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GW approximation is one of the most popular parameter-free many-body methods that go beyond the limitations 
of the standard density functional theory (DFT) to determine the excitation spectra for moderately correlated 
materials and in particular the semiconductors. It is also the first step in developing the diagrammatic Monte 
Carlo method into an electronic structure tool, which would offer a numerically exact solution to the solid-
state problem. While most electronic structure packages offer support for GW calculations for band-insulating 
materials, the level of support for metallic systems is somewhat limited. This limitation can be partly attributed to 
the relatively minor differences often observed between GW and DFT results in treating metallic systems, which 
is not expected to persist to higher orders in perturbation theory. Describing metals within the GW framework 
presents a challenge, as it requires accurate resolution of Fermi surface singularities, which, in turn, calls for 
a dense momentum mesh. Here we implement the GW algorithm within the all-electron Linear Augmented 
Plane Wave framework, where we pay special attention to the metallic systems, the convergence with respect 
to momentum mesh, and proper treatment of the deep laying core states, as needed for the future variational 
diagrammatic Monte Carlo implementation. Our improved algorithm for resolving Fermi surface singularities 
allows us a stable and accurate analytic continuation of imaginary axis data, which is carried out for GW 
excitation spectra throughout the Brillouin zone in both the metallic and insulating materials and is compared to 
numerically more stable contour deformation integration technique. We compute band structures for elemental 
metallic systems Li, Na, and Mg as well as for various narrow and wide bandgap insulators such as Si, BN, SiC, 
MgO, LiF, ZnS, and CdS and compare our results with previous GW calculations and available experiments data. 
Our results are in good agreement with the available literature. Thus our software allows users to compute full 
bandstructures for metals and insulators using all-electron potential without downfolding to Wannier orbital 
basis.

1. Introduction

Perturbative expansion around the free electron limit is one of the 
most common techniques used in the many-body theory. In ab-initio
solid state applications, the expansion is typically carried out in terms 
of the single-particle Green’s function 𝐺, and the screened Coulomb in-
teraction 𝑊 . When carried out at the first order approximation, and 
𝑊 is computed by the bubble Feynman diagrams, the method is called 
the GW approximation [1]. In widespread applications of this theory 
to semiconductors, it was shown that such approximation predicts very 
accurate band-gaps in semiconductors [2–8] and thus became one of 
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the most popular ab initio beyond-density functional theory (DFT) ap-
proaches in the condensed matter physics and materials science com-
munities.

There were early promising GW studies for weakly interacting 
metallic systems such as Na [9], but even 30 years later most elec-
tronic structure codes do not offer full support for GW band structure 
calculation in metallic systems. There are a few notable exceptions, for 
example the SPEX code [10–15], the ecalj package [16–20], and Flap-
wMBPT code [21]. There are several GW calculations for metals, which 
used implementations that are not publicly available using pseudopo-
tentials [22–27] and all electron [28–34] basis set. GW calculations for 
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metallic systems remain relatively uncommon when compared to their 
widespread use in semiconductors. This is due in part to the small dif-
ferences between GW and DFT, as well as the considerable challenges 
involved in achieving convergence in GW calculations for metals. Thus, 
band structure comparison for metals between angle resolved photoe-
mission spectroscopy (ARPES) experiments and GW calculations is not
often seen in the literature, and the convergence of the band struc-
ture with momentum mesh is almost never studied. Perhaps such slow 
progress towards GW predictions of band structures in metallic sys-
tems is due to the difficulty of resolving the singular excitations around 
the Fermi surface, which require a large number of momentum points 
and sophisticated and time consuming analytic contour integration, or 
stable analytic continuation from the imaginary frequency to the real 
frequency spectra. Thus it remained a major challenge to compute ac-
curate band-structure throughout the Brillouin zone for metallic systems 
using GW approximation, which are converged with respect to the accu-
racy of the basis set and momentum space mesh. This situation impeded 
the progress of computational materials design in general.

The accuracy, precision, and scaling of GW calculation, which re-
quires non-local and dynamical self-energy of electron, has considerably 
improved over the years [35,36,8,37–44,10,45]. On the other hand, bet-
ter treatment of dynamical self-energy has been achieved in Dynamical 
Mean Field Theory community [46–48], which allows us to reanalyze 
the predictive power of GW approximation in metallic systems, and per-
haps point towards the need of including so-called vertex corrections. 
Recently an alternative point of view to vertex corrections is gaining 
popularity, namely, Monte Carlo summation of high order Feynman di-
agrams, which are visited by importance sampling techniques [49–57]. 
In the quest to develop such a diagrammatic Monte Carlo technique, 
that can achieve chemical accuracy in solid state applications, very ac-
curate GW implementation with all electron algorithm is needed as the 
first step. In alternative plane wave implementations, the systematic er-
ror due to approximate treatment of core electrons could obscure the 
improvement brought about by very expensive calculation of the vertex 
corrections. The Python implementation of GW developed here [58], 
will be used for developing such a systematic diagrammatic Monte 
Carlo expansion method in the future. As a proof of concept, such high 
order Feynman expansion method has been recently developed for the 
simpler but related problem of the electron gas, for which numerically 
converged results can be obtained in a moderately correlated regime of 
metallic system [49,50], and holds great promise for more widespread 
applications in solid state systems.

Here we describe the implementation of GW approximation within 
the all-electron LAPW framework, paying special attention to metallic 
systems for which GW calculations are difficult to converge and band 
structure throughout the Brillouin zone is painful to compute. [58] We 
overcame the problem with a more stable implementation of the tetra-
hedron method, and an improved algorithm for frequency convolution 
on the Matsubara axis, which allowed us a stable analytic continua-
tion of imaginary axis data by Pade approximation. We crosschecked 
the Pade analytic continuation by implementing more expensive but 
more accurate contour deformation integration technique [59–63] To 
produce the band structure plots along the high symmetry direction in 
momentum space, we implemented two complementary techniques: the 
interpolation method as described in Refs. [64,65], as well as wannier-
ization method using maximally localized wannier functions [66,67]. 
Finally, we also present a method for numerically efficient manipulation 
and storage of Matsubara quantities using optimized Singular-Value-
Decomposition-basis (section 2.5). This package is built upon the Gap2 
code [68,35] as a foundation, which also served as the accuracy bench-
mark at the early stages of development.

This paper is organized as follows. The next section is devoted to 
the method and presents the setup of perturbation theory in section 2.1, 
followed by the description of the method we use to compute the polar-
ization in Sec. 2.2, and the self-energy in Sec. 2.3, both are computed 
in the eigenbasis of the Coulomb repulsion. In Sec. 2.4 we discuss the 

implementation of the product basis, which allows one to write polar-
ization and the Coulomb interaction in two-dimensional matrix form. 
In Sec. 2.5 we describe the new algorithm for efficient manipulation of 
the frequency-dependent quantities 𝐺 and 𝑊 . Finally, in Sec. 2.6.4 we 
present techniques to plot the quasiparticle spectra, from analytic con-
tinuation to contour integration technique, and interpolation of band 
structure using Wannier interpolation as well as minimizing smoothness 
of bands across the Brillouin zone. We also study the quality of diagonal 
approximation and compare it to the matrix form of self-energy, and we 
check the quality of the Pade analytic continuation and compare it to 
the contour integration technique.

In Sec. 3 we compare our implementation of G0W0 and GW0 for 
insulators with other previously published results, while in Sec. 3.2 we 
show band structures of several metals within G0W0 approach.

2. Method

2.1. Setup of the perturbation theory

Here we concentrate on a diagrammatic point of view of the elec-
tronic structure problem, sketching the algorithm in a way in which 
the extension to higher order diagrams is emphasized, as needed for fu-
ture Variational Diagrammatic Monte Carlo studies [49]. We mention 
in passing that our implementation starts from Wien2k implementa-
tion [69] of Kohn-Sham orbitals, and closely follows the algorithm of 
Gap2 code [35,68], and also Ref. [10]. Some details can also be found 
in Ref. [45]. Apart from a few bugs found in the Gap2 code, which are 
detailed here [58], the output of our PyGW code and Gap2 code is iden-
tical for identical input, therefore we managed to reproduce results of 
Ref. [45]. However, we detail below several improvements of the algo-
rithm, which allows one to treat not only semiconductors but metals as 
well.

The building blocks in our setup for the perturbation theory are 
the Green’s functions in the Kohn-Sham basis 𝐺𝐤,𝑖 =

1

𝑖𝜔+𝜇−𝜀𝐤,𝑖
, and the 

Coulomb repulsion is written in its eigenbasis. The former depends on 
the Kohn-Sham eigenvalues 𝜀𝐤,𝑖, while for the latter, we will introduce 
the so-called product basis [70], which is an orthogonal (and over-
complete) basis that faithfully represents products of two Kohn-Sham 
orbitals, and is here called 𝜒𝐪

𝛼 (𝐫). Here 𝐫 stands for the real space vec-
tor, and 𝐪 is momentum in the first Brillouin zone. The technical details 
of how to achieve that within LAPW basis are discussed in section 2.4. 
Once such product basis 𝜒𝐪

𝛼 (𝐫) is constructed, we compute the matrix 
elements between two Kohn-Sham orbitals and this basis functions: 
𝑀𝛼,𝑖𝑗 (𝐤, 𝐪) ≡ ⟨𝜒𝐪

𝛼 |𝜓𝐤,𝑖𝜓
∗
𝐤−𝐪,𝑗

⟩. Similarly, we compute the matrix elements 
of the Coulomb repulsion on this basis 𝑣𝛼𝛽 (𝐪) = ⟨𝜒𝐪

𝛼 |𝑉𝐶 (𝐪)|𝜒
𝐪

𝛽
⟩, and sub-

sequently, we determine the square root of the Coulomb repulsion in its 
eigenbasis as 

√
𝑣(𝐪)𝛼,𝛽 =𝑈𝛼,𝑙

√
𝑣𝑙 𝑈

†

𝑙,𝛽
, where 𝑣𝑙 are eigenvalues and 𝑈𝛼,𝑙

are eigenvectors of the Coulomb repulsion.
The interaction between four Kohn-Sham orbitals, in which 𝜓𝐤,𝑖, 

𝜓𝐤′−𝐪,𝑗′ are incoming, and 𝜓∗
𝐤−𝐪,𝑗

, 𝜓∗
𝐤′ ,𝑖′

are outgoing electrons, takes 
the form

𝜓∗
𝐤′ ,𝑖′

𝜓𝐤′−𝐪,𝑗′𝑣(𝐪)𝜓𝐤,𝑖𝜓
∗
𝐤−𝐪,𝑗

(1)

and can be evaluated in the product basis by

∑

𝛼,𝛽

⟨𝜓𝐤′ ,𝑖′𝜓
∗
𝐤′−𝐪,𝑗′

|𝜒𝐪

𝛽
⟩ ⟨𝜒𝐪

𝛽
|𝑣(𝐪)|𝜒𝐪

𝛼 ⟩ ⟨𝜒
𝐪
𝛼 |𝜓𝐤,𝑖𝜓

∗
𝐤−𝐪,𝑗

⟩ (2)

which can be expressed with the above-defined matrix elements as

∑

𝛼,𝛽

𝑀∗
𝛽,𝑖′𝑗′

(𝐤′,𝐪) 𝑣𝛽𝛼(𝐪)𝑀𝛼,𝑖𝑗 (𝐤,𝐪). (3)

We can now associate a square-root of the Coulomb repulsion with each 
pair of the Kohn-Sham orbitals and rewrite this product in the above-
defined eigenbasis of the Coulomb repulsion as
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Fig. 1. Building blocks of the perturbation theory around DFT starting point. 
Here 𝜀𝐤,𝑖 are energies of the Kohn-Sham orbitals, and 𝑀(𝐤, 𝐪) are matrix ele-
ments defined in the text.

