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Abstract

We consider a totally asymmetric simple exclusion on Z with the step
initial condition, under the additional restriction that the first particle cannot
cross a deterministally moving wall. We prove that such a wall may induce
asymptotic fluctuation distributions of particle positions of the form

P( sup{Airys(r) —g(r)} < 5)

TER

with arbitrary barrier functions g. This is the same class of distributions that
arises as one-point asymptotic fluctuations of TASEPs with arbitrary initial
conditions. Examples include Tracy-Widom GOE and GUE distributions, as
well as a crossover between them, all arising from various particles behind a
linearly moving wall.

We also prove that if the right-most particle is second class, and a lin-
early moving wall is shock-inducing, then the asymptotic distribution of the
position of the second class particle is a mixture of the uniform distribution
on a segment and the atomic measure at its right end.

1 Introduction

The totally asymmetric simple exclusion process (or TASEP, for short) is a proto-
typical example of an interacting particle system in one space dimension. It consists
of particles moving within the one-dimensional lattice Z in continuous time, with
each site of Z occupied by at most one particle (the exclusion constrained). Each
particle carries its individual exponential clock of rate one (all clocks are indepen-
dent), and when that clock rings, the particle attempts to jump to the right by one
unit. It succeeds if the target site is empty, and it stays put if it is not. The TASEP
was introduced into mathematics by Spitzer in [Spi70], and since then it has been
a subject of extensive studies.
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The TASEP evolution can be rephrased as a model of random interface
growth, and as such it is arguably the simplest representative of the (conjec-
tural) Kardar-Parisi-Zhang universality class of random growth models in (141)-
dimensions [KPZ86]. For example, it was the first member of the class for which
one-point fluctuations were asymptotically analyzed (Johansson [Joh00]), and the
complete Markovian evolution of the asymptotic fluctuation processes was obtained
(Matetski-Quastel-Remenik [MQR17]).

Among all possible initial conditions for the TASEP, the translation-invariant
stationary ones play a special role. They depend on a single parameter p € (0, 1)
called the density, and they place a particle at each site of Z independently with
probability p. One shows that such a Bernoulli measure on particle configurations
in Z is stable under the TASEP evolution, and the trajectory of each particle is a
simple random walk in continuous time that moves up by one with rate (1 — p). !

Apart from the stationary initial data, the simplest initial configuration is prob-
ably the one that is often called the step initial condition: The particles occupy all
the sites marked by Z<o = {0,—1, —2,...}. This was the one considered in [Joh00],
and it was also the first for which a (nontrivial) law of large numbers type behavior
was obtained by Rost in [Ros81].

The purpose of the present paper is to investigate the fluctuations of the TASEP
with the step initial condition, with an additional constraint — the right-most par-
ticle is forbidden to cross a deterministically moving barrier that we call a wall.

Similar setups have been considered before. However, in previous works the
movement of the wall was always random, and, to our knowledge, a deterministically
moving wall has not been considered before.

Borodin-Ferrari-Sasamoto [BFS09] studied the situation when the TASEP is
initialized with the particles occupying every second site in Z<,, and right-most
particle has a different (slower) jump rate. Equivalently, one can think of the
positive semi-axis Z~ initialized by a Bernoulli measure. A few different fluctuation
processes arose in the large time limit, depending on the speed of the right-most
particle and the region of the lattice, cf. [BFS09, Section 2]. One interesting feature
was a fluctuation description of a shock. Shocks were investigated on a deeper
level in subsequent works by Ferrari-Nejjar [FN15, FN17,Nej18, Fer18, Nej19, FN20]
and Quastel-Rahman [QR18]. Other types of evolution of the first particle were
considered (and other initial condition on Zs( as well), with fluctuations of different
order and different distributions. However, the randomness of the wall movement
was always an essential contributor to the fluctuations of the TASEP particles, once
they became affected by the wall.

Our main interest in this work was to investigate the situation when the move-
ment of the wall was not producing any randomness whatsoever, and to see what
kind of asymptotic fluctuations one would be able to observe in such a case.

Our main result says that by choosing an appropriate (deterministic) movement
of the wall, one can create distributions of the asymptotic fluctuations of a particle
in the bulk of the system that span essentially the same class as the ones arising from

IThe latter fact is usually referred to as Burke’s theorem, see Burke [Bur56] for the original
statement in terms of a queuing system, and Spitzer [Spi70, Example 3.2], Ferrari-Fontes [FF96]
for interpretations in terms of particle systems.



one-point asymptotic fluctuations of the TASEP with varying (deterministic) initial
conditions (obtained previously in [MQR17]). A bit more precisely, we show that for
any piecewise continuous function g on the real line satisfying g(7) > const + 72 /2,
7 € R, the probability that a certain particle at time ¢ > 0 is to the right of position
&t — Sct!/?, for suitable constants ¢ and ¢, tends, as t — 00, to

p(sup{AQ(T) g} < s), S ER, (1.1)

TER

where A, is the Airy, process. The corresponding movement of the wall is governed
by the function g in a space-time window of size ~ ¢'/3 x t*/% which is determined
by the particle that we focus on; outside of that critical window the position of
the wall is required to satisfy an (explicit) macroscopic inequality that limits its
influence on the chosen particle.

An exact formulation of the claim above can be found in Theorem 4.4 below.

The conditions on the functions g can be relaxed, although we do not pursue
that in the present paper. Our result also does not cover all possible fluctuation
scenarios that a deterministic wall can create. For example, wall trajectories may
have multiple critical windows that affect the tagged particle, and those are not
considered in this text.

For a discussion of how the variational formula (1.1) is related to the Airy sheet
and the KPZ fized point, see [MQR17, Section 4.5] and references therein. For some
of the earlier works where such variational formulas played an important role see
Johansson [Joh05], Quastel-Remenik [QR13a,QR19], Baik-Liu [BL13], Corwin-Liu-
Wang [CLW16], Chhita-Ferrari-Spohn [CFS18], Ferrari-Occelli [FO18].

To give a concrete application, consider the wall that starts at the origin and
moves to the right with constant speed v < 1. Then we show, in Section 4.3 below,
that our main result implies the following behavior. Denote by z1(t) > za(t) > ...
the positions of our TASEP particles at time ¢ > 0; note that z,,(0) = —n + 1 for
all n > 1. Then the asymptotic fluctuations of z,(t) converge, on a t1/3_gcale and
as t — 00, to the GOE Tracy-Widom distribution F; for o < (1 —v)?, to the GUE
Tracy-Widom distribution Fy for a > (1 — v)?, and to the crossover distribution
Fa_,1.0 describing a section of the Airys_,; process of [BFS08] for a = (1 — v)?.

Our proof is based on two relatively recent advances.

One is a so-called color-position symmetry of the multi-species TASEP. The
symmetry itself goes back to the work of Angel-Holroyd-Romik [AHDO09], see also
Amir-Angel-Valké [AAV11], Borodin-Wheeler [BW18], Borodin-Bufetov [BB21],
Bufetov [Buf20], Galashin [Gal21] for the development of its understanding and
some of its applications. For our model with a wall, we show that this symmetry
implies that the distribution of the position of a given particle is identical to the
distribution of the position of another particle in another TASEP with the step ini-
tial condition (and without a wall), conditioned on the fact that this other particle
remains ahead of a deterministally moving barrier.

The second part of our argument is a precise control of the whole trajectory of
a given TASEP particle achieved via the technique of backwards paths introduced
in [Ferl8], see also [FN20]. Backwards paths are random lattice paths that mimic



the behavior of the characteristics of exclusion processes?. The control is realized
by fine comparisons of the backwards paths for the process at hand with those of
stationary TASEPs, since the latter ones are easier to estimate. Backwards paths
could be viewed as analogs of geodesics in last passage percolation (LPP) models, in
the sense that along them (2.3), which is the analogue of the concatenation property
for LPP, is satisfied.

Employing this technique for the trajectory of a TASEP particle conditioned
to stay above a barrier, which we obtain via the color-position symmetry from the
original TASEP with a wall, ultimately leads to the limiting distributions (1.1),
where the function ¢ is related to the movement of the barrier and, consequently,
to the movement of the wall in the original TASEP. An alternative way would be
to use LPP with a first deterministic row, which is an equivalent formulation of the
model. However, such an approach would also require technical work for getting the
results, in particular, for the result on the second class particle due to the random
time change between the trajectory of the second class particle and the competition
interface (see [FN17] vs. [FGN19]).

We also offer another application of our approach by considering a TASEP
with a linearly moving wall whose right-most particle is second class. Second class
particles are known to track the characteristics and, in particular, stick to the
shock locations. For the step initial condition without a wall, Ferrari-Kipnis [FK95]
proved that at a large time ¢, the right-most second class particle is asymptotically
uniformly distributed on the segment (—¢,t).> We prove, in Theorem 5.1 below,
that once one adds a shock-inducing wall that at time ¢ € [0,7] is at position
T+ vt with ¢ > 0, 0 < v < 1, and v + ¢ < 1 (the latter condition ensures that
the wall nontrivially interacts with the particles), the asymptotic distribution of
the second class particle is a mixture of the uniform distribution on the shortened

segment (—t, t(—=142v+2y/c(1 — v))) and an atomic measure at the right end of

this segment.

The paper is organized as follows. Section 1 is the introduction. In Section 2
we use backwards paths and comparisons with stationary TASEPs to prove weak
process-level convergence of a tagged TASEP particle to the Airy, process at the
fluctuation scale. Section 3 explains the application of the color-position symmetry
to TASEPs with a wall. In Section 4 we prove our main result by combining the
results of the two previous sections. The final Section 5 contains a proof of the
second class particle asymptotics.

Acknowledgements. A. Borodin was partially supported by the NSF grant DMS-
1853981, and the Simons Investigator program. The work of P.L. Ferrari was partly
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - GZ 2047/1, projekt-id 390685813 and
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
Projektnummer 211504053 - SFB 1060.

2More exactly, those are the characteristics of the inviscid Burgers equation that describes the
law of large numbers behavior of the exclusion processes.

