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Matrix Approximation with Side Information:
When Column Sampling is Enough

Jeongmin Chae†, Praneeth Narayanamurthy†, Selin Bac∗, Shaama Mallikarjun Sharada∗ and Urbashi Mitra†

Abstract—A novel matrix approximation problem is considered
herein: observations based on a few fully sampled columns and
quasi-polynomial structural side information are exploited. The
framework is motivated by quantum chemistry problems wherein
full matrix computation is expensive, and partial computations
only lead to column information. The proposed algorithm suc-
cessfully estimates the column and row space of a true matrix
given a priori structural knowledge of the true matrix. A
theoretical spectral error bound is provided, which captures the
possible inaccuracies of the side information. The error bound
proves it scales in its signal-to-noise (SNR) ratio as SNR−1. The
proposed algorithm is validated via simulations which enable the
characterization of the amount of information provided by the
quasi-polynomial side information.

I. INTRODUCTION

Classical matrix completion imputes missing entries of a
matrix by exploiting structural information such as a low-
rank structure. Initial work presumed uniform random sam-
pling [2], [3]. Herein, we examine two key advances: non-
uniform sampling and additional structural side information.
We note that additional structural information such as a
particular basis has been previously considered [4]–[10] for
matrix completion with noisy or noise-free samples, but still
assumes sampling uniformly at random. Recent work suggests
that matrix completion methods are needed for applications
wherein non-uniform sampling is required such as computer
vision, bioinformatics and economics [11]–[13]. In particular,
our motivating application of rate reaction computation in
quantum chemistry [14]–[16], only allows for sampling of
full columns of the true matrix as seen in Figure 1. While
the full matrix can be computed at the expense of extremely
high computational complexity, we use matrix completion as
a technique to strongly reduce the computational complexity.

Recent efforts have considered forms of non-uniform sam-
pling [13], [17]–[19], but still fall short of being applicable
to our scenario of full-column samples only. In our proposed
approach, we shall consider low-rank approximations of ma-
trices that are, in fact, high rank. In [13], rank and coherence
measures are examined and proposed approaches assume that
the observed entries are concentrated around the main diagonal
of the true matrix. Unfortunately, neither [17], nor [13] allow
for full column sampling.
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Fig. 1. An example of random sampling and column-based sampling for a
matrix M ∈R6×10

. The black entries indicate observed samples.

Our goal in this work is to construct a low rank-r approx-
imation, M̂, of the true matrix M which has rank k where
r ≤ k, given only a few sampled columns of M. We shall
further assume an approximate structure that is captured in
the following way: M = QS + E. The (known) matrix S
captures the approximate side information, Q is an unknown
coefficient matrix and E is also unknown and captures the fact
that the side information S is only approximate.

Given the special nature of our problem formulation, it is
challenging to find appropriate comparison algorithms. To this
end, we consider CUR decompositions for matrix approxi-
mation, wherein the original formulations [20], [21] assumed
access to both full columns and full rows of the true matrix.
We note that CUR+ [19] considers the missing value case and
computes an error bound with sample complexity O(nr ln r),
but still employs fully sampled rows and columns as well as
additional random samples of the original matrix. A challenge
with the CUR family of methods is that they assume access to
the true matrix M. We underscore that CUR+ does not match
our problem formulation. A perturbed version of CUR (PCUR)
[22] assumes access to a noisy version of M and applies CUR
principles for low rank matrix approximation. However, the
assumptions of [22] are also mismatched with ours as we do
not have access to a full noisy version of the true matrix in our
formulation. Additionally, the derivation of sample-complexity
bounds for PCUR within our framework is not straightforward.
Nonetheless, we will adapt CUR+ and PCUR in order to study
the performance of our proposed algorithm. Furthermore, our
sampling complexity analysis adopts some techniques of [19].

We also note that while there are other lines of work that
are tangentially related to the problem considered herein, none
of them can be applied in our setting without non-trivial
modifications of the algorithm (and analysis). For example,
[23], [24] consider the column sampling mechanism when
the true matrix is given, but do not consider matrix comple-
tion. Another line of work that studies matrix approximation
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strategies is sketching [25], [26], where dense and global
measurements of the matrix are available, but only projections
are employed for the approximation. Finally, [7]–[9] assume
uniform random sampling for completion and perfect or im-
perfect side information.

The key contributions of this work are as follows.
1) We provide a novel problem formulation for low-rank

matrix approximation method based on randomly, but
fully sampled columns coupled with side information
that is captured via a quasi-polynomial structure. An
algorithm for this problem is proposed - the Quasi-
Polynomial Matrix Approximation (QPMA) algorithm

2) A theoretical spectral bound on the reconstruction error
achieved by QPMA is derived. This bound is shown
to be only slightly worse, with respect to order of key
parameters, to that achievable by prior matrix approxi-
mation strategies with significantly weaker assumptions.
In particular, Theorem 1, shows that the matrix can be
recovered when row space information is provided that
is close to that of the true matrix.

3) QPMA is compared to CUR+ and PCUR on synthetic
data and shown to offer strong performance; further-
more, QPMA is validated on data from the original
quantum chemistry application.

While our strategy is motivated by a specific application, we
believe our algorithm and analysis have greater applicability to
problems wherein side information can be succinctly captured
by row space information and there are sampling constraints
such as undersampled radial magnetic resonance imaging
where low-rank matrix completion has been successfully ap-
plied [27], [28]. Furthermore, arbitrary side information can
be captured by the matrix S. Characterizing the applicability
of our methods to more general problems is an avenue for
future work. In our prior work [16], an algorithm for column
sampling coupled with quasi-polynomial side information was
proposed and numerically shown to offer good performance. A
challenge with the proposed algorithm in [16] was controlling
the rank of the approximated matrix. With the modified
approach herein, we can carefully control for rank while
providing theoretical guarantees that are based on algorithm
and system parameters.

This paper is organized as follows. Section II introduces
the quantum chemistry application that motivates this work
and provides the background of the system model. After
that, the formal problem setting and the proposed algorithm
are provided in Section III. The main result of this paper
derives a spectral reconstruction error coupled with the key
parameters such as target rank, the true rank and a given
polynomial degree. This result is presented in Section IV with
the discussions on time complexity and comparison with prior
art. The key simulation results to evaluate the main theorem,
as well as comparisons with prior art are provided in Section
V. The remainder of the paper is the proof of the theorem and
key lemmas.

The following notation is adopted herein. We define [m]
.
=

{1, . . . ,m}. Bold upper case letters M denote matrices. For
a given set C, |C| denotes the cardinality of the set. We use
∥ · ∥ to denote the spectral norm unless otherwise specified.

We use SVD
= , r−SVD

= to denote the singular value decomposition
(SVD) and the reduced (rank-r) SVD of a matrix, respectively.
σr(M) refers to the r-th largest singular value of a matrix M.
M† denotes the pseudo-inverse of M. Finally, throughout this
paper, with a slight abuse of terminology, we use the terms
column and row space of a matrix, M to mean the best r-
dimensional approximation for the respective spaces. We use
the order notation O(·) to show the asymptotic dependence
with respect to data dimensions.

II. MOTIVATING APPLICATION

We provide the motivation for this work and its applications.
In the study of chemical reactions using quantum chemistry
methods, Variational Transition State Theory (VTST) is a
technique for calculating reaction rate coefficients that describe
kinetics [29]. VTST suffers from high computational cost as
it requires the calculation of expensive quantum mechanical
Hessians of energy at several points constituting the minimum
energy path (MEP) of a reaction. Prior efforts towards reducing
computational effort include interpolated VTST (I-VTST),
which fits splines under tension to energies, gradients, and
Hessians calculated at arbitrary points on the MEP [30].
In our prior work [14], [15], we showed that randomized
sampling coupled with an algebraic variety constraint [31]
could accurately complete an incomplete matrix of Hessian
eigenvalues constituting the MEP when only a small, randomly
sampled set of elements are available. In particular, the alge-
braic variety constraint is well-matched to this problem as,
within the reaction path Hamiltonian (RPH) framework [32],
the harmonic potential energy terms V (s,q) are formulated
into a polynomial expression of the eigenvalues {w2

k} of
Hessian matrix and displacements along vibrational normal
modes {q2k} as

V (s,q) = V0(s) +
n∑

k=1

w2
kq

2
k, (1)

where n = 3na−7 indicates the number of vibrational modes
that are orthogonal to the reaction coordinate, na is the number
of atoms and V0(s) is the potential energy at a point s on the
MEP.

While our algorithm proposed in [14] was computationally
efficient and provided a proof-of-concept, it assumed random-
ized sampling, whereas, pragmatically one can compute one
Hessian at a time, which corresponds to one column of the
true matrix.

The true matrix M of Hessian eigenvalues constituting the
MEP is constructed by the potential energy term of the reaction
path Hamiltonian [32], [33]. The true matrix M is given by

M ∈ Rn×m
=


ω2
1(s1) ω2

1(s2) . . . ω2
1(sm)

ω2
2(s1) ω2

2(s2) . . . ω2
2(sm)

...
ω2
n(s1) ω2

n(s2) . . . ω2
n(sm)

 .