∑

𝑙

(𝑀†(𝐤′,𝐪)𝑈 )𝑖′𝑗′ ,𝑙
√

𝑣𝑙

√
𝑣𝑙(𝑈

†𝑀(𝐤,𝐪))𝑙,𝑖𝑗 . (4)

If we now define the new matrix elements of the form

𝑀(𝐤,𝐪) ≡√
𝑣 𝑈†𝑀(𝐤,𝐪) (5)

we see that the Coulomb repulsion between the two incoming 𝜓𝐤,𝑖, 
𝜓𝐤′−𝐪,𝑗′ and the two outgoing 𝜓∗

𝐤−𝐪,𝑗
, 𝜓∗

𝐤′ ,𝑖′
Kohn-Sham orbitals can in 

general be written as the product of two matrices

∑

𝑙

𝑀†

𝑖′𝑗′ ,𝑙
(𝐤′,𝐪)𝑀𝑙,𝑖𝑗 (𝐤,𝐪), (6)

and hence each three-point vertex can be associated with the matrix ele-
ment 𝑀𝑙,𝑖𝑗 (𝐤, 𝐪), where index 𝑙 is associated with the bosonic-interaction 
propagator, and 𝑖, 𝑗 with the two Kohn-Sham bands (See Fig. 1). We em-
phasize that for the perturbative expansion, we only need 𝑀 and the 
Kohn-Sham eigenvalues 𝜀𝐤,𝑖 to evaluate the expansion. The matrix ele-
ments of the Coulomb repulsion are hence absorbed into the definition 
of 𝑀 and should no longer appear in the calculation. The advantage 
of this approach was pointed out in Refs. [10]: when the product ba-
sis is increased in size so that it becomes more and more precise and 
complete, there are more and more eigenvalues of the Coulomb repul-
sion (𝑣𝑙), which are extremely small, and such components can safely 
be neglected when constructing 𝑀 . As the linear dimension of the ma-
trix 𝑀 increases with increasing the energy cutoff for the plane-waves, 
and the number of radial functions in the spheres, the dimension of 𝑀
increases much slower or saturates with increasing the size of the ba-
sis. As our calculations only depend on 𝑀 , this saves a considerable 
amount of computational time.

We want to point out that for the future diagrammatic Monte Carlo 
calculations, only the matrix 𝑀𝑙,𝑖𝑗 (𝐤, 𝐪) will need to be stored, apart 
from Kohn-Sham eigenvalues 𝜀𝐤,𝑖, to evaluate the Feynman diagram of 
arbitrary order. However, storing this object in memory will still be a 
great challenge, as it depends on the dimension of the Coulomb eigen-
basis 𝑙, the square of the number of bands, and also both the fermionic 
and bosonic momentum. We envision that this matrix 𝑀 will need to 
be stored on a more coarse momentum mesh, and some type of inter-
polation to a denser mesh of fermionic propagators, which depend on 
𝜀𝐤,𝑖 and describe the details of the Fermi surface, will need to be imple-
mented.

Finally, let us mention that the single-particle counter-term in this 
expansion is the Kohn-Sham exchange-correlation potential, which is 
evaluated in the band-basis by

𝑉 𝑥𝑐
𝑖𝑗 = ⟨𝜓𝐤,𝑖|𝑉 𝑥𝑐 |𝜓𝐤,𝑗⟩ (7)

At the lowest order GW approximation, this potential just needs to be 
subtracted, and the GW self-energy needs to be added to the Kohn-Sham 
eigenvalues. At the higher-order expansion, such a counter-term can be, 
for example, grouped with the occurrence of exchange sub-diagram in 
each Feynman diagram, as implemented in Ref. [49].

Fig. 2. Polarization diagram at the lowest order is the bubble, here expressed 
in the product basis |𝜒𝐪

𝛼 ⟩. The product of polarization and Coulomb interaction 
can be expressed in the Coulomb eigenbasis in terms of 𝑀 matrix elements 
only.

2.2. Polarization

The dielectric function in matrix form is 𝜀 = 1 −
√

𝑉𝐶𝑃
√

𝑉𝐶 , where 
𝑃 is the polarization (Fig. 2). At the lowest order W0 approximation, 
the polarization is evaluated as the bubble diagram, which can also be 
evaluated in the eigenbasis of the Coulomb repulsion, in which it takes 
the form

1 − 𝜀𝐪,𝑖Ω𝑛
= (

√
𝑉𝐶𝑃

√
𝑉𝐶 )𝑙,𝑙′

=𝑁𝑠

∑

𝑖,𝑗,𝐤

𝑀∗
𝑙,𝑖𝑗

(𝐤,𝐪)
1

𝛽

∑

𝑚

1

𝑖𝜔𝑚 + 𝜇 − 𝜀𝐤,𝑖

1

𝑖𝜔𝑚 − 𝑖Ω𝑛 + 𝜇 − 𝜀𝐤−𝐪,𝑗
𝑀𝑙′ ,𝑖𝑗 (𝐤,𝐪)

=𝑁𝑠

∑

𝑖,𝑗,𝐤

𝑀∗
𝑙,𝑖𝑗

(𝐤,𝐪)
𝑓 (𝜀𝐤−𝐪𝑗 − 𝜇) − 𝑓 (𝜀𝐤𝑖 − 𝜇)

𝑖Ω𝑛 − 𝜀𝐤,𝑖 + 𝜀𝐤−𝐪,𝑗
𝑀𝑙′ ,𝑖𝑗 (𝐤,𝐪) (8)

where 𝑓 is the Fermi function of the form 𝑓 (𝑥) = [exp(𝑥∕𝑇 ) + 1]−1, and 
indices 𝑖, 𝑗 run over Kohn-Sham bands, 𝑁𝑠 is 2 or 1 depending on 
whether the bands contain the spin degeneracy (for example in the 
presence of the spin-orbit coupling). It is worth emphasizing that the 
size of 𝜀𝐪,𝑖Ω𝑛

matrix is smaller than the size of the product basis, be-
cause only the eigenvalues of the Coulomb repulsion (𝑣𝑙), which are 
finite, contribute to this matrix. Once the matrix 𝜀 is calculated, we in-
vert it in this eigenbasis of the Coulomb repulsion, where the matrix is 
the smallest.

In the presence of time reversal symmetry or inversion center, the 
inner part of the Eq. (8) can be rewritten in a more convenient way 
for computation, such that the band 𝐤, 𝑖 is occupied and the 𝐤 − 𝐪, 𝑗 is 
empty, in which case the polarization takes the form

𝑃 𝐪(𝑖, 𝑗,𝐤,Ω𝑛) =
𝑓 (𝜀𝐤𝑖 − 𝜇)𝑓 (−𝜀𝐤−𝐪𝑗 + 𝜇) 2(𝜖𝐤𝑖 − 𝜖𝐤−𝐪𝑗 )

Ω2
𝑛 + (𝜖𝐤𝑖 − 𝜖𝐤−𝐪𝑗 )

2
(9)

This form emphasizes that the Polarization has even symmetry with re-
spect to frequency, and is real. However, the matrix elements 𝑀𝑙,𝑖𝑗 (𝐤, 𝐪)
are in general complex, therefore the polarization is a complex (Hermi-
tian) quantity on the imaginary axis. We use this form for the tetrahe-
dron method, evaluating ∫𝑡𝑒𝑡𝑟𝑎 𝑑3𝐤𝑃 𝐪(𝑖, 𝑗, 𝐤, Ω𝑛), which is implemented 
similarly as in Gap2 code [35], except that we compute all Matsub-
ara frequency points using exactly the same tetrahedron setup, and 
precompute common parts shared for all Matsubara frequencies, and 
we group terms which are nearly singular to achieve better cancella-
tion of errors, following ideas from Ref. [71], and [72]. In addition, 
there is a considerable simplification of the tetrahedron method for the 
case where one of the two bands 𝑖, 𝑗 in the sum is very far from the 
Fermi level, and therefore only one of the two bands needs to be inter-
polated, in which case Eq. (9) can use the single-particle tetrahedron 
coefficients, i.e., those that are used to evaluate the densities of states. 
This reduces the memory requirement in computing the polarization 
function, as only a limited number of bands around the Fermi level 
need the sophisticated treatment, while for most of the bands away 
from the Fermi level, the polarization function Eq. (9) can be evalu-
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Fig. 3. The self-energy diagram at the lowest order GW approximation can 
also be expressed in terms of matrix elements of 𝑀 , the dielectric matrix 𝜀, and 
the single-particle Green’s function.

ated on the fly. The tetrahedron method implemented here, with the 
innermost loop over Matsubara points, is faster, hence we can afford 
more Matsubara points. More importantly, the self-energy computed in 
this way has more uniform frequency dependence, therefore the ana-
lytic continuation of the Matsubara self-energy by the standard Pade 
approximation is now stable, and we can use all computed Matsubara 
points for Pade analytic continuation, rather than just a couple (for ex-
ample the two-pole approximation with four Pade coefficients is most 
common in other implementations [10,35]).

2.3. Self-energy

The dynamic correlation self-energy within GW approximation 
(Fig. 3) is the convolution of the single-particle Green’s function, and 
the dynamic part of the screened interaction 𝑊 − 𝑉𝐶 = 𝑉𝐶 (𝜀

−1 − 1), 
which takes the form

Σ𝑐
𝑖𝑖′
(𝐤, 𝑖𝜔𝑛) = −

1

𝛽

∑

𝑖Ω𝑚 ,𝐪,𝑗,𝛼𝛽

⟨𝜒𝐪
𝛼 |𝜓𝐤,𝑖𝜓

∗
𝐤−𝐪,𝑗

⟩ ⟨𝜓𝐤,𝑖′𝜓
∗
𝐤−𝐪,𝑗

|𝜒𝐪

𝛽
⟩

× ⟨𝜒𝐪

𝛽
|
√

𝑉𝐶 (𝜀
−1
𝑖Ω𝑚

− 1)
√

𝑉𝐶 |𝜒
𝐪
𝛼 ⟩𝐺0

𝐤−𝐪,𝑗
(𝑖𝜔𝑛 − 𝑖Ω𝑚)

= −
1

𝛽

∑

𝑖Ω𝑚 ,𝐪,𝑗,𝑙,𝑙′

𝑀𝑙,𝑖𝑗 (𝐤,𝐪)(𝜀
−1
𝑖Ω𝑚

− 1)𝑙,𝑙′𝑀
∗
𝑙′ ,𝑖′𝑗

(𝐤,𝐪)

×𝐺0
𝐤−𝐪,𝑗

(𝑖𝜔𝑛 − 𝑖Ω𝑚) (10)

Note that as before, we expressed the self-energy also in terms of the 
matrix-elements 𝑀 , written in the eigenbasis of the Coulomb repulsion, 
which is smaller in dimension than the product basis. The exchange self-
energy is obtained from the above expression by replacing (𝜀−1

𝑖Ω𝑚
− 1)𝑙,𝑙′

with 𝛿𝑙,𝑙′ , and it takes the form

Σ𝑥
𝑖𝑖′
(𝐤, 𝑖𝜔𝑛) = −

∑

𝐪,𝑗,𝑙

𝑀𝑙,𝑖𝑗 (𝐤,𝐪)𝑀
∗
𝑙,𝑖′𝑗

(𝐤,𝐪)𝑓 (𝜖𝐤−𝐪,𝑗 − 𝜇)

The frequency convolution of the dielectric matrix with the single-
particle Green’s function can be simplified if we take into account that 
the polarization is even in frequency Ω𝑚 (Eq. (9)), hence dielectric ma-
trix is also an even function, and therefore

Σ𝑐
𝑖𝑖′
(𝐤, 𝑖𝜔𝑛)

= −
∑

𝐪,𝑗,𝑙,𝑙′

𝑀𝑙,𝑖𝑗 (𝐤,𝐪)𝑀
∗
𝑙′ ,𝑖′𝑗

(𝐤,𝐪)
1

𝛽

∑

𝑖Ω𝑚

(𝜀−1
𝑖Ω𝑚

− 1)𝑙,𝑙′ (𝑖𝜔𝑛 − 𝜉𝐤−𝐪,𝑗 −��𝑖Ω𝑚)

(𝑖𝜔𝑛 − 𝜉𝐤−𝐪,𝑗 )
2 +Ω2

𝑚

, (11)

i.e., the odd component of the convolution vanishes, and we are left 
with the sum that falls-off as 1∕Ω4

𝑚, because (𝜖
−1
𝑖Ω𝑚

− 1) falls off as 1∕Ω2
𝑚. 

