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Abstract

We consider a totally asymmetric simple exclusion on Z with the step
initial condition, under the additional restriction that the first particle cannot
cross a deterministally moving wall. We prove that such a wall may induce
asymptotic fluctuation distributions of particle positions of the form

P

(
sup
τ∈R

{Airy2(τ)− g(τ)} ≤ S
)

with arbitrary barrier functions g. This is the same class of distributions that
arises as one-point asymptotic fluctuations of TASEPs with arbitrary initial
conditions. Examples include Tracy-Widom GOE and GUE distributions, as
well as a crossover between them, all arising from various particles behind a
linearly moving wall.

We also prove that if the right-most particle is second class, and a lin-
early moving wall is shock-inducing, then the asymptotic distribution of the
position of the second class particle is a mixture of the uniform distribution
on a segment and the atomic measure at its right end.

1 Introduction

The totally asymmetric simple exclusion process (or TASEP, for short) is a proto-
typical example of an interacting particle system in one space dimension. It consists
of particles moving within the one-dimensional lattice Z in continuous time, with
each site of Z occupied by at most one particle (the exclusion constrained). Each
particle carries its individual exponential clock of rate one (all clocks are indepen-
dent), and when that clock rings, the particle attempts to jump to the right by one
unit. It succeeds if the target site is empty, and it stays put if it is not. The TASEP
was introduced into mathematics by Spitzer in [Spi70], and since then it has been
a subject of extensive studies.
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The TASEP evolution can be rephrased as a model of random interface
growth, and as such it is arguably the simplest representative of the (conjec-
tural) Kardar-Parisi-Zhang universality class of random growth models in (1+1)-
dimensions [KPZ86]. For example, it was the first member of the class for which
one-point fluctuations were asymptotically analyzed (Johansson [Joh00]), and the
complete Markovian evolution of the asymptotic fluctuation processes was obtained
(Matetski-Quastel-Remenik [MQR17]).

Among all possible initial conditions for the TASEP, the translation-invariant
stationary ones play a special role. They depend on a single parameter ρ ∈ (0, 1)
called the density, and they place a particle at each site of Z independently with
probability ρ. One shows that such a Bernoulli measure on particle configurations
in Z is stable under the TASEP evolution, and the trajectory of each particle is a
simple random walk in continuous time that moves up by one with rate (1− ρ). 1

Apart from the stationary initial data, the simplest initial configuration is prob-
ably the one that is often called the step initial condition: The particles occupy all
the sites marked by Z≤0 = {0,−1,−2, . . . }. This was the one considered in [Joh00],
and it was also the first for which a (nontrivial) law of large numbers type behavior
was obtained by Rost in [Ros81].

The purpose of the present paper is to investigate the fluctuations of the TASEP
with the step initial condition, with an additional constraint – the right-most par-
ticle is forbidden to cross a deterministically moving barrier that we call a wall.

Similar setups have been considered before. However, in previous works the
movement of the wall was always random, and, to our knowledge, a deterministically
moving wall has not been considered before.

Borodin-Ferrari-Sasamoto [BFS09] studied the situation when the TASEP is
initialized with the particles occupying every second site in Z≤0, and right-most
particle has a different (slower) jump rate. Equivalently, one can think of the
positive semi-axis Z>0 initialized by a Bernoulli measure. A few different fluctuation
processes arose in the large time limit, depending on the speed of the right-most
particle and the region of the lattice, cf. [BFS09, Section 2]. One interesting feature
was a fluctuation description of a shock. Shocks were investigated on a deeper
level in subsequent works by Ferrari-Nejjar [FN15,FN17,Nej18,Fer18,Nej19,FN20]
and Quastel-Rahman [QR18]. Other types of evolution of the first particle were
considered (and other initial condition on Z≥0 as well), with fluctuations of different
order and different distributions. However, the randomness of the wall movement
was always an essential contributor to the fluctuations of the TASEP particles, once
they became affected by the wall.

Our main interest in this work was to investigate the situation when the move-
ment of the wall was not producing any randomness whatsoever, and to see what
kind of asymptotic fluctuations one would be able to observe in such a case.

Our main result says that by choosing an appropriate (deterministic) movement
of the wall, one can create distributions of the asymptotic fluctuations of a particle
in the bulk of the system that span essentially the same class as the ones arising from

1The latter fact is usually referred to as Burke’s theorem, see Burke [Bur56] for the original
statement in terms of a queuing system, and Spitzer [Spi70, Example 3.2], Ferrari-Fontes [FF96]
for interpretations in terms of particle systems.
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one-point asymptotic fluctuations of the TASEP with varying (deterministic) initial
conditions (obtained previously in [MQR17]). A bit more precisely, we show that for
any piecewise continuous function g on the real line satisfying g(τ) ≥ const+ τ 2/2,
τ ∈ R, the probability that a certain particle at time t > 0 is to the right of position
ξt− Sct1/3, for suitable constants ξ and c, tends, as t → ∞, to

P

(
sup
τ∈R

{A2(τ)− g(τ)} ≤ S
)
, S ∈ R, (1.1)

where A2 is the Airy2 process. The corresponding movement of the wall is governed
by the function g in a space-time window of size ∼ t1/3 × t2/3 which is determined
by the particle that we focus on; outside of that critical window the position of
the wall is required to satisfy an (explicit) macroscopic inequality that limits its
influence on the chosen particle.

An exact formulation of the claim above can be found in Theorem 4.4 below.
The conditions on the functions g can be relaxed, although we do not pursue

that in the present paper. Our result also does not cover all possible fluctuation
scenarios that a deterministic wall can create. For example, wall trajectories may
have multiple critical windows that affect the tagged particle, and those are not
considered in this text.

For a discussion of how the variational formula (1.1) is related to the Airy sheet
and the KPZ fixed point, see [MQR17, Section 4.5] and references therein. For some
of the earlier works where such variational formulas played an important role see
Johansson [Joh05], Quastel-Remenik [QR13a,QR19], Baik-Liu [BL13], Corwin-Liu-
Wang [CLW16], Chhita-Ferrari-Spohn [CFS18], Ferrari-Occelli [FO18].

To give a concrete application, consider the wall that starts at the origin and
moves to the right with constant speed v < 1. Then we show, in Section 4.3 below,
that our main result implies the following behavior. Denote by x1(t) > x2(t) > . . .
the positions of our TASEP particles at time t ≥ 0; note that xn(0) = −n + 1 for
all n ≥ 1. Then the asymptotic fluctuations of xαt(t) converge, on a t1/3-scale and
as t → ∞, to the GOE Tracy-Widom distribution F1 for α < (1− v)2, to the GUE
Tracy-Widom distribution F2 for α > (1 − v)2, and to the crossover distribution
F2→1;0 describing a section of the Airy2→1 process of [BFS08] for α = (1− v)2.

Our proof is based on two relatively recent advances.
One is a so-called color-position symmetry of the multi-species TASEP. The

symmetry itself goes back to the work of Angel-Holroyd-Romik [AHD09], see also
Amir-Angel-Valkó [AAV11], Borodin-Wheeler [BW18], Borodin-Bufetov [BB21],
Bufetov [Buf20], Galashin [Gal21] for the development of its understanding and
some of its applications. For our model with a wall, we show that this symmetry
implies that the distribution of the position of a given particle is identical to the
distribution of the position of another particle in another TASEP with the step ini-
tial condition (and without a wall), conditioned on the fact that this other particle
remains ahead of a deterministally moving barrier.

The second part of our argument is a precise control of the whole trajectory of
a given TASEP particle achieved via the technique of backwards paths introduced
in [Fer18], see also [FN20]. Backwards paths are random lattice paths that mimic
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the behavior of the characteristics of exclusion processes2. The control is realized
by fine comparisons of the backwards paths for the process at hand with those of
stationary TASEPs, since the latter ones are easier to estimate. Backwards paths
could be viewed as analogs of geodesics in last passage percolation (LPP) models, in
the sense that along them (2.3), which is the analogue of the concatenation property
for LPP, is satisfied.

Employing this technique for the trajectory of a TASEP particle conditioned
to stay above a barrier, which we obtain via the color-position symmetry from the
original TASEP with a wall, ultimately leads to the limiting distributions (1.1),
where the function g is related to the movement of the barrier and, consequently,
to the movement of the wall in the original TASEP. An alternative way would be
to use LPP with a first deterministic row, which is an equivalent formulation of the
model. However, such an approach would also require technical work for getting the
results, in particular, for the result on the second class particle due to the random
time change between the trajectory of the second class particle and the competition
interface (see [FN17] vs. [FGN19]).

We also offer another application of our approach by considering a TASEP
with a linearly moving wall whose right-most particle is second class. Second class
particles are known to track the characteristics and, in particular, stick to the
shock locations. For the step initial condition without a wall, Ferrari-Kipnis [FK95]
proved that at a large time t, the right-most second class particle is asymptotically
uniformly distributed on the segment (−t, t).3 We prove, in Theorem 5.1 below,
that once one adds a shock-inducing wall that at time t ∈ [0, T ] is at position
cT + vt with c > 0, 0 ≤ v < 1, and v + c ≤ 1 (the latter condition ensures that
the wall nontrivially interacts with the particles), the asymptotic distribution of
the second class particle is a mixture of the uniform distribution on the shortened

segment
(
−t, t(−1 + 2v + 2

√
c(1− v))

)
and an atomic measure at the right end of

this segment.
The paper is organized as follows. Section 1 is the introduction. In Section 2

we use backwards paths and comparisons with stationary TASEPs to prove weak
process-level convergence of a tagged TASEP particle to the Airy2 process at the
fluctuation scale. Section 3 explains the application of the color-position symmetry
to TASEPs with a wall. In Section 4 we prove our main result by combining the
results of the two previous sections. The final Section 5 contains a proof of the
second class particle asymptotics.

Acknowledgements. A. Borodin was partially supported by the NSF grant DMS-
1853981, and the Simons Investigator program. The work of P.L. Ferrari was partly
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - GZ 2047/1, projekt-id 390685813 and
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
Projektnummer 211504053 - SFB 1060.

2More exactly, those are the characteristics of the inviscid Burgers equation that describes the
law of large numbers behavior of the exclusion processes.

3This corresponds to the fact that in the case of the step initial condition, the characteristics
that pass through the origin form a rarefaction fan.
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2 Tightness of the scaled particle process

In what follows, whenever we consider TASEP with different initial conditions, we
always assume that they are coupled by the basic coupling [Lig85]. In other words,
the evolution of the different processes occurs using the same jump trials. It is
useful to have in mind the graphical construction of TASEP [Har65,Lig76], see also
Figure 5 below. We describe TASEP not by the occupation variables of the sites,
but rather by the positions of labelled particles. For all times t and label k ∈ Z,
denote the position of the particle with label k at time t by xk(t). We use the
convention xk(t) > xk+1(t).

The goal of this section is to obtain the following results based on the particle
representation (without having to make a detour through the last passage percola-
tion model):

• In Proposition 2.9 we show that for the step initial condition, that is xk(0) =
−k + 1, k ≥ 1, the rescaled particle process converges weakly to the Airy2
process. As convergence of finite-dimensional distributions is known, we need
a modulus of continuity estimate to get tightness.

• In Theorem 2.8 we show that the increments of the particle process can be
bounded by the ones of two Poisson processes, which originate from two
TASEPs with stationary initial conditions. This result is central for get-
ting the estimate on the modulus of continuity, and also for bounding the
increments in a mesoscopic scale for the scaling limit of Section 4.

The comparison of TASEPs requires careful estimates, which will be done using
the formalism of backwards paths discussed below. Backwards paths have been
introduced in [Fer18], see also [FN20].

2.1 The backwards path

We define the following process running backwards in time. First we define a process
on the labels starting from time t backwards to time 0, denoted N(t ↓ ·), as follows:

• we set N(t ↓ t) = N ,

• the jumps happen at times when a TASEP jump trial is suppressed: if at
time4 t̂+ we have N(t ↓ t̂+) = n and at time t̂ a jump of the TASEP particle n
is suppressed by the presence of particle n−1, then we define N(t ↓ t̂) = n−1.