3This corresponds to the fact that in the case of the step initial condition, the characteristics
that pass through the origin form a rarefaction fan.
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2 Tightness of the scaled particle process

In what follows, whenever we consider TASEP with different initial conditions, we
always assume that they are coupled by the basic coupling [Lig85]. In other words,
the evolution of the different processes occurs using the same jump trials. It is
useful to have in mind the graphical construction of TASEP [Har65,Lig76], see also
Figure 5 below. We describe TASEP not by the occupation variables of the sites,
but rather by the positions of labelled particles. For all times ¢ and label k£ € 7Z,
denote the position of the particle with label & at time ¢ by zx(¢). We use the
convention xy(t) > g1 (%).

The goal of this section is to obtain the following results based on the particle
representation (without having to make a detour through the last passage percola-
tion model):

e In Proposition 2.9 we show that for the step initial condition, that is x(0) =
—k + 1, k > 1, the rescaled particle process converges weakly to the Airys
process. As convergence of finite-dimensional distributions is known, we need
a modulus of continuity estimate to get tightness.

e In Theorem 2.8 we show that the increments of the particle process can be
bounded by the ones of two Poisson processes, which originate from two
TASEPs with stationary initial conditions. This result is central for get-
ting the estimate on the modulus of continuity, and also for bounding the
increments in a mesoscopic scale for the scaling limit of Section 4.

The comparison of TASEPs requires careful estimates, which will be done using
the formalism of backwards paths discussed below. Backwards paths have been
introduced in [Fer18], see also [FN20].

2.1 The backwards path

We define the following process running backwards in time. First we define a process
on the labels starting from time ¢ backwards to time 0, denoted N(t | -), as follows:

e weset N(t|t)=N,

e the jumps happen at times when a TASEP jump trial is suppressed: if at
time* i+ we have N(¢ | *) = n and at time ¢ a jump of the TASEP particle n
is suppressed by the presence of particle n—1, then we define N(t | f) =n—1.

The backwards path associated to the label N at time t is defined by setting

TNt = {xN(uu)(u),u c [O,t]}, (21)

see Figure 1.

4f+ means a time moment that is infinitesimally larger than .
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Figure 1: The red solid lines are the trajectories of {z,(u),0 < wu <t, all n}. The
thick light-blue line is the trajectory of the backwards path my; = {Zn(u)(u), u €
[0,¢]} with N = 3: it follows backwards the trajectory of the particle until a jump
was blocked. Then the path jumps to the blocking particle and continue backwards.
The blue dots and the dashed blue lines are the trajectories of the particles after
setting step initial condition at time 7.

We denote by 5P (7, t) the particle process at time ¢ starting at time 7 from
the step initial condition with the right-most particle at position Z € Z, i.e., with
the initial condition

xitep7Z(T7t:T)I—n+Z+17 nZ 1 (22)

For Z = 0 and 7 = 0 we simply write 25P(¢). Also, define yZ(7,t) = x5*Z(7,)—Z.

n

In Proposition 3.4 of [Fer18] it is shown that

TN () (T)
TN <t> = IN(tir) <T> + yNI\L(j\L[(ziT)Jrl (T7 t) (23)
Furthermore, for any other n < N it holds®
on(t) < 2a(7) + R (7, 8). (2.4)

This can be also read in another way (the role of n is taken by N(¢ | 7) and the
role of N is taken by n): for any n > N(t | 7),

TN (tdT) (1)

T (t) < TN (T) + YNy (75 1) (2.5)

Remark 2.1. The important properties of the backwards path my ¢ are (2.3), (2.4),
(2.5), and by construction it has almost surely only steps of size £1.

By construction of the backwards path, the position xy(t) is unchanged if par-
ticles strictly to the right of the path are moved to the right and particles strictly
to the left are moved to the right but still keeping the exclusion constraint; the

°For TASEP, we thus have xx(t) = inf,<n {:L'n(T) + yfv”f;lrl(ﬁ t)}, as previously proven by
Seppéldinen with a different approach in [Sep98].

6



extreme situation is to create a step initial condition at position of the backwards
path (which gives the formula (2.3)). If the backwards path ends weakly to the left
of 0, then we can move to the right particles initially strictly to the right of 0 and
get the initial configuration of a process we call z" 8" while if the backwards path
ends strictly to the right of 0, we can move to the right particles weakly to the left
of the origin leading to a process we call z'°. Therefore,

oy (t) = min{z'<(¢), 28" (1)}, (2.6)

for arbitrary N.

2.2 Comparison inequalities

For t; < ty, we would like to bound the increments of zy(t2) — zxn(t;) with the
increments of another process, namely Z,/(t3) — Zps(t1) for suitable M and Z. The
process T will be taken to be a stationary TASEP with some density p, because in
this case for each fixed n, (Z,(t),t > 0) is a Poisson process with intensity 1 — p
(one-sided random walk with jumps to the right at rate 1 — p). This property is
coming from Burke’s theorem [Bur56] and it was observed in [Spi70] (Example 3.2),
see also [FF96].

Proposition 2.2. Let z(t) and &(t) be any two TASEPs coupled by the basic cou-
pling. Consider the tagged particle processes xy(t) and Ty (t) on a time interval
[t1,ts]. Assume that

Ty (ty) < xy(ty). (2.7)
Define the event
En = 137 <t @nGain) (7) = Tnr(ain (1)} (2.8)
If 5;12]\]} takes place, then
xy(te) —xn(t1) > Tar(ta) — Ta(t). (2.9)

Proof. Let us consider the backwards path 7y, associated with xy starting at time
to and the backwards path 7y, associated with 7, starting at time ¢;, see Figure 2

for an illustration. Assume 5;12]\]\/5 is satisfied and set ©* = Zas(, 1) (T) = TN (0 (T)-
Then by (2.3) we have

xN<t2) =" + y]gi/j;N(tziT)Jrl (T7 t2)7

: L (2.10)
Ta(th) = 2" + nyM(tlw—)Jrl(Tu t1),
and by (2.4)
en(ty) < o* +y% a1 (7o),
~N( 1) ) ?/;V* N(tal )+1( 1) (2.11)
Tu(t) < +yM—M(t1¢T)+1(7'7 ta).
Assume for a moment that
N—N(al7)+1<M-—M(t, |7)+1. (2.12)

7



time time

(b)

Figure 2: The thick solid lines are the evolution of particle x5 and ,;, while the
backwards path are dashed. The thin solid lines are the evolution of particle N
(resp. M) after restarting with step initial condition at time 7 and position z* for
x (resp. Z). The solid dots are the particle configurations at time 7 and the empty
dots are the configurations after resetting to the step initial condition at time 7.
The picture (a) is for the case N — N(to L 7) +1 < M — M(t; | 7) + 1, while (b)
for the case N — N(to L 7) +1 > M — M(t; | 7) + 1. The contradiction in (b) is
that the blue empty dot at time ¢; should be at position Z, (%), but it is also to
the right of the black empty dot at time t;.

Then, combining (2.10) and (2.11) we get

zn(t2) —an(t) > yjm\LN(mT)H(Ta ta) — yjm\LN(mT)H(Ta t1)
> Yhr— M)+ (T t2) = Ynr— a1+ (75 1) (2.13)
> Tp(ta) — Tau(t).

The second inequality holds due to (2.12) and the fact that, for the step initial
condition, particles starting to the left of particle N can not move more than the
distance traveled by particle V.

It remains to prove (2.12). Assume that it is not true. Consider the evolution
of the particles obtained by setting the step initial condition at time 7 with the
right-most particle at x*, which we label as particle number 1; i.e., we look at the
process {a* + y2 (7,t)},>1. By assumption, particle Ny = N — N(ty | 7) + 1 is to
the left of particle My = M — M(t; | 7) + 1. By (2.11) particle N; at time ¢; is
on [zx(t1),00), and thus particle M; at time ¢; is strictly to the right of zx(¢1). In
formulas,

exlt) < o 4y (rt) < &+ yin (rh) = Elt), (2.14)

where the last equality comes from (2.10). But by assumption (2.7) we have
Zpr(ty) € (—oo, zn(t1)], which is a contradiction. O



Interchanging the roles of x and Z, namely renaming xny — Zp and T); — Ty,
we get the following result.

Proposition 2.3. Let z(t) and &(t) be two TASEPs under the basic coupling. Con-
sider the tagged particles processes xn(t) and Zp(t) on the interval [ty,ts]. Assume
that

zy(t1) < zp(ty). (2.15)
Define the event
EPN = {3 < ] an(in (T) = Ep(eain (T)}- (2.16)
If gffﬁ is satisfied, then
rn(te) —on(ty) < Tp(ty) — Tp(t1). (2.17)

2.3 End-point localization of backwards paths

Here we prove two lemmas which imply that with high probability the events & and
& do occur from (2.8) and (2.16).

Lemma 2.4. Let z(t) be the TASEP with the step initial condition. Let® N = oT
with o € (0,1) and t = T — »T?/* with » in a bounded set. Define ar = oT/t.
Then there exist constants C,c > 0 independent of N such that for all K1, Ky > 0
we have

P(|2n(0)(0)] > KaT?) < Ceme (2.18)
and
P (lzn(t) — (1 = 2/ap)t| > KoT'?) < Cem ", (2.19)

uniformly for all N large enough.

Proof. For the step initial condition zy}0)(0) = =N (¢t L 0) +1 < 0. Thus, by (2.3)
at time 7 = 0 we have
step,— N (t]0)+1

fL‘N(t) = l‘N,pN(uE))iF— (t)v (2'20)
that is, xn(t) can be obtained from the step initial condition where the particles
on [—=N(t ] 0) 4+ 2,0] are removed. Let us estimate the probability that N(¢ ] 0) >
KT8 + 1.

We have” (using (2.20))

P(N(tL0) < KyTY3+1) > Play(t) < min o3P 77 (1))
n>KT1/34+1

_ 1/3
— Plan(t) < 30 1)),

(2.21)

6To keep the notation simple, in this paper we do not write explicitly the integer values. E.g.,
N = aT stands for N = |oT].

