands) and also several
hundred on the imaginary axis.

Next we represent the polarization in band basis p;;(k.q,iQ,) in
terms of these basis functions, i.e.

Pk 4,iQ,) = Y U, (12,)P5 (k. q) (23)

where Pl.‘;(k, q) are coefficients in this SVD-basis. The crucial point is
that the number of coefficients « is much smaller than the number of
needed Matsubara points. For example, to achieve the precision of po-
larization p;;(k,q,iQ,) up 10719, we typically need 30 coefficients. In
this way, using these 30 coefficients on the SVD basis, we can then
compute polarization on a much larger number of Matsubara frequen-
cies.

First, we compute coefficients for polarization in band-basis
Pik,q@ =3, AQ,U,(Q,)p;;(k,q,iQ,) inside the tetrahedron method so
that we do not need to store large arrays p;;(k,q,iQ,), and we rather
store only the coefficients P/;(k, q). This is a simple matrix-matrix prod-
uct and can be done very quickly, as there is a small number of basis
functions U,. Next, we use these coefficients to get the dielectric matrix
on a product basis in two steps:

Cry(@= Y, My, ( @P (k) My (k. @) 24)
ij.k
(1 =o)y = Y, U,(Q)Cf, (@) (25)

The crucial point is that the product Eq. (24) can be done faster than
the product in the original Eq. (20), when the number of coefficients
P¢ is smaller than the number of Matsubara points i€,. There is some
overhead due to the second step Eq. (25), but this is quite fast, because
the product basis / is much smaller in dimension than the square of the
number of bands i ® j.

Finally, when comparing this SVD-basis implementation versus the
convolution with spline interpolation, as explained in Eq. (14), we
found somewhat mixed results. While both methods work well, the
spline interpolation seems to be slightly more robust in the cases we
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tested. This is because for Pade analytic continuation, we need to com-
pute self-energy to extremely high precision, and consequently, we
found that around 30 coefficients P* are necessary. However, W (iQ,)
seems to be quite a smooth function of Matsubara frequency in all cases
we tested, therefore with around 32-64 Matsubara points, we could also
achieve extremely accurate spline for the screened interaction W (iQ,).
Therefore in the test cases presented here, the SVD implementation did
not significantly improve over the previously discussed spline interpo-
lation. In cases with more nontrivial frequency dependence of W (iQ),
this SVD implementation will become more useful.

2.6. Real frequency and quasiparticle band structure

2.6.1. Analytic continuation

To obtain the self-energy on the real axis, we use the Pade ana-
lytic continuation method [73,74], as well as the contour deformation
technique, described below. The Pade method is accurate at low to
intermediate frequencies, when imaginary axis data is of very high ac-
curacy. We managed to arrange the numerics on imaginary axis to meet
this goal and to plot reliable band structures of materials around the
Fermi level, as confirmed by the direct contour integration technique.
We emphasize that for metals, a few pole approximation in Pade-type
fitting commonly employed in many other GW implementations, is usu-
ally not sufficient, and we avoid using such method. Instead we force
the Pade approximate to go exactly through all Matsubara frequencies
calculated (between 32-64), hence the number of poles in such an an-
alytic function is large (between 30-62). For future diagrammatic MC
calculations, we anticipate using the maximum entropy method instead
of Pade, as MC calculations are seldom of high enough precision to al-
low one to use Pade approximation.

2.6.2. Contour deformation integration

We also implemented the contour deformation integration tech-
nique [59-63,75], which is an alternative to the analytic continuation
method and allows one to compute the self-energy directly on the real
axis. While this technique relies on a particular form of the GW self-
energy and is not straightforwardly extendable to higher-order Feyn-
man diagrams, we want to point out that there is a recent promising
progress in the direction of the higher-order evaluation of Feynman
diagrams on the real-axis using the algorithmic Matsubara integra-
tion [76,77], whereby analytic expressions for higher-order Feynman
diagrams are being derived, similar to contour deformation technique,
for convolutions, and completely avoids integration over frequency.
Note however that currently this has been applied only in the context
of a single band Hubbard model, and the uniform electron gas [78].

The contour deformation is very successful in GW implementation
because one needs to evaluate only simple integrals (convolutions)
where all the poles of the integrand are either known exactly or can
be avoided altogether by choosing the appropriate shape of the con-
tour. For example, to evaluate the self-energy in Eq. (10), one first takes
the zero temperature limit, changing the sum over Matsubara frequen-
cies into an integral, and one then uses the zero-temperature correlation
functions G° and W, which are different from Matsubara and retarded
analogs, and have the poles above (below) the real axis in the frequency
below (above) E. The bosonic quantities, such as W, have a vanish-
ing chemical potential, hence the poles jump across the real axis at the
origin (see Fig. 4). The convolution Eq. (10) at zero-temperature takes
the form

o
S@=- | Lw (6" (@+2) (26)
27 Tk
—0o0

where we left out the matrix elements M for simplicity and took into
account that W is even in frequency. This convolution is actually car-
ried out only for the correlation part of the self-energy, hence strictly
speaking W, should be understood as W, — ¥V and X should be under-
stood as X} . However, for simplicity, we keep here a simpler notation of
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Fig. 4. Contour of the integration used to evaluate convolutions in GW approx-
imation.