The backwards path associated to the label N at time t is defined by setting

πN,t = {xN(t↓u)(u), u ∈ [0, t]}, (2.1)

see Figure 1.

4t̂+ means a time moment that is infinitesimally larger than t̂.
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Figure 1: The red solid lines are the trajectories of {xn(u), 0 ≤ u ≤ t, all n}. The
thick light-blue line is the trajectory of the backwards path πN,t = {xN(t↓u)(u), u ∈
[0, t]} with N = 3: it follows backwards the trajectory of the particle until a jump
was blocked. Then the path jumps to the blocking particle and continue backwards.
The blue dots and the dashed blue lines are the trajectories of the particles after
setting step initial condition at time τ .

We denote by xstep,Z
n (τ, t) the particle process at time t starting at time τ from

the step initial condition with the right-most particle at position Z ∈ Z, i.e., with
the initial condition

xstep,Z
n (τ, t = τ) = −n + Z + 1, n ≥ 1. (2.2)

For Z = 0 and τ = 0 we simply write xstep
n (t). Also, define yZn (τ, t) = xstep,Z

n (τ, t)−Z.
In Proposition 3.4 of [Fer18] it is shown that

xN(t) = xN(t↓τ)(τ) + y
xN(t↓τ)(τ)

N−N(t↓τ)+1(τ, t). (2.3)

Furthermore, for any other n ≤ N it holds5

xN(t) ≤ xn(τ) + y
xn(τ)
N−n+1(τ, t). (2.4)

This can be also read in another way (the role of n is taken by N(t ↓ τ) and the
role of N is taken by n): for any n ≥ N(t ↓ τ),

xn(t) ≤ xN(t↓τ)(τ) + y
xN(t↓τ)(τ)

n−N(t↓τ)+1(τ, t). (2.5)

Remark 2.1. The important properties of the backwards path πN,t are (2.3), (2.4),
(2.5), and by construction it has almost surely only steps of size ±1.

By construction of the backwards path, the position xN(t) is unchanged if par-
ticles strictly to the right of the path are moved to the right and particles strictly
to the left are moved to the right but still keeping the exclusion constraint; the

5For TASEP, we thus have xN (t) = infn≤N

{
xn(τ) + y

xn(τ)
N−n+1(τ, t)

}
, as previously proven by

Seppäläinen with a different approach in [Sep98].
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extreme situation is to create a step initial condition at position of the backwards
path (which gives the formula (2.3)). If the backwards path ends weakly to the left
of 0, then we can move to the right particles initially strictly to the right of 0 and
get the initial configuration of a process we call xright, while if the backwards path
ends strictly to the right of 0, we can move to the right particles weakly to the left
of the origin leading to a process we call xleft. Therefore,

xN (t) = min{xleft
N (t), xright

N (t)}, (2.6)

for arbitrary N .

2.2 Comparison inequalities

For t1 < t2, we would like to bound the increments of xN(t2) − xN(t1) with the
increments of another process, namely x̃M(t2)− x̃M(t1) for suitable M and x̃. The
process x̃ will be taken to be a stationary TASEP with some density ρ, because in
this case for each fixed n, (x̃n(t), t ≥ 0) is a Poisson process with intensity 1 − ρ
(one-sided random walk with jumps to the right at rate 1 − ρ). This property is
coming from Burke’s theorem [Bur56] and it was observed in [Spi70] (Example 3.2),
see also [FF96].

Proposition 2.2. Let x(t) and x̃(t) be any two TASEPs coupled by the basic cou-
pling. Consider the tagged particle processes xN (t) and x̃M (t) on a time interval
[t1, t2]. Assume that

x̃M (t1) ≤ xN (t1). (2.7)

Define the event

E t2,N
t1,M

= {∃τ ≤ t1 | xN(t2↓τ)(τ) = x̃M(t1↓τ)(τ)}. (2.8)

If E t2,N
t1,M

takes place, then

xN (t2)− xN (t1) ≥ x̃M (t2)− x̃M (t1). (2.9)

Proof. Let us consider the backwards path πN,t2 associated with xN starting at time
t2 and the backwards path π̃M,t1 associated with x̃M starting at time t1, see Figure 2

for an illustration. Assume E t2,N
t1,M

is satisfied and set x∗ = x̃M(t1↓τ)(τ) = xN(t2↓τ)(τ).
Then by (2.3) we have

xN (t2) = x∗ + yx
∗

N−N(t2↓τ)+1(τ, t2),

x̃M (t1) = x∗ + yx
∗

M−M(t1↓τ)+1(τ, t1),
(2.10)

and by (2.4)
xN (t1) ≤ x∗ + yx

∗

N−N(t2↓τ)+1(τ, t1),

x̃M (t2) ≤ x∗ + yx
∗

M−M(t1↓τ)+1(τ, t2).
(2.11)

Assume for a moment that

N −N(t2 ↓ τ) + 1 ≤ M −M(t1 ↓ τ) + 1. (2.12)

7



xN xN

x̃M

x̃M

t1 t1

t2 t2

τ τ

time time

space space

(a) (b)

Figure 2: The thick solid lines are the evolution of particle xN and x̃M , while the
backwards path are dashed. The thin solid lines are the evolution of particle N
(resp. M) after restarting with step initial condition at time τ and position x∗ for
x (resp. x̃). The solid dots are the particle configurations at time τ and the empty
dots are the configurations after resetting to the step initial condition at time τ .
The picture (a) is for the case N − N(t2 ↓ τ) + 1 ≤ M −M(t1 ↓ τ) + 1, while (b)
for the case N − N(t2 ↓ τ) + 1 > M −M(t1 ↓ τ) + 1. The contradiction in (b) is
that the blue empty dot at time t1 should be at position x̃M (t1), but it is also to
the right of the black empty dot at time t1.

Then, combining (2.10) and (2.11) we get

xN (t2)− xN (t1) ≥ yx
∗

N−N(t2↓τ)+1(τ, t2)− yx
∗

N−N(t2↓τ)+1(τ, t1)

≥ yx
∗

M−M(t1↓τ)+1(τ, t2)− yx
∗

M−M(t1↓τ)+1(τ, t1)

≥ x̃M(t2)− x̃M(t1).

(2.13)

The second inequality holds due to (2.12) and the fact that, for the step initial
condition, particles starting to the left of particle N can not move more than the
distance traveled by particle N .

It remains to prove (2.12). Assume that it is not true. Consider the evolution
of the particles obtained by setting the step initial condition at time τ with the
right-most particle at x∗, which we label as particle number 1; i.e., we look at the
process {x∗ + yx

∗

n (τ, t)}n≥1. By assumption, particle N1 = N −N(t2 ↓ τ) + 1 is to
the left of particle M1 = M − M(t1 ↓ τ) + 1. By (2.11) particle N1 at time t1 is
on [xN(t1),∞), and thus particle M1 at time t1 is strictly to the right of xN (t1). In
formulas,

xN(t1) ≤ x∗ + yx
∗

N1
(τ, t1) < x∗ + yx

∗

M1
(τ, t1) = x̃M(t1), (2.14)

where the last equality comes from (2.10). But by assumption (2.7) we have
x̃M(t1) ∈ (−∞, xN(t1)], which is a contradiction.
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Interchanging the roles of x and x̃, namely renaming xN → x̂P and x̃M → xN ,
we get the following result.

Proposition 2.3. Let x(t) and x̂(t) be two TASEPs under the basic coupling. Con-
sider the tagged particles processes xN (t) and x̂P (t) on the interval [t1, t2]. Assume
that

xN (t1) ≤ x̂P (t1). (2.15)

Define the event

Ê t2,P
t1,N

= {∃τ ≤ t1 | xN(t1↓τ)(τ) = x̂P (t2↓τ)(τ)}. (2.16)

If Ê t2,P
t1,N

is satisfied, then

xN(t2)− xN(t1) ≤ x̂P (t2)− x̂P (t1). (2.17)

2.3 End-point localization of backwards paths

Here we prove two lemmas which imply that with high probability the events E and
Ê do occur from (2.8) and (2.16).

Lemma 2.4. Let x(t) be the TASEP with the step initial condition. Let6 N = αT
with α ∈ (0, 1) and t = T − κT 2/3 with κ in a bounded set. Define αT = αT/t.
Then there exist constants C, c > 0 independent of N such that for all K1, K2 > 0
we have

P(|xN(t↓0)(0)| ≥ K1T
1/3) ≤ Ce−cK1 (2.18)

and
P
(
|xN (t)− (1− 2

√
αT )t| ≥ K2T

1/3
)
≤ Ce−cK2, (2.19)

uniformly for all N large enough.

Proof. For the step initial condition xN(t↓0)(0) = −N(t ↓ 0)+1 ≤ 0. Thus, by (2.3)
at time τ = 0 we have

xN(t) = x
step,−N(t↓0)+1
N−N(t↓0)+1 (t), (2.20)

that is, xN(t) can be obtained from the step initial condition where the particles
on [−N(t ↓ 0) + 2, 0] are removed. Let us estimate the probability that N(t ↓ 0) ≥
K1T

1/3 + 1.
We have7 (using (2.20))

P(N(t ↓ 0) < K1T
1/3 + 1) ≥ P(xN(t) < min

n≥K1T 1/3+1
xstep,−n+1
N−n+1 (t))

= P(xN (t) < xstep,−K1T 1/3

N−K1T 1/3 (t)),
(2.21)

6To keep the notation simple, in this paper we do not write explicitly the integer values. E.g.,
N = αT stands for N = ⌊αT ⌋.

7In the r.h.s. of (2.21) we have used a strict inequality. The reason is that the event
{xN (t) = minn≥K1T 1/3+1 x

step,−n+1
N−n+1 (t))} does not imply N(t ↓ 0) < K1T

1/3 + 1, because several

values of n could minimize x
step,−n+1
N−n+1 (t)).

9



where we used that xstep,−n+1
N−n+1 (t) is weakly increasing in n. Next, for any constant

A,

P(xN(t) < xstep,−K1T 1/3

N−K1T 1/3 (t)) ≥ P(xN (t) ≤ A < xstep,−K1T 1/3

N−K1T 1/3 (t))

≥ 1− P({xN(t) > A} ∪ {A ≥ xstep,−K1T 1/3

N−K1T 1/3 (t)})

≥ 1− P(xN(t) > A)− P(A ≥ xstep,−K1T 1/3

N−K1T 1/3 (t)).

(2.22)

Thus

P(N(t ↓ 0) ≥ K1T
1/3) ≤ P(xN (t) > A) + P(A ≥ xstep,−K1T 1/3

N−K1T 1/3 (t)). (2.23)

We choose
A = (1− 2

√
αT )t+

1
2
K1(α

−1/2 − 1)T 1/3. (2.24)

To bound the first term, with σ = (1−√
α)2/3

α1/6 we have (see Lemma A.2)

lim
T→∞

P (xαT (t) ≥ A) = lim
T→∞

P
(
xαT (t) ≥ (1− 2

√
αT )t− sσT 1/3

)
= FGUE(s) (2.25)

with s = −1
2
K1(α

−1/2−1)/σ. The tails for large but finite time T are also known to
be (super)-exponential. In particular, for all T large enough and s1 < 0, see (A.4),

P
(
xαT (t) ≥ (1− 2

√
αT )t− s1σT

1/3
)
≤ Ce−c|s1|3/2 . (2.26)

(2.19) follows from this bound, together with the bound of the upper tail (A.3). By

our choice of A, P (xαT (t) ≥ A) ≤ Ce−cK
3/2
1 for other constants C, c > 0.