“In the r.h.s. of (2.21) we have used a strict inequality. The reason is that the event
{zn(t) = min,> g 71/ xi\tfef’;;ﬁﬂ(t))} does not imply N(t | 0) < K,T3 + 1, because several
Ny Step,—n-‘rl(t)).

values of n could minimize z'\ 1



where we used that x?@?’hﬂ“(t) is weakly increasing in n. Next, for any constant

Plan(t) < 2P KT (1)) > Play (1) < A < 230K ()

N—-K,T1/3 N—-K;T/3
>1 - P({an(t) > A} U{A > 252 KT (1)) (2.22)
> 1 Play(t) > A) - P(A > a5 5T (1),
Thus
P(N(t L 0) > K\ T'3) < Play(t) > A) + P(A > 25 5507 (1), (2.23)
We choose
A= (1-2yap)t+ 1K (a7? - 1)T"3 (2.24)

To bound the first term, with o = % we have (see Lemma A.2)

lim P (zar(t) > A) = lim P (zar(t) > (1 —2/ar)t — soTl/B) = Four(s) (2.25)

T—o00 T—o00

with s = =1 K (a"'/?~1) /0. The tails for large but finite time 7" are also known to
be (super)-exponential. In particular, for all 7" large enough and s; < 0, see (A.4),

P (z4r(t) > (1 — 2y/ar)t — s,0TY3) < Ce~11*”, (2.26)

(2.19) follows from this bound, together with the bound of the upper tail (A.3). By
our choice of A, P(x4r(t) > A) < Ce=K1” for other constants C,c>0.
To bound the second term in (2.23), let a7y = %ﬂ Then

P (ﬁtepv—KIT” (1) > (1 - 2¢/an)t — K, TV? — 320T1/3)

aT—K T3
o A s\ T (2.27)
_p (xaT_K1T1/3(t) > (1 —2v/an)t — ss0T ) =% Fun(s2),
and, for all 7" large enough, see (A.3),
P (a2 50 (1) < (1= 2V/an)t — KT — s5p0TV0) < Cem . (2.28)

A computation gives, as T — oo,
(1—2vap)t — KiTY? = (1 —2y/ap)t + K (a™ V2 = 1)TY3 + O(1).  (2.29)

This corresponds to setting s» = $K;(a~'/? — 1) /o + o(1), which implies

P(xstep,leTl/S(t) SA) SCechl (230)

oT—K T3

for some other constants C', ¢ > 0.
Since N(t | 0) > 1, (2.18) follows from the bounds on the two terms of (2.23).
U
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Lemma 2.5. Consider the TASEP with the stationary initial condition with density
p. Then there exist constants C,c > 0 independent of t such that for all K > 0 and
any N € Z

P4, (1) — o) (0) — (1= 20)t] = K9) < CeoF, (231)

uniformly for all t large enough.

Proof. Consider a density py = po + &t~Y/3 with & > 0 and set x;. = p, (1 — py),

Xo = po(1 — po). In the stationary TASEP with density p,, denoted as z”+, choose
the particle number M = p? ¢ — 2% p,t2/? (where particle with label 0 is the first one
strictly to the right of the origin). Then, see Theorem 1.6 of [BFP10],

lim P <x§; (t) > (1 = 2p )t + 25t%° — (1 — p)xs 1/33t1/3>

i P (5502 0~ 2 (1 g s) = )

t—o00

(2.32)

where FgR,,, is the Baik-Rains distribution function with parameter w. In addition,
for all large ¢ (see Lemma A.3)

P (255 (t) — (1 = 2po)t| > Kt'/?) < Ce™& (2.33)

for some constants C, ¢ > 0.

Now consider TASEPs with two initial conditions modified as follows: (a) xr+!°ft
consists of x”* in which all particles weakly to the left of 0 are pushed to the right
until 0 to create the step initial condition on {..., -2, —1,0} and particles strictly to
the right of 0 are unchanged, (b) x?+'8 consists of removing all particles starting
strictly to the right of 0 of x#+, keeping the particles to the left of 0 unchanged (the
numbering of the remaining particles is unchanged).

By (2.6) and the discussion above it, we have

{5010y (0) > 0} = {M(¢ L 0) < 0} 2 {ah; ™" (1) > a7 ™" (1)} (2.34)

The inclusion is not necessarily an equality since it could also happen that the two
random variables in the last expression are equal. Thus we have, for any choice of
A,

P (27130 (0) > 0) > P(af ™" (1) > A > 257" (1)) 035)
> 1= P(afy ™ (1) < A) = Pf; (1) > 4), |

which gives

P(247110)(0) < 0) < P (1) < A) + P(afy " (1) > A). (2.36)

We choose A = (1 — 2po)t + #2413, since typically 27" (¢) is to the left of A and
xﬁ}’right(t) is to the right of A.

The two initial condition used here can be analyzed directly using determinantal
formulas, but the bounds for precisely this case have not been written down before.
To avoid redoing standard asymptotic analysis, we opt to use the connection to the

11



last passage percolation (LPP) where such computations have been made. We want

to emphasize that it is not necessary.
We have
P(afhy ™ (t) > A) = (L2 (M + A, M) < 1),

P(ah ™5 (t) < A) = P(L{* (M + A, M) > t).

Here L|p+ is the LPP with exp(1) random variables on {(i,7)[¢ > 1,7 > 1} and
exp(py) on {(0,7)|j > 1}, while L?* is the LPP with the same bulk randomness
and with exp(1 — p;) on {(i,0)|i > 1}.

In Lemma 2.5 of [FO18], there are bounds on exit point probabilities bounding
precisely ]P’(Lf*(M + A, M) > t) and P(L?* (M + A, M) < t); see (3.7) of [FO18].
The variables in [FO18] should be matched as follows:

(2.37)

r—t, n—M, ~n-— M+ A, K—)R(n/t)l/g:Rpg/3+0(t_2/3). (2.38)

Then the bounds used for the proof of Lemma 2.5, see Lemma 3.3 of [FO18], lead
to

P(LIH (M + A, M) > 1) < Ce™™, P(LE(M + A, M) <t) < Ce™™  (2.39)

for some constants C,c > 0 (those can be taken uniformly for p, in a compact
subset of (0,1)).

Now, we set py = p. — kt~/3, so that p, = p By (2.36)-(2.39) we have, with
probability at least 1 — 2C'e™%"| that x*,(t) — ZL‘M w0y () < zh,(t). By (2.33) we
further have that with probability at least 1 —Ce™% 24 (t) < (1 —2po)t — Kt?/3 =
(1 —2p)t + (2& — K)t?/3. Thus, choosing & = K we get that

P (2, (£) = 257000 (0) = (1 = 2p)t + Kt*%) < Cem X (2.40)
for some new constants C, ¢ > 0. With similar arguments one shows that
P(af, (£) = 27040 (0) < (1= 2p)t — Kt*%) < CemK. (2.41)

By translation invariance, the statements (2.40) and (2.41) hold for any M, which
is our result. O

2.4 Comparison inequality and tightness

First let us see that it is enough to verify the events £ and £ at the largest and
smallest times of a given interval.

Lemma 2.6. Consider two times ti,ty such that t < t; < to < T. Then, with
notations (2.8), (2.16), we have

En CEA, and &5 CEP (2.42)

Proof. Assume that & M occurs. Then we have Z)/(t) < zy(t) (by assumption),
and hence (via basic couphng) Ty (T) < zny(T). For any u € [t,T], we have that

12
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Figure 3: The solid lines are the evolution of particle xy and z,;, while the dashed
paths are backwards path starting at different times. The red dots represents the
occurrence of the events & ;Y and Sffﬁ One sees that &) implies Sffﬁ

the backwards path from xy(u) is to the left of the backwards path from xy (7).
This implies that the backwards path from Z,,(¢) will intersect the one from x ().
Thus c‘ftT]éV implies 5;‘]\]} for all w € [t,T]. In turn, since Zp(t) < zy(t) and the
event &’ 7 implies, by Proposition 2.2, that the increment 2y (u) — zx(t) is larger
than Zy(u) — Zps(t), we also have Ty, (u) < zx(u) for all u € [t,T]. But this then
implies that the backwards path from Z,,(¢1) intersects the backwards path from
xn(t2) for all ty <ty in [¢,T7.

For £ it is similar. See also Figure 3 for an illustration. O

With the above results, we immediately have an estimate on the probabilities
of Sffﬁ and Sffﬁ
Proposition 2.7. Let x(t) be the TASEP with the step initial condition. Set
N=aT,ac(0,1), andt =T — 3T*3 with » > 0 fized. Let py = \/ar = \/aT/t
be the average density of particles around xn(t). Define

pr = po £ Kt =+ (3xev/a £ k) 73 L O3 (2.43)

with k > 0. Consider two stationary processes: T(t) = xP+(t) having density p,,
and T(t) = xP~(t) having density p_. Define the index M to be the smallest one such
that 251 (t) < xn(t) and the index P to be the largest one such that xn(t) < x5 (t),

and recall the events 53\2\/ and éf]\l,) of Propositions 2.2 and 2.3. Then

P(E2y NEEY forallt <t <t <T)>1—Ce ™, (2.44)
for some constants C, ¢ > 0, where the constants are uniform for all T large enough.

Proof. By Lemma 2.6 it is enough to bound the probabilities of Eg ]év and c‘:’tT j\f

Lemma 2.4 with s = 0 gives the localization of zy(r0)(0) in a T3 window and
Lemma 2.4 with s gives the localization of xy(t) — (1 — 2p0)t in a T3 window.
Taking for instance K7 = Ky = k/2 we have that

P(zn(t) — 2neri0)(0) < (1 —2p0)t — KTY?) < 20e™ /2, (2.45)
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Lemma 2.5 with ¢t = T — 7?3 and K = k gives

Pl (1) = 250 (0) > (1 = 2p.)t + wt) 10
=Pl (1) — 0 (0) > (1 = 2p0)t — w?1%) < Ce™e |

p+

Since zy; (t) — xn(t) is O(1), this implies that uniformly for all 7' large enough,
xﬁ}(tw)(()) > Tn(70)(0) with probability at least 1 — Ce™" (for some new constants

C,c > 0) and thus the event SZ ¥V occurs. Similarly one gets a bound for éftp w0
Proposition 2.7 implies the following comparison inequalities.