Here 𝜉𝐤 = 𝜀𝐤 − 𝜇. At zero temperature, we can replace the Matsubara 
sum 1

𝛽

∑
𝑖Ω𝑚

with the integral 1

2𝜋
∫ ∞

−∞
𝑑Ω hence the inner-convolution in 

Eq. (11) can be computed by

1

𝜋

∞

∫
0

𝑑Ω
(𝜀−1

𝑖Ω
− 1)𝑙,𝑙′ (𝑖𝜔𝑛 − 𝜉𝐤−𝐪,𝑗 )

(𝑖𝜔𝑛 − 𝜉𝐤−𝐪,𝑗 )
2 +Ω2

(12)

To carry out this integral, we spline the quantity (𝜀−1
𝑖Ω

−1)(Ω2+1), which 
has a nice property that saturates at infinity with vanishing first deriva-
tive and also has extremum at zero frequency. We use a vanishing first 
derivative at infinity and a vanishing second derivative at zero, as the 
boundary condition for the spline. To achieve even better converging 
integral, we add and subtract a constant such that when Ω =𝜔𝑛 the in-
tegrand vanishes. Let us denote (𝜀−1

𝑖Ω
− 1)𝑙,𝑙′ = 𝑆𝑙𝑙′ (𝑖Ω), then the integral 

Eq. (12) can be written as

lim
𝐿≫1

𝐿

∫
0

𝑑Ω

𝜋

𝑆𝑙𝑙′ (𝑖Ω)(𝜉𝐤−𝐪,𝑗 − 𝑖𝜔𝑛)

(𝑖𝜔𝑛 − 𝜉𝐤−𝐪,𝑗 )
2 +Ω2

= (13)

lim
𝐿≫1

𝜉𝐤−𝐪,𝑗 − 𝑖𝜔𝑛

𝜋

𝐿

∫
0

𝑑Ω

(
𝑆𝑙𝑙′ (𝑖Ω) −𝑆𝑙𝑙′ (𝑖𝜔𝑛)

)

(𝑖𝜔𝑛 − 𝜉𝐤−𝐪,𝑗 )
2 +Ω2

(14)

+
𝑆𝑙𝑙′ (𝑖𝜔𝑛)

𝜋
arctan

(
𝐿

𝜉𝐤−𝐪,𝑗 − 𝑖𝜔𝑛

)

Using the spline for 𝑆𝑙𝑙′ (1 + Ω2), we can afford 10-times or 20-times 
more frequency points Ω that the dielectric matrix is calculated on. 
For both meshes, to compute the dielectric matrix and performing the 
integral in Eq. (14), we use a tangent mesh. This mesh is well-suited 
for representing Lorentzian function, and is defined by the equation 
Ω = 𝑤 tan[𝑥(𝜋 − 2𝛿) − 𝜋∕2 + 𝛿], where 𝛿 and 𝑤 are parameters op-
timized for each represented function, and 𝑥 is a uniformly spaced 
mesh in the interval [−1, 1]. Here we want to point out that replacing 

arctan

(
𝐿

𝜉𝐤−𝐪,𝑗−𝑖𝜔𝑛

)
in Eq. (14) with ±𝜋∕2 is not precise enough when 

quantities are known on a finite mesh with cutoff 𝐿. This is because 𝑖𝜔
can also assume large values, resulting in a ratio within the arctan func-
tion that may not necessarily be very large. While it may be tempting 
to assume that for sufficiently large values of 𝐿, the values of 𝑆 would 
saturate, allowing for the extension of the quadrature to infinity (a prac-
tice employed in, for instance, the Gap2 code), our investigations have 
revealed that results exhibit greater numerical stability when extrap-
olation is avoided. Instead, employing Matsubara points with a cutoff 
value consistent with that used in calculating 𝜀𝑖Ω yields superior numer-
ical stability.

The correlation self-energy Eq. (11) is either computed on the Mat-
subara axis, or directly on the real axis using the contour deformation 
technique (See section 2.6.2 for details). When the self-energy is com-
puted on the imaginary axis, it requires analytic continuation to the real 
frequency in order to plot band-structure at finite frequency. We man-
aged to implement the tetrahedron method in a stable way so that all 
Matsubara frequencies 𝑖Ω𝑚 are computed in exactly the same way up 
to machine precision, therefore we find that standard Pade approxima-
tion [73] is very stable and can be used to plot self-energy on the real 
axis at frequencies of interest.

2.4. Product basis within LAPW

The construction of the product basis |𝜒𝛼⟩ has been detailed in prior 
works, for instance, in [70,10,35]. Therefore, here we will provide only 
a concise summary. As is customary in the LAPW basis, the space is 
divided into the muffin-tin (MT) part around each nucleus and the in-
terstitial space in between. Each part of the space has its specific basis 
functions: plane waves in the interstitial region and radial functions 
in the MT space. In our implementation, plane waves are utilized ex-
clusively in the interstitial space, while radial functions are employed 
solely in the MT space. This approach not only facilitates the elimina-
tion of linear dependence within the basis but also allows for the use 
of a more compact product basis. We note that in our approach the 
product basis functions |𝜒𝛼⟩ are orthonormal in the MT part, and are 
also made orthonormal in the interstitial part, which differs from many 
other implementations, for example Ref. [70,10]. We also note that the 
two parts of the space are treated with its own basis, and therefore func-
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tions |𝜒𝛼⟩ are not continuous across the MT-sphere boundary, similarly 
to most prior implementations [70,10,35].

In the MT part, the Kohn-Sham wave functions are expanded in 
terms of the solutions of the radial Schrodinger’s equation (at certain 
energy close to the center of the band) 𝑢𝑙 , its energy derivative 𝑢̇𝑙 , and 
several local orbitals 𝑢𝑙𝑜

𝑙
. Here 𝑙 is the orbital momentum quantum num-

ber. Let’s denote all these functions with an index 𝜅, i.e., 𝑢𝜅
𝑙
. The product 

of the two Kohn-Sham functions spans the Hilbert space which contains 
all products of such functions 𝑢𝜅

𝑙
𝑢𝜅

′

𝑙′
. However, we can also order these 

products in terms of the orbital quantum number 𝐿 for the products, 
corresponding to the two-particle orbital momentum 𝐿. Further, we 
know that the triangular identity must be satisfied, so that for a given 
two-particle momentum 𝐿 only those single-particle momenta 𝑙, 𝑙′ that 
satisfy |𝑙 − 𝑙′| ≤ 𝐿 ≤ 𝑙 + 𝑙′ can contribute. We can thus construct a lim-
ited, yet significant number of products for each 𝐿, which we denote 
𝑣𝑛,𝐿, where 𝑛 runs over all possible products 𝑢𝜅𝑙 𝑢

𝜅′

𝑙′
, that satisfy trian-

gular inequality. We then compute overlap between these functions 
𝑂𝑛,𝑛′ = ⟨𝑣𝑛,𝐿|𝑣𝑛′ ,𝐿⟩ and diagonalize it 𝑂 = 𝑈𝜆𝑈†. Note that here each 
𝐿 is treated independently, and in practice, we can neglect 𝐿 which 
are larger than some cutoff (when only 𝑝 orbitals are occupied, 𝐿 = 6 is 
very accurate, and 𝐿 = 10 is converged within a fraction of a percent, 
hence 2(𝑙+2) ≤ 𝐿 ≤ 2(𝑙+4) is good, where 𝑙 is maximum momentum for 
occupied single-particle orbital).

The eigenvectors with the eigenvalues larger than some cutoff (for 
example 10−4) are assumed to be linearly independent, and are used to 
construct final product basis functions, i.e.,

|𝑣𝛼,𝐿⟩ =
∑

𝑛

|𝑣𝑛,𝐿⟩𝑈𝑛,𝛼
1√
𝜆𝛼

, (15)

where 𝑈 is defined above as the eigenvector of the overlap (𝑂 =𝑈𝜆𝑈†). 
Finally, the three dimensional basis functions on the lattice at momen-
tum 𝐪 are constructed with the help of the spherical harmonics:

⟨𝐫𝐪|𝜒𝛼,𝐿𝑀 ⟩
𝑀𝑇

= 𝑣𝛼,𝐿(𝑟)𝑌𝐿𝑀 (̂𝐫)

where 𝑀𝑇 means the muffin-tin part of the space. In the interstitial 
space, we use plane waves of reciprocal vectors 𝐆, i.e.,

⟨𝐫𝐪|𝜒𝐆⟩𝐼 =
1√
𝑉

𝑒𝑖(𝐪+𝐆)𝐫

where 𝑉 is the volume of the unit cell. Notice that the Bloch’s phase 
𝑒𝑖𝐪𝐫 is used in the interstitial, but not in the muffin-tin spheres.

As it is convenient to work with the orthonormal basis, we diagonal-
ize the interstitial basis as well. Just as above we compute the overlap

𝑂𝐆′ ,𝐆 =
1

𝑉𝑐𝑒𝑙𝑙 ∫
𝐼

𝑒𝑖(𝐆−𝐆′)𝐫𝑑3𝑟 (16)

= 𝛿𝐺𝐺′ −
∑

𝑎
∫

𝑀𝑇𝑎

𝑒𝑖(𝐆−𝐆′)𝐫𝑑3𝑟 (17)

where 𝐼 denotes integral over the interstitial space, and 𝑀𝑇𝑎 the 
muffin-tin space of any atom 𝑎 in the unit cell. We then diagonalize the 
overlap 𝑂 = 𝑈𝜆𝑈†, and then construct the orthogonalized plane wave 
basis as

|𝜒𝐆⟩𝐼 =
∑

𝐆′ ,𝛼

|𝜒𝐆′ ⟩𝐼 𝑈𝐆′ ,𝛼
1√
𝜆𝛼

𝑈†

𝛼,𝐆
. (18)

Note that here we added 𝑈† on the right-hand side, as opposed to 
Eq. (15), because there is no small eigenvalue in the overlap between 
plane-waves, and we do not reduce the basis by dropping 𝑈†. However, 
including 𝑈† has a useful effect, namely, the resulting orthogonalized 
plane waves are gauge invariant, in the sense that they are independent 
of the arbitrary phase (unitary transformation) of eigenvectors, when 
diagonalizing complex overlap with many degenerate eigenvalues.

Finally, we want to emphasize that the resulting piece-wise basis, 
constructed by

|𝜒⟩ =
{

|𝜒𝛼,𝐿𝑀 ⟩ 𝐫 ∈MT

|𝜒𝐆⟩𝐼 𝐫 ∈ I
(19)

is orthonormal, because both parts are orthonormal, and are valid 
only in their respective parts of the 3D space. This basis (denoted by 
|𝜒𝛼⟩) was used in the previous chapter to construct the matrix for the 
Coulomb repulsion and the dielectric function.

2.5. SVD frequency basis

We also implemented GW using the minimal frequency basis, ob-
tained by singular-value decomposition of the analytic continuation 
kernel, the invention of Ref. [47]. Below we will describe the algo-
rithm in which the frequency dependence of the dielectric matrix can 
be handled within the minimal basis for bosonic quantities like 𝑊 (𝑖Ω). 
The algorithm was successfully used in the context of Dynamical Mean 
Field Theory impurity solvers, and in diagrammatic Monte Carlo calcu-
lations, but to our knowledge not yet in the context of the GW method. 
The power of the method is that a very complex imaginary axis func-
tion can be represented in terms of a relatively small number of basis 
functions, and we will show below how to use it to store 𝑊𝐪(𝑖Ω) and 
speed up the bottleneck of the current GW implementation. However, 
our current tests show that for materials tested in this report, namely, 
wide band metals and semiconductors, 𝑊 (𝑖Ω) is surprisingly feature-
less function, and a spline with around 32-64 points on an imaginary 
axis can describe it with precision around 10−10. On the other hand, the 
SVD basis also requires around 30 functions for the same 10−10 preci-
sion, hence we did not manage to achieve considerable speedup with 
the SVD basis. We note, however, that an SVD basis with 30 functions 
should be able to describe functions with more complex behavior, in 
which splines might not perform equally well. The tests on narrow-band 
metals would probably be more interesting tests of this approach.