X, and W,. When convoluting G° and W we notice that one can choose
a contour, depicted in Fig. 4, which runs along the real axis from —co
to oo, and it closes in such a way that one completely avoids the poles
of W, and only poles of G° fall inside the contour. As a result, we do
not need to know the residue of W when carrying out the integral, and
only the poles of G° and the residue at the poles are needed. These are
particularly simple, namely, poles are at z = &,_, ; — @, and residues are
unity. We can replace the integral over the real axis with the closed
contour-integral over the shape depicted in Fig. 4, minus the integral
over the imaginary axis

[

/ ;—z Wy (z)G (w +2)
=}1{2d—ZW(z)G (w+z2)
=100 dz
- / 2—W (2)G)_ (@+2) (27)
+ico

The integral over the remaining semi-circles vanishes, because G° and
WP fall off sufficiently fast, i.e., as 1/w and 1/w?. The imaginary axis
integral (the last term) is essentially the same integral with which we
calculate the self-energy on the imaginary axis, and we know that the
integrand is smooth and well-behaved, hence the spline integration dis-
cussed above gives very accurate results. To compute the self-energy
on the real axis Eq. (26) we then just need to add the contour inte-
gral, which can be evaluated with the help of the residue theorem. The
crucial point here is that the integrand is simple enough that we can
analytically find all poles of the integrand inside the contour, and we
can evaluate them. As discussed above, the poles of W are all out-
side of our chosen contour, hence they do not contribute. The G° has
poles at z=¢&_; — and for z >0 they appear in the first quadrant
only. The residue of G° in these poles is unity, hence the contour in-
tegral is Y <tq,<Ep W Ek—q; = @) On the other hand, when z <0
and &_, ; < Ep, the poles inside the contour appear in the third quad-
rant, and the integral is =¥ .. o, W(fxq; — @). The minus sign
comes from the opposite orientation of the integral in the third quad-
rant. Putting all those terms together, we see that the self-energy on the
real axis can be calculated in the following way

+oo
d . .
5 (@) = — iWq(tx)Gﬁ_q(w +ix)

—o0

= X Whicg -

0<fk_q;<Ef

Y Wheg - o) (28)

Ep<ég_q <o

While this integral appears almost as straightforward to implement
as the imaginary axis self-energy (Zy(iw)=— /" +eo "x W, (zx)GO (tco +
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ix)), the overhead in calculating Wy (or dielectric matrix €) at numerous
additional points along the real axis incurs a significant computational
overhead. To evaluate the residues in Eq. (28) we use the real frequency
mesh with energy spacing of 10 mHa, which requires an additional
74 points on the real axis for a typical 10 eV window of band struc-
ture plot. In addition, we use 32 points (or 64 points for checking the
convergence) of non-uniformly distributed points along the imaginary
frequency axis between 0 to 20*i mHa.

The comparison of Pade continuation with contour deformation in-
tegration is presented in Fig. 5. The difference is barely noticeable in
the frequency range of interest. This is because the self-energy in these
moderately correlated systems is relatively featureless. In 3d metallic
systems the differences are larger, but this is left for future studies.

2.6.3. Interpolation of band structure

To obtain the band structure plots, we implemented two comple-
mentary techniques: the Wannierization using wannier90 [66,67], as
well as interpolation using technique of Refs. [64,65]. The two meth-
ods are compared in Fig. 8. They give almost identical band structures
when the number of momentum points in the calculation is large, for
example, 16 x 16 x 16 mesh. When the number of momentum points is
small, for example 4 x 4 x 4, both band structures are relatively inac-
curate, as the Fermi surface singularities are not properly resolved. We
want to point out that this is very different from typical DFT calcula-
tion, where the convergence with the momentum space mesh is very
rapid, as the semilocal correlations are quite insensitive to the quality
of the momentum space mesh.

Wannierization: The Wannierization requires two objects, the projec-
tion to local orbitals Ag‘j = (gilyw ;) and the overlaps between Bloch
orbitals at neighboring k-points M,.lf}h = (Wi, 1€ |yiyy ;). Here g; is a
chosen local orbital and y;, are Kohn-Sham bands. The latter is closely
related to the overlap between the product basis and Kohn-Sham bands,
i.e., the matrix elements M, ;;(k.q) = ( 23w Vi " ) defined above. In-

deed, if we choose (r|yd) = ¢/ in the muffin-thin sphere, and we
choose the G =0 function in the interstitials, then M kb _ M: ij (k,—b),
hence these matrix elements are easily computed w1th eXlstlng GW ma-
chinery.

Within LAPW method, the overlaps Ag‘j are readily available for all
functions in the muffin-thin sphere, including «,(r)Y,,,(r), #;(r)Y,,,(r) and
local orbitals ulLO(r)Y,,,,(r). We use singular value decomposition (SVD)
to find the linear combination of local orbitals, which have the largest
overlap for a certain set of bands that are the target of wannierization.
More precisely, we first compute the overlaps

<u1mYlm|ij> K[m/ (29)

where  is a combined index for u;, i, and u/?. Notice that in this step

we orthogonalize uILO so that we have orthogonal basis (u} |”//m/> =
Syimxt11m - Next we perform SVD on the local component

k
2 A,([m,j = UKIm.iSiVi?;" (30)
k

where s; are the singular values. If the number of targeted bands is n,
we choose the largest n singular values s;, and create the linear combi-
nation of local orbitals with them

<r|g1> - Z wlm,il] (I‘)Y,m(l‘) (31)

klm

so that the local component of the needed overlaps are
D A =sv] (32)
k

and are guaranteed to be non-vanishing. Of course matrix element Ag‘j
could still vanish at a particular momentum point, but on average it
must be large, as we chose the largest »n eigenvalues s; in SVD decom-
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position. The above-defined quantities are finally used as input to the
Wannier90 software.