Theorem 2.8. Let us consider the setting of Proposition 2.7. Let T — »T?3 <
ty =T —mT*3 <ty =T —T?3 < T. Then with probability at least 1 — Ce™",

ahp (ta) — iy (t) < an(ta) —an(t) < ol (ta) — 2 (1) (2.47)

Proof. This follows directly from Propositions 2.2, 2.3, and 2.7. U

Define the constants

(1 - Vay” 2(1 - )t

= Y and o = VE (2.48)
The law of large numbers approximation of z4p (T — co7T?/?) is given by
Tor(T — camT??) ~ 2\/aT/ — omTY3H))(T — corT??)
1 (2.49)
~ (1 —2ya) T+ cor (Va—1) T + Z\/achQTl/?’.
Proposition 2.9. Let us define the rescaled process
 @ap(T = ot T??) — (7, T)
Xp(1) = T . (2.50)
where (7, T) = (1 — 2\/a) T — com (1 — /&) T?/3. Then we have
lim Xz(7) = Aao(7) — 72, (2.51)

T—oc0

where Ay is the Airys process. The convergence is the weak convergence on the
space of continuous functions on compact intervals.

Proof. The convergence of (2.51) in the sense of finite-dimensional distribution is
known from the comparison with the LPP, see [BP08] (for a discrete time setting,
see Theorem 2-2 of [IS07]). It can be obtained also directly using the determinantal
formula for the joint distributions of finitely many particles (it is a particular case
of (2.23) in [BF08]). Through the connection to LPP one can get tightness [FO18§]
of the scaled tagged particle process Xr. Here we derive the tightness property
directly in the particle representations without employing the LPP correspondence.
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Define the modulus of continuity for the rescaled process Xp by

wr(0) = sup |Xr(n)— Xr(m)l. (2.52)
0<7,79<s2:
|[r2—71|<8

Since X7(0) is a tight random variable, to show tightness of the process (in the
space of continuous functions on bounded intervals) we still need to control the
modulus of continuity: we need to prove that for any e, > 0, there exists a 6 > 0
and a Tj such that (see Theorem 8.2 in [Bil68])

Plwr(d) =€) <&, (2.53)

for all T" > Ty. The tightness, together with convergence of finite-dimensional
distributions, will imply the desired weak convergence.

Let us define the rescaled processes with densities p, and p_ (defined as in
Proposition 2.7 with t = T — »T%/?)

P+ . 2/3\ __
n oy (T — corT?°) — p(7,T)
BF (1) = T3 :

(2.54)

Since 27 (t) (resp. x5 (t)) is a Poisson process with parameter 1 — p; (resp.

1 — p_), we immediately have the weak convergence to the Brownian motion (see
Lemma A.1), namely

lim BE(r) — BE(0) = —1vs + V2B*(7), (2.55)

T—o00

where B" and B~ are standard Brownian motions, and vy = (£k + 2\/asc)ea/c;
are the drifts.
For any € > 0 and T large enough, by Proposition 2.7,

P(wp(8) > ¢) < Ce™® + P <{wT(5) >e}nenN n éf;f) . (2.56)

On Sg Affv N &T ]’\],3 , by Theorem 2.8, we have the inequality
| Xr(r2) = Xr(m)| < By (72) = By (m)| + By (m2) = Br(m)]. (2.57)
Choose § > 0 such that the drift correction is smaller than €/4; that is [vy |0 < e/4.

Hence, it is enough to bound

IP’( sup |Bf () — Bf (1) + vy (e —7)| > 5/4) (2.58)

0<7y,79 <3¢
|ro—71]<6

and the same for B replaced by B;. Dividing the interval [0, »] in pieces of length
0, we have

(2.58) < %]P’ ( sup |Bf (1) — Bf(0) +vyt| > 8/12) < %67062/5, (2.59)

0<7<5
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for some constant ¢ > 0, uniformly for all 7" large enough. The bound is obtained by
a standard computation with Doob’s maximal inequality followed by the exponential
Chebyshev inequality. The reason is that B, (7) — B} (0) + v, 7 converges weakly
to a Brownian motion by Donsker’s theorem. A similar bound is obtained for B,
instead of By.

Thus, for a fixed &, take k > 0 large enough such that Ce=** < £/2. Then take 0
small enough so that (2.59) < £/2. This implies (2.53) and thus we have tightness,
which was the missing ingredient off the weak convergence. O

3 Relation between TASEPs with a wall and
without constraints

In the following proposition we show that, for the step initial condition, the one-
point distribution for a TASEP with a boundary wall moving to the right determin-
istically can be related with the distribution of another TASEP without constraints.

Proposition 3.1. Let f be a non-decreasing function on Rsq with f(0) = 0. Let
2/ (t) be a TASEP starting with the step initial condition, i.e., z1(0) = —k + 1,
k > 1, but with its first particle blocked by a wall which has position f(t) at time t,
i.e., 1 (t) < f(t) for any time t >0 8. Then for any n > 1 we have

P(zf(T) > s) = P(x,(t) > s — f(T —t) for all t € [0,T]), (3.1)

where x(t) is a TASEP with the step initial condition evolving without the wall
constraint.

The proof of Proposition 3.1 is given in Section 3.2 below.

Remark 3.2. In Proposition 3.1, we can replace the condition f(0) = 0 with
f(0) > 0, in which case the identity (3.1) has to be replaced by

P(xi(T) > s) = P(x,(t) > s — f(T —t) for all t € [0,T],2,(T) > s). (3.2)

3.1 Updates of multi-species TASEPs

We start with a description of a colored (or multi-species, or multi-type) version of
TASEP. We consider an interacting particle system in which particles live on the
integer lattice Z and each integer location contains exactly one particle. The set of
colors is taken to be Z U {+oo}.

A particle configuration is a map 7 : Z — Z U {400}, where we call 7(z) the
color of a particle at z € Z. When 7(z) = +o0o we will think of z as being empty.
Let € be the set of all configurations. For a transposition (z, z + 1) with z € Z, let
0(z,2+1) - € = €, be a swap operator defined by

77(2 + 1)7 1=z,
(0 2+1yn)(0) =  1(2), i=z+1, (3.3)
n(i), i€ Z\{z,z+1}.

8In other words, the jumps of the first particle that would violate the constraint .II{ (t) < f(t)
are suppressed.
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Define a totally asymmetric swap operator at z € Z, W, .41y : € — €, via

(Weeesr) = {"’ ez (3.4

O(z,24+1)1, if 77(2) < 77(2 + ]')

In words, the operator o(..41) exchanges the colors of particles at z,z + 1, and
W(,-41) realizes that exchange only if the particle that is initially on the left (at 2)
has a smaller color.

Any bijection of integers s : Z — Z can be viewed as a particle configuration by
setting 1(2) = s(z). Such particle configurations will be especially important for us
because of the following result.

Proposition 3.3. Let id : Z — Z be the identity bijection. Then, for any k € Z
and for any integers zy, ...,z one has

W(zk,szrl) Ce W(Z2,Z2+1)W(Z1,Z1+1)id = inV (W(Zl,21+1)W(22,22+1) e W(zk,zk+1)id) y
(3.5)
where in the right-hand side inv denotes the map of taking the inverse of a permu-
tation.

In a probabilistic setting, Proposition 3.3 was proved in [AHD09, Lemma 2.1],
see [AAV11] and [BB21] for generalizations. In an equivalent algebraic setting, it
turns out to be a well-known involution in the Hecke algebra, see [Buf20], [Gal21].

3.2 Two multi-species TASEPs

Now let us define a continuous-time multi-species TASEP. Consider a collection of
jointly independent Poisson processes {P(2)}.cz, where P(z) has a state space Rx
and rate 1. Let 1y € € be a (either deterministic or random) particle configuration
which plays the role of an initial condition. Of course, in the random case, the initial
distribution is assumed to be independent of the Poisson processes. We define a
continuous-time stochastic evolution {1 }+cr.,, 7: € €, by applying W(. .. 1) at each
time ¢ that is an event of the Poisson process P(z). More explicitly, particle at z
exchanges its position with particle at site z 4 1 if its color has a lower value. It is
readily shown via standard techniques that under our assumptions such a random
process is well-defined, see [Har78, Har72, Hol70, Lig72].

We will need two versions of the continuous-time multi-species TASEP. Both
of them will start with the initial configuration id. The first version {7, ;(2)} is
obtained from the previous construction by adding a constraint: we suppress all
jumps which involve positions greater or equal to f(¢). In other words, this is a
multi-species TASEP with a wall which moves according to a speed profile f(¢).
The second version {n.r(z)} is defined only for times ¢ € [0, 7], and in the same
way, but the wall moves now according to the speed profile f(T" —t). Note that for
the first process the wall moves to the right, and for the second process it moves to
the left due to our assumption that f is monotonously non-decreasing.

Proposition 3.4. For any T' € R>(, we have

{0y (i7s) (2)}sez = {07y (2) }oeme (3.6)
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Proof. Directly follows from Proposition 3.3. Note that the inversion of time plays
a crucial role. O

Now we are ready to prove Proposition 3.1.
Proof of Proposition 3.1. Note that for any n > 1 we have
P (z[(T) > s) =P (3 at least n numbers i < 0 : inv (fir;y) (1) > ). (3.7)

Indeed, note that the process 7r.7(z) can be coupled with a single species TASEP

in the following way: we consider colors < 0 as particles, and colors > 0 as holes.

Both sides of the equality above represent the same event under such a coupling.
Next, Proposition 3.4 implies that

P (3 at least n numbers ¢ < 0 :inv (fr.f) (i) > s)
= P (3 at least n numbers ¢ < 0 : np.p7(i) > s)

In words, the right-hand side contains the probability of the event that at the end
of the process 7y, ;1 there are at least n particles of color > s inside the interval
(—00,0]. This event can also be observed through the coupling with a single-species
TASEP: we need to view all colors > s as holes, and all colors less or equal than s
as particles. Let us apply the standard particle-hole duality for this single-species
process, and change the coordinates z — s—z. We obtain the single-species TASEP
(notation for its particle positions: y;(t) > y2(t) > ...) which starts from the step
initial condition y,(0) = —k + 1, for all £ > 1, and the updates in this process
are allowed only strictly to the right of the wall, which moves according to profile
s — f(T —t). Thus, we get

P (3 at least n numbers ¢ <0 : 0y sr(i) > s) =P (yo(T) > s) . (3.8)
It remains to show that
P(y,(T) > s) =P (z,(t) >s— f(T —t) Yt €[0,T]). (3.9)

In order to prove this, let us couple the processes associated with particles {z(t)}
and {yx(t)} via the basic coupling in the interval (s— f(T—t), +o0) for any t € [0, T7.
All {yx} particles which happen to be to the left of s — f(T — t) at some time ¢
stop forever, since s — f(T" — t) is a monotonously non-decreasing function. All
{1} particles continue to jump at all positions, however, the evolution of particles
with larger numbers does not affect the evolution of particles with smaller numbers.
Thus, under such a coupling, we have

(a) if 2, (t) > s — f(T —t)Vt € [0,T], then
yn(t) = 2, (t),Vt € [0, T7, (3.10)
(b) if for some to € [0, 7], za(to) < s — f (T — ty), then (since f(0) = 0)
Yn(T) = ya(to) < s = f(T —to) < s. (3.11)

Therefore, the event {y,(7) > s} happens if and only if the event {x,(t) > s —
f(T —t) for all t € [0, T]} happens. This concludes the proof. O
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4 Scaling limit

4.1 Single region away from the boundary time

Consider the following setting. Let us fix an « € (0, 1) and consider, in the TASEP
with step initial condition, the position of particle number n = oT at time T.
Without a wall in front of the first particle, we would have z,7(T) = (1 —2y/)T +
O(T*?). If we have an influence of the wall around the time a7 for some ag € (o, 1)
so that the effect is visible on a macroscopic scale, then we have to look at a scaling
2/ (T) ~ €T for some ¢ < 1 — 2y/a. Of course, since we want to still have some
fluctuations, particle number oT" should have already moved at time 7, i.e., we also
have £ > —a.