{ωi}, i ∈ [n], constitutes the set of vibrational frequencies of
the system obtained upon projecting out the reaction coordi-
nate, translations, and rotations from the Hessian. Each column
Mj , j ∈ [m], is comprised of n eigenvalues {w2

i }, i ∈ [n],
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of the projected quantum mechanical Hessian matrix. The
reaction coordinate is parameterized by si, where i ∈ [m],
defined to be zero at the transition state, negative in the
reactant region (with reactant represented by s1), and positive
in the product region (with product represented by sm). The
goal is to approximate M given a few full columns in a way
that VTST rate coefficients can be estimated with reasonable
accuracy.

III. PROBLEM FORMULATION AND ALGORITHM

We next present the concrete problem formulation, the
proposed optimization strategy, and finally our main guarantee.

A. Problem setting

Let M ∈ Rn×m be the true matrix of rank k. In this paper,
we consider the problem of obtaining a rank-r approximation
of M from d randomly sampled columns. In particular, we
consider the following regime

r︸︷︷︸
target rank

≤ d︸︷︷︸
# of sampled columns

≤ k︸︷︷︸
true rank

In contrast to traditional Matrix Completion, we seek a
lower rank approximation of the matrix (w.r.t. the true rank).
This allows us to obtain our main guarantees even when the
number of columns sampled is smaller than the actual rank.

To describe the chemical rate reaction processes, as men-
tioned in Section II, given a list of reaction coordinate values,
s = [s1, . . . , sm] and polynomial order l we model M as

M = QS+E (2)

where, Q ∈ Rn×l is an unknown polynomial coefficient
matrix, the structural side information matrix, S ∈ Rl×m

encodes the known polynomial information (described next)
and E is the perturbation/noise matrix.

Per Section II, the eigenvalues of the Hessian matrix M is
quasi-polynomial, we assume that the side information S has
the following structure

S =


1 1 . . . 1
s1 s2 . . . sm
s21 s22 . . . s2m
...

...
...

...
sl−1
1 sl−1

2 . . . sl−1
m

 . (3)

As mentioned previously, we observe a subset of the
columns of M. This column sampling operation Ψ is defined
as follows. Let C = {c1, . . . , cd} ⊂ [m] denote the set of sam-
pled column indices. Clearly |C| = d. Then, Ψ ∈ {0, 1}m×d

is

Ψ
.
= IC ,

where I is the identity matrix of dimension m and the notation
IC means that we consider the sub-matrix of I formed by its

columns indexed by entries in the set C 1. Thus, the observed
matrix, A, can be equivalently expressed as

A = MΨ.

Table I summarizes the parameters for the introduced matrices.

TABLE I
DESCRIPTION OF VARIOUS MATRIX RANKS

Matrix Rank Relationship
M k

r ≤ l, d ≤ k
QS l

A = MΨ ≤ d

Before setting up the optimization problem, we define the
following quantities. We denote the SVD of the true matrix,
M as

M
SVD
= UΣVT = UMΣMVT

M︸ ︷︷ ︸
rank-r-approximation

+UM,⊥ΣM,⊥V
T
M,⊥︸ ︷︷ ︸

remainder

(4)

Notice that when the target rank r is smaller than the true
rank k, the second term above is non-zero. Similarly, we define
the SVD of QS as

QS
SVD
= ŨΣ̃ṼT = UQSΣQSV

T
QS︸ ︷︷ ︸

rank-r-approximation

+UQS,⊥ΣQS,⊥V
T
QS,⊥︸ ︷︷ ︸

remainder

(5)

B. Quasi-Polynomial Matrix Approximation Algorithm
We next introduce the proposed optimization strategy, Quasi

Polynomial Matrix Approximation (QPMA). Note that if the
column and row space information of M, i.e., UM and
VM respectively, were known, a natural way to cast the
optimization that takes into account the structural information
including the desired rank r approximation of M is as

min
Z

∥∥A−UMZVT
MΨ

∥∥2
F

(6)

However, since we do not know UM and VM , we need to
estimate them using the prior structural information of M.
To this end, the proposed QPMA algorithm is comprised
of three stages: (i) estimating the column space of M; (ii)
followed by estimating the unknown polynomial coefficient
matrix, Q, and subsequently estimating the row space of
M by leveraging the quasi polynomial structure; and (iii)
the final matrix approximation step constrained to the row
and column space approximations obtained previously. The
complete algorithm is summarized in Algorithm 1 (QPMA).

We first estimate the column space of M using A = MΨ.
We argue that as long as enough independent columns are sam-
pled (this is shown in Lemma 1), the following optimization
gives us a good estimate

UA = argmin
Ũ∈Rn×r

,ŨTŨ=I

∥∥∥(I− ŨŨT)AAT
∥∥∥
2
.

1For example, when m = 4, C = {1, 3, 4}, i.e., d = 3,

Ψ =

1 0 0
0 0 0
0 1 0
0 0 1

 .
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From Eckart-Young-Mirsky theorem, the solution to the above
is given by the rank-r SVD of A (the matrix formed by the left
singular vectors corresponding to the top-r singular values),

A
r-SVD
= UAΣAV

T
A. (7)

Algorithm 1 Quasi-Polynomial Matrix Approximation

1: Input: A ∈ Rn×d(A matrix of sampled columns), S ∈
Rl×m(A polynomial basis matrix), Ψ (Column sampling
operator)

2: Parameters: A target rank r, Degree of polynomial l, Step
size η, Max iteration T

3: Initialization: generate each entry of Q̂1 independently
from N (0, 1)

4: Column space estimation
5: Do rank-r SVD of A as A

r−SVD
= UAΛAV

T
A

6: Row space estimation
7: For t ∈ [T ], do

Q̂t+1 = Q̂t − η
(
A− Q̂tSΨ

)
(SΨ)

T

8: With Q̂ ≡ Q̂T+1, compute Q̂S
r−SVD
= ÛQSΛ̂QSV̂

T
QS

9: Matrix approximation
10: Using UA and V̂QS , for t ∈ [T ], do

Ẑt+1 = Ẑt − ηUT
A

(
A−UAẐtV̂

T
QSΨ

)(
V̂T

QSΨ
)T

11: Obtain Ẑ = ẐT+1

12: Complete M̂ = UAẐV̂
T
QS

13: Output: M̂ = UAẐV̂
T
QS .

We next estimate the unknown polynomial coefficient ma-
trix, Q as follows

Q̂ = argmin
Q̃

∥∥∥A− Q̃SΨ
∥∥∥2
F
. (8)

This is a standard regression problem that admits a closed
form solution, but it is computationally expensive to compute a
pseudo-inverses. Thus, we instead consider a gradient descent
approach [34]. Concretely, we define g(Q) = ∥A−QSΨ∥2F .
The gradient of g(Q) with respect to Q is given by

▽Qg(Q) = 2 (A−QSΨ) (SΨ)
T
.

We then repeat the following update rule at each iteration t =
[T ] until convergence:

Q̂t+1 = Q̂t − η
(
A− Q̂tSΨ

)
(SΨ)

T
, (9)

where η is an appropriately chosen step size. Now if Q̂ ≡ Q̂T

is a good approximation of Q (this is shown in Lemma 2),
we can obtain the row space information of M through the
following minimization

V̂QS = argmin
Ṽ∈Rm×r

,ṼTṼ=I

∥∥∥(I− ṼṼT)(Q̂S)T(Q̂S)
∥∥∥
2

(10)

Again, the solution to the above is readily obtained through a
rank-r SVD of Q̂S.

Finally, we exploit the row and column space estimates to
obtain the low-rank approximation as follows

Ẑ = argmin
Z̃

∥∥∥A−UAZ̃V̂
T
QSΨ

∥∥∥2
F
. (11)

We observe that (11) is also a regression problem that we solve
through an gradient descent method. Define

f(Z) =
∥∥∥A−UAZV̂

T
QSΨ

∥∥∥2
F
. (12)

The gradient of f(Z) is given by

▽Zf(Z) = 2UT
A

(
A−UAZV̂

T
QSΨ

)(
V̂T

QSΨ
)T

,

This finally yields the reconstructed matrix

M̂ = UAẐV̂
T
QS , (13)

This concludes the algorithm.

IV. MAIN RESULT AND PROOF SKETCH

In this section, we provide our main result and the proof
sketch. We require the following definitions before presenting
the main result. We consider the following standard definition
of matrix incoherence [2].

Definition 1 (Incoherence). Let X be a n×m matrix of rank
r and X

r-SVD
= UΣVT. Let ui be the i-th row of U and vj

be the j-th row of V. Then, the incoherence of X is given by

µ(X) = max

(
max
i∈[n]

n

r
∥ui∥22, max

j∈[m]

m

r
∥vj∥22

)
.