To bound the second term in (2.23), let α̂T = αT−K1T 1/3

T−τT 2/3 . Then

P

(
xstep,−K1T 1/3

αT−K1T 1/3 (t) > (1− 2
√

α̂T )t−K1T
1/3 − s2σT

1/3
)

= P

(
xstep

αT−K1T 1/3(t) > (1− 2
√

α̂T )t− s2σT
1/3

)
T→∞−→ FGUE(s2),

(2.27)

and, for all T large enough, see (A.3),

P

(
xstep,−K1T 1/3

αT−K1T 1/3 (t) ≤ (1− 2
√
α̂T )t−K1T

1/3 − s2σT
1/3

)
≤ Ce−cs2. (2.28)

A computation gives, as T → ∞,

(1− 2
√
α̂T )t−K1T

1/3 = (1− 2
√
αT )t+K1(α

−1/2 − 1)T 1/3 +O(1). (2.29)

This corresponds to setting s2 =
1
2
K1(α

−1/2 − 1)/σ + o(1), which implies

P

(
xstep,−K1T 1/3

αT−K1T 1/3 (t) ≤ A
)
≤ Ce−cK1 (2.30)

for some other constants C, c > 0.
Since N(t ↓ 0) ≥ 1, (2.18) follows from the bounds on the two terms of (2.23).
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Lemma 2.5. Consider the TASEP with the stationary initial condition with density
ρ. Then there exist constants C, c > 0 independent of t such that for all K > 0 and
any N ∈ Z

P(|xρ
N(t)− xρ

N(t↓0)(0)− (1− 2ρ)t| ≥ Kt2/3) ≤ Ce−cK, (2.31)

uniformly for all t large enough.

Proof. Consider a density ρ+ = ρ0 + κ̃t−1/3 with κ̃ > 0 and set χ+ = ρ+(1 − ρ+),
χ0 = ρ0(1− ρ0). In the stationary TASEP with density ρ+, denoted as xρ+ , choose
the particle number M = ρ2+t−2κ̃ρ+t

2/3 (where particle with label 0 is the first one
strictly to the right of the origin). Then, see Theorem 1.6 of [BFP10],

lim
t→∞

P

(
x
ρ+
M (t) ≥ (1− 2ρ+)t + 2κ̃t2/3 − (1− ρ+)χ

−1/3
+ st1/3

)

= lim
t→∞

P

(
x
ρ+
M (t) ≥ (1− 2ρ0)t− (1− ρ0)χ

−1/3
0 st1/3

)
= F

BR,κ̃/χ
1/3
0

(s),
(2.32)

where FBR,w is the Baik-Rains distribution function with parameter w. In addition,
for all large t (see Lemma A.3)

P
(
|xρ+

M (t)− (1− 2ρ0)t| ≥ Kt1/3
)
≤ Ce−cK (2.33)

for some constants C, c > 0.
Now consider TASEPs with two initial conditions modified as follows: (a) xρ+,left

consists of xρ+ in which all particles weakly to the left of 0 are pushed to the right
until 0 to create the step initial condition on {. . . ,−2,−1, 0} and particles strictly to
the right of 0 are unchanged, (b) xρ+,right consists of removing all particles starting
strictly to the right of 0 of xρ+ , keeping the particles to the left of 0 unchanged (the
numbering of the remaining particles is unchanged).

By (2.6) and the discussion above it, we have

{xρ+
M(t↓0)(0) > 0} = {M(t ↓ 0) ≤ 0} ⊇ {xρ+,right

M (t) > x
ρ+,left
M (t)}. (2.34)

The inclusion is not necessarily an equality since it could also happen that the two
random variables in the last expression are equal. Thus we have, for any choice of
A,

P(x
ρ+
M(t↓0)(0) > 0) ≥ P(x

ρ+,right
M (t) > A ≥ x

ρ+,left
M (t))

≥ 1− P(x
ρ+,right
M (t) ≤ A)− P(x

ρ+,left
M (t) > A),

(2.35)

which gives

P(x
ρ+
M(t↓0)(0) ≤ 0) ≤ P(x

ρ+,right
M (t) ≤ A) + P(x

ρ+,left
M (t) > A). (2.36)

We choose A = (1 − 2ρ0)t + κ̃2t1/3, since typically x
ρ+,left
M (t) is to the left of A and

x
ρ+,right
M (t) is to the right of A.
The two initial condition used here can be analyzed directly using determinantal

formulas, but the bounds for precisely this case have not been written down before.
To avoid redoing standard asymptotic analysis, we opt to use the connection to the
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last passage percolation (LPP) where such computations have been made. We want
to emphasize that it is not necessary.

We have
P(x

ρ+,left
M (t) > A) = P(L

ρ+
− (M + A,M) ≤ t),

P(x
ρ+,right
M (t) ≤ A) = P(L

ρ+
| (M + A,M) > t).

(2.37)

Here L
ρ+
| is the LPP with exp(1) random variables on {(i, j)|i ≥ 1, j ≥ 1} and

exp(ρ+) on {(0, j)|j ≥ 1}, while L
ρ+
− is the LPP with the same bulk randomness

and with exp(1− ρ+) on {(i, 0)|i ≥ 1}.
In Lemma 2.5 of [FO18], there are bounds on exit point probabilities bounding

precisely P(L
ρ+
| (M + A,M) > t) and P(L

ρ+
− (M + A,M) ≤ t); see (3.7) of [FO18].

The variables in [FO18] should be matched as follows:

x → t, n → M, γ2n → M + A, κ → κ̃(n/t)1/3 = κ̃ρ
2/3
0 +O(t−2/3). (2.38)

Then the bounds used for the proof of Lemma 2.5, see Lemma 3.3 of [FO18], lead
to

P(L
ρ+
| (M + A,M) > t) ≤ Ce−cκ̃2

, P(L
ρ+
− (M + A,M) ≤ t) ≤ Ce−cκ̃3

(2.39)

for some constants C, c > 0 (those can be taken uniformly for ρ+ in a compact
subset of (0, 1)).

Now, we set ρ0 = ρ+ − κt−1/3, so that ρ+ = ρ. By (2.36)-(2.39) we have, with
probability at least 1 − 2Ce−cκ̃2

, that xρ
M(t) − xρ

M(t↓0)(t) ≤ xρ
M (t). By (2.33) we

further have that with probability at least 1−Ce−cK , xρ
M(t) ≤ (1−2ρ0)t−Kt2/3 =

(1− 2ρ)t + (2κ̃−K)t2/3. Thus, choosing κ̃ = K we get that

P(xρ
M (t)− xρ

M(t↓0)(0) ≥ (1− 2ρ)t+Kt2/3) ≤ Ce−cK (2.40)

for some new constants C, c > 0. With similar arguments one shows that

P(xρ
M(t)− xρ

M(t↓0)(0) ≤ (1− 2ρ)t−Kt2/3) ≤ Ce−cK . (2.41)

By translation invariance, the statements (2.40) and (2.41) hold for any M , which
is our result.

2.4 Comparison inequality and tightness

First let us see that it is enough to verify the events E and Ê at the largest and
smallest times of a given interval.

Lemma 2.6. Consider two times t1, t2 such that t ≤ t1 < t2 ≤ T . Then, with
notations (2.8), (2.16), we have

ET,N
t,M ⊆ E t2,N

t1,M
, and ÊT,N

t,M ⊆ Ê t2,N
t1,M

. (2.42)

Proof. Assume that ET,N
t,M occurs. Then we have x̃M(t) ≤ xN(t) (by assumption),

and hence (via basic coupling) x̃M (T ) ≤ xN (T ). For any u ∈ [t, T ], we have that

12



time

space

xNx̃M

t

t1

t2

T

ET,N
t,M

E t2,N
t1,M

Figure 3: The solid lines are the evolution of particle xN and x̃M , while the dashed
paths are backwards path starting at different times. The red dots represents the
occurrence of the events ET,N

t,M and E t2,N
t1,M

. One sees that ET,N
t,M implies E t2,N

t1,M
.

the backwards path from xN (u) is to the left of the backwards path from xN (T ).
This implies that the backwards path from x̃M(t) will intersect the one from xN (u).
Thus ET,N

t,M implies Eu,N
t,M for all u ∈ [t, T ]. In turn, since x̃M(t) ≤ xN (t) and the

event Eu,N
t,M implies, by Proposition 2.2, that the increment xN(u)− xN (t) is larger

than x̃M(u)− x̃M(t), we also have x̃M (u) ≤ xN (u) for all u ∈ [t, T ]. But this then
implies that the backwards path from x̃M(t1) intersects the backwards path from
xN (t2) for all t1 < t2 in [t, T ].

For Ê it is similar. See also Figure 3 for an illustration.

With the above results, we immediately have an estimate on the probabilities
of E t2,N

t1,M
and Ê t2,P

t1,N
.

Proposition 2.7. Let x(t) be the TASEP with the step initial condition. Set
N = αT , α ∈ (0, 1), and t = T − κT 2/3 with κ > 0 fixed. Let ρ0 =

√
αT =

√
αT/t

be the average density of particles around xN(t). Define

ρ± = ρ0 ± κt−1/3 =
√
α +

(
1
2
κ
√
α± κ

)
t−1/3 +O(t−2/3) (2.43)

with κ > 0. Consider two stationary processes: x̃(t) = xρ+(t) having density ρ+,
and x̂(t) = xρ−(t) having density ρ−. Define the index M to be the smallest one such
that x

ρ+
M (t) ≤ xN(t) and the index P to be the largest one such that xN (t) ≤ x

ρ−
P (t),

and recall the events ET,N
t,M and ÊT,P

t,N of Propositions 2.2 and 2.3. Then

P(E t2,N
t1,M

∩ Ê t2,P
t1,N

for all t ≤ t1 < t2 ≤ T ) ≥ 1− Ce−cκ, (2.44)

for some constants C, c > 0, where the constants are uniform for all T large enough.

Proof. By Lemma 2.6 it is enough to bound the probabilities of ET,N
t,M and ÊT,P

t,N .

Lemma 2.4 with κ = 0 gives the localization of xN(T↓0)(0) in a T 1/3 window and
Lemma 2.4 with κ gives the localization of xN (t) − (1 − 2ρ0)t in a T 1/3 window.
Taking for instance K1 = K2 = κ/2 we have that

P(xN (t)− xN(T↓0)(0) < (1− 2ρ0)t− κT 1/3) ≤ 2Ce−cκ/2. (2.45)
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Lemma 2.5 with t = T − κT 2/3 and K = κ gives

P(x
ρ+
M (t)− x

ρ+
M(t↓0)(0) > (1− 2ρ+)t+ κt2/3)

=P(x
ρ+
M (t)− x

ρ+
M(t↓0)(0) > (1− 2ρ0)t− κt2/3) ≤ Ce−cκ.

(2.46)

Since x
ρ+
M (t) − xN (t) is O(1), this implies that uniformly for all T large enough,

x
ρ+
M(t↓0)(0) > xN(T↓0)(0) with probability at least 1−Ce−cκ (for some new constants

C, c > 0) and thus the event ET,N
t,M occurs. Similarly one gets a bound for ÊP,T

t,N .

Proposition 2.7 implies the following comparison inequalities.

Theorem 2.8. Let us consider the setting of Proposition 2.7. Let T − κT 2/3 ≤
t1 = T − τ1T

2/3 < t2 = T − τ2T
2/3 ≤ T . Then with probability at least 1− Ce−cκ,

x
ρ+
M (t2)− x

ρ+
M (t1) ≤ xN (t2)− xN (t1) ≤ x

ρ−
P (t2)− x

ρ−
P (t1). (2.47)

Proof. This follows directly from Propositions 2.2, 2.3, and 2.7.

Define the constants

c1 =
(1−√

α)2/3

α1/6
and c2 =

2(1−√
α)1/3

α1/3
. (2.48)

The law of large numbers approximation of xαT (T − c2τT
2/3) is given by

xαT (T − c2τT
2/3) ≃ (1− 2

√
αT/(T − c2τT 2/3))(T − c2τT

2/3)

≃
(
1− 2

√
α
)
T + c2τ

(√
α− 1

)
T 2/3 +

1

4

√
αc22τ

2T 1/3.
(2.49)

Proposition 2.9. Let us define the rescaled process

XT (τ) :=
xαT (T − c2τT

2/3)− µ(τ, T )

−c1T 1/3
. (2.50)

where µ(τ, T ) = (1− 2
√
α) T − c2τ (1−

√
α) T 2/3. Then we have

lim
T→∞

XT (τ) = A2(τ)− τ 2, (2.51)

where A2 is the Airy2 process. The convergence is the weak convergence on the
space of continuous functions on compact intervals.