The slowest part in our implementation is the computation of the 
dielectric matrix 𝜀, and in particular its rotation from the band-basis to 
the product basis. If we denote 𝑃 𝐪(𝑖, 𝑗, 𝐤, Ω) in Eq. (9) as 𝑝𝑖𝑗 (𝐤, 𝐪, 𝑖Ω), we 
can rewrite Eq. (8) by

(1 − 𝜀)𝑙𝑙′ =
∑

𝑖,𝑗,𝐤

𝑀∗
𝑙,𝑖𝑗

(𝐤,𝐪)𝑝𝑖𝑗 (𝐤,𝐪, 𝑖Ω)𝑀𝑙′ ,𝑖𝑗 (𝐤,𝐪) (20)

Here 𝑖, 𝑗 are Kohn-Sham band indices, and 𝑙, 𝑙′ are Coulomb eigenbasis 
indices. We note that the dimension of the Coulomb eigenbasis 𝑙 is sub-
stantially smaller than the square of the number of bands, i.e., 𝑖 ⊗𝑗. As 
this matrix-matrix multiplication takes most of the computational time 
and needs to be performed for many Matsubara frequencies, it is de-
sirable to find a more compact representation for 𝑝𝑖𝑗 (𝐤, 𝐪, 𝑖Ω), so that 
Eq. (20) would need to be performed only a few times. The basic idea is 
to rewrite polarization in the band basis 𝑝𝑖𝑗(𝐤, 𝐪, 𝑖Ω) in terms of a small 
number of svd-basis functions, similarly as in Ref. [47]. The analytic 
continuation from Matsubara to real frequency is

𝐺(𝑖Ω) = ∫
𝑑𝑥𝐴(𝑥)

𝑖Ω− 𝑥
(21)

where A(x) is the spectral representation of the correlation function on 
the real axis. The same equation can be written in discretized form as 
𝐺𝑛 =

∑
𝑖 𝐾𝑛,𝑖𝐴𝑖, where the kernel takes the form:

𝐾𝑛,𝑖 ≡𝐾(Ω𝑛, 𝑥𝑖) =
Δ𝑥𝑖

√
ΔΩ𝑛

𝑖Ω𝑛 − 𝑥𝑖

(22)

and ΔΩ𝑛 and Δ𝑥𝑖 is the distance between the points on the imaginary 
and the real axis and 𝐺𝑛 =

√
ΔΩ𝑛𝐺(𝑖Ω). Note that the kernel for the 

analytic continuation has to be proportional to 𝐾𝑛,𝑖 ∝Δ𝑥𝑖∕(𝑖Ω𝑛−𝑥𝑖), but 
it could be multiplied by an arbitrary separable weight function, which 
will only modify the metric in which the resulting singular functions 
are orthonormal.

We have chosen a normalization such that the resulting imaginary 
axis singular-vectors will be automatically normalized using a standard 
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metric ∫ 𝑈𝛼(𝑖Ω)𝑈𝛼′ (𝑖Ω)𝑑Ω = 𝛿𝛼,𝛼′ , as it will be shown below. It is also im-
portant to recognize that the two meshes (on the real and the imaginary 
axes) are not equal. The real frequency mesh only needs to extend up 
to the selected high-energy cutoff (say 𝐿). This also required to be very 
precise in this interval with many points, as these functions strongly os-
cillate on the real axis. In contrast, the imaginary axis mesh needs to 
extend far beyond the scale of 𝐿. However as the functions are more 
smooth, a fewer points are typically needed. The rational for having 
a larger energy cutoff on the imaginary axis lies in the fact that any 
feature on the real axis, which is bounded in the interval |𝑥| < 𝐿, will 
taper off slowly on the imaginary axis with a behavior like 1∕(𝐿2 +Ω2

𝑛)

for bosonic quantities. However, quantities on the imaginary axis are 
very smooth, and in particular, tails require a small number of points 
distributed in the logarithmic mesh.

It is obvious from Eqs. (21) and (22) that 
√
ΔΩ𝑛𝐺(𝑖Ω𝑛) =

∑
𝑖 𝐾𝑛,𝑖𝐴(𝑥𝑖). 

Next, we perform the singular-value decomposition of the Kernel 𝐾𝑛,𝑖

Eq. (22), and obtain 𝐾(Ω𝑛, 𝑥𝑖) =
∑

𝛼 𝑢𝛼(𝑖Ω𝑛)𝑠𝛼𝑣𝛼(𝑥𝑖), where 𝑠𝛼 are the 
singular values, and 𝑢𝛼(𝑖Ω𝑛)∕

√
ΔΩ𝑛 ≡𝑈𝛼(𝑖Ω𝑛) are the desired SVD-basis 

functions. Now we see that
∑

𝑛

𝑈𝛼(𝑖Ω𝑛)𝑈𝛼′ (𝑖Ω𝑛)ΔΩ𝑛 =
∑

𝑛

𝑢𝛼(𝑖Ω𝑛)𝑢𝛼′ (𝑖Ω𝑛) = 𝛿𝛼,𝛼′

because of the unitarity of the singular eigenvectors 𝑢𝛼(𝑖Ω𝑛), which 
proves that SVD-basis functions are an orthonormal basis. As it turns 
out, only a small number of singular values 𝑠𝛼 are nonzero, because the 
Kernel for analytic continuation is known to be singular. Consequently 
this SVD-basis is the minimal orthonormal basis for representing Mat-
subara quantities. We use a fine tangents mesh on the real frequency 
axis 𝑥𝑖, and a different more coarse tangents mesh combined with log-
arithmic tails on the Matsubara axis for Ω𝑛, and we can afford here 
a large number of real-frequency points (thousands) and also several 
hundred on the imaginary axis.

Next we represent the polarization in band basis 𝑝𝑖𝑗 (𝐤, 𝐪, 𝑖Ω𝑛) in 
terms of these basis functions, i.e.

𝑝𝑖𝑗 (𝐤,𝐪, 𝑖Ω𝑛) =
∑

𝛼

𝑈𝛼(𝑖Ω𝑛)𝛼
𝑖𝑗 (𝐤,𝐪) (23)

where 𝛼
𝑖𝑗
(𝐤, 𝐪) are coefficients in this SVD-basis. The crucial point is 

that the number of coefficients 𝛼 is much smaller than the number of 
needed Matsubara points. For example, to achieve the precision of po-
larization 𝑝𝑖𝑗 (𝐤, 𝐪, 𝑖Ω𝑛) up 10−10, we typically need 30 coefficients. In 
this way, using these 30 coefficients on the SVD basis, we can then 
compute polarization on a much larger number of Matsubara frequen-
cies.

First, we compute coefficients for polarization in band-basis
𝛼

𝑖𝑗
(𝐤, 𝐪) =

∑
𝑛ΔΩ𝑛𝑈𝛼(𝑖Ω𝑛)𝑝𝑖𝑗 (𝐤, 𝐪, 𝑖Ω𝑛) inside the tetrahedron method so 

that we do not need to store large arrays 𝑝𝑖𝑗 (𝐤, 𝐪, 𝑖Ω𝑛), and we rather 
store only the coefficients 𝛼

𝑖𝑗
(𝐤, 𝐪). This is a simple matrix-matrix prod-

uct and can be done very quickly, as there is a small number of basis 
functions 𝑈𝛼 . Next, we use these coefficients to get the dielectric matrix 
on a product basis in two steps:

𝐶𝛼
𝑙,𝑙′

(𝐪) =
∑

𝑖,𝑗,𝐤

𝑀∗
𝑙,𝑖𝑗

(𝐤,𝐪)𝛼
𝑖𝑗 (𝐤,𝐪)𝑀𝑙′ ,𝑖𝑗 (𝐤,𝐪) (24)

(1 − 𝜀)𝑙𝑙′ =
∑

𝛼

𝑈𝛼(𝑖Ω)𝐶
𝛼
𝑙,𝑙′

(𝐪) (25)

The crucial point is that the product Eq. (24) can be done faster than 
the product in the original Eq. (20), when the number of coefficients 
𝛼 is smaller than the number of Matsubara points 𝑖Ω𝑛. There is some 
overhead due to the second step Eq. (25), but this is quite fast, because 
the product basis 𝑙 is much smaller in dimension than the square of the 
number of bands 𝑖 ⊗ 𝑗.

Finally, when comparing this SVD-basis implementation versus the 
convolution with spline interpolation, as explained in Eq. (14), we 
found somewhat mixed results. While both methods work well, the 
spline interpolation seems to be slightly more robust in the cases we 

tested. This is because for Pade analytic continuation, we need to com-
pute self-energy to extremely high precision, and consequently, we 
found that around 30 coefficients 𝛼 are necessary. However, 𝑊 (𝑖Ω𝑛)

seems to be quite a smooth function of Matsubara frequency in all cases 
we tested, therefore with around 32-64 Matsubara points, we could also 
achieve extremely accurate spline for the screened interaction 𝑊 (𝑖Ω𝑛). 
Therefore in the test cases presented here, the SVD implementation did 
not significantly improve over the previously discussed spline interpo-
lation. In cases with more nontrivial frequency dependence of 𝑊 (𝑖Ω), 
this SVD implementation will become more useful.

2.6. Real frequency and quasiparticle band structure

2.6.1. Analytic continuation
To obtain the self-energy on the real axis, we use the Pade ana-

lytic continuation method [73,74], as well as the contour deformation 
technique, described below. The Pade method is accurate at low to 
intermediate frequencies, when imaginary axis data is of very high ac-
curacy. We managed to arrange the numerics on imaginary axis to meet 
this goal and to plot reliable band structures of materials around the 
Fermi level, as confirmed by the direct contour integration technique. 
We emphasize that for metals, a few pole approximation in Pade-type 
fitting commonly employed in many other GW implementations, is usu-
ally not sufficient, and we avoid using such method. Instead we force 
the Pade approximate to go exactly through all Matsubara frequencies 
calculated (between 32-64), hence the number of poles in such an an-
alytic function is large (between 30-62). For future diagrammatic MC 
calculations, we anticipate using the maximum entropy method instead 
of Pade, as MC calculations are seldom of high enough precision to al-
low one to use Pade approximation.

2.6.2. Contour deformation integration
We also implemented the contour deformation integration tech-

nique [59–63,75], which is an alternative to the analytic continuation 
method and allows one to compute the self-energy directly on the real 
axis. While this technique relies on a particular form of the 𝐺𝑊 self-
energy and is not straightforwardly extendable to higher-order Feyn-
man diagrams, we want to point out that there is a recent promising 
progress in the direction of the higher-order evaluation of Feynman 
diagrams on the real-axis using the algorithmic Matsubara integra-
tion [76,77], whereby analytic expressions for higher-order Feynman 
diagrams are being derived, similar to contour deformation technique, 
for convolutions, and completely avoids integration over frequency. 
Note however that currently this has been applied only in the context 
of a single band Hubbard model, and the uniform electron gas [78].

The contour deformation is very successful in GW implementation 
because one needs to evaluate only simple integrals (convolutions) 
where all the poles of the integrand are either known exactly or can 
be avoided altogether by choosing the appropriate shape of the con-
tour. For example, to evaluate the self-energy in Eq. (10), one first takes 
the zero temperature limit, changing the sum over Matsubara frequen-
cies into an integral, and one then uses the zero-temperature correlation 
functions 𝐺0 and 𝑊 , which are different from Matsubara and retarded 
analogs, and have the poles above (below) the real axis in the frequency 
below (above) 𝐸𝐹 . The bosonic quantities, such as 𝑊 , have a vanish-
ing chemical potential, hence the poles jump across the real axis at the 
origin (see Fig. 4). The convolution Eq. (10) at zero-temperature takes 
the form

Σ𝐤(𝜔) = −

∞

∫
−∞

𝑑𝑧

2𝜋𝑖
𝑊𝐪(𝑧)𝐺

0
𝐤−𝐪

(𝜔+ 𝑧) (26)

where we left out the matrix elements 𝑀 for simplicity and took into 
account that 𝑊 is even in frequency. This convolution is actually car-
ried out only for the correlation part of the self-energy, hence strictly 
speaking 𝑊𝐪 should be understood as 𝑊𝐪 − 𝑉𝐪 and Σ𝐤 should be under-
stood as Σ𝑐

𝐤
. However, for simplicity, we keep here a simpler notation of 
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Fig. 4. Contour of the integration used to evaluate convolutions in GW approx-
imation.