Incoherence is a necessary assumption to ensure the “en-
ergy” is spread out uniformly to complete a matrix from a
few randomly chosen entries. We note that despite the fact
that our work deals with the setting wherein a few randomly
chosen columns are observed (as opposed to a few randomly
chosen entries that standard MC studies), the inclusion of the
quasi-polynomial side information allows us to work with the
standard incoherence definition. In our analysis, we use the
shorthand notation, µ .

= µ(M) and µ̂
.
= µ(M̂) 2.

Next, we review strong convexity of a function [34, sec 3].

Definition 2 (Strong Convexity). A differentiable3 function
f : Rn → R is strongly convex with parameter α > 0 if the
following holds for all x,x′ ∈ Rn,

f(x) ≥ f(x′) + ▽f(x′)(x− x′) +
α

2
∥x− x′∥22.

We use Definition 2 to derive convergence guarantees for
the row space estimation, and the matrix approximation steps
of QPMA.

2In our current result, we assume that the output of QPMA (Algorithm 1)
is incoherent. We will consider eliminating this assumption as part of future
work.

3If f is non-differentiable, then the gradient of f is replaced by its sub-
gradient.
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A. Main Result

We need the following assumption before presenting our
main result.

Assumption 1. Let δ1 := σr(M−E)− σr+1(M) > 0.

Assumption 2. Let δ2 := |σr(QS)− σr+1(Q̂S)| > 0.

Observe that δ1 captures the effective eigengap of M. In
contrast, δ2 captures the effective eigengap of estimated side
information QS. We provide a numerical validation of the fact

Fig. 2. Comparison of |σr(QS)−σr+1(Q̂S)| for different values of k. The
histogram is plotted over 300 independent realizations of the data. Further
details are provided in the appendix.

that typically δ2 > 0 in Fig.2. We also provide more numerical
experiments for the same in the Appendix. We now present
our main result.

Theorem 1. Consider measurements that satisfy Assump-
tion 1. Assume that d columns are sampled uniformly at
random from the underlying ground truth, M. Then, if
d ≥ max

{
c1µr ln r, c2µ̂

2r2 ln r
}

, with probability at least
1− c3r

−10 we have

∥M− M̂∥
2

2

∥M∥22
≤ 4

σ2
r+1(M)

σ2
1(M)

(
1 +

4m

d

)(
3 +

n

d

)
+ 64∥E∥2F

(
1 +

4m

d

)(
1

δ21
+

1

δ2s

)
(14)

where δs := δ2
∥(SΨ)†S∥F

and c1, c2, c3 > 0 are numerical
constants.

Proof. Theorem 1 is proved in the Appendix. The proof fol-
lows from applying large-deviation style results from random
matrix theory [35] to ensure that the loss-function in (12) is
well-behaved as long as we sample a sufficient number of
columns, followed by a careful application of Wedin’s theorem
[36]. ⊠

If E = 0, we have the following Corollary.

Corollary 1 (Perfect Side-Information). Under the conditions
of Theorem 1, if E = 0, then with probability at least 1 −
Cr−10, where C > 0,∥∥∥M− M̂

∥∥∥2
2
≲

80mn

d2
σ2
r+1(M) = O

(mn

d2
∥M−Mr∥22

)
(15)

where Mr is the best rank-r approximation of M.

B. Discussion

Interpreting the Signal-to-Noise Ratio. Recall from As-
sumption 1 that δ1 captures the effective eigengap of M and
thus a natural interpretation of the term δ21

∥E∥2
F

is the “signal-to-
noise ratio”(SNR). Furthermore, we observe from Theorem 1
that δs := δ2

∥(SΨ)†S∥F
essentially measures how informative the

side information, S is. More precisely, first consider δs: Notice
that the larger the numerator term, i.e., the effective singular
value gap, |σr(QS) − σr+1(Q̂S)|, the more informative, the
side-information is. The denominator term, ∥(SΨ)†S∥, on
the other hand, measures how much of the side information
is effectively captured after the column-sampling process.
Observe that if Ψ = I, then ∥(SΨ)†S∥F = ∥(S)†S∥F =

√
l,

and as expected, this value reduces as the number of sampled
columns, d, reduces. Finally, we emphasize that from the
perspective of the motivating application, we can control S
and thus, it is possible to ensure that ∥(SΨ)†S∥F = O(1).
Finally, consider δ2: without further assumptions on the data
it is not possible to obtain a bound, in general; however, it is
reasonable to assume that δ2 = O(1) ( with respect to n, r).
We provide a numerical validation for this point in Fig. 2 and
a more exhaustive evaluation in the Appendix. Additionally,
through our simulations we ascertained that this (theoretical)
dependence on δ2 is weak, i.e., the final error does not decay
quadratically with δ2.

Finally, with a slight misuse of terminology, we use

SNR :=
1

∥E∥F

(
1

δ21
+

1

δ2s

)−1/2

as a measure of the effective signal-to-noise ratio in the
sequel.

In Theorem 1, we focus on the two sources of error: (i) the
unrecoverable energy that arises due to fact that the original
matrix is high-rank; and (ii) the imperfect side-information.
The first term in (14) represents the unrecoverable energy,
as we seek a low-rank approximation of a high-rank matrix.
Even if we had perfect side information, i.e., E = 0 there
will be an error incurred due to the low-rank approximation.
We also observe that QPMA suffers a multiplicative factor
of O(m/d) coupled with the best rank-r approximation error,
∥M − Mr∥2 = σr+1(M). This is owing to the fact that we
solve a harder problem than classical rank-r approximation
and this multiplicative factor is standard in the high-rank
matrix approximation literature [21], [25], [37], [38]. The
second term in (14) occurs due to the imperfect nature of the
side information, i.e., since E ̸= 0. We emphasize that since
our main result does not assume any statistical or generative
models on the noise, it is highly non-trivial to make further
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deductions. Thus, we consider specific noise models, and the
side-information matrices in future work.
Comparison with CUR+ [19]. We assume for the rest of
the paper that the incoherences, are constant4, i.e., µ, µ̂ =
O(1). With this, it is easy to see from Theorem 1 that
d = O(r2 ln r). Observe that in order to obtain a non-
trivial rank r approximation, one needs to sample at least r
columns of M even with perfect side information. Theorem
1 shows that with mismatched side-information and unstruc-
tured noise, QPMA obtains a good approximation with just
O(r2 ln r) columns. We contrast with CUR+ since its sampling
structure is the most similar to our problem setting and is
also the state-of-the-art in high-rank matrix approximation
with incomplete measurements. As opposed to QPMA, CUR+
requires a d = O(r ln r) randomly chosen rows and columns,
and an additional O(r2 ln r) randomly chosen entries. Thus,
by imposing a significantly weaker assumption: a quasi-
polynomial side information instead of observing a subset of
rows, QPMA attains a sample complexity bound that is a factor
of r worse than that of CUR+. We believe that this bound can
be improved by a more refined proof technique for Lemma
2 which we defer to future work. Finally, we note that the
weaker set of assumptions considered in this work come at
a cost: unlike the results of CUR+ which require stronger
assumptions, our Theorem 1 shows a dependence on µ̂, δ2
and δs (these are assumed to be O(1)). However, extensive
numerical experiments suggest that these dependencies are
loose. Further examination of these issues will be undertaken
in future work.
Interpreting the Error. Many prior error analyses for
high-rank matrix approximation [20], [21] have the following
common structure for the error bound:∥∥∥M− M̂

∥∥∥ ≤ (1 + ϵ1) ∥M−Mr∥+ ϵ2 ∥M∥ , (16)

where Mr is the best rank-r approximation of a matrix M
and ϵ1 > 0, and ϵ2 ∈ (0, 1) are derived constants that are
specialized to the problem. We see that we can formulate our
error bound from Theorem 1 in a similar fashion,∥∥∥M− M̂

∥∥∥ ≤ O
(m
d
∥M−Mr∥

)
+O

(√
m

d
SNR−1∥M∥

)
where, without loss of generality, we assume m ≥ n. As
previously mentioned, the scaling factor m

d (≡ 1 + ϵ1) is,
in general, unavoidable due the high-rank nature of the true
matrix in addition to sub-sampling of the columns. We also
notice that ϵ2 = C

√
m
d · 1

SNR, i.e., the noise is amplified
by the square root of the sub-sampling factor,

√
m
d as well.

We emphasize that unlike results in PCA, wherein there is a
“denoising” effect with increasing the number of observations,
matrix approximation algorithms do not possess the ability to
denoise, the observations. However, as expected, increasing the
number of observed columns reduces the approximation error
and approaches the best-case scenario of C ·SNR−1 as m → d.
Finally, we mention that in the setting where ∥E∥F = 0, and
if the matrix is “roughly square”, i.e., m = O(n), our result
improves upon CUR+ [19, Theorem 2] by a factor of

√
m.

4In this paper, we use the order notation with respect to m,n.