Band energy interpolation: This technique is an alternative to the
Wannierization technique (see Refs. [64,65]) and relies on the fact that
the quasiparticle energy is a scalar and hence invariant to all operations
of the space group. The quasiparticle energy at each momentum point
k can be expanded as

e®) =) a,S,(K) (33)

m

where §,,(k) is the star of the lattice, i.e.,

S0 = —— 3 b (34)
sym sym
and I';,,, are all symmetry operations of the lattice, and R,, are the real

space lattice vectors. Without loss of generality, we choose m = 0 when
R,, = 0. Notice that S,,(k) has the full symmetry of the crystal and is
a scalar of the lattice space group. We should use here a considerably
larger number of lattice vectors R,, as compared to the number of sim-
ulated momentum points in the first Brillouin zone.

In this method, we require £(k) to coincide with the computed val-
ues of the quasiparticle dispersion (g, ) on the discrete grid being used
in the calculation, i.e., k; with i =1, ..,n and at the same time is smooth
throughout the Brillouin zone, which is achieved by a constrained min-
imization of the following functional:

R=Y |e()]? + ¢ |Vie®k)|? + o | Vie(k)|* + -
k.

i

+ Z Ai(e(k) — &), (35)

where 4; are the Lagrange multipliers. This functional can be rewritten
in real space by the help of definition Eq. (33)

R=Y a(1+c/R2+¢, R+ (36)
+ X Y, anSulk) ~ ex,) (37)

Here ¢; are some coefficients that regularize the dispersion, and we
typically use ¢; = -2x 0.25/R2,, ¢, = (0.257/R} , and ¢; = 0.25/RS ,
where R,, is the nearest-neighbor distance so that the first part of
the functional has a particularly simple form a2 ([1 —0.25(R,,/R,,)*]* +
0.25(R,,/ R,;)°).

Ref. [64] pointed out that m =0 term in Eq. (36) is harmful as it
forces the average of the band to vanish, while from definition Eq. (33)

it follows that it should be equal to the center of the band, i.e.,

1
ap = N Z ex, (38)

therefore it is best to drop m =0 term in Eq. (36) and minimize

N
R= a(l+c¢;R:+,RY + ) (39)
m=1
N
+ 2 1Y apS, k) - &) (40)
i m=0

Here N has to be substantially larger that the number of points in the
calculation, i.e., at least three to four times larger.

The constrained minimization can be performed analytically, and it
requires only inversion of a matrix and matrix vector multiplication. For
more detailed information of how to solve this minimization problem,
the reader is referred to Ref. [64].

2.6.4. The quasiparticle dispersion, scalar versus matrix form
We implemented the so-called GyW, and GW,, methods in both the
scalar and the matrix form. In all cases, we compute screened inter-
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Fig. 5. Comparison of matrix self-energy to diagonal self-energy approxima-
tion in Na, Si and Mg using G,W, approximation and contour deformation
integration as well as Pade analytic continuation. Na and Mg band-structure
is computed with 16 x 16 x 16 k-point mesh and Si with 6 X 6 X 6 k-point mesh.
Interpolation is performed with a maximally localized wannier function algo-
rithm.

action W, from Kohn-Sham Green’s function G,. In G,W,, we convolve
W, with Kohn-Sham Green’s function Gy =1/(w+u— gf{) using Eq. (14).
Here eﬁ is the Kohn-Sham energy. In GW,, method, the single-particle
Green’s function is determined self-consistently and is approximated
with the quasiparticle form at every iteration.

The scalar (non-matrix) approximation is most commonly used in
GW, and its validity has been recently challenged in such a simple sys-
tem as Si [79]. Therefore we checked the difference between the matrix
form and the diagonal form of the self-energy for the systems we study
here, including Si, Na, and Mg (see Fig. 5). We use the contour inte-
gration technique for both the matrix and diagonal self-energy and we
also compared it with Pade continuation for diagonal self-energy. The
calculation is converged with 6 x 6 x 6 k-points for Si, and 16 x 16 x 16 k-
points for Na. Fig. 5 shows that the diagonal self-energy approximation,
as implemented here and explained below, shows almost no difference
with the full matrix form, hence conventional scalar form is definitely
justified at least for moderately correlated systems studied here. We
checked that in more correlated 3d systems the matrix self-energy does
make a difference, as the interaction in general increases hence GW
bands become substantially different from DFT bands. It is also worth
mentioning that Pade analytic continuation is excellent in these mate-
rials because the self-energy has very little frequency structure in the
range of bands we are interested in.

In all cases, we are searching for the frequency w where the in-
teracting Green’s function has poles, or equivalently, the zeros of the
following matrix equation

ol — € — (@) + Vi, =0 (41)
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Here Zy(0) = X + Z{ (o) is the sum of exchange and correlation self-
energy, and sﬁ is the diagonal Kohn-Sham energy in the Kohn-Sham
band basis.

We use the linearized form of the self-energy to determine the poles
of Green’s function, i.e., we expand

L@ =2 )+ T - Z7 Yo — &) (42)

with I — lel =dX(w)/dw|,-,,, is the quasiparticle renormalization am-
plitude evaluated at the quasiparticle energy ;. This leads to the
following eigenvalue problem

Z @ — ) + (e ] — €)= Zpleg ) + Vi =0 (43)

or equivalently

w=e;+ 2 () — e, ] + Sy e) ~ Vi) Z° (44)

Since we are looking for the real solutions of this equation, we make
all quantities in the above equation Hermitian, i.e., Xy (e ;) < (X (g ;) +
(e )/2-

Both GyW, and GW,, are traditionally solved in the scalar form,
namely, the self-energy and exchange correlation potential are approxi-
mated by the band-diagonal form, i.e., Zy ;() = (wy ;| Zx (@) |y ;), Where
v, are Kohn-Sham eigenvectors, hence Z, are numbers, evaluated for
each band Z, ; and the quasiparticle energies of band i are

o’ =y + Zy, (5%,- — &g + Zk(Eg) — ch) (45)

For the case of GyW,,, the self-energy is computed by the Kohn-Sham
band energies, ¢ ; = eﬁ .» hence self-energy can also be expanded around
Kohn-Sham energies, to get

O i = Zia (Bl ) = Vi) 46)

In the case of GW, the self-energy is computed using the self-
consistent quasiparticle energies gy ; « a)l.q" from previous iterations
from the Eq. (45), and the iterations are continued until & ; = " up to
some precision.