Let us fix some o € (v, 1). The case ap = 1 is discussed in Section 4.2. From
the law of large numbers, we have (see Lemma 2.4)

fEaT(OéoT) ~ { \/&_0<\/a_ - 2\/a)T7 Qp € [Oé, 1]7 (41)

—aT, ap € [0, ),

where the second case is simply because particle number o' start moving only
around time a7'. The rescaled process around time ¢t = o7’ is given by
_ Tar(aT — &7 T?P) — ji(7, T)

XT('T) = —61T1/3 ) (42)

where the constants ¢y, ¢ are given by

2/3,.1/6 1/3.5/6
G (\/a__ \/a) / o) G — 2(\/50 B \/a> / o) (43)

1= 1/6 2 /3

and the function fi(7,7T") by

(7, T) = /(o — 2/a)T — 27 1Y% _ﬁ) Podgn

Note the relation ¢y = 262, /ag/ (/o — V).

For any fixed ag € (a, 1], a simple rescaling of the result of Proposition 2.9
implies the following weak convergence result.

Corollary 4.1. Let o € (o, 1] be fized. Then, we have
lim Xp(7) = Ay(7) — 72, (4.5)
T—o0

The convergence is the weak convergence in the space of continuous functions on
compact intervals.

We study a case where the wall has a non-trivial influence. More precisely, we
will consider the situation where in the expression of the r.h.s. of (3.1) the influence
is restricted to a T2/ neighborhood of t = ayT. As we will explain below, this
is the case when the function f describing the evolution of the wall satisfies the
assumption below.
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Figure 4: The lower bound function fy (here for @ = 0.4 und £ = —0.05). In
Assumption 4.2 the function f(¢)/7 has to be in the gray shaded region since
f(t) > 0 as well. Depicted in black is the tangent line at 1 — ag (here ap = 0.5),

namely & — \/ao(y/oo — 2v/a) + (1 — Ja/a)(t/T — 1+ ay).

For any given £ € [—a, 1 — 24/a], consider the threshold function

fo(ﬁ):{ £— VI—B(WI=B-2/@), Bel0,1-a)

£ta, Bell—all (4.6)

see Figure 4. The parameter £ will give us the macroscopic position of ang(T).

Assumption 4.2. Assume that a non-decreasing function f on Rsq with f(0) =0
satisfies:

(a) For some fized € > 0, for all [t — agT| > €T,
FT=1) = TfH((T = 1)/T) + K(e)T (4.7)

for some positive constant K(¢) > 0. This means that macroscopically away
from ayT, the function has to be macroscopically larger than T fy.

(b) For |t —aoT| < €T, let us parameterize T —t as T —t = (1 — ag)T + E7T?/3.
Then write

f(T —t)=€T — (1, T) — &(7? — gr (7)) T3, 7 €R. (4.8)

Assume that T +— gp(T) converges uniformly on compact sets to a piecewise
continuous® function g. We also assume that there exists a constant M such
that, for all T large enough,

gr(t) > —M +72/2 (4.9)

for |7| < e 'TY3.

IWith piecewise continuous function we mean that for any bounded interval I can be decom-
posed into finitely many subsets I = [a1,a2)U [a2,a3)U...U[an—1,a,] on which g is a continuous
function having one-sided limits at the end-points of the intervals of the decomposition of I.
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Remark 4.3. The condition f(0) = 0 is easily satisfied in (a) at t = 0 by choosing
K(e) < —fo(0) as fo(0) <0.

Theorem 4.4. Let f satisfy Assumption 4.2 and recall that z/(t) is the TASEP
with step initial condition and with a blocking wall moving according to t — f(t).
Then

lim P(a/(T) > €T — S&,TY3) = ]P’(sup{.Ag(T) —gln)} < S), (4.10)

T—o0 TER

o _ 2/3,,1/6
with & = (—W

Remark 4.5. We assumed that gr converges uniformly on compact sets to a piece-
wise continuous function g. It is not hard to allow the limiting function g to be
equal to infinity (the wall is removed) in some intervals since the process Xr is
tight. In this case, the supremum in (4.10) will be restricted to a subset of R.

Before proving Theorem 4.4, let us comment on Assumption 4.2(a). It is based
on Proposition 3.1 and the law of large numbers (4.1). In order to have a non-
trivial interaction of particle 7" with the wall at time o7 in the r.h.s. of (3.1), f
macroscopically needs to satisfy

Vao(v/ap — 2v/a)T = €7 = f((1 = ag)T). (4.11)

On the other hand, the influence of the wall in the r.h.s. of (3.1) at time ST will
be asymptotically vanishing if, for 5 < a,

—aT > T — f(1-8)T), (4.12)
and for § € (o, 1]\ {ao},

VBB = 2v/a)T > €T = f((1 - B)T). (4.13)

(4.12) and (4.13) give the macroscopic lower threshold fy for f.

In the proof of Theorem 4.4 we will have to control the increments of the rescaled
process X7(7). This will be done by the comparison result (Theorem 2.8). Thus, as
in (4.2), we will define the rescaled process for the stationary TASEP with density
p by
2R (T — ErT?3) — (7, T)

_ 51T1 /3 ’
Note that since we are going to use (4.14) only to bound increments of the form
B(1y) — BA(m), these do not depends on the index N.

Bi(7) = (4.14)

4.2 Single region at the boundary time
This time consider ap = 1 and £ =1 — 2y/a. Consider the threshold function

1-2ya—-1-B(VI-B-2Va), Be[0,1-a),
fO(ﬁ)Z{ (1_\/&)2’ 66[1—&,1]. (415)
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Assumption 4.6. Assume that a non-decreasing function f on Rsq with f(0) =0
satisfies:

(a) For some fized ¢ > 0, for allt < (1 —¢)T,
J(T =) > TRo((T = 1)/T) + K(e)T (4.16)
for some positive constant K(g) > 0.
(b) Fort € [(1—¢)T,T), let us parameterize T —t as T —t = T3, Then write
f(T—t)=(1=2Ja)T — (1, T) — &1(7* — gr(7)TY3, 7eR,. (4.17)

Assume that T +— gp(T) converges uniformly on compact sets to a piecewise
continuous function g. We also assume that there exists a constant M such
that, for all T large enough,

gr(T) > —M +72/2 (4.18)
for |7| < e&y T3,

Theorem 4.7. Let f satisfy Assumption 4.6 and recall that x/(t) is the TASEP
with the step initial condition and with blocking wall moving according to t — f(t).
Then

Jim B(elr(T) > €7 = SaT") = B sup {As(7) —g(r)} < 5). (419

—va 041/6
with 61 = Wa_o@#.

The proof of Theorem 4.7 is a slight simplification of the one of Theorem 4.4.
The simplification is that, for the in the r.h.s. of (3.1), instead of controlling the
bound away from the macroscopic time g1’ on both sides, here we have only one
side.

4.3 Special case: constant speed

In this section we deal with a special case of the wall moving with a constant speed
v. Let Fy and Fy be the GUE- and GOE-Tracy-Widom distributions, and let Fo_,1.9
be the crossover distribution given by the time distribution of the A,_,; at time 0
introduced in [BFS08]. For such a choice of the behaviour of the wall, the limiting
distributions of particles are the following.

Proposition 4.8. Let f(0) =0 and f(t) = ¢T'+vt fort >0, withc >0, v € (0,1).

(a) Forc<1—v and a < (1 —v—/c(1 —v))?, we have
lim P (xQT(T) > (v e 2 )T - 551T1/3) — F,(2239), (4.20)
—00 —v
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(a) (b)

Figure 5: Characteristic lines for: (a) half-flat initial condition: z;(0) = —2k, k > 0,
and (b) step initial condition with wall starting at the origin with constant speed
smaller than 1, i.e., case (b) of Proposition 4.8. One sees that geometrically are
very similar and indeed the fluctuations around the red line are both given in terms
of the Airyy_,; process.

with & = o303 /(1 —v).
(b) For c =0 and o = (1 — v)* we have

lim P <x£T(T) > (1 - 2/a)T — 551T1/3) = Fai(S), (4.21)
—00

with & = v¥3 /(1 —v)1/3.

(c) Forc>0 and a > (1 —v — /c(1 —v))* we have

lim P (a;gT(T) > (1-2/a)T - 551T1/3) = Fy(S), (4.22)

T—o00
with ¢, = v¥3 /(1 —v)'/3.

Remark 4.9. The case a = (1 — v — /(1 —v))? for ¢ > 0 corresponds to a
shock-type situation, which we do not address in this paper. The appearance of the
Fy_1,0 distribution in case (b) of Proposition 4.8 can be understood by comparing
the characteristic lines, see Figure 5.

Proof of Proposition 4.8. Linearly expanding z,r(t) and T — f(T — t) around
t = oTL we get that, c.f. (4.11),

v=1—+a/ay, E=c+v—a/(l—0v). (4.23)

Since the function f is increasing and f(t) > 0 for all time, we necessarily have to
take v > 0 and ¢ > 0. Furthermore, v > 0 comes from the requirement that oy > «.