Time complexity of QPMA. We next derive the computa-
tional complexity of QPMA (Algorithm 1). The column space
UA is estimated through a rank-r SVD on A, and this takes
O(ndr) time [39]5. Next, the row space estimation step is per-
formed by first estimating the polynomial coefficient matrix Q
by gradient descent (GD). The run time for the corresponding
matrix multiply in each iteration is O(max(nl2d, nd2l)) =
O(nd2l) (we assume d > l without loss of generality) and
thus the overall complexity of GD is O(nd2l) given a bounded
gradient assumption and a bounded initial error6 [34, Sec 9].
Next, the rank-r SVD of Q̂S can be performed in O(nmr)
time. Finally, the per-iteration complexity for the matrix
approximation step is O(max(n2dr, nd2r)) = O(n2dr) and
since we assume that the number of iterations, T = O(1),
the overall running time for GD is O(n2dr). Thus, the overall
computational complexity of QPMA is O(max(nmr, n2dl))
that is equal (up to constant factors) to performing a rank-r
SVD on the original matrix, M.

C. Proof Sketch and key Lemmas

Here we provide the proof sketch and the main Lemmas re-
quired to prove Theorem 1. The complete proofs are provided
in the Appendix.

We first bound the error as ∥M− M̂∥
2

2 as

∥∥∥M− M̂
∥∥∥2
2
=
∥∥∥M−UAẐV̂

T
QS

∥∥∥2
2

= ∥M−PUA
MPV̂QS

+PUA
MPV̂QS

−UAẐV̂
T
QS∥22

(a)
≤ 2

∥∥∥M−PUA
MPV̂QS

∥∥∥2
2︸ ︷︷ ︸

⊙

+ 2
∥∥∥PUA

MPV̂QS
−UAẐV̂

T
QS

∥∥∥2
2︸ ︷︷ ︸

⊚

(17)

where (a) follows from the triangle inequality and the fact
that for a, b ≥ 0, (a + b)2 ≤ 2(a2 + b2). Next, recall that
PUA

= UAU
T
A and PV̂QS

= V̂QSV̂
T
QS . Notice that can

obtain high probability bounds on ⊙ and ⊚, we are done. To
that end, we first consider ⊙.

Note that ⊙ captures the energy of the true matrix, M
orthogonal to the estimated (r-dimensional) row and column
spaces. We provide a bound for this below in Lemma 1.

Lemma 1. Consider measurements that satisfy Assumption 1.
Then, if d ≥ c1µr ln r, under the conditions of Theorem 1,

5Note that we only require the top-r singular vectors, but do not require
the singular values, and hence there is no dependence on the singular value
gap

6In this paper, we assume that the number of iterations for the GD step
is O(1). We do this since without additional statistical assumptions on the
signal model, characterizing T is very complex, and beyond the scope of this
paper
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Fig. 3. The NMSE versus the number of true sampled columns, d. Here, k = {30, 50} and l = 5.

with probability at least 1− c2r
−10 we have that∥∥∥M−PUA

MPV̂QS

∥∥∥2
2

≤ 2σ2
r+1 (M)

(
3 +

n

d

)
+ 32σ2

1(M) ∥E∥2F

(
1

δ21
+

1

δ2s

)
(18)

where δs := δ2
∥(SΨ)†S∥

F

and c1, c2 > 0 are numerical
constants.

The complete proof of Lemma 1 is provided in Appendix
B. The proof follows from first invoking [40, Theorem 6] to
bound the energy of M orthogonal to UA and V̂QS , where
V̂QS is the row space of Q̂S, followed by a careful application
of Wedin’s Theorem [36] (provided in appendix as Theorem 3)
to bound the “distance” between the “true row space” VQS

defined in (5) and the estimated V̂QS obtained from (10).
These are provided as Lemmas 4 and 5 respectively.

Akin to the result of [19, Theorem 2] and as explained
previously, Lemma 1, consists of error due to the fact that
rank(M) = k ≫ r and sub-sampling of columns (both
contribute to the first term). When k = r, the first term is
zero since σr+1(M) = 0. The second term corresponds to the
error due to noise and imperfect nature of side information.

Next, ⊚ essentially captures the error in the final matrix
approximation step, estimation of Z. This is bounded using
Lemma 2 below.

Lemma 2. Consider measurements that satisfy Assumption 1.
Let the objective function in (6) be α-strongly convex with
α ≥ d/2m. Then, if d ≥ c2µ̂

2r2 ln r, under the conditions of
Theorem 1, with probability at least 1− r−c1 we have that

∥PUA
MPV̂QS

−UAẐV̂
T
QS∥22

≤ 4m

d

[
2σ2

r+1 (M)
(
3 +

n

d

)
+ 32σ2

1(M) ∥E∥2F

(
1

δ21
+

1

δ2s

)]
,

where δs := δ2
∥(SΨ)†S∥

F

and c1, c2 > 0 are numerical
constants.

The proof of Lemma 2 is provided in Appendix A-B and the
proof follows by leveraging the fact that the objective function,
f(Z), in (12) is α-strongly convex with α ≥ d/2m, the result
of Lemma 3 and some simple linear algebra tricks.

We next show that the objective function in (12), f(Z) is
indeed strongly convex with the requisite parameter setting in
Lemma 3.

Lemma 3. Under the conditions of Theorem 1, with proba-
bility at least 1 − r−c1 , the objective function, f(Z) in (12),
is α-strongly convex with α ≥ d

2m as long as

d ≥ c2µ̂
2r2 ln r.

where c1, c2 > 0 are numerical constants.

Intuitively, Lemma 3 shows that as long as the number of
columns is large enough, the objective function for gradient
descent has a quadratic lower bound on the curvature. The
proof follows a careful application of a large-deviation result
for sums of random matrices [35] followed by linear algebraic
computation.

Combining Lemmas 1, 2 and 3 completes the proof.

V. NUMERICAL RESULTS

Herein, we investigate QPMA’s performance on both syn-
thetic and real-world data. All experiments on synthetic data
are averaged over 100 independent iterations. The code can
be found at https://github.com/JeongminChae/QPMA.
Benchmark Algorithms. As noted in Section I, a challenge
in finding comparison strategies is that, matrix approximation
algorithms typically require an access to the full, true row
and columns.To this end, we consider CUR+ and PCUR as
comparison algorithms for QPMA based on two criteria; (i)
different sampling strategies and (ii) informativeness of side
information.

CUR+ samples a subset of the full columns and full rows, as
well as additional random entries. Thus, for CUR+, the matrix
approximation step (corresponding to line 9 in Algorithm 1)
is performed with the column space and row space estimated
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Fig. 4. The NMSE versus the true rank k of M with fixed d = 10, l = 5
and r = 5.

with the true columns and rows, whereas QPMA estimates
the row space through the side information. We consider
three variants of CUR+ [19] which are based on different
sampling strategies as outlined in Table II. QPMA samples
only d columns, and thus has access to nd entries in total,
and CUR-S has access to the same number of entries as
QPMA with column, row and random sampling. CUR-L uses
fewer total entries with d

2 rows and columns each, but no
randomized sampling for additional entries. Finally, CUR-H
uses an increased number of samples relative to QPMA with
d rows and columns each and also does not consider additional
randomized sampling of the entries.

TABLE II
COMPARISON OF SAMPLING SCHEMES FOR BASELINE ALGORITHMS

Algorithm # rows # columns random entries Total samples
CUR-L d/2 d/2 0 nd− d2/4
CUR-S d/2 d/2 d2/4 nd
CUR-H d d 0 2nd− d2

QPMA 0 d 0 nd

Conventional PCUR [22] computes the low-rank matrix of
M from its perturbed version M̃ = M+P, where P is an
arbitrary perturbation matrix. With this, PCUR computes the
low rank approximation of M as M ≈ C̃C̃†M̃R̃†R̃, where
C̃ and R̃ are column and row submatrices of M̃, respectively,
i.e., C̃ = M̃(:, J) and R̃ = M̃(I, :) for some index sets I , J .
Therefore, the original PCUR projects a perturbed true matrix
M̃ onto the span of the columns of C̃ and the rows of R̃.
We note that PCUR requires the complete knowledge of the
noisy matrix, M̃.

To evaluate the ability of PCUR to exploit the side in-
formation, we consider a variant of PCUR, called PCUR-p,
where p indicates how many rows of Q̂S are provided as
an input to PCUR (described in Table III). To provide a fair
comparison, all variants of PCUR-p have access to the d true
sampled columns, i.e., C̃ ≡ A. PCUR-100 uses all rows of
Q̂S ∈ R100×100, i.e., R̃ ≡ Q̂S, while PCUR-25 and PCUR-
5 randomly sample 25 and 5 rows of Q̂S, respectively. We
chose 25 rows as it leads to the best performance for PCUR

for several different values p. We emphasize again that, all
variants of PCUR have access to a perturbed, yet complete,
version of the ground truth, M̃.