Finally, when using the matrix form of the self-energy and the ex-
change correlation potential, we construct a Hermitian Hamiltonian
from Eq. (44)

1/2

172
Hzp =z (eﬁ — e ]+ Zi(e )~ V, k

k ) Z 47)

and solve for the eigenvalue 4;, for which the eigenvector is the closest
to unity eigenvector with component i close to 1, and zero otherwise.
Clearly, we need to construct different Hamiltonian H!” for each band i,
and take only one eigenvalue from the set of eigenvalues of this Hamil-
tonian. The quasiparticle energy is finally given by w? =g ; + 4;, as is
clear from Eq. (44). For GyW, we can equate ¢, with 52 in the above
equation, which avoids the need for self-consistency. In GW,, we require
self-consistency in computing the self-energy, hence the expansion is
also done around the current quasiparticle band energy.

When comparing the matrix form of the self-energy with the di-
agonal scalar approximation in Fig. 5 we notice that apart from a
small downward shift of the first band in Si (around -12 eV) there is
no noticeable difference between the diagonal and matrix form of the
self-energy. In particular, all metals studied here show no appreciable
change when the off-diagonal self-energy is included. We notice that
both the exchange self-energy and DFT semi-local exchange correlation
potential are not very small, while the correlation self-energy tends to
be somewhat smaller. However, their total effect is small as can be
directly checked by evaluating the difference between the eigenvalue
from Eq. (44) and its diagonal equivalent Eq. (45). This difference tends
to be around mHa for relevant bands in the plot.
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2.7. Miscellaneous

There are several important technical details of the implementation,
which are not going to be extensively reviewed here, because they have
been nicely explained in other works, for example in Ref. [35] and
Ref. [10].

a) The algorithm to compute the matrix elements of the bare Coulomb
repulsion has been thoroughly worked out in Ref. [35], and we
followed their implementation.

b) The inclusion of core states in the calculation is an important ad-
vantage of such an all-electron implementation. Here we again
follow the implementation of Ref. [35] and include core states in
the basis. They contribute to the product basis, to the polarization
calculation, and to the single-particle Green’s function.

c¢) We also implemented the q — 0 limit as in Refs. [35], and with a

few more tricks from Ref. [10,80]. This analytic treatment of small
q limit of polarization and the Coulomb repulsion is essential, as the
number of g-points is still quite limited, and we can not afford to
drop q =0 point, rather we worked out the analytic limit of polar-
ization using k - p perturbation theory. It turns out that P, ,(q — 0),
Py¢(q— 0)and P (q — 0) are proportional to q2, q, and q respec-
tively, so that even though the Coulomb repulsion is diverging at
q — 0, the dielectric constant is not, and its analytic treatment re-
quires one to compute the matrix elements of the momentum iV
operator, similarly as in the calculation of the optical conductivity.
The term proportional to ¢ and g is usually called head and wings,
respectively.
When summing the terms that are divergent at q — 0 but inte-
grable, we have to add the correction due to a finite number of
momentum points in the q mesh. The divergent terms can have ei-
ther 1/4? or 1/q behavior, and would require one to sum Y Iqi—’('“rl”
where n=1 or n=2. We first evaluate the sum by dropping the
divergent term q = G =0, and later we add the correction A,
which vanishes for very dense momentum mesh, but gives correc-
tion when momentum mesh is sparse. Specifically,

’

an an
—_— > ——— +aq, Al (48)
q;; la+Gl" (qu)#o la+Gl" "¢
with
%4 e—oz(q+G)2
R Ay s
& (21)? la+Gl
o—*(q+G)? (49)
@G0 A+ Gl

The first term in Eq. (49) is evaluated analytically, while the second
term is evaluated on the discrete mesh. Here we added a small
positive constant « in the exponent, which does not change the
nature of the q — 0 divergency, but makes the integral converge
fast. If the q mesh is dense, A” vanishes, while a sparse q mesh
has mostly contribution at small q + G and is hence very weakly
dependent on «a for small a.

d) In contrast to insulators, the metallic systems also contain the so-
called Drude term as part of the dielectric matrix. This is in addition
to other singular terms arising in insulators, which were briefly dis-
cussed above. Here we show where Drude’s term comes from, and
how we treat it. In the eigenbasis of the Coulomb repulsion, we
know that the singular eigenvalue in the limit q — 0 is 4z /4%, and
the exact eigenvector is ¢4 /4/V,,,,. This is because the Coulomb
repulsion in the plane wave basis and in the eigenbasis of the
Coulomb matrix (expressed in terms of LAPW product functions)
are similar matrices, and its non-degenerate singular part is there-
fore unique. The projection to the Kohn-Sham bands of this singular
eigenvector therefore is
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Next, we want to evaluate the dielectric function in the same q — 0
limit, which follows from Eq. (8)

(50)

iQ, — (Expqi — Exi))

47N,
q2 Vcell k.,i

1- E1=0,11=0 ~ (51)

where & ; = £ ; — u. Within k - p perturbation theory, the difference

k

L. g . _ap;
of Kohn-Sham energies is ey, q; — € & - (Wil = iVIyy ) = = In-
serting this expression into Eq. (51), and expanding for small q, we

get the following result
2
L ) (SR
de K m

Note that we dropped the linear term because its contribution van-
ishes as it is odd in q. Now we recognize the plasma frequency

