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ABSTRACT Defects influence diverse properties of materials, shaping their structural, mechanical, and

electronic characteristics. Among a variety of materials exhibiting unique defects, magnets exhibit diverse

nano- to micro-scale defects and have been intensively studied in materials science. Specifically, defects

in magnetic labyrinthine patterns, called junctions and terminals are ubiquitous and serve as points of

interest.While detecting and characterizing such defects is crucial for understandingmagnets, systematically

investigating large-scale images containing over a thousand closely packed junctions and terminals remains

a formidable challenge. This study introduces a new technique called TM-CNN (Template Matching -

Convolutional Neural Network) designed to detect a multitude of small objects in images, such as the defects

inmagnetic labyrinthine patterns. TM-CNNwas used to identify 641,649 such structures in 444 experimental

images, and the results were explored to deepen understanding of magnetic materials. It employs a two-stage

detection approach combining template matching, used in initial detection, with a convolutional neural

network, used to eliminate incorrect identifications. To train a CNN classifier, it is necessary to annotate

a large number of training images. This difficulty prevents the use of CNN in many practical applications.

TM-CNN significantly reduces the manual workload for creating training images by automatically making

most of the annotations and leaving only a small number of corrections to human reviewers. In testing,

TM-CNN achieved an impressive F1 score of 0.991, far outperforming traditional template matching and

CNN-based object detection algorithms.

INDEX TERMS Computer vision, convolutional neural networks, deep learning, magnetic labyrinthine

patterns, material science, object detection, template matching.

I. INTRODUCTION

Most materials exhibit some kind of order which is typically

characterized by a certain order parameter maintaining

coherence or constancy over long distances compared to

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto C. Ambrosio .

the atomic scale. The degrees of freedom within the

order parameter directly influences the array of properties

manifested by the material’s phases. Specifically in magnetic

materials, phases can be characterized by the alignment of the

magnetic moments. These magnetic moments can assume a

variety of orders, such as ferromagnetics, where the magnetic

moments are uniformly aligned and antiferromagnetics,
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where the moments alternate site by site [1]. Apart from

orders directly proportional to lattice spacings, incommen-

surable orders are also frequently observed and documented

[2], [3], [4], [5], [6], [7]. One illustrative example is the stripe

phase, characterized by spatial modulation in the orientations

of magnetic moments, with a period distinct from an integer

multiple of the lattice spacing.

The above magnetic phases do not necessarily appear in a

coherent manner and are often accompanied by defects. As an

example illustrating the breakdown of spatial coherence,

we present magnetic domain images of bismuth doped

yttrium iron garnet (Bi:YIG) films at zero field in Fig. 1,

with intensity reflecting the out-of-plane component of the

magnetic moments. In this material, although the most stable

order is the uniform stripe phase, the magnetic domains

show non-periodic labyrinthine structures resulting from the

propagation of stripes in various directions accompanied by

a plethora of defects seemingly present everywhere [8], [9],

[10], [11], [12]. However, these complex labyrinthine patterns

do possess discernible characteristics which demand proper

quantification.

We present in Fig. 1 two images both obtained in zero

applied magnetic field. In Fig. 1a, which we label as the

‘‘quenched’’ state, the borders of dark and bright domains

exhibit a sinuous nature and do not appear as parallel.

In contrast, the ‘‘annealed’’ state, shown in Fig. 1b, consists

of regions with nearly parallel domains. This state exhibits

roughly equal widths of dark and bright domains, and the

areas occupied by them are also approximately equal for any

sampled region. Therefore, the stripes in the annealed state

show greater spatial coherence.

Within these magnetic structures, defects take the form of

interruptions in the stripes known as ‘‘terminals’’ and points

where multiple stripes conjoin, referred to as ‘‘junctions’’

(Fig. 2). Since defects directly affect the spatial coherence

of the ordered phase, the number and correlations of defects

can serve as a crucial metric for quantifying the deviation

of a structure from a perfectly periodic structure, namely

the stripe order. Furthermore, such defects have also been

gathering considerable attention due to their implications on

physical phenomena arising from the nontrivial geometric

properties [13], [14], [15]. Thus, in the realm of condensed

matter physics, experimental identification of the number

and positions of such defects plays an important role in

characterizing material properties.

Accurately counting and differentiating genuine structures

from misidentifications is crucial to a quantitative physical

understanding of the origins and evolution of these patterns.

Manual annotation of defects is infeasible. For instance,

we used 444 images with 641,649 structures [16]. Further-

more, manual annotation relies on subjective interpretation

of junctions and terminals, which could lead to counting

inconsistencies. In order to address these issues, automated

processes are required. Algorithms for finding objects in an

image are known as object detectors and can be broadly

FIGURE 1. Examples of magnetic labyrinthine patterns.

categorized into classical methods and those based on deep

learning.