TABLE III
SUMMARY OF INFORMATION PROVIDED TO QPMA AND PCUR

Algorithm Column space Full matrix Row space
PCUR-100 A M̃ Q̂S

PCUR-25 A M̃ 25 rows of Q̂S

PCUR-5 A M̃ 5 rows of Q̂S

QPMA A - V̂T
QS

A. Synthetic Data

Data generation. We generate the data as follows: The entries
of the polynomial coefficient matrix, Q ∈ Rn×l are drawn
i.i.d. from N (0, 1). We generate the reaction coordinate values,
s ∈ Rm as [1 + 0.01 ∗ [m]]T = [1.01, 1.02, · · · , 1 + 0.01m]T

and subsequently, the side information matrix S as in (3). For
all experiments, we set n = 100 and m = 100. Next, in order
to simultaneously control the “noise level” and the rank of the
true matrix, M, we generate the perturbation matrix, E as fol-
lows. Recall that QS

SVD
= ŨΣ̃ṼT. We set E = Ũ[k]R̃1Ṽ

T
[k],

where Ũ[k] ∈ Rn×k the matrix of the first k columns of
Ũ and similarly for Ṽ[k]. The entries of R̃1 ∈ Rk×k are
drawn i.i.d. from N (0, σ2

1), σ
2
1 = 0.0001. Recall that PCUR

considers a perturbed version of M, M̃ = M+P, where P is
an arbitrary perturbation matrix. We let P be generated from
the same distribution as E, that is P = Ũ[k]R̃2Ṽ

T
[k], where

R̃2 ∈ Rk×k is drawn i.i.d from N (0, σ2
2), and σ2

2 = 0.0001.
Varying d. We first investigate the performance of all
algorithms as a function of the number of samples, governed
by d. In the first experiment, we consider two values of the
true rank k = {30, 50}, two possible polynomial degrees
l = {3, 5}, and a noise standard deviation of σ = 10−4. We
note that the overall noise level is much higher since our main
result and numerical results are derived with respect to the
Frobenius norm.

We implement QPMA (Algorithm 1) with fixed step-size
η = 0.01, and the maximum number of iterations T = 1500.
We implement all variants of CUR+ with default parameters
and we set T = 1500 to provide a fair comparison with
QPMA. We plot the normalized mean square error (NMSE),
∥M− M̂∥F /∥M∥F for all algorithms in Fig. 3.

We notice from Fig. 3 that for both values of k, despite
observing much fewer samples than CUR-H, the performance
of QPMA is comparable to that of CUR-H. Moreover, QPMA
outperforms all PCUR algorithms, despite the fact that PCUR
has access to a perturbed version of the complete ground truth.
This is possibly due to the fact that unlike QPMA, PCUR does
not effectively leverage the quasi-polynomial side information.
Furthermore, in the low-sample regime, i.e., d ≤ 10, we ob-
serve that QPMA, CUR-H and all PCUR are almost two/three
orders of magnitude better than CUR-S and CUR-L, which
suggests that QPMA effectively exploits the quasi-polynomial
side information. Although PCUR outperforms QPMA in the
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Fig. 5. Characterizing the informativeness of the quasi-polynomial side information through numerical performance of CUR+ when d = 5 and r = 5
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Fig. 6. The sensitivity of QPMA to the perturbation of M when d = 10 and
d = 20. The parameters are set by r = 5, l = 5 and k = 100.

very low-sample regime, we observe that the performance of
PCUR plateaus as the number of observed columns increases
and we believe that this is due the fact that the reconstruction
error in Q̂S does not significantly improve and thus using
all rows of Q̂S is not beneficial. This again captures the
assumption that the true matrix is only quasi-polynomial and
not truly polynomial. QPMA (Algorithm 1), on the other hand,
improves its performance as it observes more true columns and
effectively optimizes for Z in (11).

Finally, we notice that as the number of columns, d, ap-
proaches the true rank, k, the performance of all algorithms do
not significantly improve. This is in agreement with Theorem
1 since in this regime, the reconstruction error is dominated
by the presence of noise, E. Since the performance of PCUR
is roughly similar to that of CUR+, we will only consider
comparisons of QPMA with CUR+ for subsequent synthetic
data experiments.
Varying k. Next, we analyze the effect of varying the true
rank, k. We generate the data exactly as done in the first
experiment with l = 5, d = 10. We set the target rank
r = 5 for all algorithms. The results are provided in Fig. 4.
Notice that when k = l, both QPMA and CUR-H are able
to obtain near-perfect estimates of the true matrix with just

d = 2r = 10 columns. As expected, the error increases with
increasing k (since the number of observed columns and the
polynomial degree is fixed), but saturates after k ≈ 3r. Again,
this observation is consistent with Theorem 1, as the error is
dominated by the noise term, i.e., terms related to SNR rather
than the approximation error ∥M−Mr∥22.
Sensitivity to Noise. We next investigate the sensitivity of
QPMA to additional noise. We generate the data as done
previously with k = 100, d = {10, 20}, and vary the
noise standard deviation, σ = {10−4, 10−3, 10−2, 10−1}. We
provide the results in Fig. 6. As expected, the performance
of both QPMA and CUR-H degrades as the noise increases.
Furthermore, observe that for d = 10, CUR-H is more robust
to noise. We believe that this is because in the regime of low
d, the unrecoverable energy term of Theorem 1 dominates,
while CUR-H has a lower effective bound due to observing
significantly more samples than QPMA. For d = 20, we notice
that QPMA is at least as robust as CUR-H and this is in
accordnace with Theorem 1 as well, as in this regime error is
dominated by the imperfect side-information (large E) terms.
Quantifying row equivalence of side-information. We next
attempt to answer the following question: how much (row
space) information is being captured by the quasi-polynomial
side information7. To this end, for both QPMA and CUR-
H, we fix the number of observed columns to d = 5
and numerically compute the number of rows required for
CUR-H to attain the same (fixed) numerical error as that of
QPMA. Additionally, we consider two cases: the polynomial
coefficient matrix, Q is dense (generated as in the previous
experiment), and Q is sparse (generated by randomly punc-
turing 30% of the entries). The rest of the data is generated
as before, with parameters l = {3, 5} and k = {30, 50}.
The results for these experiments are shown in Fig. 5. First,
consider the dense Q case: for both values of k, observe that
when l = 5, CUR-H requires roughly 8−9 rows to match the
error attained by Algorithm 1 and similarly when l = 3, CUR-
H requires 5− 6 rows to match the error of QPMA. Thus, for
dense Q, CUR-H requires ≈ 2l rows to match the numerical

7For brevity, we only compare with CUR-H since the performance of
QPMA is comparable to CUR-H across various parameter regimes.
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performance of the proposed method. For sparse Q, the effect
is more pronounced, and CUR-H requires roughly 2l−3l rows
to match the performance of QPMA. These observations also
consistent with Theorem 1. With all other parameters fixed,
making Q sparse, reducing k, and reducing l each have the
effect of increasing δ and hence decreasing the (bound on) the
error attained by QPMA.

B. Real data

We evaluate QPMA on the real Hessian eigenvalues matrix
of a chemical system provided in [16]. In particular, we
consider the CF3CH3 reaction system. For this system, the
true matrix, M ∈ R24×52, we observed that there is a good
singular value separation at r = 5 and more specifically,
σ1(M) = 4.857, σ6(M) = 5.401 × 10−3 and the matrix is
full rank, i.e., k = 24. Informed by the singular value gap,
we chose the target rank r = 5. Based on the methodology
proposed in [16], we selected l = 5 and s = [1 + 0.01 ∗ [m]].
For more detailed data description, see [16].

To simulate the setting of column-sampling only and limit
the access to true rows, in the implementation of CUR-H,
we provide d estimated rows (via QPMA) and 24 − d true
rows. For PCUR-p, we set p = 10 as this resulted in the
best performance for the CF3CH3 system. We also note that
PCUR-25 is no longer implementable due to the dimension of
the true matrix. To create a perturbed version of the true matrix
M̃, we generate an arbitrary perturbation matrix P ∈ R24×52

where each entry of P is drawn i.i.d. from N (0, σ2), with
σ = 0.07. We choose the above value of σ so as to ensure
∥P∥F

.
= ∥M− Q̂S∥F . QPMA is implemented with η = 0.01

and T = 1500. We present the results in Fig. 7. First, we
observe that QPMA outperforms PCUR-10 in almost every
regime (d ≥ 9). The NMSE of PCUR-10 increases along with
the number sampled columns d, while QPMA improves. We
believe this is due to the fact that the row-space estimate for
PCUR-10 does not improve with increasing d whereas QPMA
optimizes Z more efficiently with increasing d. Additionally,
we note that in the low-sample regime (d ≤ 13), QPMA also
outperforms CUR-H indicating that the side information is
effectively being exploited by QPMA, whereas in the large
sample regime, CUR-H tends to perform better than QPMA.
However, we emphasize that (a) sampling more columns is
often prohibitively more expensive in practice, and (b) CUR-
H cannot be implemented in reality, since in general, one does
not have access to the row information. Thus, we see that the
proposed algorithm does in fact work well for the application
that motivated the our algorithm. QPMA provides a tool by
which the computation of key quantities for VTST can be
reduced while offering good approximation performance. Our
theoretical analysis provides strategies by which to understand
VTST from a signal processing perspective.