Case (a), @ < (1—v—+/c(1 — v))?, corresponds to the case oy < 1 together with
the requirement that & < 1 — 2y/a. In this case Assumption 4.2 is satisfied with
§=v+c—1%, ap = o/(1—v)? and gr(7) = 7°. Therefore, applying Theorem 4.4
we obtain

lim P <x£T(T) > (v +c— 1 a )T — 561T1/3> = P(sup{Ag(T) —71 < S)

T—00 — v TER
(4.24)
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It is known that the distribution given by the right-hand side is the Tracy-Widom Fy
distribution rescaled by 2'/%. This result was first obtained in [Joh03, Corollary 1.3].

Case (b), a = (1 —v)? and ¢ = 0 corresponds to ap = 1 and thus £ =1 — 2y/a.
Assumption 4.6 is satisfied with gr(7) = 72. Therefore, we can apply Theorem 4.7
and obtain

lim P (a;gT(T) > (1—2/a)T — 551T1/3) - IP( sup {Ao(7) — 72} < s), (4.25)

T—o00 TR,

The limiting distribution in the right-hand side was shown to be equal to Fa_;.
in [QR13b].

Case (c), @ > (1 — v — y/c(1 —v))? is not covered by the above theorems.
However, this case is much easier than the previous two since it corresponds to
the region whose limit behavior is not affected by the moving wall. We have not
included a general theorem for this situation, so let us present a brief argument in
this special case. Applying (3.1) and the law of large numbers (4.1) we obtain that
in this case the critical constraint in estimating

P(xar(t) > s— f(T —t) for all t € [0,T)) (4.26)

comes from the case t = T (recall that f(0) = 0 and the function f is not continuous
at 0 if ¢ > 0), while for other ¢ € [0,7T) and s = (1 —2y/a)T + S&T"/? the condition
xn(t) > s— f(T —1) is satisfied for every single moment of time with a macroscopic
difference between the two sides with probability exponentially close to 1, and
this can be extended to an estimate which is uniform in ¢ in the same way as in
Lemma 4.13 below. Thus, the limit of probability from (4.26) is equal to the limit
of

P(zor(T) > s), (4.27)

which is given by the Tracy-Widom F5 distribution via a classical result of Johans-
son [Joh00] (which is a single-point version of (4.5) above). O

Remark 4.10. Modifying (b) slightly we can get the distribution of the Airys
at a different time than 0. For instance, take ¢ =0, £ = 1 — 2/, ag = 1 but now
v=1—a+d§1—/a)2a /T3 and gr(r) = 7% — 267 for some § > 0. Then
we get from Theorem 4.7

lim P (q;g;T(T) > (1-2v/a)T — 561T1/3) = P( sup {Ay(r) — 72 + 207} < S)

T—o0 TER
= P(sup{Ao(u) — ?} < 5 - 6%),

u<d
(4.28)
where we made the change of variable 7 = § — u and used the stationarity of the

Airy, process, namely As(0 — u) @ As(u). By Theorem 1 of [QR13b] we have

P(sup{Ag(u) < S 52) — P(As1(6) < S — max{0,8}?)

u<d

(4.29)
= Fy_,1.5(S — max{0, §}?).
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4.4 Asymptotics
Now we are going to prove Theorem 4.4.

Proof of Theorem 4.4. Let n = oT and consider s = ¢T — S&TY? and t = T —
GorT?3 with constants from (4.3). Then by Proposition 3.1 we have
P(z!(T) > €T — Se,T?)
P(zor(t) > €T — S&,TY? — f(T — 1), Vt € [0, 7))
= P(zar(ao] — &rT*?) > €T — S&, T3 — f(1 — ag)T + &rT*?), V1 € Ir)
P

~ ET — f((1 — )T + &7T*?) — ji(7,T)
= <XT(7') <S5+ a1 , V1€ IT),
(4.30)
where Ir = [—(1 — ag)&y ' T3, ey ' T,

Under (4.7) we will have that for |7| > 1 the condition is satisfied with high
probability. Under (4.8) we then get that the contribution for 7 of order 1 will give

P(Xr(r) < S — 7%+ gr(1), V7 = O(1)), (4.31)
which due to (4.5) will lead, in the 7" — oo limit, to
P(Ay(r) < S+g(1), VT €R). (4.32)

Let {3 € N be a number to be chosen later (independently of 7). Since
we assumed that gy converges to g uniformly on compact sets, for any ¢ > 0,
SUD, e[ty 00+ |97(T) — g(7)] < € for all T' large enough. Therefore, for any interval

[a, b] where g is continuous, as Xp(7) is tight in the space of continuous functions

on it, then also X7(7) + 7% — gp(7) is tight in the same space as well and, by
Corollary 4.1, we have

sup {Xr(7) +7° = gr(r)} = sup {As(7) - g(r)}. (4.33)

r€la,b] T€[a,b]

In our case, for any o > 0, the interval [—{ysr, (4] can be decomposed into the
union of intervals [a1, as], (az, as), ..., (a@,_1,a,] such that (4.33) holds jointly for all
these intervals, since the supremum is a continuous function in its (finitely many)
arguments. From this we get

lim IP’( sup {)?T(T)+r2—gT<T)}gs):P( sup {AQ(T)—g@)}gs).

T—oo TE[—Lo,lo ] TE[—Ly,lo 5]
(4.34)

The reason to consider a region of size £y and not simply s is that later we will con-
trol the increments in pieces of size 3¢ and apply a rescaled version of Theorem 2.8.
Notation-wise we found it simpler.

Furthermore, if g(7) > ¢7? — M; for some constants M; and ¢ € (1/4, 1] then by
Theorem 3.2 (see also Theorem 1.19) of [QR19]

lim IP’(TG[ sup  {Ax(7) —g(7)} < S) = IP’(sup{AQ(T) —g(1)} < S). (4.35)

»x—00 — Lok, Lo TER
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Thus, to prove Theorem 4.4 we need to show that

lim lim IP’( sup {X7(7)+ 7% — gr(7)} < S) =1, (4.36)

»—00 T—00 |7|> 005
which in the unscaled version reads

lim lim P(z,r(t) > T — S&TY — f(T —t),Vt € Jp) =1 (4.37)
x—00 T'—00
where Jr = [0, T] \ [aoT — »eloCy T3, T + sl T3).
Combining Lemmas 4.11, 4.12, 4.13, 4.14, to be proven below, we get the fol-
lowing result:

lim IP( sup {Xr(7) + 72— gr(7)} < S) >1—-Ce ™ (4.38)
T—o0 |7|> €05
for some constants C, c. Taking s — 0o we reach (4.36). O

4.4.1 Bounds for regions macroscopically away from t = a(7'.

Small times easy bound. Consider first the simple case t € [0, 5,T]| with
Bo = min{a, oy — €}. This corresponds to the case where particle z,r(t) did not
really move from its initial position —a/T'.

Lemma 4.11. Let t € [0, min{«, oy — e}T|. Then, for all T large enough,
P(zar(t) > €T — Se,TY3 — (T —t), V0 <t < BT) = 1. (4.39)
Proof. We need to bound from below the probability

P(xar(t) > €T — SEHTY? — f(T —1), Y0 <t < B,T)

) (4.40)
=1 —P(zor(t) < T — S&TY? — f(T —t) for some 0 < t < 7).
Let us denote ¢t = T. Then, (4.7) and (4.6) give
ET — Se,TY? — f(T —t) < —aT — K(e)T — Sé, TV?, (4.41)

which for all fixed e > 0 (and thus fixed K(¢)) and S, is strictly smaller than —aT
for all T" large enough. But x,r(t) > —aT for all times. This implies our claim. [

Small time interval when particle number o7 could move. Consider now
slightly larger times, for which we can not yet use the asymptotic bounds from
Lemma A.2.

Lemma 4.12. Let us consider 6 > 0 defined by fo(1 —a) — fo(1—a—06) = K(eg)/2.
Then for all T large enough,

P(zar(t) > €T — Se,TY3 — f(T —t),VaT <t < (a+0)T) = 1. (4.42)
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Proof. Since f; is monotone, the assumption implies that for all y € [0,d],
fo(l—a)— fo(1—a—y) < K(e)/2. Then, for t = BT with 8 € [a,a + ¢], we
have

€T — Se, TV — f(T —t) < —aT — K(e)T/2 — Sé,TV3, (4.43)

and by the same argument as above we get for all T" large enough
P(zor(t) > €T — STV — f(T —t),VaT <t < (a+0)T) = 1. (4.44)
Notice that this case is needed only if oy > o + 6. U

Time interval 57 with § € [a+ 0, a9 — ] U [ap + ¢, 1]. Now we consider the rest
of the time intervals which are macroscopically away from o7

Lemma 4.13. Denote J = [(a + )T, (g — &)T) U [(cvg + €)T, T). Then
P(zor(t) > €T — SETY3 — f(T — 1), YVt € J) > 1 — Ce emmEETAT -y g5)
for constants C,c > 0 and all T large enough.

Proof. We compute the complementary probability and divide the time interval
into pieces of length 1. We need to find an upper bound for

P(3t € BT, BT + 1] | war(t) < €T — S&HTY? — f(T —t)). (4.46)

In a time interval of order 1 the evolution of any given particle is stochastically
bounded by a Poisson process with intensity 1, due the fact that it can not move
faster than the case where the blocking interactions with other particles are removed.
Therefore, the probability of making at least k steps is bounded by P(Zpy > k)
where Zp,; has Poisson distribution with parameter 1. As P(Zpy > k) < 4e™* for
all k > 0,

P(|2ar (BT + 1) — 2ar(BT)| > TY?) < 4e7 7" (4.47)

Also, |f(T —t) — f(T — 8T)| = O(1) for t € [T, BT + 1]. This means that

(4.46) < 4e™ " 4 P(wor(BT) < T — (S — 1)TY? — f(T — BT))
<4e ™" L Plaar(BT) < /B(VB — 2v/a)T — K(e)T — (S&; — 1)T'/3)
<4e™™" + Plaar(BT) < V/B(VB — 2V/a)T — K(2)T/2)
(4.48)
for all T large enough, where in the first inequality we used the assumption (4.7),
while the second inequality holds for all 7" large enough since K(g) > 0. Applying

the upper tail bound in Lemma A.2 with the replacements ¢ — 7 and o — «/f

we obtain » »
(4.48) < 47" 4 CemeK@TY (4.49)

for some new constants C, ¢ (which can be chosen uniformly for g € [a + 4, 1]).
Since the total number of size 1 segments in our decomposition is O(T"), the com-
plementary probability of (4.45) is bounded by T(46*T1/3 + Ce*CK(e)TQ/S). Thus, for
a new constant ¢ the claimed result holds true. O
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4.4.2 Bound in moderate deviation regimes.