Proof. The convergence of (2.51) in the sense of finite-dimensional distribution is
known from the comparison with the LPP, see [BP08] (for a discrete time setting,
see Theorem 2-2 of [IS07]). It can be obtained also directly using the determinantal
formula for the joint distributions of finitely many particles (it is a particular case
of (2.23) in [BF08]). Through the connection to LPP one can get tightness [FO18]
of the scaled tagged particle process XT . Here we derive the tightness property
directly in the particle representations without employing the LPP correspondence.
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Define the modulus of continuity for the rescaled process XT by

ωT (δ) = sup
0≤τ1,τ2≤κ:

|τ2−τ1|≤δ

|XT (τ1)−XT (τ2)|. (2.52)

Since XT (0) is a tight random variable, to show tightness of the process (in the
space of continuous functions on bounded intervals) we still need to control the
modulus of continuity: we need to prove that for any ε, ε̃ > 0, there exists a δ > 0
and a T0 such that (see Theorem 8.2 in [Bil68])

P(ωT (δ) ≥ ε) ≤ ε̃, (2.53)

for all T ≥ T0. The tightness, together with convergence of finite-dimensional
distributions, will imply the desired weak convergence.

Let us define the rescaled processes with densities ρ+ and ρ− (defined as in
Proposition 2.7 with t = T − κT 2/3)

B±
T (τ) :=

x
ρ±
M (T − c2τT

2/3)− µ(τ, T )

−c1T 1/3
. (2.54)

Since x
ρ+
M (t) (resp. x

ρ−
P (t)) is a Poisson process with parameter 1 − ρ+ (resp.

1 − ρ−), we immediately have the weak convergence to the Brownian motion (see
Lemma A.1), namely

lim
T→∞

B±
T (τ)− B±

T (0) = −τv± +
√
2B±(τ), (2.55)

where B+ and B− are standard Brownian motions, and v± = (±κ + 1
2

√
ακ)c2/c1

are the drifts.
For any ε > 0 and T large enough, by Proposition 2.7,

P(ωT (δ) ≥ ε) ≤ Ce−cκ + P

(
{ωT (δ) ≥ ε} ∩ ET,N

t,M ∩ ÊT,P
t,N

)
. (2.56)

On ET,N
t,M ∩ ÊT,P

t,N , by Theorem 2.8, we have the inequality

|XT (τ2)−XT (τ1)| ≤ |B+
T (τ2)−B+

T (τ1)|+ |B−
T (τ2)− B−

T (τ1)|. (2.57)

Choose δ > 0 such that the drift correction is smaller than ε/4; that is |v±|δ ≤ ε/4.
Hence, it is enough to bound

P

(
sup

0≤τ1,τ2≤κ:

|τ2−τ1|≤δ

|B+
T (τ2)− B+

T (τ1) + v+(τ2 − τ1)| ≥ ε/4

)
(2.58)

and the same for B+
T replaced by B−

T . Dividing the interval [0,κ] in pieces of length
δ, we have

(2.58) ≤ κ

δ
P

(
sup

0≤τ≤δ
|B+

T (τ)− B+
T (0) + v+τ | ≥ ε/12

)
≤ κ

δ
e−cε2/δ, (2.59)
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for some constant c > 0, uniformly for all T large enough. The bound is obtained by
a standard computation with Doob’s maximal inequality followed by the exponential
Chebyshev inequality. The reason is that B+

T (τ) − B+
T (0) + v+τ converges weakly

to a Brownian motion by Donsker’s theorem. A similar bound is obtained for B−
T

instead of B+
T .

Thus, for a fixed ε̃, take κ > 0 large enough such that Ce−cκ ≤ ε̃/2. Then take δ
small enough so that (2.59) ≤ ε̃/2. This implies (2.53) and thus we have tightness,
which was the missing ingredient off the weak convergence.

3 Relation between TASEPs with a wall and

without constraints

In the following proposition we show that, for the step initial condition, the one-
point distribution for a TASEP with a boundary wall moving to the right determin-
istically can be related with the distribution of another TASEP without constraints.

Proposition 3.1. Let f be a non-decreasing function on R≥0 with f(0) = 0. Let
xf (t) be a TASEP starting with the step initial condition, i.e., xf

k(0) = −k + 1,
k ≥ 1, but with its first particle blocked by a wall which has position f(t) at time t,
i.e., xf

1(t) ≤ f(t) for any time t ≥ 0 8. Then for any n ≥ 1 we have

P(xf
n(T ) > s) = P(xn(t) > s− f(T − t) for all t ∈ [0, T ]), (3.1)

where x(t) is a TASEP with the step initial condition evolving without the wall
constraint.

The proof of Proposition 3.1 is given in Section 3.2 below.

Remark 3.2. In Proposition 3.1, we can replace the condition f(0) = 0 with
f(0) ≥ 0, in which case the identity (3.1) has to be replaced by

P(xf
n(T ) > s) = P(xn(t) > s− f(T − t) for all t ∈ [0, T ], xn(T ) > s). (3.2)

3.1 Updates of multi-species TASEPs

We start with a description of a colored (or multi-species, or multi-type) version of
TASEP. We consider an interacting particle system in which particles live on the
integer lattice Z and each integer location contains exactly one particle. The set of
colors is taken to be Z ∪ {+∞}.

A particle configuration is a map η : Z → Z ∪ {+∞}, where we call η(z) the
color of a particle at z ∈ Z. When η(z) = +∞ we will think of z as being empty.
Let C be the set of all configurations. For a transposition (z, z + 1) with z ∈ Z, let
σ(z,z+1) : C → C, be a swap operator defined by

(σ(z,z+1)η)(i) =





η(z + 1), i = z,

η(z), i = z + 1,

η(i), i ∈ Z\{z, z + 1}.
(3.3)

8In other words, the jumps of the first particle that would violate the constraint xf
1 (t) ≤ f(t)

are suppressed.
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Define a totally asymmetric swap operator at z ∈ Z, W(z,z+1) : C → C, via

(W(z,z+1)η) =

{
η, if η(z) ≥ η(z + 1),

σ(z,z+1)η, if η(z) < η(z + 1).
(3.4)

In words, the operator σ(z,z+1) exchanges the colors of particles at z, z + 1, and
W(z,z+1) realizes that exchange only if the particle that is initially on the left (at z)
has a smaller color.

Any bijection of integers s : Z → Z can be viewed as a particle configuration by
setting η(z) = s(z). Such particle configurations will be especially important for us
because of the following result.

Proposition 3.3. Let id : Z → Z be the identity bijection. Then, for any k ∈ Z

and for any integers z1, . . . , zk one has

W(zk,zk+1) . . .W(z2,z2+1)W(z1,z1+1)id = inv
(
W(z1,z1+1)W(z2,z2+1) . . .W(zk ,zk+1)id

)
,
(3.5)

where in the right-hand side inv denotes the map of taking the inverse of a permu-
tation.

In a probabilistic setting, Proposition 3.3 was proved in [AHD09, Lemma 2.1],
see [AAV11] and [BB21] for generalizations. In an equivalent algebraic setting, it
turns out to be a well-known involution in the Hecke algebra, see [Buf20], [Gal21].

3.2 Two multi-species TASEPs

Now let us define a continuous-time multi-species TASEP. Consider a collection of
jointly independent Poisson processes {P(z)}z∈Z, where P(z) has a state space R≥0

and rate 1. Let η0 ∈ C be a (either deterministic or random) particle configuration
which plays the role of an initial condition. Of course, in the random case, the initial
distribution is assumed to be independent of the Poisson processes. We define a
continuous-time stochastic evolution {ηt}t∈R≥0

, ηt ∈ C, by applying W(z,z+1) at each
time t that is an event of the Poisson process P(z). More explicitly, particle at z
exchanges its position with particle at site z + 1 if its color has a lower value. It is
readily shown via standard techniques that under our assumptions such a random
process is well-defined, see [Har78,Har72,Hol70,Lig72].

We will need two versions of the continuous-time multi-species TASEP. Both
of them will start with the initial configuration id. The first version {η̂t;f(z)} is
obtained from the previous construction by adding a constraint: we suppress all
jumps which involve positions greater or equal to f(t). In other words, this is a
multi-species TASEP with a wall which moves according to a speed profile f(t).
The second version {ηt;f,T (z)} is defined only for times t ∈ [0, T ], and in the same
way, but the wall moves now according to the speed profile f(T − t). Note that for
the first process the wall moves to the right, and for the second process it moves to
the left due to our assumption that f is monotonously non-decreasing.

Proposition 3.4. For any T ∈ R≥0 we have

{inv (η̂T ;f) (z)}z∈Z d
= {ηT ;f,T (z)}z∈Z. (3.6)
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Proof. Directly follows from Proposition 3.3. Note that the inversion of time plays
a crucial role.

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Note that for any n ≥ 1 we have

P
(
xf
n(T ) > s

)
= P (∃ at least n numbers i ≤ 0 : inv (η̂T ;f) (i) > s) . (3.7)

Indeed, note that the process η̂T ;f(z) can be coupled with a single species TASEP
in the following way: we consider colors ≤ 0 as particles, and colors > 0 as holes.
Both sides of the equality above represent the same event under such a coupling.

Next, Proposition 3.4 implies that

P (∃ at least n numbers i ≤ 0 : inv (η̂T ;f) (i) > s)

= P (∃ at least n numbers i ≤ 0 : ηT ;f,T (i) > s)

In words, the right-hand side contains the probability of the event that at the end
of the process ηT ;f,T there are at least n particles of color > s inside the interval
(−∞, 0]. This event can also be observed through the coupling with a single-species
TASEP: we need to view all colors > s as holes, and all colors less or equal than s
as particles. Let us apply the standard particle-hole duality for this single-species
process, and change the coordinates z 7→ s−z. We obtain the single-species TASEP
(notation for its particle positions: y1(t) > y2(t) > . . . ) which starts from the step
initial condition yk(0) = −k + 1, for all k ≥ 1, and the updates in this process
are allowed only strictly to the right of the wall, which moves according to profile
s− f(T − t). Thus, we get

P (∃ at least n numbers i ≤ 0 : ηT,f,T (i) > s) = P (yn(T ) > s) . (3.8)

It remains to show that

P (yn(T ) > s) = P (xn(t) > s− f (T − t) ∀t ∈ [0, T ]) . (3.9)

In order to prove this, let us couple the processes associated with particles {xk(t)}
and {yk(t)} via the basic coupling in the interval (s−f(T−t),+∞) for any t ∈ [0, T ].
All {yk} particles which happen to be to the left of s − f(T − t) at some time t
stop forever, since s − f(T − t) is a monotonously non-decreasing function. All
{xk} particles continue to jump at all positions, however, the evolution of particles
with larger numbers does not affect the evolution of particles with smaller numbers.
Thus, under such a coupling, we have

(a) if xn(t) > s− f (T − t) ∀t ∈ [0, T ], then

yn(t) = xn(t), ∀t ∈ [0, T ], (3.10)

(b) if for some t0 ∈ [0, T ], xn(t0) ≤ s− f (T − t0), then (since f(0) = 0)

yn(T ) = yn(t0) ≤ s− f(T − t0) ≤ s. (3.11)

Therefore, the event {yn(T ) > s} happens if and only if the event {xn(t) > s −
f (T − t) for all t ∈ [0, T ]} happens. This concludes the proof.
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4 Scaling limit

4.1 Single region away from the boundary time

Consider the following setting. Let us fix an α ∈ (0, 1) and consider, in the TASEP
with step initial condition, the position of particle number n = αT at time T .
Without a wall in front of the first particle, we would have xαT (T ) = (1−2

√
α)T +

O(T 1/3). If we have an influence of the wall around the time α0T for some α0 ∈ (α, 1)
so that the effect is visible on a macroscopic scale, then we have to look at a scaling
xf (T ) ≃ ξT for some ξ < 1 − 2

√
α. Of course, since we want to still have some

fluctuations, particle number αT should have already moved at time T , i.e., we also
have ξ > −α.