47N,

1- N —— 52
£0,0 Vo ; (52)

4zN df 2
2 _ s Kk
o () .
in terms of which the Drude part of the dielectric constant is
2
1- 0)~r —2— 54
Eo,o(q - 0) (iQH)Z (54

Note that we need £~! — 1 to compute the self-energy in Eq. (11).
While this Drude term gives singular contribution on the real axis,
it is however well behaved on the imaginary axis, as it takes the
forme‘l—l=m—l.
This Drude term, which appears at q =0, is of course missed in the
discrete sum of Eq. (8), hence we need to add it to the so-called

head part of the dielectric matrix, i.e., g9y — €9 — before we

{l)p
(iQ,)?’
invert the dielectric matrix to compute !,

3. Results
3.1. Benchmarking and validation in insulators

First, we describe our results for insulating systems to benchmark
our GW implementation. We have computed GW quasiparticle energies
and band gaps for a set of prototypical insulating materials, such as Si,
BN, SiC, MgO, ZnS, CdS, LiF, etc. The experimental band-gap ranges in
this set of compounds between 1.2 and 14.2 eV. The 8 x 8 x 8 k-point
grid is considered here. The starting point for GW calculation in insu-
lators is obtained from DFT-GGA simulation using PBE functional. It is
worth mentioning here that the gap size does depend on the choice of
the DFT exchange-correlation functional. However, the future diagram-
matic Monte Carlo method, which sums up all relevant higher-order
Feynman diagrams, should not anymore depend on the starting point
as the higher-order counter-terms can be properly subtracted [49].

The computed bandgap within GyW, and GW,, are summarized in
Table 1. We compare them with PAW [81] and previous LAPW [45]
results with and without additional local orbitals. We used the experi-
mental lattice constants from the literature (see column 2), which are
close to the values quoted by Shishkin and Kresse in Ref. [81], but some-
what different than those used in Ref. [45]. Experimental band gaps are
quoted from Ref. [81], which compares well with our results and previ-
ous literature. We also compare our results obtained with and without
considering LOs, and as can be seen from the table, additional LOs typi-
cally increase the size of the gap. The energy levels for LOs are obtained
from Ref. [45].
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As is well known, for every band-insulating compound, the bandgap
increases in GyW, as compared to DFT-PBE value. In GW,, the band
gap is further increased compared to GyW,, especially for wide gap
insulators like LiF. We mention in passing that GW,, calculation is a
very cheap post-processing step, once G,W,, calculation is finished. This
is because most of the computational time is spent in evaluating the
screened interaction W, and once this is available, only the convo-
lution Eq. (14) needs to be repeated several times to determine the
self-consistent quasi-particle energies ¢, from Eq. (45).

As is clear from Table 1, our results agree well with previous LAPW
work by Jiang and Blaha [45], and are also very close also to PAW
results of Ref. [81]. The slight difference in the size of the band gaps
between our results and those of Jiang and Blaha [45] is mainly due to
the difference in the lattice constants used in the two calculations. For
example, the computed band-gap of CdS using our code is 1.88 and 2.01
eV in GyW, and GW,,, respectively, while it is 2.02 and 2.18 in Ref. [45].
If we rerun Gap2 code (used in Ref. [45]) on the experimental lattice
constant quoted here, the band-gap is very close to our values, namely,
1.90 and 2.04 eV in GyW, and GW, respectively. We also noticed in
passing that somewhat smaller muffin-tin radii in combination with a
bit larger plane wave cutoff (“RKmax”) tends to slightly increase the
gap (within a percent) in most of the insulators. In our calculations we
have not fine-tuned these values.

In Table 2 we show how the size of the gap depends on the param-
eters of the product LAPW basis. Here we use a converged number of
Matsubara points (32 for evaluating W}, and 160 for the convolution of
W, and G). The important parameters are: the number of local orbitals
(LO), the highest allowed orbital momentum of the product basis L,
defined just above Eq. (15), the maximum energy of the radial orbital
included in the product basis PB,,,,. Namely, when constructing the
product basis, we always include all the basis-functions corresponding
to occupied states as well as core state, however, we can neglect some
radial basis functions, which are solutions of the Schroedinger equa-
tion at very high energy (beyond PB,,,,). We start convergence tests
with the cutoff L,, =6 and PB,,,, =20Hartree above the Fermi en-
ergy, which gives a gap in Si within 3% of the converged value. This
requires the product basis size of 437, and the Coulomb eigenbasis size
of 405. Clearly, in such an economic setup almost all basis functions
are important, and hence calculation in eigenbasis does not speed up
the calculation much.

Next, we add five LO’s at the energies tabulated in Ref. [45], which
converges the gap within 0.5%, and increases the product basis for ad-
ditional 138 functions, while the eigenbasis size is increased for only
61 functions. Increasing PB,,,, to infinity changes the gap size for less
than 0.2%, however, it increases the product basis substantially to the
size of 1407, i.e., additional 832 basis functions. Here the power of the
Coulomb eigenbasis becomes apparent, as that basis increases for only
78 additional functions, i.e., one order of magnitude less than the num-
ber of functions added to the product basis. Finally, increasing L,
from 6 to 10 adds an additional 0.5% to the gap size, and increases the
product basis for additional 438 functions, while the Coulomb eigenba-
sis is increased for 354 functions. Finally, increasing PB,,,,, at already
converged L,,,. = 10 does not change the gap but increases the product
basis substantially. Fortunately, the eigenbasis is increased much less.
Hence the energy cutoff PB,,,, =20Hartree (default in Gap2 code) al-
lows one to substantially reduce the computational cost and reduce the
product basis size and not affect the results much. At the same time, the
Coulomb eigenbasis is a much more economic basis than the product
basis to perform calculations of polarization matrix and W matrix.