Σ𝐤 and 𝑊𝐪. When convoluting 𝐺0 and 𝑊 we notice that one can choose 
a contour, depicted in Fig. 4, which runs along the real axis from −∞
to ∞, and it closes in such a way that one completely avoids the poles 
of 𝑊 , and only poles of 𝐺0 fall inside the contour. As a result, we do 
not need to know the residue of 𝑊 when carrying out the integral, and 
only the poles of 𝐺0 and the residue at the poles are needed. These are 
particularly simple, namely, poles are at 𝑧 = 𝜉𝐤−𝐪,𝑗 −𝜔, and residues are 
unity. We can replace the integral over the real axis with the closed 
contour-integral over the shape depicted in Fig. 4, minus the integral 
over the imaginary axis

∞

∫
−∞

𝑑𝑧

2𝜋𝑖
𝑊𝐪(𝑧)𝐺

0
𝐤−𝐪

(𝜔+ 𝑧)

= ∮
𝑑𝑧

2𝜋𝑖
𝑊𝐪(𝑧)𝐺

0
𝐤−𝐪

(𝜔+ 𝑧)

−

−𝑖∞

∫
+𝑖∞

𝑑𝑧

2𝜋𝑖
𝑊𝐪(𝑧)𝐺

0
𝐤−𝐪

(𝜔+ 𝑧) (27)

The integral over the remaining semi-circles vanishes, because 𝐺0 and 
𝑊 0 fall off sufficiently fast, i.e., as 1∕𝜔 and 1∕𝜔2. The imaginary axis 
integral (the last term) is essentially the same integral with which we 
calculate the self-energy on the imaginary axis, and we know that the 
integrand is smooth and well-behaved, hence the spline integration dis-
cussed above gives very accurate results. To compute the self-energy 
on the real axis Eq. (26) we then just need to add the contour inte-
gral, which can be evaluated with the help of the residue theorem. The 
crucial point here is that the integrand is simple enough that we can 
analytically find all poles of the integrand inside the contour, and we 
can evaluate them. As discussed above, the poles of 𝑊 are all out-
side of our chosen contour, hence they do not contribute. The 𝐺0 has 
poles at 𝑧 = 𝜉𝐤−𝐪,𝑗 − 𝜔 and for 𝑧 > 0 they appear in the first quadrant 
only. The residue of 𝐺0 in these poles is unity, hence the contour in-
tegral is 

∑
𝜔<𝜉𝐤−𝐪,𝑗<𝐸𝐹

𝑊 (𝜉𝐤−𝐪,𝑗 − 𝜔). On the other hand, when 𝑧 < 0

and 𝜉𝐤−𝐪,𝑗 < 𝐸𝐹 , the poles inside the contour appear in the third quad-
rant, and the integral is − 

∑
𝐸𝐹 <𝜉𝐤−𝐪,𝑗<𝜔 𝑊 (𝜉𝐤−𝐪,𝑗 − 𝜔). The minus sign 

comes from the opposite orientation of the integral in the third quad-
rant. Putting all those terms together, we see that the self-energy on the 
real axis can be calculated in the following way

Σ𝐤(𝜔) = −

+∞

∫
−∞

𝑑𝑥

2𝜋
𝑊𝐪(𝑖𝑥)𝐺

0
𝐤−𝐪

(𝜔+ 𝑖𝑥)

−
∑

𝜔<𝜉𝐤−𝐪,𝑗<𝐸𝐹

𝑊 (𝜉𝐤−𝐪,𝑗 −𝜔)

+
∑

𝐸𝐹 <𝜉𝐤−𝐪,𝑗<𝜔

𝑊 (𝜉𝐤−𝐪,𝑗 −𝜔) (28)

While this integral appears almost as straightforward to implement 
as the imaginary axis self-energy (Σ𝐤(𝑖𝜔) = − ∫ +∞

−∞
𝑑𝑥

2𝜋
𝑊𝐪(𝑖𝑥)𝐺

0
𝐤−𝐪

(𝑖𝜔 +

𝑖𝑥)), the overhead in calculating 𝑊𝐪 (or dielectric matrix 𝜀) at numerous 
additional points along the real axis incurs a significant computational 
overhead. To evaluate the residues in Eq. (28) we use the real frequency 
mesh with energy spacing of 10 mHa, which requires an additional 
74 points on the real axis for a typical 10 eV window of band struc-
ture plot. In addition, we use 32 points (or 64 points for checking the 
convergence) of non-uniformly distributed points along the imaginary 
frequency axis between 0 to 20*i mHa.

The comparison of Pade continuation with contour deformation in-
tegration is presented in Fig. 5. The difference is barely noticeable in 
the frequency range of interest. This is because the self-energy in these 
moderately correlated systems is relatively featureless. In 3𝑑 metallic 
systems the differences are larger, but this is left for future studies.

2.6.3. Interpolation of band structure
To obtain the band structure plots, we implemented two comple-

mentary techniques: the Wannierization using wannier90 [66,67], as 
well as interpolation using technique of Refs. [64,65]. The two meth-
ods are compared in Fig. 8. They give almost identical band structures 
when the number of momentum points in the calculation is large, for 
example, 16 × 16 × 16 mesh. When the number of momentum points is 
small, for example 4 × 4 × 4, both band structures are relatively inac-
curate, as the Fermi surface singularities are not properly resolved. We 
want to point out that this is very different from typical DFT calcula-
tion, where the convergence with the momentum space mesh is very 
rapid, as the semilocal correlations are quite insensitive to the quality 
of the momentum space mesh.

Wannierization: The Wannierization requires two objects, the projec-
tion to local orbitals 𝐴𝐤

𝑖𝑗
= ⟨𝑔𝑖|𝜓𝐤,𝑗⟩ and the overlaps between Bloch 

orbitals at neighboring k-points 𝑀𝐤,𝐛
𝑖,𝑗

= ⟨𝜓𝐤,𝑖|𝑒−𝑖𝐛𝐫 |𝜓𝐤+𝐛,𝑗⟩. Here 𝑔𝑖 is a 
chosen local orbital and 𝜓𝑖𝐤 are Kohn-Sham bands. The latter is closely 
related to the overlap between the product basis and Kohn-Sham bands, 
i.e., the matrix elements 𝑀𝛼,𝑖𝑗 (𝐤, 𝐪) = ⟨𝜒𝐪

𝛼 |𝜓𝐤,𝑖𝜓
∗
𝐤−𝐪,𝑗

⟩ defined above. In-
deed, if we choose ⟨𝐫|𝜒𝐪

𝛼 ⟩ ≡ 𝑒𝑖𝐪𝐫 in the muffin-thin sphere, and we 
choose the 𝐆 = 0 function in the interstitials, then 𝑀𝐤,𝐛

𝑖,𝑗
= 𝑀∗

𝛼,𝑖𝑗
(𝐤, −𝐛), 

hence these matrix elements are easily computed with existing GW ma-
chinery.

Within LAPW method, the overlaps 𝐴𝐤
𝑖𝑗
are readily available for all 

functions in the muffin-thin sphere, including 𝑢𝑙(𝑟)𝑌𝑙𝑚(𝐫), 𝑢̇𝑙(𝑟)𝑌𝑙𝑚(𝐫) and 
local orbitals 𝑢𝐿𝑂

𝑙
(𝑟)𝑌𝑙𝑚(𝐫). We use singular value decomposition (SVD) 

to find the linear combination of local orbitals, which have the largest 
overlap for a certain set of bands that are the target of wannierization. 
More precisely, we first compute the overlaps

⟨𝑢𝜅
𝑙𝑚

𝑌𝑙𝑚|𝜓𝐤,𝑗⟩ =𝐴𝐤
𝜅𝑙𝑚,𝑗

, (29)

where 𝜅 is a combined index for 𝑢𝑙 , 𝑢̇𝑙 and 𝑢𝐿𝑂
𝑙
. Notice that in this step 

we orthogonalize 𝑢𝐿𝑂
𝑙

so that we have orthogonal basis ⟨𝑢𝜅
𝑙𝑚
|𝑢𝜅′

𝑙′𝑚′ ⟩ =
𝛿𝜅𝑙𝑚,𝜅′𝑙′𝑚′ . Next we perform SVD on the local component
∑

𝐤

𝐴𝐤
𝜅𝑙𝑚,𝑗

=𝑈𝜅𝑙𝑚,𝑖𝑠𝑖𝑉
𝑇
𝑖,𝑗 , (30)

where 𝑠𝑖 are the singular values. If the number of targeted bands is 𝑛, 
we choose the largest 𝑛 singular values 𝑠𝑖, and create the linear combi-
nation of local orbitals with them

⟨𝑟|𝑔𝑖⟩ =
∑

𝜅𝑙𝑚

𝑈𝜅𝑙𝑚,𝑖𝑢
𝜅
𝑙
(𝑟)𝑌𝑙𝑚(𝐫) (31)

so that the local component of the needed overlaps are
∑

𝐤

𝐴𝐤
𝑖𝑗 = 𝑠𝑖𝑉

𝑇
𝑖𝑗 (32)

and are guaranteed to be non-vanishing. Of course matrix element 𝐴𝐤
𝑖𝑗

could still vanish at a particular momentum point, but on average it 
must be large, as we chose the largest 𝑛 eigenvalues 𝑠𝑖 in SVD decom-
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position. The above-defined quantities are finally used as input to the 
Wannier90 software.

Band energy interpolation: This technique is an alternative to the 
Wannierization technique (see Refs. [64,65]) and relies on the fact that 
the quasiparticle energy is a scalar and hence invariant to all operations 
of the space group. The quasiparticle energy at each momentum point 
𝐤 can be expanded as

𝜀(𝐤) =
∑

𝑚

𝑎𝑚𝑆𝑚(𝐤) (33)

where 𝑆𝑚(𝐤) is the star of the lattice, i.e.,

𝑆𝑚(𝐤) =
1

𝑁𝑠𝑦𝑚

∑

𝑠𝑦𝑚

𝑒𝑖𝐤Γ𝑠𝑦𝑚𝐑𝑚 (34)

and Γ𝑠𝑦𝑚 are all symmetry operations of the lattice, and 𝐑𝑚 are the real 
space lattice vectors. Without loss of generality, we choose 𝑚 = 0 when 
𝐑𝑚 = 0. Notice that 𝑆𝑚(𝐤) has the full symmetry of the crystal and is 
a scalar of the lattice space group. We should use here a considerably 
larger number of lattice vectors 𝐑𝑚 as compared to the number of sim-
ulated momentum points in the first Brillouin zone.

In this method, we require 𝜀(𝐤) to coincide with the computed val-
ues of the quasiparticle dispersion (𝜀𝐤𝑖

) on the discrete grid being used 
in the calculation, i.e., 𝐤𝑖 with 𝑖 = 1, .., 𝑛 and at the same time is smooth 
throughout the Brillouin zone, which is achieved by a constrained min-
imization of the following functional:

≡∑

𝐤𝑖

|𝜀(𝐤𝑖)|2 + 𝑐1|∇𝐤𝜀(𝐤𝑖)|2 + 𝑐2|∇𝐤𝜀(𝐤𝑖)|4 +⋯

+
∑

𝑖

𝜆𝑖(𝜀(𝐤𝑖) − 𝜀𝐤𝑖
), (35)

where 𝜆𝑖 are the Lagrange multipliers. This functional can be rewritten 
in real space by the help of definition Eq. (33)

 =
∑

𝑚

𝑎2𝑚(1 + 𝑐1𝑅
2
𝑚 + 𝑐2𝑅

4
𝑚 +⋯) (36)

+
∑

𝑖

𝜆𝑖(
∑

𝑚

𝑎𝑚𝑆𝑚(𝐤𝑖) − 𝜀𝐤𝑖
) (37)

Here 𝑐𝑖 are some coefficients that regularize the dispersion, and we 
typically use 𝑐1 = −2 × 0.25∕𝑅2

𝑛𝑛, 𝑐2 = (0.25)2∕𝑅4
𝑛𝑛, and 𝑐3 = 0.25∕𝑅6

𝑛𝑛, 
where 𝑅𝑛𝑛 is the nearest-neighbor distance so that the first part of 
the functional has a particularly simple form 𝑎2𝑚([1 − 0.25(𝑅𝑚∕𝑅𝑛𝑛)

2]2 +

0.25(𝑅𝑚∕𝑅𝑛𝑛)
6).

Ref. [64] pointed out that 𝑚 = 0 term in Eq. (36) is harmful as it 
forces the average of the band to vanish, while from definition Eq. (33)
it follows that it should be equal to the center of the band, i.e.,

𝑎0 =
1

𝑁𝑘

∑

𝑖

𝜀𝐤𝑖
(38)

therefore it is best to drop 𝑚 = 0 term in Eq. (36) and minimize

 =

𝑁∑

𝑚=1

𝑎2𝑚(1 + 𝑐1𝑅
2
𝑚 + 𝑐2𝑅

4
𝑚 +⋯) (39)

+
∑

𝑖

𝜆𝑖(

𝑁∑

𝑚=0

𝑎𝑚𝑆𝑚(𝐤𝑖) − 𝜀𝐤𝑖
) (40)

Here 𝑁 has to be substantially larger that the number of points in the 
calculation, i.e., at least three to four times larger.

The constrained minimization can be performed analytically, and it 
requires only inversion of a matrix and matrix vector multiplication. For 
more detailed information of how to solve this minimization problem, 
the reader is referred to Ref. [64].

2.6.4. The quasiparticle dispersion, scalar versus matrix form
We implemented the so-called G0W0 and GW0 methods in both the 

scalar and the matrix form. In all cases, we compute screened inter-

Fig. 5. Comparison of matrix self-energy to diagonal self-energy approxima-
tion in Na, Si and Mg using G0W0 approximation and contour deformation 
integration as well as Pade analytic continuation. Na and Mg band-structure 
is computed with 16 × 16 × 16 k-point mesh and Si with 6 × 6 × 6 k-point mesh. 
Interpolation is performed with a maximally localized wannier function algo-
rithm.

action 𝑊0 from Kohn-Sham Green’s function 𝐺0. In G0W0 we convolve 
𝑊0 with Kohn-Sham Green’s function 𝐺0 = 1∕(𝜔 +𝜇−𝜀0

𝐤
) using Eq. (14). 