Let us fix some α0 ∈ (α, 1). The case α0 = 1 is discussed in Section 4.2. From
the law of large numbers, we have (see Lemma 2.4)

xαT (α0T ) ≃
{ √

α0(
√
α0 − 2

√
α)T, α0 ∈ [α, 1],

−αT, α0 ∈ [0, α),
(4.1)

where the second case is simply because particle number αT start moving only
around time αT . The rescaled process around time t = α0T is given by

X̃T (τ) :=
xαT (α0T − c̃2τT

2/3)− µ̃(τ, T )

−c̃1T 1/3
, (4.2)

where the constants c̃1, c̃2 are given by

c̃1 =
(
√
α0 −

√
α)2/3α

1/6
0

α1/6
, c̃2 =

2(
√
α0 −

√
α)1/3α

5/6
0

α1/3
(4.3)

and the function µ̃(τ, T ) by

µ̃(τ, T ) =
√
α0(

√
α0 − 2

√
α)T − 2τ

(
√
α0 −

√
α)4/3α

1/3
0

α1/3
T 2/3. (4.4)

Note the relation c̃2 = 2c̃21
√
α0/(

√
α0 −

√
α).

For any fixed α0 ∈ (α, 1], a simple rescaling of the result of Proposition 2.9
implies the following weak convergence result.

Corollary 4.1. Let α0 ∈ (α, 1] be fixed. Then, we have

lim
T→∞

X̃T (τ) = A2(τ)− τ 2. (4.5)

The convergence is the weak convergence in the space of continuous functions on
compact intervals.

We study a case where the wall has a non-trivial influence. More precisely, we
will consider the situation where in the expression of the r.h.s. of (3.1) the influence
is restricted to a T 2/3 neighborhood of t = α0T . As we will explain below, this
is the case when the function f describing the evolution of the wall satisfies the
assumption below.
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t/T

f0(t/T )

1− α1− α0 1

Figure 4: The lower bound function f0 (here for α = 0.4 und ξ = −0.05). In
Assumption 4.2 the function f(t)/T has to be in the gray shaded region since
f(t) ≥ 0 as well. Depicted in black is the tangent line at 1 − α0 (here α0 = 0.5),
namely ξ −√

α0(
√
α0 − 2

√
α) + (1−

√
α/α0)(t/T − 1 + α0).

For any given ξ ∈ [−α, 1− 2
√
α], consider the threshold function

f0(β) =

{
ξ −

√
1− β(

√
1− β − 2

√
α), β ∈ [0, 1− α),

ξ + α, β ∈ [1− α, 1].
(4.6)

see Figure 4. The parameter ξ will give us the macroscopic position of xf
αT (T ).

Assumption 4.2. Assume that a non-decreasing function f on R≥0 with f(0) = 0
satisfies:

(a) For some fixed ε > 0, for all |t− α0T | > εT ,

f(T − t) ≥ Tf0((T − t)/T ) +K(ε)T (4.7)

for some positive constant K(ε) > 0. This means that macroscopically away
from α0T , the function has to be macroscopically larger than Tf0.

(b) For |t−α0T | ≤ εT , let us parameterize T − t as T − t = (1−α0)T + c̃2τT
2/3.

Then write

f(T − t) = ξT − µ̃(τ, T )− c̃1(τ
2 − gT (τ))T

1/3, τ ∈ R. (4.8)

Assume that τ 7→ gT (τ) converges uniformly on compact sets to a piecewise
continuous9 function g. We also assume that there exists a constant M such
that, for all T large enough,

gT (τ) ≥ −M + τ 2/2 (4.9)

for |τ | ≤ εc̃−1
2 T 1/3.

9With piecewise continuous function we mean that for any bounded interval I can be decom-
posed into finitely many subsets I = [a1, a2)∪ [a2, a3)∪ . . .∪ [an−1, an] on which g is a continuous
function having one-sided limits at the end-points of the intervals of the decomposition of I.
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Remark 4.3. The condition f(0) = 0 is easily satisfied in (a) at t = 0 by choosing
K(ε) ≤ −f0(0) as f0(0) < 0.

Theorem 4.4. Let f satisfy Assumption 4.2 and recall that xf (t) is the TASEP
with step initial condition and with a blocking wall moving according to t 7→ f(t).
Then

lim
T→∞

P(xf
αT (T ) ≥ ξT − Sc̃1T

1/3) = P

(
sup
τ∈R

{A2(τ)− g(τ)} ≤ S
)
, (4.10)

with c̃1 =
(
√
α0−

√
α)2/3α

1/6
0

α1/6 .

Remark 4.5. We assumed that gT converges uniformly on compact sets to a piece-
wise continuous function g. It is not hard to allow the limiting function g to be
equal to infinity (the wall is removed) in some intervals since the process X̃T is
tight. In this case, the supremum in (4.10) will be restricted to a subset of R.

Before proving Theorem 4.4, let us comment on Assumption 4.2(a). It is based
on Proposition 3.1 and the law of large numbers (4.1). In order to have a non-
trivial interaction of particle αT with the wall at time α0T in the r.h.s. of (3.1), f
macroscopically needs to satisfy

√
α0(

√
α0 − 2

√
α)T ≃ ξT − f((1− α0)T ). (4.11)

On the other hand, the influence of the wall in the r.h.s. of (3.1) at time βT will
be asymptotically vanishing if, for β ≤ α,

−αT > ξT − f((1− β)T ), (4.12)

and for β ∈ (α, 1] \ {α0},
√

β(
√
β − 2

√
α)T > ξT − f((1− β)T ). (4.13)

(4.12) and (4.13) give the macroscopic lower threshold f0 for f .
In the proof of Theorem 4.4 we will have to control the increments of the rescaled

process X̃T (τ). This will be done by the comparison result (Theorem 2.8). Thus, as
in (4.2), we will define the rescaled process for the stationary TASEP with density
ρ by

B̃ρ
T (τ) :=

xρ
N(α0T − c̃2τT

2/3)− µ̃(τ, T )

−c̃1T 1/3
. (4.14)

Note that since we are going to use (4.14) only to bound increments of the form

B̃ρ
T (τ2)− B̃ρ

T (τ1), these do not depends on the index N .

4.2 Single region at the boundary time

This time consider α0 = 1 and ξ = 1− 2
√
α. Consider the threshold function

f0(β) =

{
1− 2

√
α−

√
1− β(

√
1− β − 2

√
α), β ∈ [0, 1− α),

(1−√
α)2, β ∈ [1− α, 1].

(4.15)
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Assumption 4.6. Assume that a non-decreasing function f on R≥0 with f(0) = 0
satisfies:

(a) For some fixed ε > 0, for all t < (1− ε)T ,

f(T − t) ≥ Tf0((T − t)/T ) +K(ε)T (4.16)

for some positive constant K(ε) > 0.

(b) For t ∈ [(1−ε)T, T ], let us parameterize T − t as T − t = c̃2τT
2/3. Then write

f(T − t) = (1− 2
√
α)T − µ̃(τ, T )− c̃1(τ

2 − gT (τ))T
1/3, τ ∈ R+. (4.17)

Assume that τ 7→ gT (τ) converges uniformly on compact sets to a piecewise
continuous function g. We also assume that there exists a constant M such
that, for all T large enough,

gT (τ) ≥ −M + τ 2/2 (4.18)

for |τ | ≤ εc̃−1
2 T 1/3.

Theorem 4.7. Let f satisfy Assumption 4.6 and recall that xf (t) is the TASEP
with the step initial condition and with blocking wall moving according to t 7→ f(t).
Then

lim
T→∞

P(xf
αT (T ) ≥ ξT − Sc̃1T

1/3) = P

(
sup
τ∈R+

{A2(τ)− g(τ)} ≤ S
)
, (4.19)

with c̃1 =
(
√
α0−

√
α)2/3α

1/6
0

α1/6 .

The proof of Theorem 4.7 is a slight simplification of the one of Theorem 4.4.
The simplification is that, for the in the r.h.s. of (3.1), instead of controlling the
bound away from the macroscopic time α0T on both sides, here we have only one
side.

4.3 Special case: constant speed

In this section we deal with a special case of the wall moving with a constant speed
v. Let F2 and F1 be the GUE- and GOE-Tracy-Widom distributions, and let F2→1;0

be the crossover distribution given by the time distribution of the A2→1 at time 0
introduced in [BFS08]. For such a choice of the behaviour of the wall, the limiting
distributions of particles are the following.

Proposition 4.8. Let f(0) = 0 and f(t) = cT +vt for t > 0, with c ≥ 0, v ∈ (0, 1).
(a) For c < 1− v and α < (1− v −

√
c(1− v))2, we have

lim
T→∞

P

(
xf
αT (T ) ≥

(
v + c− α

1− v

)
T − Sc̃1T

1/3

)
= F1(2

2/3S), (4.20)
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tt

(a) (b)

Figure 5: Characteristic lines for: (a) half-flat initial condition: xk(0) = −2k, k ≥ 0,
and (b) step initial condition with wall starting at the origin with constant speed
smaller than 1, i.e., case (b) of Proposition 4.8. One sees that geometrically are
very similar and indeed the fluctuations around the red line are both given in terms
of the Airy2→1 process.

with c̃1 = α1/3v2/3/(1− v).
(b) For c = 0 and α = (1− v)2 we have

lim
T→∞

P

(
xf
αT (T ) ≥ (1− 2

√
α)T − Sc̃1T

1/3
)
= F2→1;0(S), (4.21)

with c̃1 = v2/3/(1− v)1/3.
(c) For c ≥ 0 and α > (1− v −

√
c(1− v))2 we have

lim
T→∞

P

(
xf
αT (T ) ≥ (1− 2

√
α)T − Sc̃1T

1/3
)
= F2(S), (4.22)

with c̃1 = v2/3/(1− v)1/3.

Remark 4.9. The case α = (1 − v −
√

c(1− v))2 for c > 0 corresponds to a
shock-type situation, which we do not address in this paper. The appearance of the
F2→1;0 distribution in case (b) of Proposition 4.8 can be understood by comparing
the characteristic lines, see Figure 5.

Proof of Proposition 4.8. Linearly expanding xαT (t) and ξT − f(T − t) around
t = α0TL we get that, c.f. (4.11),

v = 1−
√

α/α0, ξ = c+ v − α/(1− v). (4.23)

Since the function f is increasing and f(t) ≥ 0 for all time, we necessarily have to
take v ≥ 0 and c ≥ 0. Furthermore, v > 0 comes from the requirement that α0 > α.

Case (a), α < (1−v−
√

c(1− v))2, corresponds to the case α0 < 1 together with
the requirement that ξ < 1 − 2

√
α. In this case Assumption 4.2 is satisfied with

ξ = v+ c− α
1−v

, α0 = α/(1− v)2, and gT (τ) = τ 2. Therefore, applying Theorem 4.4
we obtain

lim
T→∞

P

(
xf
αT (T ) ≥

(
v + c− α

1− v

)
T − Sc̃1T

1/3

)
= P

(
sup
τ∈R

{A2(τ)− τ 2} ≤ S
)

(4.24)
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It is known that the distribution given by the right-hand side is the Tracy-Widom F1

distribution rescaled by 21/3. This result was first obtained in [Joh03, Corollary 1.3].
Case (b), α = (1− v)2 and c = 0 corresponds to α0 = 1 and thus ξ = 1− 2

√
α.

Assumption 4.6 is satisfied with gT (τ) = τ 2. Therefore, we can apply Theorem 4.7
and obtain

lim
T→∞

P

(
xf
αT (T ) ≥ (1− 2

√
α)T − Sc̃1T

1/3
)
= P

(
sup
τ∈R+

{A2(τ)− τ 2} ≤ S
)
, (4.25)

The limiting distribution in the right-hand side was shown to be equal to F2→1;0

in [QR13b].
Case (c), α > (1 − v −

√
c(1− v))2 is not covered by the above theorems.