Finally, in Fig. 6 we plot the band structure along the high sym-
metry lines for selected insulators, namely Si, SiC, ZnS, and LiF. As is
well known, the major effect of GyW,, and GW, as compared to DFT is
the shifting of the valence and conduction bands away from each other
to increase the gap size. The connectivity of the bands and the over-
all band-structure is only moderately changed from its DFT structure,
and the band renormalization is also quite weak in most band insula-
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Table 1
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Bandgap (in eV) of various insulators as computed in PBE and G,W, approaches and their comparison with experiments and previous GW results using PAW
and LAPW basis, which are quoted from Ref [81] and Ref [45] respectively. Comparisons of band-gap without LO and LO=5 are shown on the top and bottom

respectively.
Compound a PBE G,W, GyW, GyW, GW, GW, GW, Expt
(;\) (present) (LAPW [45]) (PAW [81]) (present) (LAPW [45]) (PAW [81])

Si 5.430 [82] 0.573 LO=0 1.095 1.03 1.13 1.09

LO=5 1.11 1.12 1.12 1.19 1.19 1.20 1.17
BN 3.615 4.472 LO=0 5.97 6.04 6.19 6.27

LO=5 6.15 6.36 6.10 6.39 6.61 6.35 6.1-6.4
Cds 5.832 [83] 1.13 LO=0 1.88 2.02 2.01 2.18

LO=5 1.92 2.19 2.06 2.05 2.38 2.26 2.42
MgO 4.213 [84] 4.74 LO=0 7.04 7.08 7.45 7.52

LO=5 7.22 7.52 7.25 7.63 8.01 7.72 7.83
SiC 4.358 [85] 1.36 LO=0 2.13 2.23 2.25 2.36

LO=5 2.16 2.38 2.27 2.27 2.53 2.43 2.40
ZnS 5.41 [86] 2.08 LO=0 3.19 3.15 3.44 3.35

LO=5 3.27 3.35 3.29 3.48 3.61 3.54 3.91
LiF 4.028 9.08 LO=0 12.96 12.36 13.45 13.98

LO=5 13.42 14.27 13.27 14.18 15.13 13.96 14.2
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Fig. 6. Band structure for insulators as computed in GGA (PBE), G,W,, and GW,, approximations without LOs for: (a) Si, (b) SiC, (c) ZnS, and (d) LiF. For each

compound we notice an increase in the band-gap in either GyW,, or GW,,.

tors, except for LiF, where the band renormalization from GGA is quite
strong. We notice that the shift in valence and conduction band in GW
is present throughout the BZ and is not particular to a specific symmetry
point.

3.2. Results for metallic systems with convergence tests

Many widely available software packages now support GW correc-
tions to gaps in semiconductors, however, very few support GW cal-
culation in the metallic system, and even fewer allow one to plot the
band structure throughout the Brillouin zone. This is due to the nu-
merical difficulty in treating the Fermi surface singularity in metallic
systems, which oftentimes leads to less accurate results on the Matsub-
ara axis, and consequently extremely difficult analytic continuation to

11

real frequency. Here we have improved the stability of the tetrahedron
method, as implemented in Gap2 code [68], and improved the convo-
lution between the G and W, so that the standard Pade approximation
is stable.

In Fig. 7 we show the correlation self-energy on the Matsubara
and on the real axis for Na at " point of the last valence band. The
imaginary part of the self-energy on the real axis is roughly quadratic
with a very large coherence scale, which is roughly proportional to the
width of the parabola. The real part is linear at low frequency, how-
ever, at the frequency of the quasiparticle peak (around -3 eV), ReX
substantially deviates from the straight line, hence simple quasiparti-
cle approximation, which expands around zero frequency, would lead
to smaller self-energy at —3eV, and consequently to larger bandwidth
of Na. This demonstrates that accurate analytic continuation is crucial
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Table 2

Convergence of gaps for Si with experimental lattice constant a = 10.262536 a, the plane wave cutoff for interstitial basis RKmax = 8, and number of momentum
points 4 X 4 x 4. Here LO stands for the number of local orbitals. We choose the same local orbital energies as in Ref. [45]. L,,,, is the maximum orbital momentum
L allowed in the product basis and introduced above Eq. (15). PB,,,, is the cutoff energy in Hartee’s for including an orbital in product basis. P.B. size is the size
of the product basis, namely the dimension of the index « in M, ;;(k,q). eigen. size is the size of the eigenbasis of the Coulomb repulsion, i.e., the dimension of the

index / in 1\7,4,»,»(11,11)-

Setup gap GOWO I' - X gap GOWO gap GWO I' - X gap GWO P.B. size eigen. size
0LO’, L,,, =6, PB,,, =20H 1.063 eV 1.201 eV 1.128 eV 1.267 eV 437 405
510, L, =6, PB,,, =20H 1.090 eV 1.224 eV 1.158 eV 1.292 eV 575 466
510, L,,. =6, PB,,,. = 1.090 eV 1.224 eV 1.158 eV 1.292 eV 1407 544
5LO%, L, =10, PB,,,. =20H 1.095 eV 1.227 eV 1.162 eV 1.295 eV 1013 820
5L0%, L, =10, PB,,, = 1.095 eV 1.227 eV 1.162 eV 1.295 eV 2019 958

Ref. [45], a=10.23543a, 1.12 eV 1.19evV

Ref. [10], a =10.26253a, 1.11ev

Experiment 1.17 eV 1.25eV 1.17 eV 1.25eV

o s I\{Igtsu ba rzi 5frequenzcg/ 25 30 the older results, but is still around 8% too large. It is likely that this

. relatively moderate error will be eliminated by the proper inclusion of
vertex corrections. We notice in passing that the inclusion of local ver-
tex corrections, as implemented in DMFT, indeed agrees with the new
ARPES rather well, with predicted bandwidth of 2.84 eV [89].