VI. CONCLUSIONS

In this paper, we formulated a novel matrix approximation
problem wherein we observe are a few arbitrary columns of
a high-rank matrix. In order to make the problem tractable,
and inspired by problems in quantum chemistry, we imposed

8 10 12 14 16 18 20
# of sampled columns

10 1

N
M

SE

CUR-H
PCUR-10
QPMA

Fig. 7. The NMSE versus the number of sampled columns d for CF3CH3
chemical system with l = 5, r = 5 and k = 24.

a quasi-polynomial structural information. We designed and
analyzed an algorithm dubbed Quasi-Polynomial Matrix Ap-
proximation (QPMA) to solve the above problem and derived
theoretical guarantees. Our main guarantees show that the
results are only slightly worse than state-of-the-art results in
matrix approximation, albeit this work considers a significantly
harder problem. Finally, we also provided several numerical
experiments that validate our main guarantees. Specifically, we
showed that (i) in the low-sample regime, the proposed method
is roughly two to three orders of magnitude better than CUR+
[19]; (ii) the proposed algorithm outperforms PCUR [22]
by effectively exploiting the side information, although both
algorithms share the same column space and row space; (iii)
in general, the polynomial structural information with degree l
is roughly equivalent to observing 2l−3l rows of the original
matrix; and (iv) choosing the appropriate target rank is critical
due to the sensitivity of the matrix approximation strategies
to rank mismatch. Via simulation, it is shown that the error
saturates after k ≈ 3r. Finally, we show that our proposed
methods work for the motivating quantum chemistry problem.
We propose to characterize the classes of side information S
that our approach can handle in future work.
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APPENDIX

The Appendix is organized as follows. First, we prove
Theorem 1 in Appendix A, then we state and prove the
key supporting Lemmas in Appendix B. Finally, in Appendix
C we provide additional numerical experiments to address
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the concerns of the anonymous reviewers from our previous
submission.

APPENDIX A
PROOF OF THEOREM 1

Before proving Theorem 1, we first prove Lemmas 2 and 3.
Throughout the proof, we invoke the following norm property.
For a matrix A, the ∥ · ∥2 norm is given as,

∥A∥2 = max
∥x2∥=1

∥Ax∥2 = max
∥x∦=0

∥Ax∥2
∥x∥2

= σ1(A).

For a projection matrix, PUA
it is easy to see that

σ1 (PUA
) = 1.

Finally, we use Lemma 4 and Lemma 5 to prove Lemma 1
as follows.∥∥∥M−PUA

MPV̂QS

∥∥∥2
2

(a)
≤ 2 ∥M−PUA

M∥22 + 2
∥∥∥PUA

M−PUA
MPV̂QS

∥∥∥2
2

(b)

≤ 2σ2
r+1 (M)

(
3 +

n

d

)
+ 32σ2

1(M) ∥E∥2F

 1

δ21
+

∥∥∥(SΨ)
†
S
∥∥∥2
F

δ22

 (19)

The inequalities (a) is due to the fact that (a+b)2 ≤ 2(a2+b2)
for a, b ≥ 0. (b) follows from Lemma 4 and Lemma 5. This
concludes the proof of Lemma 1.
A. Proof of Lemma 3

Lemma 3 ensures the strong convexity of the objective
function f(Z) in (12) by restricting the curvature of the
column sampling operator Ψ [18], [41]. Recall that Ψ is
consisted of d number of randomly chosen columns in M.
We first provide an additional necessary theorem from [35]
which describes the large-deviation behavior of specific types
of matrix random variables.

Theorem 2. [35] Let X be a finite set of positive semi definite
matrices of dimension k. If there exists a constant B < ∞ such
that

max
X∈X

λmax(X) ≤ B,

and, if we sample {X1, . . . ,Xp} uniformly at random from X
without replacement, with

µmax := pλmax(E[X1])

µmin := pλmin(E[X1]).

Then we have that,

P

[
λmax

(
p∑

i=1

Xi

)
≥ (1 + ρ)µmax

]
≤ k · exp

−µmax

B
[(1 + ρ) ln(1 + ρ)− ρ] for ρ ∈ [0, 1)

P

[
λmin

(
p∑

i=1

Xi

)
≤ (1− ρ)µmin

]
≤ k · exp

−µmin

B
[(1− ρ) ln(1− ρ) + ρ] for ρ ∈ [0, 1)

⊠

Recall that Lemma 3 provides a bound on the value of α
in our definition of strong convexity in Definition 2. A way to
prove a function is strictly convex is to show the Hessian of a
function is strictly positive definite [34] everywhere. We can
show the Hessian matrix is positive definite by bounding the
smallest eigenvalue of the Hessian matrix as a positive value.

Observe that f(Z) can be expressed as

f(Z) =
∥∥∥A−UAZV̂

T
QSΨ

∥∥∥2
F
.

In order to show that the smallest value of the Hessian of f(Z)
is bounded away from zero, notice that f(Z) can be expressed
as

f(Z) =
∥∥∥A−

(
UAZV̂

T
QSΨ

)∥∥∥2
F

=

∥∥∥∥∥∥
∑
j∈C

mj −
(
UAZV̂

T
QS

)
j

∥∥∥∥∥∥
2

F

(a)
=
∑
j∈C

∥∥∥∥mj −
(
UAZV̂

T
QS

)
j

∥∥∥∥2
F

,

where (a) follows from the definition of the Frobenius norm;
and using mj to denote the j-th column of M. Similarly,
letting m̂j indicate the j-th column of M̂, we have,

f(Z) =
∑
j∈C

∥mj − m̂j∥2F ,

=
∑
j∈C

fj(Z), (20)

where fj(Z) = ∥mj − m̂j∥2F =

∥∥∥∥mj −
(
UAZV̂

T
QS

)
j

∥∥∥∥2
F

.

Now, taking the second-order derivative with respect to each
element zth and zpq for t, p ∈ [r] and h, q ∈ [r], we have

∂2f(Z)

∂zth∂zpq
=
∑
j∈C

∂2fj(Z)

∂zth∂zpq
.

We define

H :=
∂2f(Z)

∂zth∂zpq
and Hj :=

∂2fj(Z)

∂zth∂zpq
, (21)

therefore, by linearity of the derivative it is easy to see that

H =
∑
j∈C

Hj . (22)

Furthermore, the first-order derivative of ∂fj(Z)
∂zth

with respect
to zth for t ∈ [r] and h ∈ [r], is given by

∂fj(Z)

∂zth
= −2

∑
i∈[n]

mij −
∑
t∈[r]

∑
h∈[r]

uA,itzthv̂QS,hj


· uA,itv̂QS,hj .

And subsequently, the second-derivative of fj(Z) with respect
to zth, zpq for t, p ∈ [r] and h, q ∈ [r] can be expressed as

∂2fj(Z)

∂zth∂zpq
= 2

∑
i∈[n]

uA,itv̂QS,hjuA,ipv̂QS,qj .
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We let the second-order derivative of the (i1, j1)th and (i2, j2)
entry of Z be the (r(i1 − 1) + j1, r(i2 − 1) + j2) entry of the
Hessian matrix of fj(Z). Then, the Hessian Hj of fj(Z) is

Hj ∈ Rr2×r2
=


∂2fj(Z)
∂z11∂z11

∂2fj(Z)
∂z11∂z12

. . .
∂2fj(Z)
∂z11∂zrr

∂2fj(Z)
∂z12∂z11

∂2fj(Z)
∂z12∂z12

. . .
∂2fj(Z)
∂z12∂zrr

...
...

...
. . .

∂2fj(Z)
∂zrr∂z11

∂2fj(Z)
∂zrr∂z12

. . .
∂2fj(Z)
∂zrr∂zrr

.


Combining all these, the Hessian matrix of fj(Z) can be
succinctly expressed as,

Hj = 2
∑
i∈[n]

[
vec(uT

A,iv̂QS,j)
] [

vec(uT
A,iv̂QS,j)

]T
,

where uA,i, for i ∈ [n], is the i-th row of UA and v̂QS,j

for j ∈ [m], is the j-th row of V̂QS . We now bound the
smallest eigenvalue of H using Theorem 2. In order to invoke
Theorem 2, we consider H =

∑
j Hj for j ∈ C, where Hj ≡

Xi and since we are sampling |C| = d coordinates sampled
without replacement, as done in [35, Proof of Lemma 3.4] H
is equivalently represented as a sum of d random matrices.
Next, in order to apply Theorem 2, we derive an upper bound
on the largest eigenvalue of Hj as

max
j

λmax

∑
i∈[n]

2
[
vec(uT

A,iv̂QS,j)
] [

vec(uT
A,iv̂QS,j)

]T
(a)

≤ 2max
j

∑
i∈[n]

λmax

([
vec(uT

A,iv̂QS,j)
] [

vec(uT
A,iv̂QS,j)

]T)
(b)

≤ max
j

∑
i∈[n]

∥∥vec
(
uT
A,iv̂QS,j

)∥∥2
2

(c)

≤ 2max
j

∑
i∈[n]

∥∥uT
A,iv̂QS,j

∥∥2
F

(d)

≤ 2
∑
i∈[n]

∥uA,i∥2F max
j

∥v̂QS,j∥2F
(e)

≤ 2µ̂2r2

m
:= B,

where (a) follows from Weyl’s inequality [42], (b) follows
since the argument of λmax is the outer product of two vectors;
(c) follows from norm inequalities; (d) is from the Cauchy-
Schwarz inequality and (e) is due to the definition of the
incoherence of a matrix defined in Definition 1.