Now we turn to the delicate bounding for times in an 7" neighborhood of ayT". The
strategy is to divide the time interval into pieces of size 3¢ (in the scaled variable)
and bound the process in this part by controlling the starting point as well as the
fluctuations. The latter are controlled using the comparison with stationarity from
Section 2.

Lemma 4.14. There exists an €9 > 0 such that for all ¢ € (0,e0] and T large
enough,

P(zap(t) > T — f(T —t) — Se,TY3, Wt € [T — €T, T — E2loT*3))
5 (4.50)
> 1— Ce—c%ﬁo’

where {y is a positive number depending only on o, ag, and s is any number in
[1,eT3]. The coefficients C,c are uniform in T. Similarly,

P(zar(t) > €T — f(T —t) — S&H,TY3, Yt € [T + ExloxT??, T + £T7)
>1-— Ce= s,
Proof. Let us bound the first probability
P(zar(t) > €T — f(T —t) — S&, T3, Vt € [T — €T, T — EooxT*?]).  (4.52)
The bound of
P(zar(t) > T — f(T —t) — SE,TY3, Yt € [aoT + éxlosT??, 0T + €T)])  (4.53)

follows along the same steps and therefore we skip the details for that case.
Using the parametrization ¢t = a1 — é&7T?/3, f as given in (4.8), and X7 as
defined in (4.5), we obtain

(4.52) = P(X (1) < S — 7% + gr(7), V7 € [y, 665 " TV?))

(4.51)

—1-P( s [Xa(n) 72— gr(7)] > 5). (4:54)
T€ o8y ' T1/3)
We decompose the time interval into pieces of width s and get
ey 1TV )5
1—(4.52) < Z P sup [ Xp(7) + 7% — gr(1)] > S). (4.55)

=t TE el 32(L+1)]

72 4+ M. Then we

Next we use the assumption (4.9) on gy, namely —gr(7) < —3

get

]P’( sup [ Xp(1) + 72 — g(7)] > S)
TE el 32(L+1)]

sup  [Xp(7) + >89 - M)
TE el 32(L+1)]

< IP( sup Xp(r) > S—M— 1200+ 1)2) (4.56)
TE el 32(L+1)]

Xr((l+1))> 8 — M — 3520+ 1)2>

P
+IP’< sup  [Xp(r) = Xp(se(0+1))] > 120+ 1)2).
TE[2l,5(0+1)]
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To estimate P(X7(5(f + 1)) > S — M — 232(¢ + 1)) we apply Lemma A.2 with
t = aoT — &3elT?3 and o — & = oT'/t. A computation gives

(1 —2Va)t = f(s(0 +1),T) + és (€ +1)°TY3(1 + O(sl)). (4.57)
Therefore
P(Xr(s((+1)) > S — M — 2520 +1)%) = P(za(t) < (1—2Va)t —56,17°%) (4.58)

with
§=85—M—32(0+1)2 + 520+ 1)* (1 + O(ett™/%)) . (4.59)

Since ¢ < €&, 'T"/3/, where € > 0 can be chosen as small as desired (but indepen-
dent of T"), we take first £ small enough so that

=320+ 1) + 520+ 1)° (1 + O(%ﬁtil/‘?)) > 120+ 1) > L2 (4.60)
Then Lemma A.2 gives
P(Xr((0+1)) > S — M — 252(0 +1)?) < Ce S 0/8, (4.61)

The increments over a time span  of X7 (the final term of (4.56)) are controlled
using the comparison with stationary as follows. We apply Theorem 2.8 with the
following change of variables

T — agT — Ey5elT?3,
t =T — 3T?* = aoT — éyse(0 + 1)T3, (4.62)
po=aT/t — py = \/aT/(aoT — Coae(L+ 1)T2/3).

A computation gives

Va 1 va o -
_ V= - 1 v T /3 2 2T 2/3 ) 4
= S G DS 0T (a6

Therefore we consider stationary TASEP with densities p. given by

_ ~1/3 _ Va (1~ ﬂ K ) ~1/3 2 2 —2/3
p+ = po L Kt _—\/a_0+ 202(€+1)a8/2%j:—aé/3 T2+ O s URr)T .

(4.64)
Then, Theorem 2.8 tells us that for all ¢;, ¢, such that T — és(0 +1)T%3 < ¢, <

to < T — Go2elT?/3, with probability at least 1 — Ce™*,
hp (t2) — 247 () < an(te) —an(t) < 2 (t2) — 2 (B). (4.65)
Recall that the rescaled processes are divided by a negative number, see (4.2) and

(4.14). Therefore we get

IP( sup  [Xr(r) = Xr((0+1))] > 120+ 1)2) < Cer
TE[3l,5(0+1)]

+1P>( sup [§;+(T)—§;+(%(£+1))]>i%2(£+1)2). (4.66)
TE[3el,52(0+1)]
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Let 7= s({ + 1) — 7 € [0, »]. Then we need to bound

sup [BYF (se({ + 1) — 7) — BE (3(£ + 1))). (4.67)
7€[0,5]
The increments of z4F (1) — af; (5(¢ + 1)) form a Poisson process with intensity
1 — p.. By Lemma A.1 we know that B4"(7) — BJ (5(¢ + 1)) converges to a
Brownian motion with drift. A computation gives that the diffusion coefficient is
2, while the drift is given by
f(se(0+1) = F,T) — (30 + 1), T) + (1 — py )E7T?3

—an’ (4.68)
g 2 — V)Pl +1 '
_ - 621/3 (/{+ (\/O{_ \/5133 %( + )) + O(%K/E, %QEQ)T—1/3.
c10 @

Therefore we get
IP’( sup [E;*(T) - E;*(%(f +1))] > i%Q(E + 1)2>
TE [l 2(L+1)]

< 1@( sup [BOF(se(0 +1) — 7) — B (el + 1)) — v7] > L32(0+1)% — W)

7€[0,]

2 (E7T?3) — 2R (0) — (1 — py )Eo7 T3
_ ]P)( N N + > 1.2 / 1 2 >
(4.69)
where in the last step we used the stationarity of B+, which is given in terms of

P+
Ty

Now recall that ¢ < eT'/3 for an ¢ > 0 which we could take arbitrarily small
(but independent of T'). Thus, by setting ¢ small enough and then T large enough,
we get

26, 2(y/ag — V) 3x(0 4 1)
= 5104(1)/3< + al/3 ) = %%(E +1)7 (4.70)

by choosing xk = s({ + 1)26104(1]/3/(3262) and taking ¢ > /{, for some /¢, large enough
(depending only on «, o). Thus

Tt (67 T?3) — 285 (0) — (1 — py)EFT??
1.69) < IP( N N &
(4.69) < Sup. T

> 5%2(£+1)2>. (4.71)

et (227T2/3)—ai (0)—(1—p1)e7T?/ .
Set W (r) = N (E2FT2/3) —a )" (0)—(1—py )G TT?/? and C — é%2<€+1>2' Then W (7) is a

—51T1/3

martingale and for A > 0, e\W(7) a positive submartingale. Thus, for A > 0, we
have
E(GAW(%))
IP’( max W(r) > C’) = IP’( max e () > e/\c> < 7 (4.72)
7€[0,] 7€[0,] erC
As this holds for any A > 0, we get
‘ E(eAW(%))
Papg V) 20) <= 473
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The computation of E(e)‘W(”)) is elementary as W (s) comes from centering and
scaling a Poisson distribution. Optimizing over A > 0 one finally gets a Gaussian
decay of the probability we are considering: for all 7" large enough,

(4.69) < Ce e (4.74)

for some new constants C, ¢ > 0 (depending on « but not on 7" and »). Plugging
this into (4.66) with » chosen as just mentioned, we finally get (4.66) < Cle**" for
some new constants C', ¢ > 0.

With this bound, we can go back to our estimate (4.55) and obtain the following:
there exists an gy > 0, an ¢y € N (depending only on «a,ag) such that for all
€e (O,EQ]

P sup (X () + 72 = gr(7)) > S) < Ce % (4.75)

TE[lose,ey 1 T1/3)

uniformly for all 7" large enough. Similarly we get

IP’( sup (Xp(r) + 72— gp(r) > s) < Ceo b (4.76)

T€[—edy 'T/3, Ly 5]

uniformly for all T" large enough. O

5 Second class particle in a TASEP with a mov-
ing wall

In this section we consider a TASEP with one second class particle. It has the
following initial configuration: all negative positions are filled by first class particles,
position 0 is filled by a second class particle, and all positive positions are empty
(holes). In addition, we consider a moving wall which starts at position ¢I" > 0 and
moves to the right with speed v > 0 (as in Section 4.3), i.e., at time ¢t € [0,7] it
is at position ¢TI + vt. All particles jump with rate 1, as before. We denote the
position of the second class particle at time ¢ by §(t).

Let Unif(a, b) be the uniform distribution on a segment (a,b) C R, and denote
by ad(b) the atomic measure of weight a at the point b. The main result of this
section is the following.

Theorem 5.1. Assume that 0 < v <1, and ¢ > 0.
(a) If v+ ¢ < 1, then we have

Tlgr;o@ @ %Unif (—1,—1 2+ 24/l — v))

+ <1 —v—/c(l — v)) o (—1 + 204+ 24/c(1 — v)) . (5.1)
(b) If v+ ¢ > 1, then we have
lim i)

1
T—oo T 2

—
=

Unif(—1,1). (5.2)
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Remark 5.2. The second case of Theorem 5.1 corresponds to the situation in which
the evolving particles are essentially not affected by the wall; thus, the limiting
distribution is the same as in the classical result of Ferrari-Kipnis [FK95]. In the
first case, we see that the second class particle is “repelled” by the wall, which
creates an atom at the shock point in the limiting distribution. The macroscopic
shock position is easy to derive: denote by &T' the position of the shock at time
t = T. Since the speed of the wall is v and the speed of particles with density p
is 1 — p (in the law of large numbers approximation), the particle density in the
shock region is going to be 1 — v. Then £ is determined by the requirement that
the particles that would be to the right of €T in the system without wall, a total of
(1 —&)*T /4 of them, now form a constant density region between 7" and (v + )T,

e, (1—=8)>*T/4=(1—v)(v+c—&)T. This gives £ = =1+ 2v + 2¢/c(1 — v).