Here 𝜀0
𝐤
is the Kohn-Sham energy. In GW0 method, the single-particle 

Green’s function is determined self-consistently and is approximated 
with the quasiparticle form at every iteration.

The scalar (non-matrix) approximation is most commonly used in 
GW, and its validity has been recently challenged in such a simple sys-
tem as Si [79]. Therefore we checked the difference between the matrix 
form and the diagonal form of the self-energy for the systems we study 
here, including Si, Na, and Mg (see Fig. 5). We use the contour inte-
gration technique for both the matrix and diagonal self-energy and we 
also compared it with Pade continuation for diagonal self-energy. The 
calculation is converged with 6 ×6 ×6 k-points for Si, and 16 ×16 ×16 k-
points for Na. Fig. 5 shows that the diagonal self-energy approximation, 
as implemented here and explained below, shows almost no difference 
with the full matrix form, hence conventional scalar form is definitely 
justified at least for moderately correlated systems studied here. We 
checked that in more correlated 3𝑑 systems the matrix self-energy does 
make a difference, as the interaction in general increases hence GW 
bands become substantially different from DFT bands. It is also worth 
mentioning that Pade analytic continuation is excellent in these mate-
rials because the self-energy has very little frequency structure in the 
range of bands we are interested in.

In all cases, we are searching for the frequency 𝜔 where the in-
teracting Green’s function has poles, or equivalently, the zeros of the 
following matrix equation

𝜔𝐼 − 𝜀0
𝐤
−Σ𝐤(𝜔) + 𝑉𝑥𝑐 = 0 (41)
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Here Σ𝐤(𝜔) = Σ𝑥
𝐤
+ Σ𝑐

𝐤
(𝜔) is the sum of exchange and correlation self-

energy, and 𝜀0
𝐤
is the diagonal Kohn-Sham energy in the Kohn-Sham 

band basis.
We use the linearized form of the self-energy to determine the poles 

of Green’s function, i.e., we expand

Σ𝐤(𝜔) = Σ(𝜀𝐤,𝑖) + (𝐼 −𝑍−1
𝐤

)(𝜔− 𝜀𝐤,𝑖) (42)

with 𝐼 −𝑍−1
𝐤

= 𝑑Σ(𝜔)∕𝑑𝜔|𝜔=𝜀𝐤,𝑖
is the quasiparticle renormalization am-

plitude evaluated at the quasiparticle energy 𝜀𝐤,𝑖. This leads to the 
following eigenvalue problem

𝑍−1
𝐤

(𝜔− 𝜀𝐤,𝑖) + (𝜀𝐤,𝑖𝐼 − 𝜀0
𝐤
) − Σ𝐤(𝜀𝐤,𝑖) + 𝑉𝑥𝑐 = 0 (43)

or equivalently

𝜔 = 𝜀𝐤,𝑖 +𝑍
1∕2

𝐤

(
𝜀0
𝐤
− 𝜀𝐤,𝑖𝐼 +Σ𝐤(𝜀𝐤,𝑖) − 𝑉𝑥𝑐

)
𝑍

1∕2

𝐤
(44)

Since we are looking for the real solutions of this equation, we make 
all quantities in the above equation Hermitian, i.e., Σ𝐤(𝜀𝐤,𝑖) ← (Σ𝐤(𝜀𝐤,𝑖) +
Σ
†

𝐤
(𝜀𝐤,𝑖))∕2.
Both G0W0 and GW0 are traditionally solved in the scalar form, 

namely, the self-energy and exchange correlation potential are approxi-
mated by the band-diagonal form, i.e., Σ𝐤,𝑖(𝜔) = ⟨𝜓𝐤,𝑖|Σ𝐤(𝜔)|𝜓𝐤,𝑖⟩, where 
𝜓𝑖,𝐤 are Kohn-Sham eigenvectors, hence 𝑍𝐤 are numbers, evaluated for 
each band 𝑍𝐤,𝑖 and the quasiparticle energies of band 𝑖 are

𝜔
𝑞𝑝
𝑖

= 𝜀𝐤,𝑖 +𝑍𝐤,𝑖

(
𝜀0
𝐤,𝑖

− 𝜀𝐤,𝑖 +Σ𝐤(𝜀𝐤,𝑖) − 𝑉𝑥𝑐

)
(45)

For the case of G0W0, the self-energy is computed by the Kohn-Sham 
band energies, 𝜀𝐤,𝑖 = 𝜀0

𝐤,𝑖
, hence self-energy can also be expanded around

Kohn-Sham energies, to get

𝜔
𝑞𝑝
𝐺0𝑊0 ,𝑖

= 𝜀0
𝐤,𝑖

+𝑍𝐤,𝑖

(
Σ𝐤(𝜀

0
𝐤,𝑖
) − 𝑉𝑥𝑐

)
(46)

In the case of GW0 the self-energy is computed using the self-
consistent quasiparticle energies 𝜀𝐤,𝑖 ← 𝜔

𝑞𝑝
𝑖
from previous iterations 

from the Eq. (45), and the iterations are continued until 𝜀𝐤,𝑖 = 𝜔
𝑞𝑝
𝑖
up to 

some precision.
Finally, when using the matrix form of the self-energy and the ex-

change correlation potential, we construct a Hermitian Hamiltonian 
from Eq. (44)

𝐻
𝑞𝑝

𝐤
=𝑍

1∕2

𝐤

(
𝜀0
𝐤
− 𝜀𝐤,𝑖𝐼 +Σ𝐤(𝜀𝐤,𝑖) − 𝑉𝑥𝑐

)
𝑍

1∕2

𝐤
(47)

and solve for the eigenvalue 𝜆𝑖, for which the eigenvector is the closest 
to unity eigenvector with component 𝑖 close to 1, and zero otherwise. 
Clearly, we need to construct different Hamiltonian 𝐻𝑞𝑝

𝐤
for each band 𝑖, 

and take only one eigenvalue from the set of eigenvalues of this Hamil-
tonian. The quasiparticle energy is finally given by 𝜔𝑞𝑝 = 𝜀𝐤,𝑖 + 𝜆𝑖, as is 
clear from Eq. (44). For G0W0 we can equate 𝜀𝐤 with 𝜀0𝐤 in the above 
equation, which avoids the need for self-consistency. In GW0 we require 
self-consistency in computing the self-energy, hence the expansion is 
also done around the current quasiparticle band energy.

When comparing the matrix form of the self-energy with the di-
agonal scalar approximation in Fig. 5 we notice that apart from a 
small downward shift of the first band in Si (around -12 eV) there is 
no noticeable difference between the diagonal and matrix form of the 
self-energy. In particular, all metals studied here show no appreciable 
change when the off-diagonal self-energy is included. We notice that 
both the exchange self-energy and DFT semi-local exchange correlation 
potential are not very small, while the correlation self-energy tends to 
be somewhat smaller. However, their total effect is small as can be 
directly checked by evaluating the difference between the eigenvalue 
from Eq. (44) and its diagonal equivalent Eq. (45). This difference tends 
to be around mHa for relevant bands in the plot.

2.7. Miscellaneous

There are several important technical details of the implementation, 
which are not going to be extensively reviewed here, because they have 
been nicely explained in other works, for example in Ref. [35] and 
Ref. [10].

a) The algorithm to compute the matrix elements of the bare Coulomb 
repulsion has been thoroughly worked out in Ref. [35], and we 
followed their implementation.

b) The inclusion of core states in the calculation is an important ad-
vantage of such an all-electron implementation. Here we again 
follow the implementation of Ref. [35] and include core states in 
the basis. They contribute to the product basis, to the polarization 
calculation, and to the single-particle Green’s function.

c) We also implemented the 𝐪 → 0 limit as in Refs. [35], and with a 
few more tricks from Ref. [10,80]. This analytic treatment of small 
𝐪 limit of polarization and the Coulomb repulsion is essential, as the 
number of 𝐪-points is still quite limited, and we can not afford to 
drop 𝐪 = 0 point, rather we worked out the analytic limit of polar-
ization using 𝐤 ⋅ 𝐩 perturbation theory. It turns out that 𝑃0,0(𝐪 → 0), 
𝑃0,𝐆(𝐪 → 0) and 𝑃𝐆,0(𝐪 → 0) are proportional to 𝐪2, 𝐪, and 𝐪 respec-
tively, so that even though the Coulomb repulsion is diverging at 
𝐪 → 0, the dielectric constant is not, and its analytic treatment re-
quires one to compute the matrix elements of the momentum 𝑖∇
operator, similarly as in the calculation of the optical conductivity. 
The term proportional to 𝑞2 and 𝑞 is usually called head and wings, 
respectively.
When summing the terms that are divergent at 𝐪 → 0 but inte-
grable, we have to add the correction due to a finite number of 
momentum points in the 𝐪 mesh. The divergent terms can have ei-
ther 1∕𝑞2 or 1∕𝑞 behavior, and would require one to sum 

∑
𝐪

𝑎𝑛
|𝐪+𝐆|𝑛

where 𝑛 = 1 or 𝑛 = 2. We first evaluate the sum by dropping the 
divergent term 𝐪 = 𝐆 = 0, and later we add the correction Δ𝑐 , 
which vanishes for very dense momentum mesh, but gives correc-
tion when momentum mesh is sparse. Specifically,

∑

𝐪,𝐆

𝑎𝑛

|𝐪+𝐆|𝑛 →

′∑

(𝐪,𝐆)≠0
𝑎𝑛

|𝐪+𝐆|𝑛 + 𝑎𝑛 Δ
𝑛
𝐶

(48)

with

Δ𝑛
𝑐 =

∑

𝐆

𝑉

(2𝜋)3 ∫ 𝑑3𝐪
𝑒−𝛼(𝐪+𝐆)2

|𝐪+𝐆|𝑛

−

′∑

(𝐪,𝐆)≠0
𝑒−𝛼(𝐪+𝐆)2

|𝐪+𝐆|𝑛 (49)

The first term in Eq. (49) is evaluated analytically, while the second 
term is evaluated on the discrete mesh. Here we added a small 
positive constant 𝛼 in the exponent, which does not change the 
nature of the 𝐪 → 0 divergency, but makes the integral converge 
fast. If the 𝐪 mesh is dense, Δ𝑛

𝑐 vanishes, while a sparse 𝐪 mesh 
has mostly contribution at small 𝐪 + 𝐆 and is hence very weakly 
dependent on 𝛼 for small 𝛼.

d) In contrast to insulators, the metallic systems also contain the so-
called Drude term as part of the dielectric matrix. This is in addition 
to other singular terms arising in insulators, which were briefly dis-
cussed above. Here we show where Drude’s term comes from, and 
how we treat it. In the eigenbasis of the Coulomb repulsion, we 
know that the singular eigenvalue in the limit 𝐪 → 0 is 4𝜋∕𝑞2, and 
the exact eigenvector is 𝑒𝑖𝐪𝐫∕

√
𝑉𝑐𝑒𝑙𝑙 . This is because the Coulomb 

repulsion in the plane wave basis and in the eigenbasis of the 
Coulomb matrix (expressed in terms of LAPW product functions) 
are similar matrices, and its non-degenerate singular part is there-
fore unique. The projection to the Kohn-Sham bands of this singular 
eigenvector therefore is
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𝑀(𝐤,𝐪→ 0)𝑙=0,𝑖𝑗 ≈

√
4𝜋

𝐪2
⟨ 𝑒𝑖𝐪𝐫√

𝑉𝑐𝑒𝑙𝑙

|𝜓𝐤,𝑖𝜓
∗
𝐤+𝐪,𝑗

⟩

→ 𝛿𝑖,𝑗

√
4𝜋

𝐪2 𝑉𝑐𝑒𝑙𝑙

(50)

Next, we want to evaluate the dielectric function in the same 𝐪 → 0

limit, which follows from Eq. (8)

1 − 𝜀𝑙=0,𝑙′=0 ≈
4𝜋𝑁𝑠

𝐪2𝑉𝑐𝑒𝑙𝑙

∑

𝐤,𝑖

(
−

𝑑𝑓

𝑑𝜀
(𝜉𝐤,𝑖)

)
(𝜀𝐤+𝐪,𝑖 − 𝜀𝐤,𝑖)