However, this case is much easier than the previous two since it corresponds to
the region whose limit behavior is not affected by the moving wall. We have not
included a general theorem for this situation, so let us present a brief argument in
this special case. Applying (3.1) and the law of large numbers (4.1) we obtain that
in this case the critical constraint in estimating

P(xαT (t) > s− f(T − t) for all t ∈ [0, T ]) (4.26)

comes from the case t = T (recall that f(0) = 0 and the function f is not continuous
at 0 if c > 0), while for other t ∈ [0, T ) and s = (1−2

√
α)T +Sc̃1T

1/3 the condition
xn(t) > s− f(T − t) is satisfied for every single moment of time with a macroscopic
difference between the two sides with probability exponentially close to 1, and
this can be extended to an estimate which is uniform in t in the same way as in
Lemma 4.13 below. Thus, the limit of probability from (4.26) is equal to the limit
of

P(xαT (T ) > s), (4.27)

which is given by the Tracy-Widom F2 distribution via a classical result of Johans-
son [Joh00] (which is a single-point version of (4.5) above).

Remark 4.10. Modifying (b) slightly we can get the distribution of the Airy2→1

at a different time than 0. For instance, take c = 0, ξ = 1 − 2
√
α, α0 = 1 but now

v = 1 −√
α + δ(1 −√

α)1/3α1/6T−1/3 and gT (τ) = τ 2 − 2δτ for some δ ≥ 0. Then
we get from Theorem 4.7

lim
T→∞

P

(
xf
αT (T ) ≥ (1− 2

√
α)T − Sc̃1T

1/3
)
= P

(
sup
τ∈R+

{A2(τ)− τ 2 + 2δτ} ≤ S
)

= P

(
sup
u≤δ

{A2(u)− u2} ≤ S − δ2
)
,

(4.28)
where we made the change of variable τ = δ − u and used the stationarity of the

Airy2 process, namely A2(δ − u)
(d)
= A2(u). By Theorem 1 of [QR13b] we have

P

(
sup
u≤δ

{A2(u)− u2} ≤ S − δ2
)
= P(A2→1(δ) ≤ S −max{0, δ}2)

= F2→1;δ(S −max{0, δ}2).
(4.29)
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4.4 Asymptotics

Now we are going to prove Theorem 4.4.

Proof of Theorem 4.4. Let n = αT and consider s = ξT − Sc̃1T
1/3 and t = α0T −

c̃2τT
2/3 with constants from (4.3). Then by Proposition 3.1 we have

P(xf
αT (T ) ≥ ξT − Sc̃1T

1/3)

= P
(
xαT (t) ≥ ξT − Sc̃1T

1/3 − f(T − t), ∀ t ∈ [0, T ]
)

= P
(
xαT (α0T − c̃2τT

2/3) ≥ ξT − Sc̃1T
1/3 − f((1− α0)T + c̃2τT

2/3), ∀ τ ∈ IT
)

= P

(
X̃T (τ) ≤ S +

ξT − f((1− α0)T + c̃2τT
2/3)− µ̃(τ, T )

−c̃1T 1/3
, ∀ τ ∈ IT

)
,

(4.30)
where IT = [−(1 − α0)c̃

−1
2 T 1/3, α0c̃

−1
2 T 1/3].

Under (4.7) we will have that for |τ | ≫ 1 the condition is satisfied with high
probability. Under (4.8) we then get that the contribution for τ of order 1 will give

P(X̃T (τ) ≤ S − τ 2 + gT (τ), ∀ τ = O(1)), (4.31)

which due to (4.5) will lead, in the T → ∞ limit, to

P(A2(τ) ≤ S + g(τ), ∀ τ ∈ R). (4.32)

Let ℓ0 ∈ N be a number to be chosen later (independently of T ). Since
we assumed that gT converges to g uniformly on compact sets, for any ε > 0,
supτ∈[−ℓ0κ,ℓ0κ] |gT (τ)− g(τ)| ≤ ε for all T large enough. Therefore, for any interval

[a, b] where g is continuous, as X̃T (τ) is tight in the space of continuous functions

on it, then also X̃T (τ) + τ 2 − gT (τ) is tight in the same space as well and, by
Corollary 4.1, we have

sup
τ∈[a,b]

{X̃T (τ) + τ 2 − gT (τ)} ⇒ sup
τ∈[a,b]

{A2(τ)− g(τ)}. (4.33)

In our case, for any ℓ0 > 0, the interval [−ℓ0κ, ℓ0κ] can be decomposed into the
union of intervals [a1, a2], (a2, a3], . . ., (an−1, an] such that (4.33) holds jointly for all
these intervals, since the supremum is a continuous function in its (finitely many)
arguments. From this we get

lim
T→∞

P

(
sup

τ∈[−ℓ0κ,ℓ0κ]

{X̃T (τ)+ τ 2−gT (τ)} ≤ S
)
= P

(
sup

τ∈[−ℓ0κ,ℓ0κ]

{A2(τ)−g(τ)} ≤ S
)
.

(4.34)
The reason to consider a region of size ℓ0κ and not simply κ is that later we will con-
trol the increments in pieces of size κ and apply a rescaled version of Theorem 2.8.
Notation-wise we found it simpler.

Furthermore, if g(τ) ≥ cτ 2−M1 for some constants M1 and c ∈ (1/4, 1] then by
Theorem 3.2 (see also Theorem 1.19) of [QR19]

lim
κ→∞

P

(
sup

τ∈[−ℓ0κ,ℓ0κ]

{A2(τ)− g(τ)} ≤ S
)
= P

(
sup
τ∈R

{A2(τ)− g(τ)} ≤ S
)
. (4.35)
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Thus, to prove Theorem 4.4 we need to show that

lim
κ→∞

lim
T→∞

P

(
sup

|τ |≥ℓ0κ

{X̃T (τ) + τ 2 − gT (τ)} ≤ S
)
= 1, (4.36)

which in the unscaled version reads

lim
κ→∞

lim
T→∞

P
(
xαT (t) ≥ ξT − Sc̃1T

1/3 − f(T − t), ∀ t ∈ JT

)
= 1 (4.37)

where JT = [0, T ] \ [α0T − κℓ0c̃2T
2/3, α0T + κℓ0c̃2T

2/3].
Combining Lemmas 4.11, 4.12, 4.13, 4.14, to be proven below, we get the fol-

lowing result:

lim
T→∞

P

(
sup

|τ |≥ℓ0κ

{X̃T (τ) + τ 2 − gT (τ)} ≤ S
)
≥ 1− Ce−cκ (4.38)

for some constants C, c. Taking κ → ∞ we reach (4.36).

4.4.1 Bounds for regions macroscopically away from t = α0T .

Small times easy bound. Consider first the simple case t ∈ [0, β0T ] with
β0 = min{α, α0 − ε}. This corresponds to the case where particle xαT (t) did not
really move from its initial position −αT .

Lemma 4.11. Let t ∈ [0,min{α, α0 − ε}T ]. Then, for all T large enough,

P(xαT (t) ≥ ξT − Sc̃1T
1/3 − f(T − t), ∀ 0 ≤ t ≤ β0T ) = 1. (4.39)

Proof. We need to bound from below the probability

P(xαT (t) ≥ ξT − Sc̃1T
1/3 − f(T − t), ∀ 0 ≤ t ≤ β0T )

= 1− P(xαT (t) < ξT − Sc̃1T
1/3 − f(T − t) for some 0 ≤ t ≤ β0T ).

(4.40)

Let us denote t = βT . Then, (4.7) and (4.6) give

ξT − Sc̃1T
1/3 − f(T − t) ≤ −αT −K(ε)T − Sc̃1T

1/3, (4.41)

which for all fixed ε > 0 (and thus fixed K(ε)) and S, is strictly smaller than −αT
for all T large enough. But xαT (t) ≥ −αT for all times. This implies our claim.

Small time interval when particle number αT could move. Consider now
slightly larger times, for which we can not yet use the asymptotic bounds from
Lemma A.2.

Lemma 4.12. Let us consider δ > 0 defined by f0(1−α)−f0(1−α− δ) = K(ε)/2.
Then for all T large enough,

P(xαT (t) ≥ ξT − Sc̃1T
1/3 − f(T − t), ∀αT ≤ t ≤ (α + δ)T ) = 1. (4.42)
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Proof. Since f0 is monotone, the assumption implies that for all y ∈ [0, δ],
f0(1− α)− f0(1− α− y) ≤ K(ε)/2. Then, for t = βT with β ∈ [α, α + δ], we
have

ξT − Sc̃1T
1/3 − f(T − t) ≤ −αT −K(ε)T/2− Sc̃1T

1/3, (4.43)

and by the same argument as above we get for all T large enough

P(xαT (t) ≥ ξT − Sc̃1T
1/3 − f(T − t), ∀αT ≤ t ≤ (α + δ)T ) = 1. (4.44)

Notice that this case is needed only if α0 ≥ α + δ.

Time interval βT with β ∈ [α+ δ, α0 − ε]∪ [α0 + ε, 1]. Now we consider the rest
of the time intervals which are macroscopically away from α0T .

Lemma 4.13. Denote J = [(α + δ)T, (α0 − ε)T ] ∪ [(α0 + ε)T, T ]. Then

P(xαT (t) ≥ ξT − Sc̃1T
1/3 − f(T − t), ∀ t ∈ J) ≥ 1− Ce−cmin{K(ε)T 2/3,T 1/3} (4.45)

for constants C, c > 0 and all T large enough.

Proof. We compute the complementary probability and divide the time interval
into pieces of length 1. We need to find an upper bound for

P(∃t ∈ [βT, βT + 1] | xαT (t) < ξT − Sc̃1T
1/3 − f(T − t)). (4.46)

In a time interval of order 1 the evolution of any given particle is stochastically
bounded by a Poisson process with intensity 1, due the fact that it can not move
faster than the case where the blocking interactions with other particles are removed.
Therefore, the probability of making at least k steps is bounded by P(ΞPoi ≥ k)
where ΞPoi has Poisson distribution with parameter 1. As P(ΞPoi ≥ k) ≤ 4e−k for
all k ≥ 0,

P(|xαT (βT + 1)− xαT (βT )| ≥ T 1/3) ≤ 4e−T 1/3

(4.47)

Also, |f(T − t)− f(T − βT )| = O(1) for t ∈ [βT, βT + 1]. This means that

(4.46) ≤ 4e−T 1/3

+ P(xαT (βT ) < ξT − (Sc̃1 − 1)T 1/3 − f(T − βT ))

≤ 4e−T 1/3

+ P(xαT (βT ) <
√
β(
√
β − 2

√
α)T −K(ε)T − (Sc̃1 − 1)T 1/3)

≤ 4e−T 1/3

+ P(xαT (βT ) <
√
β(
√
β − 2

√
α)T −K(ε)T/2)

(4.48)
for all T large enough, where in the first inequality we used the assumption (4.7),
while the second inequality holds for all T large enough since K(ε) > 0. Applying
the upper tail bound in Lemma A.2 with the replacements t → βT and α → α/β
we obtain

(4.48) ≤ 4e−T 1/3

+ Ce−cK(ε)T 2/3

(4.49)

for some new constants C, c (which can be chosen uniformly for β ∈ [α + δ, 1]).
Since the total number of size 1 segments in our decomposition is O(T ), the com-

plementary probability of (4.45) is bounded by T (4e−T 1/3
+Ce−cK(ε)T 2/3

). Thus, for
a new constant c the claimed result holds true.
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4.4.2 Bound in moderate deviation regimes.

Now we turn to the delicate bounding for times in an εT neighborhood of α0T . The
strategy is to divide the time interval into pieces of size κ (in the scaled variable)
and bound the process in this part by controlling the starting point as well as the
fluctuations. The latter are controlled using the comparison with stationarity from
Section 2.