Next, we have

E[H
′

1] =
2

m

m∑
j=1

∑
i∈[n]

[
vec(uT

A,iv̂QS,j)
] [

vec(uT
A,iv̂QS,j)

]T
=

2

m

(
(UA ⊗ V̂QS)

T
×
(
UA ⊗ V̂QS

))
=

2

m
Ir2

where ⊗ denotes the Kronecker product and the equal-
ity follows from the orthogonality of the columns. Thus,
λmin(E[H1]) = 2/m. Finally, with B = 2µ̂2r2

m , µmin = 2d
m

and ρ = 1
2 , we have,

P

{
λmin(H) ≤ d

2m

}
≤ r2

6
e

−d

µ̂2r2 = e
−d

µ̂2r2
+ ln r

3 .

This expression can be algebraically manipulated, such that
with a probability 1 − r−c1 , where c1 > 0 is a constant, and
if d ≥ c2µ̂

2r2 ln r for a constant c2 > 0, we have,

λmin(H) ≥ d

2m
.

B. Proof of Lemma 2
In Lemma 2, we bound the error between our projected

true matrix and our final estimate of the reconstructed matrix
as follows. We note that M̂ = UAẐV̂

T
QS and hence Ẑ =

UT
AM̂V̂QS . Also recall that Z = UT

AMV̂QS .∥∥∥PUA
MPV̂QS

−UAẐV̂
T
QS

∥∥∥2
2

=
∥∥∥UAU

T
AMV̂QSV̂

T
QS −UAẐV̂

T
QS

∥∥∥2
2

(a)
= ∥UAZV̂QS −UAẐV̂

T
QS∥22

(b)

≤ ∥UA∥22
∥∥∥Z− Ẑ

∥∥∥2
2

∥∥∥V̂QS

∥∥∥2
2

(c)
=
∥∥∥Z− Ẑ

∥∥∥2
2
, (23)

where (a) is obtained from the definition of Z, and (b) from
matrix norm inequalities. As UA and V̂QS are unitary, their
2-norms are unity (c).

Finally,
∥∥∥Z− Ẑ

∥∥∥2
2

is bounded as follows. Recall in
Lemma 3, we established the lower bound on convergence
rate α that ensures the strong convexity of f(Z). This result,

in turn, let us establish the error bound for
∥∥∥Z− Ẑ

∥∥∥2
2
, which

provides the bound for sample complexity. We have
α

2

∥∥∥Z− Ẑ
∥∥∥2
2

(a)
≤
∥∥∥MΨ−UAZV̂

T
QSΨ

∥∥∥2
F
−
∥∥∥MΨ−UAẐV̂

T
QSΨ

∥∥∥2
F

≤
∥∥∥MΨ−UAZV̂

T
QSΨ

∥∥∥2
F

(b)
=
∥∥∥MΨ−UAU

T
AMV̂QSV̂

T
QSΨ

∥∥∥2
F

=
∥∥∥MΨ−PUA

MPV̂QS
Ψ
∥∥∥2
F

≤
∥∥∥M−PUA

MPV̂QS

∥∥∥2
F

(c)

≤ 2σ2
r+1 (M)

(
3 +

n

d

)
+ 32σ2

1(M) ∥E∥2F

 1

δ21
+

∥∥∥(SΨ)
†
S
∥∥∥2
F

δ22


(24)

where (a) is from f(Z)−f(Ẑ) ≥ α
2

∥∥∥Z− Ẑ
∥∥∥2
2

in Definition 2.
Since Gradient Descent reaches a stationary point, it follows
that ▽f(Ẑ) = 0. And (b) is from our definition of Z, Z =
UT

AMV̂QS . Finally, (c) follows from Lemma 1.

∆ ≡ 2σ2
r+1 (M)

(
3 +

n

d

)
+ 32σ2

1(M) ∥E∥2F

 1

δ21
+

∥∥∥(SΨ)
†
S
∥∥∥2
F

δ22

 (25)
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Then, we have, ∥∥∥Z− Ẑ
∥∥∥2
F
≤ 2∆

α
.

By plugging
∥∥∥Z− Ẑ

∥∥∥2
F

≤ 2∆
α into (23) and

replacing ∆ with (25), we obtain the bound of∥∥∥PUA
MPV̂QS

−UAẐV̂
T
QS

∥∥∥2
2

in Lemma 2 as

∥PUA
MPV̂QS

−UAẐV̂
T
QS∥22

≤ 4m

d

(
2σ2

r+1 (M)
(
3 +

n

d

)
+ 32σ2

1(M) ∥E∥2F

 1

δ21
+

∥∥∥(SΨ)
†
S
∥∥∥2
F

δ22


 . (26)

With α ≥ d
2m , We obtain Lemma 2 provided that

d ≥ c1µ̂
2r2(ln r),

and c1 ≥ 0.

APPENDIX B
PROOF OF AUXILIARY LEMMAS

In this section, we first provide the proof of Lemma 1
followed by the proof of Lemma 5 that is key to proving
the main result. The proof is based on a careful application of
Wedin’s Theorem [36] and some linear algebra.
Proof of Lemma 1. We use Lemma 4 and Lemma 5 to prove
Lemma 1. Lemma 4 was proved in [19].

Lemma 4. [19] With probability 1 − c1r
−10, and if d ≥

c2µr ln r, for constants c1 > 0 and c2 > 0, we have

∥M−PUA
M∥22 ≤ σ2

r+1 (M)
(
1 + 2

n

d

)
.

Lemma 5. Assume that there exists a δ1 > 0 that satisfies
Assumption 1. Then, if d ≥ cµr ln r, we have,∥∥∥PUA

M−PUA
MPV̂QS

∥∥∥2
2

≤ 2σ2
r+1(M) + 16σ2

1(M) ∥E∥2F

(
1

δ21
+

1

δ2s

)
,

where δs :=
δ2

∥(SΨ)†S∥
F

and c > 0 is a constant.

We prove Lemma 5 next.

Proof of Lemma 5. We first define some preliminaries that are
required to prove Lemma 5. We use the following definition
of Canonical angles as a distance measure between subspaces.

Definition 3 (Canonical angle between subspaces [36]). Let
X ∈ Rn×k and Y ∈ Rn×k be matrices, whose columns form
orthonormal basis for column space of each. Let γ1 ≥ · · · ≥
γk be the singular values of XTY. Then, the canonical angles
between the column subspace of X and Y are defined as

θi = cos−1 γi, i ∈ [k].

Next, we introduce Wedin’s theorem [36] that is used to
bound the distance between the subspaces of two matrices. For

this part, consider X ∈ Rn×m with rank k and let X̃ = X+E
be a perturbation of X. Denote the SVDs of X, X̃ as

X
SVD
= U1Σ1V

T
1 +U2Σ2V

T
2 , (27)

and

X̃
SVD
= Ũ1Σ̃1Ṽ

T
1 + Ũ2Σ̃2Ṽ

T
2 . (28)

where the singular values are not necessarily presented in a
descending order. Then, Wedin’s theorem says the following.

Theorem 3 (Wedin’s theorem [36]). Let Φ denote the matrix
of canonical angles between U1 and Ũ1, and Θ be the matrix
of canonical angles between V1 and Ṽ1 in (27) and (28)
respectively. And, if there is a δ > 0 such that

δ = min{ min
1≤i≤k,k≤j≤m

|σi(X)− σj(X̃)|, min
1≤i≤k

σi(X)}

then √
∥sinΘ∥2F + ∥sinΦ∥2F ≤

√
∥R1∥2F + ∥S1∥2F

δ
,

where R1, “residual between the column spaces” is

R1 = XṼ1 − Ũ1Σ̃1

and S1, the “residual between the row spaces” is

S1 = XTŨ1 − Ṽ1Σ̃1.

⊠

We also use the following theorem that discusses the con-
nection between canonical angles and projections.