In Fig. 8 we show band structure plots along high-symmetry lines
for Li, Na, and Mg, and we present the bandwidth (energy difference
between the I' point energy and the Fermi energy) in Table 3. We com-
pare our results to those of Ref. [90], and to the experiment. First, we
notice that the band structures of all these compounds are remarkably
similar to the LDA (or GGA) results. As the Fermi surface is almost ex-
actly spherical in these compounds, and the band structure is close to a
renormalized free-electron solution in the proper periodic potential, the

-2.5 T T T

6 _a 5 0 3 2 5 only relevant number in such calculations is the bandwidth. We notice

Real frequency that the bandwidth is reduced as compared to LDA in all the compounds

studied here. The range of band narrowing compared to LDA is about

Fig. 7. Self-energy on Matsubara and real axis for Na at the I" point of the va- ~ 2-7%, which is far smaller than in the experiment or reported in
lence band. The straight line on real axis shows the quasiparticle approximation Ref. [9]. It is however quite similar to recently reported self-consistent
expanding around zero frequency. quasi-particle GW values in Ref. [90]. We also notice that our GyW,
results compare slightly more favorably with the experiment than the

for extracting precise bandwidth of metals, as very accurate self-energy ~ Self-consistent quasi-particle GW method, nevertheless, there is a sub-
at finite frequency is required, beyond linear approximation. We also stantial renormalization effect missing within G,W,, or QSGW method.
checked the precision of the Pade analytic continuation by comparing These results, therefore, suggest that the vertex corrections beyond GW
it to contour deformation integration in Fig. 5, which shows an excel- might be substantial even in these systems with predominantly s and
lent agreement between the two methods. p electrons. Such selected vertex corrections were studied in Ref. [90],
A somewhat surprising fact is that even though we use tetrahedron and with more phenomenological ansatz also in Ref. [91]. The local
analytic integration over momentum points, we still find that a very vertex corrections were studied in Ref. [89], which predict bandwidth
large number of momentum points are necessary for converged results very close to the newer ARPES results [88]. However, we believe that
in metals. While even 4 x 4 x 4 grid gives approximate spectra which re- a more systematic approach offered by the diagrammatic Monte Carlo
semble LDA bands, the convergence with increasing momentum points method would be very useful here, to understand the rate of the pertur-
is slow, and is presented in Fig. 8 (a). For comparison, we also plot bation theory convergence with the perturbation order in metals with

LDA values and ARPES data which are reproduced from Ref [87] and predominantly s and p electrons.
Ref. [88]. We notice that 4 X 4 x 4 mesh does not have a Fermi sur-

face crossing between I' — N, hence the topology of the Fermi surface 3.3. Scaling and computational cost

is wrong at this approximate mesh. Moreover, the maximally localized

wannier interpolation (dotted lines) is quite different from the interpo- One of the biggest bottlenecks in GW calculations is the computa-
lation of Ref. [64] (straight line), which agree only in discrete points tional cost of simulations and the scaling of the software. Although,

at I, N and halfway between I' — N, i.e., the points being used in theoretically GW scales as O(N*), where N is the number of bands,
the calculation. The bandwidth is severely overestimated, beyond LDA while DFT scales O(N?), practically we find GW method is around two

bandwidth. With 8 x 8 x 8 mesh the Fermi surface and the bandwidth are orders of magnitude slower compared to DFT even for the smallest sin-
accidentally very close to the experimental data of Ref. [88]. However, gle atom unit cell with only around hundred of bands [94], and becomes
this is not a converged result within GW approximation, as 12 x 12 x 12 even slower with increasing system size. Hence the search for greater ef-
mesh shows substantially larger bandwidth, close to LDA results. Only ficiency of the GW implementation and GW algorithm has become one
the 16 x 16 x 16 and 20 x 20 x 20 mesh agree, and can be taken as the con- of the important research directions in the community [36,8,37-44].
verged result with GW approximation. The Na bandwidth within G,W,, One possibility is to reduce the number of necessary unoccupied states
is 3.12 eV as compared to LDA value of 3.3 eV, and ARPES results from and consequently reduce the scaling from O(N*) to O(N3) [43,39,95].
1988 [87] of 2.65, and newer 2022 results [88] of 2.88 eV. We notice Here we focus on the alternative direction in which we reduce the

that the new ARPES bandwidth is much closer to GW prediction than prefactor, and keep the O(N*) scaling. This is because for higher-order

12



K. Haule and S. Mandal

Exp 1988
m Exp 2022
LDA
4x4x4

Computer Physics Communications 295 (2024) 108986

-1.01
- N 8x8x8 A
? -151 —— 12x12x12 3
g —— 16x16x16 5
fus = — LDA
“C) -2.0 20x20x20 GCJ —— GoW, Wannier
i w GoWy Interp
-25 A
Na /
-3.0 /
N ®
-35
N r N
~
101 \ /

— LDA
—— GoWo Wannier

Energyl[eV]
S

Energyl[eV]

GoWy Interp
J , \
/ 7 __ ioa N
N o = e
P r N L H A

Fig. 8. (a) Convergence of the band-structure with momentum grid in Na, showing the bandwidth of the occupied bands for metals in GW approximation. The dashed
curves show the interpolation using method of Refs. [64,65], while the continuous curves correspond to maximally-localized wannier functions interpolation [66,67].
Note that the 8 x 8 x 8 result is not yet converged, but is accidentally close to the newest experimental ARPES. The 16 x 16 x 16 and 20 x 20 x 20 curves are
indistinguishable in this plot, hence converged. Red dots (Exp 1988) and blue squares (Exp 2022) are the experimental ARPES data, which are reproduced from
Refs. [87] and [88], respectively. Band structure for elemental metals for (b) Li, (c) Na, and (d) Mg as computed in LDA and G, W, at 16 X 16 X 16 momentum mesh.
The solid and the dashed line correspond to Wannier interpolation and the interpolation of Refs. [64,65]. (For interpretation of the colors in the figure(s), the reader

is referred to the web version of this article.)