𝑖Ω𝑛 − (𝜀𝐤+𝐪,𝑖 − 𝜀𝐤,𝑖))
(51)

where 𝜉𝐤,𝑖 = 𝜀𝐤,𝑖 −𝜇. Within 𝑘 ⋅ 𝑝 perturbation theory, the difference 

of Kohn-Sham energies is 𝜀𝐤+𝐪,𝑖 − 𝜀𝐤,𝑖 ≈
𝐪

𝑚
⟨𝜓𝐤,𝑖|− 𝑖∇|𝜓𝐤,𝑖⟩ ≡ 𝐪⋅𝐩𝐤

𝑖𝑖

𝑚
In-

serting this expression into Eq. (51), and expanding for small 𝐪, we 
get the following result

1 − 𝜀0,0 ≈
4𝜋𝑁𝑠

(𝑖Ω𝑛)
2𝑉𝑐𝑒𝑙𝑙

∑

𝐤,𝑖

(
−

𝑑𝑓

𝑑𝜀
(𝜉𝐤,𝑖)

)(
𝑒𝐪 ⋅ 𝐩

𝐤
𝑖𝑖

𝑚

)2

(52)

Note that we dropped the linear term because its contribution van-
ishes as it is odd in 𝐪. Now we recognize the plasma frequency

𝜔2
𝑝 ≡ 4𝜋𝑁𝑠

𝑚2𝑉𝑐𝑒𝑙𝑙

∑

𝐤,𝑖

(
−

𝑑𝑓

𝑑𝜀
(𝜉𝐤,𝑖)

)(
𝑒𝐪 ⋅ 𝐩

𝐤
𝑖𝑖

)2
(53)

in terms of which the Drude part of the dielectric constant is

1 − 𝜀0,0(𝐪→ 0) ≈
𝜔2

𝑝

(𝑖Ω𝑛)
2

(54)

Note that we need 𝜀−1 − 1 to compute the self-energy in Eq. (11). 
While this Drude term gives singular contribution on the real axis, 
it is however well behaved on the imaginary axis, as it takes the 
form 𝜀−1 − 1 = 1

1+𝜔2
𝑝∕Ω

2
𝑛

− 1.

This Drude term, which appears at 𝐪 = 0, is of course missed in the 
discrete sum of Eq. (8), hence we need to add it to the so-called 

head part of the dielectric matrix, i.e., 𝜀0,0 → 𝜀0,0 −
𝜔2

𝑝

(𝑖Ω𝑛)
2 , before we 

invert the dielectric matrix to compute 𝜀−1.

3. Results

3.1. Benchmarking and validation in insulators

First, we describe our results for insulating systems to benchmark 
our GW implementation. We have computed GW quasiparticle energies 
and band gaps for a set of prototypical insulating materials, such as Si, 
BN, SiC, MgO, ZnS, CdS, LiF, etc. The experimental band-gap ranges in 
this set of compounds between 1.2 and 14.2 eV. The 8 × 8 × 8 k-point 
grid is considered here. The starting point for GW calculation in insu-
lators is obtained from DFT-GGA simulation using PBE functional. It is 
worth mentioning here that the gap size does depend on the choice of 
the DFT exchange-correlation functional. However, the future diagram-
matic Monte Carlo method, which sums up all relevant higher-order 
Feynman diagrams, should not anymore depend on the starting point 
as the higher-order counter-terms can be properly subtracted [49].

The computed bandgap within G0W0 and GW0 are summarized in 
Table 1. We compare them with PAW [81] and previous LAPW [45]
results with and without additional local orbitals. We used the experi-
mental lattice constants from the literature (see column 2), which are 
close to the values quoted by Shishkin and Kresse in Ref. [81], but some-
what different than those used in Ref. [45]. Experimental band gaps are 
quoted from Ref. [81], which compares well with our results and previ-
ous literature. We also compare our results obtained with and without 
considering LOs, and as can be seen from the table, additional LOs typi-
cally increase the size of the gap. The energy levels for LOs are obtained 
from Ref. [45].

As is well known, for every band-insulating compound, the bandgap 
increases in G0W0 as compared to DFT-PBE value. In GW0 the band 
gap is further increased compared to G0W0, especially for wide gap 
insulators like LiF. We mention in passing that GW0 calculation is a 
very cheap post-processing step, once G0W0 calculation is finished. This 
is because most of the computational time is spent in evaluating the 
screened interaction 𝑊0, and once this is available, only the convo-
lution Eq. (14) needs to be repeated several times to determine the 
self-consistent quasi-particle energies 𝜀𝐤 from Eq. (45).

As is clear from Table 1, our results agree well with previous LAPW 
work by Jiang and Blaha [45], and are also very close also to PAW 
results of Ref. [81]. The slight difference in the size of the band gaps 
between our results and those of Jiang and Blaha [45] is mainly due to 
the difference in the lattice constants used in the two calculations. For 
example, the computed band-gap of CdS using our code is 1.88 and 2.01 
eV in G0W0 and GW0, respectively, while it is 2.02 and 2.18 in Ref. [45]. 
If we rerun Gap2 code (used in Ref. [45]) on the experimental lattice 
constant quoted here, the band-gap is very close to our values, namely, 
1.90 and 2.04 eV in G0W0 and GW0 respectively. We also noticed in 
passing that somewhat smaller muffin-tin radii in combination with a 
bit larger plane wave cutoff (“RKmax”) tends to slightly increase the 
gap (within a percent) in most of the insulators. In our calculations we 
have not fine-tuned these values.

In Table 2 we show how the size of the gap depends on the param-
eters of the product LAPW basis. Here we use a converged number of 
Matsubara points (32 for evaluating 𝑊0 and 160 for the convolution of 
𝑊0 and 𝐺). The important parameters are: the number of local orbitals 
(LO), the highest allowed orbital momentum of the product basis 𝐿𝑚𝑎𝑥

defined just above Eq. (15), the maximum energy of the radial orbital 
included in the product basis 𝑃𝐵𝑒𝑚𝑎𝑥. Namely, when constructing the 
product basis, we always include all the basis-functions corresponding 
to occupied states as well as core state, however, we can neglect some 
radial basis functions, which are solutions of the Schroedinger equa-
tion at very high energy (beyond 𝑃𝐵𝑒𝑚𝑎𝑥). We start convergence tests 
with the cutoff 𝐿𝑚𝑎𝑥 = 6 and 𝑃𝐵𝑒𝑚𝑎𝑥 = 20Hartree above the Fermi en-
ergy, which gives a gap in Si within 3% of the converged value. This 
requires the product basis size of 437, and the Coulomb eigenbasis size 
of 405. Clearly, in such an economic setup almost all basis functions 
are important, and hence calculation in eigenbasis does not speed up 
the calculation much.

Next, we add five LO’s at the energies tabulated in Ref. [45], which 
converges the gap within 0.5%, and increases the product basis for ad-
ditional 138 functions, while the eigenbasis size is increased for only 
61 functions. Increasing 𝑃𝐵𝑒𝑚𝑎𝑥 to infinity changes the gap size for less 
than 0.2%, however, it increases the product basis substantially to the 
size of 1407, i.e., additional 832 basis functions. Here the power of the 
Coulomb eigenbasis becomes apparent, as that basis increases for only 
78 additional functions, i.e., one order of magnitude less than the num-
ber of functions added to the product basis. Finally, increasing 𝐿𝑚𝑎𝑥

from 6 to 10 adds an additional 0.5% to the gap size, and increases the 
product basis for additional 438 functions, while the Coulomb eigenba-
sis is increased for 354 functions. Finally, increasing 𝑃𝐵𝑒𝑚𝑎𝑥 at already 
converged 𝐿𝑚𝑎𝑥 = 10 does not change the gap but increases the product 
basis substantially. Fortunately, the eigenbasis is increased much less. 
Hence the energy cutoff 𝑃𝐵𝑒𝑚𝑎𝑥 = 20Hartree (default in Gap2 code) al-
lows one to substantially reduce the computational cost and reduce the 
product basis size and not affect the results much. At the same time, the 
Coulomb eigenbasis is a much more economic basis than the product 
basis to perform calculations of polarization matrix and 𝑊 matrix.

Finally, in Fig. 6 we plot the band structure along the high sym-
metry lines for selected insulators, namely Si, SiC, ZnS, and LiF. As is 
well known, the major effect of G0W0 and GW0 as compared to DFT is 
the shifting of the valence and conduction bands away from each other 
to increase the gap size. The connectivity of the bands and the over-
all band-structure is only moderately changed from its DFT structure, 
and the band renormalization is also quite weak in most band insula-
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Table 1
Bandgap (in eV) of various insulators as computed in PBE and G0W0 approaches and their comparison with experiments and previous GW results using PAW 
and LAPW basis, which are quoted from Ref [81] and Ref [45] respectively. Comparisons of band-gap without LO and LO=5 are shown on the top and bottom 
respectively.

Compound a PBE G0W0 G0W0 G0W0 GW0 GW0 GW0 Expt
(Å) (present) (LAPW [45]) (PAW [81]) (present) (LAPW [45]) (PAW [81])

Si 5.430 [82] 0.573 LO=0 1.095 1.03 1.13 1.09
LO=5 1.11 1.12 1.12 1.19 1.19 1.20 1.17

BN 3.615 4.472 LO=0 5.97 6.04 6.19 6.27
LO=5 6.15 6.36 6.10 6.39 6.61 6.35 6.1-6.4

CdS 5.832 [83] 1.13 LO=0 1.88 2.02 2.01 2.18
LO=5 1.92 2.19 2.06 2.05 2.38 2.26 2.42

MgO 4.213 [84] 4.74 LO=0 7.04 7.08 7.45 7.52
LO=5 7.22 7.52 7.25 7.63 8.01 7.72 7.83

SiC 4.358 [85] 1.36 LO=0 2.13 2.23 2.25 2.36
LO=5 2.16 2.38 2.27 2.27 2.53 2.43 2.40

ZnS 5.41 [86] 2.08 LO=0 3.19 3.15 3.44 3.35
LO=5 3.27 3.35 3.29 3.48 3.61 3.54 3.91

LiF 4.028 9.08 LO=0 12.96 12.36 13.45 13.98
LO=5 13.42 14.27 13.27 14.18 15.13 13.96 14.2

Fig. 6. Band structure for insulators as computed in GGA (PBE), G0W0, and GW0 approximations without LOs for: (a) Si, (b) SiC, (c) ZnS, and (d) LiF. For each 
compound we notice an increase in the band-gap in either G0W0 or GW0 .

tors, except for LiF, where the band renormalization from GGA is quite 
strong. We notice that the shift in valence and conduction band in GW 
is present throughout the BZ and is not particular to a specific symmetry 
point.

3.2. Results for metallic systems with convergence tests

Many widely available software packages now support GW correc-
tions to gaps in semiconductors, however, very few support GW cal-
culation in the metallic system, and even fewer allow one to plot the 
band structure throughout the Brillouin zone. This is due to the nu-
merical difficulty in treating the Fermi surface singularity in metallic 
systems, which oftentimes leads to less accurate results on the Matsub-
ara axis, and consequently extremely difficult analytic continuation to 

real frequency. Here we have improved the stability of the tetrahedron 
method, as implemented in Gap2 code [68], and improved the convo-
lution between the 𝐺 and 𝑊 , so that the standard Pade approximation 
is stable.

In Fig. 7 we show the correlation self-energy on the Matsubara 
and on the real axis for Na at Γ point of the last valence band. The 
imaginary part of the self-energy on the real axis is roughly quadratic 
with a very large coherence scale, which is roughly proportional to the 
width of the parabola. The real part is linear at low frequency, how-
ever, at the frequency of the quasiparticle peak (around −3 eV), 𝑅𝑒Σ

substantially deviates from the straight line, hence simple quasiparti-
cle approximation, which expands around zero frequency, would lead 
to smaller self-energy at −3𝑒𝑉 , and consequently to larger bandwidth 
of Na. This demonstrates that accurate analytic continuation is crucial 
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Table 2
Convergence of gaps for Si with experimental lattice constant 𝑎 = 10.262536 𝑎𝐵 , the plane wave cutoff for interstitial basis 𝑅𝐾𝑚𝑎𝑥 = 8, and number of momentum 
points 4 × 4 × 4. Here LO stands for the number of local orbitals. We choose the same local orbital energies as in Ref. [45]. 𝐿𝑚𝑎𝑥 is the maximum orbital momentum 
𝐿 allowed in the product basis and introduced above Eq. (15). 𝑃𝐵𝑒𝑚𝑎𝑥 is the cutoff energy in Hartee’s for including an orbital in product basis. P.B. size is the size 
of the product basis, namely the dimension of the index 𝛼 in 𝑀𝛼,𝑖𝑗 (𝐤, 𝐪). eigen. size is the size of the eigenbasis of the Coulomb repulsion, i.e., the dimension of the 
index 𝑙 in 𝑀𝑙,𝑖𝑗 (𝐪, 𝐪).