Theorem 4. (The connection between canonical angles and
projections [43]) Let PV1

and PṼ1
denote the orthogonal

projections onto V1 and Ṽ1 respectively. Let Θ be the
matrix of canonical angles between V1 and Ṽ1. Define
∥PV1

−PṼ1
∥F . Then,∥∥PV1

−PṼ1

∥∥
F
=

√
2 ∥sinΘ∥F . (29)

⊠

Now, the proof of Lemma 5 follows from two applications
of Theorem 3 and Theorem 4. For the first application, we
invoke Theorem 3 with X ≡ QS, X̃ ≡ Q̂S. Recall that Q
indicates the true polynomial coefficient matrix from (2) and
Q̂ is the estimate that is obtained from (9).Then, we have

δ2 = min{ min
1≤i≤r,r+1≤j≤m

|σi(QS)− σj(Q̂S)|, min
1≤i≤r

σi(QS)}

(a)
= min

1≤i≤r,r+1≤j≤m
|σi(QS)− σj(Q̂S)| (30)

= |σr(QS)− σr+1(Q̂S)| (31)

where (a) follows from using the fact that target rank r ≤ l.
In appendix, we investigate δ2 > 0 numerically. Next, we
compute the residuals required for Wedin’s theorem as follows

T := Q̂SVQS −UQSΣQS (32)
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and

W := (Q̂S)
T
UQS −VQSΣQS . (33)

Let

D := Q̂S−QS. (34)

Then, we invoke Theorem 4 with V1 ≡ VQS and Ṽ1 ≡
V̂QS and let Θ1 be the matrix of canonical angles between
VQS and V̂QS to obtain∥∥∥PVQS

−PV̂QS

∥∥∥2
2
=
∥∥∥VQSV

T
QS − V̂QSV̂

T
QS

∥∥∥2
2

(a)

≤
∥∥∥VQSV

T
QS − V̂QSV̂

T
QS

∥∥∥2
F

= 2∥ sinΘ1∥2F

≤ 2

(
∥T∥2F + ∥W∥2F

δ22
−m

)

≤ 2

(
∥T∥2F + ∥W∥2F

δ22

)
(b)
=

4∥D∥2F
δ22

, (35)

where (a) follows from using ∥ · ∥22 ≤ ∥ · ∥2F and (b) is due to

∥T∥2F = ∥Q̂SVQS −UQSΣQS∥
2

F = ∥DVQS∥2F = ∥D∥2F ,
(36)

with a similar bound for W. Now, we further bound ∥D∥2F
in (34). Given A, S and Ψ, Q̂ is obtained by solving the
unconditioned least-squares problem (8). This problem can be
solved analytically. Since the rows of SΨ are independent, the
least-squares approximation problem has the unique solution

Q̂ = A (SΨ)
T
(
SΨ (SΨ)

T
)−1

[44, p.155]. Therefore, we

have the following bound for ∥D∥2F ,

∥D∥2F = ∥Q̂S−QS∥
2

F

=

∥∥∥∥A (SΨ)
T
(
SΨ (SΨ)

T
)−1

S−QS

∥∥∥∥2
F

=

∥∥∥∥MΨ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S−QS

∥∥∥∥2
F

=

∥∥∥∥(QS+E)Ψ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S−QS

∥∥∥∥2
F

= ∥QSΨ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S

+EΨ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S−QS ∥2F

=

∥∥∥∥EΨ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S

∥∥∥∥2
F

=
∥∥∥EΨ (SΨ)

†
S
∥∥∥2
F

(a)

≤ ∥E∥2F
∥∥∥(SΨ)

†
S
∥∥∥2
F
, (37)

where (a) is due to the matrix norm inequality.

Thus, using (37) and (35), we have,

∥∥∥PVQS
−PV̂QS

∥∥∥2
2
≤

4 ∥E∥2F
δ22

∥∥∥(SΨ)
†
S
∥∥∥2
F
. (38)

Next, using a similar approach, we apply Theorems 3 and
4 with X ≡ M and X̃ ≡ QS.

By plugging (38) and (42) into (45), we have

∥∥∥PVM
−PV̂QS

∥∥∥2
2
≤ 8 ∥E∥2F

 1

δ21
+

∥∥∥(SΨ)
†
S
∥∥∥2
F

δ22

 . (39)

First, we demonstrate the minimum eigengap separation con-
dition as follows. Let

δ1 = min{ min
1≤i≤l,l+1≤j≤m

|σi(QS)− σj(M)|, min
1≤i≤l

σi(QS)}

Notice that since rank(M) = k ≫ r and rank(QS) =
l ≥ r, the first term above attains the minimum and thus
δ1 = σr(M−E) − σr+1(M). This is bounded away from
zero owing to Assumption 1. We next compute the residuals
as follows

R := QSVM −UMΣM (40)

and S is defined as the residual between the row space VM

and VQS as

S := (QS)
T
UM −VMΣM . (41)

Then,∥∥PVM
−PVQS

∥∥2
2
=
∥∥VMVT

M −VQSV
T
QS

∥∥2
2

(a)

≤
∥∥VMVT

M −VQSV
T
QS

∥∥2
F

(b)
= 2∥ sinΘ∥2F
(c)

≤ 2

(
∥R∥2F + ∥S∥2F

δ21
−m

)

≤ 2

(
∥R∥2F + ∥S∥2F

δ21

)
,

(d)
=

4∥E∥2F
δ21

(42)

where the inequality (a) is due to ∥ · ∥22 ≤ ∥ · ∥2F and (b) and
(c) are from Theorems 3 and 4 and respectively. (d) is due to

∥R∥2F = ∥QSVM −UMΣM∥2F = ∥EVM∥2F = ∥E∥2F ,
(43)

with a similar bound for S. With these bounds, we prove
Lemma 5 as follows
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TABLE IV
SUMMARY OF THE MINIMUM VALUES OF δ2 VARYING r AND l

r = 5, d = 5, k = 25 |σr(QS)− σr+1(Q̂S)| min of δ2 k = 25, l = 5, d = 25 |σr(QS)− σr+1(Q̂S)| min of δ2
l = 5 0.1133 0.000648 r = 5 0.1233 0.00011
l = 7 0.4646 0.211174 r = 7 0.116 0.00138
l = 9 0.69002 0.460254 r = 9 0.1083 0.00017
l = 11 0.8054 0.562388 r = 11 0.0971 0.00119

∥∥∥PUA
M−PUA

MPV̂QS

∥∥∥2
2

(a)

≤ ∥PUA
∥22
∥∥∥M−MPV̂QS

∥∥∥2
2

=
∥∥∥M−MPV̂QS

∥∥∥2
2

=
∥∥∥M−MPVM

+MPVM
−MPV̂QS

∥∥∥2
2

(b)

≤ 2∥M−MPVM
∥22 + 2

∥∥∥MPVM
−MPV̂QS

∥∥∥2
2

(c)

≤ 2σ2
r+1(M) + 2

∥∥∥MPVM
−MPV̂QS

∥∥∥2
2

(d)

≤ 2σ2
r+1(M) + 2∥M∥22

∥∥∥PVM
−PV̂QS

∥∥∥2
2

(e)

≤ 2σ2
r+1(M) + 2σ2

1(M)
∥∥∥PVM

−PV̂QS

∥∥∥2
2
, (44)

where the inequality (a) and (d) is due to matrix norm
inequality and (b) is due to the fact that for a, b ≥ 0, (a+b)2 ≤
2(a2 + b2). Inequalities (c) and (e) are derived from the

operator norm property. Next, we bound
∥∥∥PVM

−PV̂QS

∥∥∥2
2
.∥∥∥PVM

−PV̂QS

∥∥∥2
2

=
∥∥∥PVM

−PVQS
+PVQS

−PV̂QS

∥∥∥2
2

(a)

≤ 2
∥∥PVM

−PVQS

∥∥2
2
+ 2
∥∥∥PVQS

−PV̂QS

∥∥∥2
2
, (45)

where (a) is due to the fact that for a, b ≥ 0, (a + b)2 ≤
2(a2 + b2).

Finally, combining everything we have∥∥∥PUA
M−PUA

MPV̂QS

∥∥∥2
2

≤ 2σ2
r+1(M) + 16σ2

1(M) ∥E∥2F

 1

δ21
+

∥∥∥(SΨ)
†
S
∥∥∥2
F

δ22


(46)

⊠

APPENDIX C
NUMERICAL JUSTIFICATION OF ASSUMPTION 2

In order to address questions from anonymous review-
ers from our prior submission, herein we perform extensive
monte-carlo simulations and provide numerical results for the
values obtained for δ2. We provide the minimum values of δ2
for the case of r = 5 in Table V.

We also provide the mean and minimum values of δ2 in
Table IV for various values of l and r with a fixed k and d.
Both Q and E are randomly generated, and we average over
300 realizations of |σr(QS)−σr+1(Q̂S)| varying both Q and
E for each case to obtain the mean. The minimum value is
obtained from out of all 300 realizations for each case. Once
again we see that a zero value is never attained.

TABLE V
SUMMARY OF THE MINIMUM VALUES OF |σ5(QS)− σ6(Q̂S)| VARYING k

WHEN r = 5

k Minimum value of |σ5(QS)− σ6(Q̂S)|
k = 45 0.053367
k = 40 0.010940
k = 35 0.02726
k = 30 0.01587

Finally, we note that without additional restrictive assump-
tions on the models, it is highly non-trivial to provide the-
oretical bounds on the values of δ2. One potential method
of evaluating this is to enumerate a few possible settings
wherein it is easy to compute δ2 and show that the occurance
of such examples is unlikely, however a drawback of such
an approach is that enumerating such pathological cases is
combinatorial in nature and this prevents us from providing a
rigorous theoretical analysis.
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