Table 3

Bandwidth of occupied bands for elemental metals as computed in LDA and G,W,, approaches and their comparison
with experiments and self-consistent quasi-particle GW (QSGW) which are adopted from Ref [90].

Compound LDA

G,W, (present)

Expt QSGW [90]

Li
Na
K
Mg

3.46
3.30
215
1.31,1.65, 6.89

3.39
3.12
2.00

1.29, 1.68, 6.66

3.17
2.07

2.65 [87], 2.88 [88]
1.6 [92]
0.9, 1.7, 6.15 [93]

Feynman diagrams, for which this software will be used, such a trick of
reduced scaling is unlikely to be found. Hence, we here concentrate on
optimizing the standard GW algorithm described in previous sections.
In Fig. 9, we compare the computational time for computing G,W,,
band structure of the MgO system using our PyGW [58] and Gap2 [68]
code with identical input and output. A 8 X 8 x 8 k-point mesh with
a total of 195 bands is considered for the G,W, calculation. We com-
pute GyW,, bands within + 2 Ry from the Fermi energy. Both codes
show linear scaling with the number of cores, however, our PyGW
code is around 3 times faster than Gap2 code when using more than
80 cores, and around twice as fast for a smaller number of cores. This
scaling is obtained in the Frontera supercomputer. Similar scaling is
found for larger systems tested here. The reduction of the computa-
tional time is due to several improvements of the implementation: a)
the efficiency of the tetrahedron method for computing the polarization
in band basis is improved by precomputing common parts for all Mat-
subara frequencies, and more careful grouping of the diverging terms
has been implemented. b) To further reduce the computational cost, we
take into account that the polarization in the band basis is a real ma-
trix, while only the matrix elements of the M can be complex. ) The
Message Passing Interface (MPI) parallelization is here used only over
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Fig. 9. Comparison of computational cost in PyGW and Gap2 codes: Logarith-
mic plot for computational cost in G,W,, calculation for MgO using PyGW and
Gap2 software in Frontera Supercomputer.
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bosonic momentum q points, while OpenMP parallelization is used in
internal loops over frequency, bands, and fermionic momenta.

The efficiency of the GW implementation presented here is highly
advantageous for simulating metallic systems. Since the number of mo-
mentum points required for such systems is typically between one to
two orders of magnitude greater than for band-insulators, the correla-
tion self-energy becomes sensitive to the Fermi surface singularity of the
single-particle Green’s function. This efficiency improvement will also
prove beneficial in future implementations of the diagrammatic Monte
Carlo method, which systematically incorporates higher-order vertex
corrections into the GW method. This necessitates a highly precise mo-
mentum mesh and accurate treatment of core states, aspects achieved
only in such all-electron implementations.

4. Conclusions

In conclusion, we describe the implementation of GW approxima-
tion within the all-electron Linear Augmented Plane Wave framework,
where we pay special attention to the metallic systems, and proper
treatment of deep laying core states, as needed for the future varia-
tional diagrammatic Monte Carlo implementation. We implement both
standard GyW,, approximation, i.e. after truncating the series of self-
energy to the first order in G and W, as well as GW,, algorithm, where
we self-consistently compute G but truncate the series in W to the first
order. Our improved algorithm for resolving Fermi surface singulari-
ties and frequency convolution on the Matsubara axis allows us a stable
and accurate analytic continuation of imaginary axis data by Pade ap-
proximation. This is crosschecked by the contour deformation technique
that avoids the need for analytic continuation. We compute band struc-
ture and band gaps for a variety of insulators. We demonstrate the
accuracy of our implementation by reproducing previous LAPW results
for band insulators. We also implemented the matrix analog of GyW,
approximation. Here, we demonstrate that the conventional diagonal
approximation within the Kohn-Sham band basis is an excellent approx-
imation, which is in contrast to the finding of Ref. [79].

Surprisingly, we find that GW approximation requires an extremely
dense momentum mesh for metals to converge even when tetrahedron
integration is used. This is very different than in semilocal DFT ap-
proximations in which the potential is computed in real space, and
therefore the convergence with momentum points is very rapid. In GW,
a 16 x 16 x 16 k-point mesh is required for reasonable convergence in the
simple alkali metals such as Li, K, Na, and Mg. To test the implemen-
tation, we compute the band structures of these metallic systems and
find that the converged bandwidths are slightly smaller than in LDA, for
about 2-7%. This agrees very well with the self-consistent quasi-particle
GW approach. The bandwidth in the ARPES experiment is smaller,
which indicates that vertex corrections are important even in these el-
emental solids. The recently developed systematic approach, offered by
the diagrammatic Monte Carlo method, would be very desirable to de-
termine whether the narrowing of the bandwidth in these moderately
correlated systems is purely electronic in origin, or other effects, such as
interaction in the final states of ARPES experiment or the surface effects
in ARPES measurements need to be considered to reproduce the exper-
imental photoemission. Finally, we also show a substantial three-fold
improvement in the speed of GW calculation compared to the previous
LAPW code (gap2), on which this implementation is based.
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