Setup gap G0W0 Γ −𝑋 gap G0W0 gap GW0 Γ −𝑋 gap GW0 P.B. size eigen. size

0 LO’s, 𝐿𝑚𝑎𝑥 = 6, 𝑃𝐵𝑒𝑚𝑎𝑥 = 20H 1.063 eV 1.201 eV 1.128 eV 1.267 eV 437 405

5 LO’s, 𝐿𝑚𝑎𝑥 = 6, 𝑃𝐵𝑒𝑚𝑎𝑥 = 20H 1.090 eV 1.224 eV 1.158 eV 1.292 eV 575 466

5 LO’s, 𝐿𝑚𝑎𝑥 = 6, 𝑃𝐵𝑒𝑚𝑎𝑥 =∞ 1.090 eV 1.224 eV 1.158 eV 1.292 eV 1407 544

5 LO’s, 𝐿𝑚𝑎𝑥 = 10, 𝑃𝐵𝑒𝑚𝑎𝑥 = 20H 1.095 eV 1.227 eV 1.162 eV 1.295 eV 1013 820

5 LO’s, 𝐿𝑚𝑎𝑥 = 10, 𝑃𝐵𝑒𝑚𝑎𝑥 =∞ 1.095 eV 1.227 eV 1.162 eV 1.295 eV 2019 958

Ref. [45], 𝑎 = 10.23543𝑎𝐵 1.12 eV 1.19 eV

Ref. [10], 𝑎 = 10.26253𝑎𝐵 1.11 eV

Experiment 1.17 eV 1.25 eV 1.17 eV 1.25 eV

Fig. 7. Self-energy on Matsubara and real axis for Na at the Γ point of the va-
lence band. The straight line on real axis shows the quasiparticle approximation 
expanding around zero frequency.

for extracting precise bandwidth of metals, as very accurate self-energy 
at finite frequency is required, beyond linear approximation. We also 
checked the precision of the Pade analytic continuation by comparing 
it to contour deformation integration in Fig. 5, which shows an excel-
lent agreement between the two methods.

A somewhat surprising fact is that even though we use tetrahedron 
analytic integration over momentum points, we still find that a very 
large number of momentum points are necessary for converged results 
in metals. While even 4 ×4 ×4 grid gives approximate spectra which re-
semble LDA bands, the convergence with increasing momentum points 
is slow, and is presented in Fig. 8 (a). For comparison, we also plot 
LDA values and ARPES data which are reproduced from Ref [87] and 
Ref. [88]. We notice that 4 × 4 × 4 mesh does not have a Fermi sur-
face crossing between Γ −𝑁 , hence the topology of the Fermi surface 
is wrong at this approximate mesh. Moreover, the maximally localized 
wannier interpolation (dotted lines) is quite different from the interpo-
lation of Ref. [64] (straight line), which agree only in discrete points 
at Γ, 𝑁 and halfway between Γ − 𝑁 , i.e., the points being used in 
the calculation. The bandwidth is severely overestimated, beyond LDA 
bandwidth. With 8 ×8 ×8 mesh the Fermi surface and the bandwidth are 
accidentally very close to the experimental data of Ref. [88]. However, 
this is not a converged result within GW approximation, as 12 × 12 × 12

mesh shows substantially larger bandwidth, close to LDA results. Only 
the 16 ×16 ×16 and 20 ×20 ×20 mesh agree, and can be taken as the con-
verged result with GW approximation. The Na bandwidth within G0W0

is 3.12 eV as compared to LDA value of 3.3 eV, and ARPES results from 
1988 [87] of 2.65, and newer 2022 results [88] of 2.88 eV. We notice 
that the new ARPES bandwidth is much closer to GW prediction than 

the older results, but is still around 8% too large. It is likely that this 
relatively moderate error will be eliminated by the proper inclusion of 
vertex corrections. We notice in passing that the inclusion of local ver-
tex corrections, as implemented in DMFT, indeed agrees with the new 
ARPES rather well, with predicted bandwidth of 2.84 eV [89].

In Fig. 8 we show band structure plots along high-symmetry lines 
for Li, Na, and Mg, and we present the bandwidth (energy difference 
between the Γ point energy and the Fermi energy) in Table 3. We com-
pare our results to those of Ref. [90], and to the experiment. First, we 
notice that the band structures of all these compounds are remarkably 
similar to the LDA (or GGA) results. As the Fermi surface is almost ex-
actly spherical in these compounds, and the band structure is close to a 
renormalized free-electron solution in the proper periodic potential, the 
only relevant number in such calculations is the bandwidth. We notice 
that the bandwidth is reduced as compared to LDA in all the compounds 
studied here. The range of band narrowing compared to LDA is about 
∼ 2-7%, which is far smaller than in the experiment or reported in 
Ref. [9]. It is however quite similar to recently reported self-consistent 
quasi-particle GW values in Ref. [90]. We also notice that our G0W0

results compare slightly more favorably with the experiment than the 
self-consistent quasi-particle GW method, nevertheless, there is a sub-
stantial renormalization effect missing within G0W0 or QSGW method. 
These results, therefore, suggest that the vertex corrections beyond GW 
might be substantial even in these systems with predominantly 𝑠 and 
𝑝 electrons. Such selected vertex corrections were studied in Ref. [90], 
and with more phenomenological ansatz also in Ref. [91]. The local 
vertex corrections were studied in Ref. [89], which predict bandwidth 
very close to the newer ARPES results [88]. However, we believe that 
a more systematic approach offered by the diagrammatic Monte Carlo 
method would be very useful here, to understand the rate of the pertur-
bation theory convergence with the perturbation order in metals with 
predominantly 𝑠 and 𝑝 electrons.

3.3. Scaling and computational cost

One of the biggest bottlenecks in GW calculations is the computa-
tional cost of simulations and the scaling of the software. Although, 
theoretically GW scales as O(N4), where 𝑁 is the number of bands, 
while DFT scales O(N3), practically we find GW method is around two 
orders of magnitude slower compared to DFT even for the smallest sin-
gle atom unit cell with only around hundred of bands [94], and becomes 
even slower with increasing system size. Hence the search for greater ef-
ficiency of the GW implementation and GW algorithm has become one
of the important research directions in the community [36,8,37–44]. 
One possibility is to reduce the number of necessary unoccupied states 
and consequently reduce the scaling from O(N4) to O(N3) [43,39,95]. 
Here we focus on the alternative direction in which we reduce the 
prefactor, and keep the O(N4) scaling. This is because for higher-order 
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Fig. 8. (a) Convergence of the band-structure with momentum grid in Na, showing the bandwidth of the occupied bands for metals in GW approximation. The dashed 
curves show the interpolation using method of Refs. [64,65], while the continuous curves correspond to maximally-localized wannier functions interpolation [66,67]. 
Note that the 8 × 8 × 8 result is not yet converged, but is accidentally close to the newest experimental ARPES. The 16 × 16 × 16 and 20 × 20 × 20 curves are 
indistinguishable in this plot, hence converged. Red dots (Exp 1988) and blue squares (Exp 2022) are the experimental ARPES data, which are reproduced from 
Refs. [87] and [88], respectively. Band structure for elemental metals for (b) Li, (c) Na, and (d) Mg as computed in LDA and G0W0 at 16 × 16 × 16 momentum mesh. 
The solid and the dashed line correspond to Wannier interpolation and the interpolation of Refs. [64,65]. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Table 3
Bandwidth of occupied bands for elemental metals as computed in LDA and G0W0 approaches and their comparison 
with experiments and self-consistent quasi-particle GW (QSGW) which are adopted from Ref [90].

Compound LDA G0W0 (present) Expt QSGW [90]

Li 3.46 3.39
Na 3.30 3.12 2.65 [87], 2.88 [88] 3.17
K 2.15 2.00 1.6 [92] 2.07
Mg 1.31,1.65, 6.89 1.29, 1.68, 6.66 0.9, 1.7, 6.15 [93]

Feynman diagrams, for which this software will be used, such a trick of 
reduced scaling is unlikely to be found. Hence, we here concentrate on 
optimizing the standard GW algorithm described in previous sections.

In Fig. 9, we compare the computational time for computing G0W0

band structure of the MgO system using our PyGW [58] and Gap2 [68]
code with identical input and output. A 8 × 8 × 8 k-point mesh with 
a total of 195 bands is considered for the G0W0 calculation. We com-
pute G0W0 bands within ± 2 Ry from the Fermi energy. Both codes 
show linear scaling with the number of cores, however, our PyGW 
code is around 3 times faster than Gap2 code when using more than 
80 cores, and around twice as fast for a smaller number of cores. This 
scaling is obtained in the Frontera supercomputer. Similar scaling is 
found for larger systems tested here. The reduction of the computa-
tional time is due to several improvements of the implementation: a) 
the efficiency of the tetrahedron method for computing the polarization 
in band basis is improved by precomputing common parts for all Mat-
subara frequencies, and more careful grouping of the diverging terms 
has been implemented. b) To further reduce the computational cost, we 
take into account that the polarization in the band basis is a real ma-
trix, while only the matrix elements of the 𝑀 can be complex. c) The 
Message Passing Interface (MPI) parallelization is here used only over 

Fig. 9. Comparison of computational cost in PyGW and Gap2 codes: Logarith-
mic plot for computational cost in G0W0 calculation for MgO using PyGW and 
Gap2 software in Frontera Supercomputer.
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bosonic momentum 𝐪 points, while OpenMP parallelization is used in 
internal loops over frequency, bands, and fermionic momenta.

The efficiency of the GW implementation presented here is highly 
advantageous for simulating metallic systems. Since the number of mo-
mentum points required for such systems is typically between one to 
two orders of magnitude greater than for band-insulators, the correla-
tion self-energy becomes sensitive to the Fermi surface singularity of the 
single-particle Green’s function. This efficiency improvement will also 
prove beneficial in future implementations of the diagrammatic Monte 
Carlo method, which systematically incorporates higher-order vertex 
corrections into the GW method. This necessitates a highly precise mo-
mentum mesh and accurate treatment of core states, aspects achieved 
only in such all-electron implementations.

4. Conclusions

In conclusion, we describe the implementation of GW approxima-
tion within the all-electron Linear Augmented Plane Wave framework, 
where we pay special attention to the metallic systems, and proper 
treatment of deep laying core states, as needed for the future varia-
tional diagrammatic Monte Carlo implementation. We implement both 
standard G0W0 approximation, i.e. after truncating the series of self-
energy to the first order in 𝐺 and 𝑊 , as well as GW0 algorithm, where 
we self-consistently compute 𝐺 but truncate the series in 𝑊 to the first 
order. Our improved algorithm for resolving Fermi surface singulari-
ties and frequency convolution on the Matsubara axis allows us a stable 
and accurate analytic continuation of imaginary axis data by Pade ap-
proximation. This is crosschecked by the contour deformation technique 
that avoids the need for analytic continuation. We compute band struc-
ture and band gaps for a variety of insulators. We demonstrate the 
accuracy of our implementation by reproducing previous LAPW results 
for band insulators. We also implemented the matrix analog of G0W0

approximation. Here, we demonstrate that the conventional diagonal 
approximation within the Kohn-Sham band basis is an excellent approx-
imation, which is in contrast to the finding of Ref. [79].

Surprisingly, we find that GW approximation requires an extremely 
dense momentum mesh for metals to converge even when tetrahedron 
integration is used. This is very different than in semilocal DFT ap-
proximations in which the potential is computed in real space, and 
therefore the convergence with momentum points is very rapid. In GW, 
a 16 ×16 ×16 k-point mesh is required for reasonable convergence in the 
simple alkali metals such as Li, K, Na, and Mg. To test the implemen-
tation, we compute the band structures of these metallic systems and 
find that the converged bandwidths are slightly smaller than in LDA, for 
about 2-7%. This agrees very well with the self-consistent quasi-particle 
GW approach. The bandwidth in the ARPES experiment is smaller, 
which indicates that vertex corrections are important even in these el-
emental solids. The recently developed systematic approach, offered by 
the diagrammatic Monte Carlo method, would be very desirable to de-
termine whether the narrowing of the bandwidth in these moderately 
correlated systems is purely electronic in origin, or other effects, such as 
interaction in the final states of ARPES experiment or the surface effects 
in ARPES measurements need to be considered to reproduce the exper-
imental photoemission. Finally, we also show a substantial three-fold 
improvement in the speed of GW calculation compared to the previous 
LAPW code (gap2), on which this implementation is based.
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