Lemma 4.14. There exists an ε0 > 0 such that for all ε ∈ (0, ε0] and T large
enough,

P(xαT (t) ≥ ξT − f(T − t)− Sc̃1T
1/3, ∀t ∈ [α0T − εT, α0T − c̃2ℓ0κT

2/3])

≥ 1− Ce−cκℓ20,
(4.50)

where ℓ0 is a positive number depending only on α, α0, and κ is any number in
[1, εT 1/3]. The coefficients C, c are uniform in T . Similarly,

P(xαT (t) ≥ ξT − f(T − t)− Sc̃1T
1/3, ∀t ∈ [α0T + c̃2ℓ0κT

2/3, α0T + εT ])

≥ 1− Ce−cκℓ20.
(4.51)

Proof. Let us bound the first probability

P(xαT (t) ≥ ξT − f(T − t)− Sc̃1T
1/3, ∀t ∈ [α0T − εT, α0T − c̃2ℓ0κT

2/3]). (4.52)

The bound of

P(xαT (t) ≥ ξT − f(T − t)− Sc̃1T
1/3, ∀t ∈ [α0T + c̃2ℓ0κT

2/3, α0T + εT ]) (4.53)

follows along the same steps and therefore we skip the details for that case.
Using the parametrization t = α0T − c̃2τT

2/3, f as given in (4.8), and X̃T as
defined in (4.5), we obtain

(4.52) = P(X̃T (τ) ≤ S − τ 2 + gT (τ), ∀τ ∈ [ℓ0κ, εc̃
−1
2 T 1/3])

= 1− P

(
sup

τ∈[ℓ0κ,εc̃−1
2 T 1/3]

[X̃T (τ) + τ 2 − gT (τ)] > S
)
.

(4.54)

We decompose the time interval into pieces of width κ and get

1− (4.52) ≤
εc̃−1

2 T 1/3/κ∑

ℓ=ℓ0

P

(
sup

τ∈[κℓ,κ(ℓ+1)]

[X̃T (τ) + τ 2 − gT (τ)] > S
)
. (4.55)

Next we use the assumption (4.9) on gT , namely −gT (τ) ≤ −1
2
τ 2 + M . Then we

get

P

(
sup

τ∈[κℓ,κ(ℓ+1)]

[X̃T (τ) + τ 2 − g(τ)] > S
)

≤ P

(
sup

τ∈[κℓ,κ(ℓ+1)]

[X̃T (τ) +
1
2
τ 2] > S −M

)

≤ P

(
sup

τ∈[κℓ,κ(ℓ+1)]

X̃T (τ) > S −M − 1
2
κ

2(ℓ+ 1)2
)

≤ P

(
X̃T (κ(ℓ + 1)) > S −M − 3

4
κ

2(ℓ+ 1)2
)

+ P

(
sup

τ∈[κℓ,κ(ℓ+1)]

[X̃T (τ)− X̃T (κ(ℓ+ 1))] > 1
4
κ

2(ℓ+ 1)2
)
.

(4.56)
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To estimate P(X̃T (κ(ℓ + 1)) > S − M − 3
4
κ

2(ℓ + 1)2) we apply Lemma A.2 with
t = α0T − c̃2κℓT

2/3 and α → α̃ = αT/t. A computation gives

(1− 2
√
α̃)t = µ̃(κ(ℓ + 1), T ) + c̃1κ

2(ℓ+ 1)2T 1/3(1 +O(κℓ)). (4.57)

Therefore

P(X̃T (κ(ℓ+1)) > S−M − 3
4
κ

2(ℓ+1)2) = P(xα̃t(t) < (1−2
√
α̃)t− s̃c̃1t

1/3) (4.58)

with
s̃ = S −M − 3

4
κ

2(ℓ+ 1)2 + κ
2(ℓ+ 1)2

(
1 +O(κℓt−1/3)

)
. (4.59)

Since ℓ ≤ εc̃−1
2 T 1/3/κ, where ε > 0 can be chosen as small as desired (but indepen-

dent of T ), we take first ε small enough so that

−3
4
κ

2(ℓ+ 1)2 + κ
2(ℓ+ 1)2

(
1 +O(κℓt−1/3)

)
≥ 1

8
κ

2(ℓ+ 1)2 > 1
8
κ

2ℓ2. (4.60)

Then Lemma A.2 gives

P(X̃T (κ(ℓ+ 1)) > S −M − 3
4
κ

2(ℓ+ 1)2) ≤ Ce−cSe−cκ2ℓ2/8. (4.61)

The increments over a time span κ of X̃T (the final term of (4.56)) are controlled
using the comparison with stationary as follows. We apply Theorem 2.8 with the
following change of variables

T → α0T − c̃2κℓT
2/3,

t = T − κT 2/3 → α0T − c̃2κ(ℓ+ 1)T 2/3,

ρ0 =
√

αT/t → ρ0 =
√

αT/(α0T − c̃2κ(ℓ+ 1)T 2/3).

(4.62)

A computation gives

ρ0 =

√
α√
α0

+
1

2
c̃2(ℓ+ 1)

√
α

α
3/2
0

κT−1/3 +O(ℓ2κ2T−2/3). (4.63)

Therefore we consider stationary TASEP with densities ρ± given by

ρ± = ρ0 ± κt−1/3 =

√
α√
α0

+
(1
2
c̃2(ℓ+ 1)

√
α

α
3/2
0

κ ± κ

α
1/3
0

)
T−1/3 +O(ℓ2κ2, ℓκ)T−2/3.

(4.64)
Then, Theorem 2.8 tells us that for all t1, t2 such that α0T − c̃2κ(ℓ+1)T 2/3 ≤ t1 <
t2 ≤ α0T − c̃2κℓT

2/3, with probability at least 1− Ce−cκ,

x
ρ+
M (t2)− x

ρ+
M (t1) ≤ xN (t2)− xN (t1) ≤ x

ρ−
P (t2)− x

ρ−
P (t1). (4.65)

Recall that the rescaled processes are divided by a negative number, see (4.2) and
(4.14). Therefore we get

P

(
sup

τ∈[κℓ,κ(ℓ+1)]

[X̃T (τ)− X̃T (κ(ℓ+ 1))] > 1
4
κ

2(ℓ+ 1)2
)
≤ Ce−cκ

+ P

(
sup

τ∈[κℓ,κ(ℓ+1)]

[B̃
ρ+
T (τ)− B̃

ρ+
T (κ(ℓ + 1))] > 1

4
κ

2(ℓ+ 1)2
)
. (4.66)
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Let τ̃ = κ(ℓ+ 1)− τ ∈ [0,κ]. Then we need to bound

sup
τ̃∈[0,κ]

[B̃
ρ+
T (κ(ℓ+ 1)− τ̃)− B̃

ρ+
T (κ(ℓ+ 1))]. (4.67)

The increments of x
ρ+
M (τ) − x

ρ+
M (κ(ℓ + 1)) form a Poisson process with intensity

1 − ρ+. By Lemma A.1 we know that B̃
ρ+
T (τ) − B̃

ρ+
T (κ(ℓ + 1)) converges to a

Brownian motion with drift. A computation gives that the diffusion coefficient is
2, while the drift is given by

v =
µ̃(κ(ℓ+ 1)− τ̃ , T )− µ̃(κ(ℓ + 1), T ) + (1− ρ+)c̃2τ̃T

2/3

−c̃1T 1/3

=
c̃2

c̃1α
1/3
0

(
κ +

2(
√
α0 −

√
α)2/3κ(ℓ + 1)

α1/3

)
+O(κκℓ,κ2ℓ2)T−1/3.

(4.68)

Therefore we get

P

(
sup

τ∈[κℓ,κ(ℓ+1)]

[B̃
ρ+
T (τ)− B̃

ρ+
T (κ(ℓ+ 1))] > 1

4
κ

2(ℓ+ 1)2
)

≤ P

(
sup

τ̃∈[0,κ]
[B̃

ρ+
T (κ(ℓ+ 1)− τ̃)− B̃

ρ+
T (κ(ℓ + 1))− vτ̃ ] > 1

4
κ

2(ℓ+ 1)2 − vκ
)

= P

(
sup

τ̃∈[0,κ]

x
ρ+
N (c̃2τ̃T

2/3)− x
ρ+
N (0)− (1− ρ+)c̃2τ̃T

2/3

−c̃1T 1/3
> 1

4
κ

2(ℓ+ 1)2 − vκ
)
,

(4.69)

where in the last step we used the stationarity of B̃ρ+ , which is given in terms of
x
ρ+
N .
Now recall that ℓ . εT 1/3 for an ε > 0 which we could take arbitrarily small

(but independent of T ). Thus, by setting ε small enough and then T large enough,
we get

v ≤ 2c̃2

c̃1α
1/3
0

(
κ+

2(
√
α0 −

√
α)2/3κ(ℓ+ 1)

α1/3

)
≤ 1

8
κ(ℓ + 1)2 (4.70)

by choosing κ = κ(ℓ+ 1)2c̃1α
1/3
0 /(32c̃2) and taking ℓ ≥ ℓ0 for some ℓ0 large enough

(depending only on α, α0). Thus

(4.69) ≤ P

(
sup

τ̃∈[0,κ]

x
ρ+
N (c̃2τ̃T

2/3)− x
ρ+
N (0)− (1− ρ+)c̃2τ̃T

2/3

−c̃1T 1/3
> 1

8
κ

2(ℓ+1)2
)
. (4.71)

Set W (τ) =
x
ρ+
N (c̃2τ̃T 2/3)−x

ρ+
N (0)−(1−ρ+)c̃2τ̃T 2/3

−c̃1T 1/3 and C = 1
8
κ

2(ℓ + 1)2. Then W (τ) is a

martingale and for λ > 0, eλW (τ) a positive submartingale. Thus, for λ > 0, we
have

P

(
max
τ̃∈[0,κ]

W (τ) ≥ C
)
= P

(
max
τ̃∈[0,κ]

eλW (τ) ≥ eλC
)
≤ E

(
eλW (κ)

)

eλC
. (4.72)

As this holds for any λ > 0, we get

P

(
max
τ̃∈[0,κ]

W (τ) ≥ C
)
≤ inf

λ>0

E
(
eλW (κ)

)

eλC
. (4.73)
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The computation of E
(
eλW (κ)

)
is elementary as W (κ) comes from centering and

scaling a Poisson distribution. Optimizing over λ > 0 one finally gets a Gaussian
decay of the probability we are considering: for all T large enough,

(4.69) ≤ Ce−cℓ2κ (4.74)

for some new constants C, c > 0 (depending on α but not on T and κ). Plugging
this into (4.66) with κ chosen as just mentioned, we finally get (4.66) ≤ Ce−cκℓ2 for
some new constants C, c > 0.

With this bound, we can go back to our estimate (4.55) and obtain the following:
there exists an ε0 > 0, an ℓ0 ∈ N (depending only on α, α0) such that for all
ε ∈ (0, ε0]

P

(
sup

τ∈[ℓ0κ,εc̃−1
2 T 1/3]

(X̃T (τ) + τ 2 − gT (τ)) > S
)
≤ Ce−cκℓ20 (4.75)

uniformly for all T large enough. Similarly we get

P

(
sup

τ∈[−εc̃−1
2 T 1/3,−ℓ0κ]

(X̃T (τ) + τ 2 − gT (τ)) > S
)
≤ Ce−cκℓ20 (4.76)

uniformly for all T large enough.

5 Second class particle in a TASEP with a mov-

ing wall

In this section we consider a TASEP with one second class particle. It has the
following initial configuration: all negative positions are filled by first class particles,
position 0 is filled by a second class particle, and all positive positions are empty
(holes). In addition, we consider a moving wall which starts at position cT > 0 and
moves to the right with speed v ≥ 0 (as in Section 4.3), i.e., at time t ∈ [0, T ] it
is at position cT + vt. All particles jump with rate 1, as before. We denote the
position of the second class particle at time t by f(t).

Let Unif(a, b) be the uniform distribution on a segment (a, b) ⊂ R, and denote
by aδ(b) the atomic measure of weight a at the point b. The main result of this
section is the following.

Theorem 5.1. Assume that 0 ≤ v < 1, and c > 0.
(a) If v + c ≤ 1, then we have

lim
T→∞

f(T )

T

(d)
=

1

2
Unif

(
−1,−1 + 2v + 2

√
c(1− v)

)

+
(
1− v −

√
c(1− v)

)
δ
(
−1 + 2v + 2

√
c(1− v)

)
. (5.1)

(b) If v + c ≥ 1, then we have

lim
T→∞

f(T )

T

(d)
=

1

2
Unif(−1, 1). (5.2)
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Remark 5.2. The second case of Theorem 5.1 corresponds to the situation in which
the evolving particles are essentially not affected by the wall; thus, the limiting
distribution is the same as in the classical result of Ferrari-Kipnis [FK95]. In the
first case, we see that the second class particle is “repelled” by the wall, which
creates an atom at the shock point in the limiting distribution. The macroscopic
shock position is easy to derive: denote by ξT the position of the shock at time
t = T . Since the speed of the wall is v and the speed of particles with density ρ
is 1 − ρ (in the law of large numbers approximation), the particle density in the
shock region is going to be 1 − v. Then ξ is determined by the requirement that
the particles that would be to the right of ξT in the system without wall, a total of
(1− ξ)2T/4 of them, now form a constant density region between ξT and (v+ c)T ,
i.e., (1− ξ)2T/4 = (1− v)(v + c− ξ)T . This gives ξ = −1 + 2v + 2

√
c(1− v).