Theorem 5.1 is proved in Section 5.2 below.

5.1 Distribution of the second class particle

In this section we relate the distribution of the second class particle in the TASEP
with a moving wall to an observable of the single-species TASEP.

Consider the TASEP with (first class) particles and holes only. Its initial config-
uration is given by #;(0) = —k+1, k > 1 (step initial configuration). Assume that
at time ¢ the jumps are allowed to happen only at positions > (s — ¢T'— v(T —t));
the jumps to the left of such a moving wall are suppressed. Here s is an arbitrary
integer.

Proposition 5.3. One has
P(§(T) > s) = P (there exists k > 1 such that &4 (T) = s) (5.3)

Proof. For the proof, we will use multi-species processes introduced in Section 3.2,
with a particular choice of the function f(t) := ¢I' 4+ vt. We couple the process
{N.s(2)} with a TASEP with one second class particle via identifying all parti-
cles with negative colors with the first class particles, the particle of color 0 with
the second class particle, and all particles with positive colors with holes. Using
Proposition 3.4 and this coupling, we obtain

B (H(T) = 5) = P (ir.5r(0) > s) . (5.4)

Recall that in the process np, ;7 the wall at time ¢ € [0, T is at position ¢T'+v (T —t).
In the right-hand side, we identify colors > s with holes, and < s with the first
class particles, do the particle-hole involution and shift the coordinate axis by s.
This provides a coupling with the process {Zx(t)} and completes the proof of the
proposition. ]
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5.2 Asymptotics
In this section we provide a proof of Theorem 5.1.

Proof of Theorem 5.1. First, let us relate the process 7 (t) from Section 5.1 with the
standard (without a moving wall) single-species TASEP x4 (t) which starts from the
same step initial configuration. Let us use the basic coupling for these two processes.
We claim that if for a fixed k& > 1 one has

x(t) > s —cT —o(T —t) for all ¢t € [0, T, (5.5)

then xy(t) = 74 (¢), for all t. Indeed, in this case the particle position Zx(t) depends
only on the non-suppressed jumps, and they coincide for both processes. In the
opposite case, let

Tk = sup {ap(t) >s—cT —ov(T —t) forallte|0,7]}. (5.6)

TGRZO

In words, 7 is the moment when the particle zx(t) is “caught” by the wall moving
from the left, and we have

Tp(t) =s—cT —o(T — 1) for all t € [, T, (5.7)

since the particle Zx(t) does not move after that moment. Note that all particles
are split in two groups: There exists a (random) integer L such that the particles
Z1,Ta,...,2r are not "caught” by the wall and thus coincide with x1,xs,..., 2 at
all moments of time, while all particles with larger than L labels satisfy (5.7).

Our goal is to analyse the limit behavior of the right-hand side of equation
(5.3). Note that the particles in the process {7} which satisfy (5.7) cannot occupy
position s since the wall is always to the left of s during the time interval [0, T].
Thus, we have 74 (T") = s if and only if

2, (T)=s, and x,(t)>s—cT —o(T —t) forall ¢t € [0,T]. (5.8)

By the hydrodynamical (law of large numbers) limit for the TASEP with step initial
condition (first obtained in [Ros81]), we have

1-35
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a:= <1;§)2. (5.10)

Note that by (4.1) one has z|op|(T) = ST (here and below we use ~ for denoting
the asymptotic equivalence in the 7" — oo limit). Furthermore, by (4.1) one has

z(ar) (aT) = /ag (Voo — 14 3) T, for ap € [a, 1]. (5.11)

71im P (there exists k > 1 such that xx(T) = [$T']) =
—00

Set

In words, with non-negligible probability the position |$7'] can be occupied only
by a particle with a number that asymptotically behaves as a7’. The asymptotic
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behavior of (5.3) depends on whether the particles with such numbers were caught
by the moving wall or not.
Let us consider two cases.

Case 1: Assume that —1 < § < —1+2v+24/¢(1 —v) < 1. By straightforward
calculus, one has
ap— (1 = 38)y/ag > 8§ —c—v(l —ap) forall g € [a, 1]. (5.12)

This implies that for such values of parameters there exist £, > 0 such that

P (2| (ateyr) (0T) > (8T — T — v(T — aT)) 4 0T for all ag € [0,1]) =1 — o(1).
(5.13)
Analogously to Lemma 4.13, one can extend this to a uniform in time estimate

P (2| (ateyr) (t) > (8T — ¢TI — o(T — t)) + 0T for all t € [0,T]) =1 —o(1). (5.14)

Therefore, the particle x|(q4c)7r| is not caught by the moving wall with probability
close to 1, which implies that all particles with numbers ~ a7’ will not be caught
by the moving wall with probability close to 1. Thus, the limit of the probability
in the right-hand side of (5.3) is given by (5.9). We obtain that for —1 < § <

—1+2v+24/¢(l —v) < 1, one has
lim P (f(T) > 5) _1os (5.15)

Case 2: Assume that 1 > § > —1+ 2v+24/¢(1 —v) > —1. Then there exists
ap € [a,1) such that

ap— (1 —38)y/ag < §—c—v(l—ap). (5.16)

By the law of large numbers, this implies that for a sufficiently small ¢ > 0 the
particle z(,_.)r will be caught by the moving wall with probability close to 1, which
implies that all particles with numbers ~ a7 will be caught by the wall with over-
whelming probability. Therefore, one has

. f(T) o .
> = .
TlgroloIP’(T > s 0, (5.17)
in this case.
This concludes the proof of Theorem 5.1. O
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A  Known results and estimates

Let us start with a well-known result on the convergence of Poisson processes to
the Brownian motion.

Lemma A.1. Let Z(t) be the number of particles in [0,t] of a Poisson process with

intensity A. Then
7 _
im 20D =M gy, (A1)
t—o0 \/E

in the sense of weak convergence in the sup-norm on finite intervals, where B is a
standard Brownian motion.

To localize the starting points of the backwards paths we use estimates for the
one-point distribution of tagged particles for step and stationary initial conditions.

Lemma A.2. For any o € (0,1),

lim P(za:(t) > (1 — 2v/a)t — sey(a)tY?) = Faus(s), (A.2)

T—o00

with ¢ (a) = A=v&P  There exists constants C,c > 0 such that, uniformly for all

o 1/6
t large enough,

Pz (t) < (1 =2Vt — sei(a)t'/3) < Ce ™, s> 0, (A.3)
and
P(2ai(t) > (1 — 23/a)t — ser(a)t"/?) < Ce= B —o(t23) s < 0. (A4)
The constants C, ¢ can be chosen uniformly for a in a closed subset of (0,1).

Similar statements have been derived in the framework of the (directed) last
passage percolation in a quadrant with exponential weights. If we denote by L, ,
the last passage time from the origin to the point (m,n), then to translate the
results to the TASEP particle positions we use the relation

P(z,(t) > m —n) = P(Lipn < ). (A.5)

(A.2) was proven in Theorem 1.6 of [Joh00]. Since the distribution function (A.5)
is given by a Fredholm determinant, the upper tail (A.3) is easily obtained from
the exponential tail of the kernel either in the TASEP representation, or in the
LPP representation. For a statement for the upper tail in LPP one can go back
for instance to the work on Laguerre ensembles [BBP0G6]; for explicit statements
on the tails see e.g. Section 4.1 of [FN15], Lemma 1 of [BFP14]. The lower tail in
LPP was proven in [BFP14] (Proposition 3 in combination with (56)). Applying
(A5) with n = at and m = (1 — /a)* — sé1(a)t'/? we get the result. The
condition —s = o(t*3) is to ensure that n = n/m stays bounded away from 0 and
00. Presumably, using the approach of [BFP14] directly with the kernel of TASEP
particles, this restriction would not appear. However since the bound is sufficient
for our purpose, we do not investigate this further.
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Lemma A.3. Consider the stationary TASEP with density p, with right-to-left
labeling x,+1(t) < x,(t) such that at time t = 0, x1(0) < 0 < x¢(0). Let N =
PPt — 2wpx 323 with x = p(1 — p). Then

tlim P (25 (t) > (1 —2p) + 2w 313 — (1 — p)x~'st'/?) = Faru(s), (A.6)
—00

where FpRrq ts the Baik-Rains distribution function with parameter w. Furthermore,
there exists constants C,c > 0 such that

Pz (1) < (1= 2p) + 20X 8% — (1= p)x'st'?) < Ce™, s>0, (A7)
and

P(2(t) > (1 = 2p) + 2wx/3t*3 — (1 — p)x'st?/3) < Celsl?, —o(t**) <5 <0

(A.8)
uniformly for all t large enough. The constants C,c can be chosen uniformly for p
in a closed subset of (0,1).

Again the results have been proven already in the last passage percolation frame-
work and mapped back to TASEP. (A.6) was proven in Theorem 1.6 of [BFP10].
(A.8) follows from (A.4), because if we couple the step and stationary initial con-
dition through the basic coupling, then zx(t) > x4 (t). Thus

P2 (t) > ) < Plaw(t) > 2). (A.9)

With the choice z = (1—2p)+2wx/3t*3—(1—p)x~'st'/? and N = p*t—2wpx/3t?/3,
this corresponds to taking in Lemma A.2, o = p?> — 2wpx'/3t/3 and s — w? +
s/x?/3. The shift of w? and the scaling x*/? just lead to different constants.

Finally, to get (A.7) one can do the following: consider x**8% starting with
density 1 on Z_ and density p (Bernoulli) on N and z#'°% starting with density
p on Z_ and empty on N. Then z7(t) = min{x?'®(¢), zrr88(¢)} cf. (2.6), so
that P(a?(t) < ) < P(aPe(t) < z) + P(zPme(¢) < ). These last two distribu-
tion functions can be written as Fredholm determinants, and the analysis of the
kernels would give the desired result. For those initial conditions, the bounds for
the last passage percolation model have been already proven by using the estimates
of the kernels provided in [BBP06], see Lemma 3.3 of [FO18].
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