Theorem 5.1 is proved in Section 5.2 below.

5.1 Distribution of the second class particle

In this section we relate the distribution of the second class particle in the TASEP
with a moving wall to an observable of the single-species TASEP.

Consider the TASEP with (first class) particles and holes only. Its initial config-
uration is given by x̃k(0) = −k+1, k ≥ 1 (step initial configuration). Assume that
at time t the jumps are allowed to happen only at positions ≥ (s− cT − v(T − t));
the jumps to the left of such a moving wall are suppressed. Here s is an arbitrary
integer.

Proposition 5.3. One has

P (f(T ) ≥ s) = P (there exists k ≥ 1 such that x̃k(T ) = s) (5.3)

Proof. For the proof, we will use multi-species processes introduced in Section 3.2,
with a particular choice of the function f(t) := cT + vt. We couple the process
{η̂t;f(z)} with a TASEP with one second class particle via identifying all parti-
cles with negative colors with the first class particles, the particle of color 0 with
the second class particle, and all particles with positive colors with holes. Using
Proposition 3.4 and this coupling, we obtain

P (f(T ) ≥ s) = P (ηT ;f,T (0) ≥ s) . (5.4)

Recall that in the process ηT ;f,T the wall at time t ∈ [0, T ] is at position cT+v(T−t).
In the right-hand side, we identify colors ≥ s with holes, and < s with the first
class particles, do the particle-hole involution and shift the coordinate axis by s.
This provides a coupling with the process {x̃k(t)} and completes the proof of the
proposition.
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5.2 Asymptotics

In this section we provide a proof of Theorem 5.1.

Proof of Theorem 5.1. First, let us relate the process x̃k(t) from Section 5.1 with the
standard (without a moving wall) single-species TASEP xk(t) which starts from the
same step initial configuration. Let us use the basic coupling for these two processes.
We claim that if for a fixed k ≥ 1 one has

xk(t) ≥ s− cT − v(T − t) for all t ∈ [0, T ], (5.5)

then xk(t) = x̃k(t), for all t. Indeed, in this case the particle position x̃k(t) depends
only on the non-suppressed jumps, and they coincide for both processes. In the
opposite case, let

τk := sup
τ∈R≥0

{xk(t) ≥ s− cT − v(T − t) for all t ∈ [0, τ ]} . (5.6)

In words, τk is the moment when the particle xk(t) is “caught” by the wall moving
from the left, and we have

x̃k(t) = s− cT − v(T − τk) for all t ∈ [τk, T ], (5.7)

since the particle x̃k(t) does not move after that moment. Note that all particles
are split in two groups: There exists a (random) integer L such that the particles
x̃1, x̃2, . . . , x̃L are not ”caught” by the wall and thus coincide with x1, x2, . . . , xL at
all moments of time, while all particles with larger than L labels satisfy (5.7).

Our goal is to analyse the limit behavior of the right-hand side of equation
(5.3). Note that the particles in the process {x̃k} which satisfy (5.7) cannot occupy
position s since the wall is always to the left of s during the time interval [0, T ].
Thus, we have x̃k(T ) = s if and only if

xk(T ) = s, and xk(t) ≥ s− cT − v(T − t) for all t ∈ [0, T ]. (5.8)

By the hydrodynamical (law of large numbers) limit for the TASEP with step initial
condition (first obtained in [Ros81]), we have

lim
T→∞

P (there exists k ≥ 1 such that xk(T ) = ⌊ŝT ⌋) = 1− ŝ

2
, ŝ ∈ [−1, 1].

(5.9)
Set

a :=

(
1− ŝ

2

)2

. (5.10)

Note that by (4.1) one has x⌊aT ⌋(T ) ≈ ŝT (here and below we use ≈ for denoting
the asymptotic equivalence in the T → ∞ limit). Furthermore, by (4.1) one has

x⌊aT ⌋(α0T ) ≈
√
α0 (

√
α0 − 1 + ŝ)T, for α0 ∈ [a, 1]. (5.11)

In words, with non-negligible probability the position ⌊ŝT ⌋ can be occupied only
by a particle with a number that asymptotically behaves as aT . The asymptotic
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behavior of (5.3) depends on whether the particles with such numbers were caught
by the moving wall or not.

Let us consider two cases.

Case 1: Assume that −1 < ŝ < −1+2v+2
√
c(1− v) < 1. By straightforward

calculus, one has

α0 − (1− ŝ)
√
α0 > ŝ− c− v(1− α0) for all α0 ∈ [a, 1]. (5.12)

This implies that for such values of parameters there exist ε, δ > 0 such that

P
(
x⌊(a+ε)T ⌋(α0T ) > (ŝT − cT − v(T − α0T )) + δT for all α0 ∈ [0, 1]

)
= 1− o(1).

(5.13)
Analogously to Lemma 4.13, one can extend this to a uniform in time estimate

P
(
x⌊(a+ε)T ⌋(t) > (ŝT − cT − v(T − t)) + δT for all t ∈ [0, T ]

)
= 1− o(1). (5.14)

Therefore, the particle x⌊(a+ε)T ⌋ is not caught by the moving wall with probability
close to 1, which implies that all particles with numbers ≈ aT will not be caught
by the moving wall with probability close to 1. Thus, the limit of the probability
in the right-hand side of (5.3) is given by (5.9). We obtain that for −1 < ŝ <
−1 + 2v + 2

√
c(1− v) < 1, one has

lim
T→∞

P

(
f(T )

T
≥ ŝ

)
=

1− ŝ

2
. (5.15)

Case 2: Assume that 1 > ŝ > −1 + 2v + 2
√
c(1− v) > −1. Then there exists

α0 ∈ [a, 1) such that

α0 − (1− ŝ)
√
α0 < ŝ− c− v(1− α0). (5.16)

By the law of large numbers, this implies that for a sufficiently small ε > 0 the
particle x(a−ε)T will be caught by the moving wall with probability close to 1, which
implies that all particles with numbers ≈ aT will be caught by the wall with over-
whelming probability. Therefore, one has

lim
T→∞

P

(
f(T )

T
≥ ŝ

)
= 0, (5.17)

in this case.
This concludes the proof of Theorem 5.1.
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A Known results and estimates

Let us start with a well-known result on the convergence of Poisson processes to
the Brownian motion.

Lemma A.1. Let Z(t) be the number of particles in [0, t] of a Poisson process with
intensity λ. Then

lim
t→∞

Z(τt)− λτt√
t

= B(λτ), (A.1)

in the sense of weak convergence in the sup-norm on finite intervals, where B is a
standard Brownian motion.

To localize the starting points of the backwards paths we use estimates for the
one-point distribution of tagged particles for step and stationary initial conditions.

Lemma A.2. For any α ∈ (0, 1),

lim
T→∞

P(xαt(t) ≥ (1− 2
√
α)t− sc1(α)t

1/3) = FGUE(s), (A.2)

with c1(α) =
(1−√

α)2/3

α1/6 . There exists constants C, c > 0 such that, uniformly for all
t large enough,

P(xαt(t) ≤ (1− 2
√
α)t− sc1(α)t

1/3) ≤ Ce−cs, s > 0, (A.3)

and

P(xαt(t) ≥ (1− 2
√
α)t− sc1(α)t

1/3) ≤ Ce−c|s|3/2, −o(t2/3) . s < 0. (A.4)

The constants C, c can be chosen uniformly for α in a closed subset of (0, 1).

Similar statements have been derived in the framework of the (directed) last
passage percolation in a quadrant with exponential weights. If we denote by Lm,n

the last passage time from the origin to the point (m,n), then to translate the
results to the TASEP particle positions we use the relation

P(xn(t) ≥ m− n) = P(Lm,n ≤ t). (A.5)

(A.2) was proven in Theorem 1.6 of [Joh00]. Since the distribution function (A.5)
is given by a Fredholm determinant, the upper tail (A.3) is easily obtained from
the exponential tail of the kernel either in the TASEP representation, or in the
LPP representation. For a statement for the upper tail in LPP one can go back
for instance to the work on Laguerre ensembles [BBP06]; for explicit statements
on the tails see e.g. Section 4.1 of [FN15], Lemma 1 of [BFP14]. The lower tail in
LPP was proven in [BFP14] (Proposition 3 in combination with (56)). Applying
(A.5) with n = αt and m = (1 − √

α)2t − sc̃1(α)t
1/3 we get the result. The

condition −s = o(t2/3) is to ensure that η = n/m stays bounded away from 0 and
∞. Presumably, using the approach of [BFP14] directly with the kernel of TASEP
particles, this restriction would not appear. However since the bound is sufficient
for our purpose, we do not investigate this further.
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Lemma A.3. Consider the stationary TASEP with density ρ, with right-to-left
labeling xn+1(t) < xn(t) such that at time t = 0, x1(0) < 0 ≤ x0(0). Let N =
ρ2t− 2wρχ1/3t2/3, with χ = ρ(1 − ρ). Then

lim
t→∞

P
(
xρ
N (t) ≥ (1− 2ρ) + 2wχ1/3t2/3 − (1− ρ)χ−1st1/3

)
= FBR,w(s), (A.6)

where FBR,w is the Baik-Rains distribution function with parameter w. Furthermore,
there exists constants C, c > 0 such that

P(xρ
N (t) ≤ (1− 2ρ) + 2wχ1/3t2/3 − (1− ρ)χ−1st1/3) ≤ Ce−cs, s > 0, (A.7)

and

P(xρ
N(t) ≥ (1− 2ρ) + 2wχ1/3t2/3 − (1− ρ)χ−1st1/3) ≤ Ce−c|s|3/2, −o(t2/3) . s < 0

(A.8)
uniformly for all t large enough. The constants C, c can be chosen uniformly for ρ
in a closed subset of (0, 1).

Again the results have been proven already in the last passage percolation frame-
work and mapped back to TASEP. (A.6) was proven in Theorem 1.6 of [BFP10].
(A.8) follows from (A.4), because if we couple the step and stationary initial con-
dition through the basic coupling, then xN (t) ≥ xρ

N (t). Thus

P(xρ
N(t) ≥ x) ≤ P(xN (t) ≥ x). (A.9)

With the choice x = (1−2ρ)+2wχ1/3t2/3−(1−ρ)χ−1st1/3 andN = ρ2t−2wρχ1/3t2/3,
this corresponds to taking in Lemma A.2, α = ρ2 − 2wρχ1/3t−1/3 and s → w2 +
s/χ2/3. The shift of w2 and the scaling χ2/3 just lead to different constants.

Finally, to get (A.7) one can do the following: consider xρ,right starting with
density 1 on Z− and density ρ (Bernoulli) on N and xρ,left starting with density
ρ on Z− and empty on N. Then xρ

n(t) = min{xρ,left
n (t), xρ,right

n (t)}, cf. (2.6), so
that P(xρ

n(t) ≤ x) ≤ P(xρ,left
n (t) ≤ x) + P(xρ,right

n (t) ≤ x). These last two distribu-
tion functions can be written as Fredholm determinants, and the analysis of the
kernels would give the desired result. For those initial conditions, the bounds for
the last passage percolation model have been already proven by using the estimates
of the kernels provided in [BBP06], see Lemma 3.3 of [FO18].
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[Sep98] T. Seppäläinen. Coupling the totally asymmetric simple exclusion process
with a moving interface. Markov Proc. Rel. Fields, 4 no.4:593–628, 1998.

[Spi70] F. Spitzer. Interaction of Markov processes. Adv. Math., 5:246–290, 1970.

39