A. CLASSICAL OBJECT DETECTION METHODS

Classical object detection methods span a variety of tech-

niques to extract and process features from the image. For

instance, template matching [17] is a technique employed to

find a pre-defined template within a larger image. This is

achieved by scanning the entire image and calculating the

correlation between the template and the scanned region.

Viola and Jones object detecting algorithm [18] employs

multiple template matchings using Haar-like features, each

of them serving as a weak detector. These features are

ensembled through a boosting strategy to form a strong

detector. The Histogram of Oriented Gradients (HOG) [19]

represents another approach to extract useful features,

dividing the image into cells and calculating a gradient

histogram for each. This extracted information can be used by

machine learning algorithms, such as support vector machine,

to identify detections.
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B. DEEP LEARNING OBJECT DETECTION METHODS

In the last decade, deep learning approaches have revolu-

tionized the field of computer vision, surpassing traditional

machine learning techniques in multiple image processing

tasks [20], [21]. For object detection, Girshick et al. intro-

duced R-CNN [22], marking it as one of the pioneering detec-

tion techniques rooted in deep learning. R-CNN operates as

a classification-based model: multiple regions are extracted

from an image and each is classified independently. This

straightforward method led to significant improvements in

detection, achieving new state-of-the-art results on the Pascal

VOC dataset [23], compared to earlier techniques like Haar

features and HOG. A distinguishing feature of R-CNN is its

region proposal step. Directly processing every conceivable

region of varying sizes and positions in an image is compu-

tationally impractical. Hence, this step selects a simplified

set of regions from the original image for individualized

classification by the CNN model. Further developments

brought by Faster R-CNN [24] have improved both accuracy

and speed by integrating the region proposal into the model.

Redmon et al. introduced YOLO [25], a deep-learning

detection approachmodeled as a regression task. This method

partitions the image into a grid and each cell contains their

own set of outputs. The grid cell where the object is centered

has the task of identifying the position, dimensions and

class of the object. A standout benefit of this approach is

its efficiency: YOLO processes the image in a single pass,

contrasting with R-CNN-based models that are divided into

region proposal and classification steps. This significantly

reduces inference time, enabling real-time video detection.

However, YOLO was not able to achieve the precision and

recall rates of Faster R-CNN when tested on the Pascal VOC

dataset. Comparisons in small object detection settings have

also shown Faster R-CNN to outperform YOLO [26].

Further architectural developments have also improved

detection. Mask R-CNN by He et al. [27] extends the capabil-

ities of Faster R-CNN by simultaneously performing object

detection and instance segmentation. Cascade R-CNN by

Cai and Vasconcelos [28] proposes a multi-stage architecture

with sequentially higher thresholds to refine detection quality.

RetinaNet by Lin et al. [29] introduces Focal Loss to address

the imbalances between foreground and background classes

coupled with dense detection and a Feature Pyramid Network

architecture for improving detection at different scales [30].

To address the limitations of anchor-based architectures,

such as their sensitivity to hyper-parameter selection, anchor-

free architectures were proposed. Law and Deng proposed

CornerNet [31], framing detections as paired corner key-

points. FCOS by Tian et al. [32] applies detection at

the feature level by applying a correspondence between

feature coordinates and separate areas from the image. The

feature coordinates where their corresponding area intersects

with an object are tasked for detection. Sparse R-CNN by

Sun et al. [33] is inspired by Faster R-CNN, but uses learned

detection proposals instead of predicted ones.

FIGURE 2. Defects in the magnetic labyrinth patterns. Junctions are
marked in green and terminals in cyan. Red dots indicate false positives
from the template matching, which are filtered out by the CNN classifier.

Recently, the transformer architecture, originally intro-

duced for language processing tasks, has been adapted

for use in computer vision [34], [35]. Carion et al. [36]

developed DETR, utilizing transformers to perform object

detection without the need for custom-designed components.

Alternatively, Liu et al. [37] introduced Swin, a variation

of the transformer for feature extraction which outperforms

CNN-based approaches in various vision tasks, demonstrat-

ing the potential of transformers to enhance object detection

capabilities. DINO, proposed by Zhang et al. [38] is a

variant of DETR which uses deformable attention [39] and

adds noise to the ground truth during training, enabling the

architecture to surpass traditional multi-stage detectors.

C. THE PROBLEM AND PROPOSED SOLUTION

Modern digital microscopy allows the easy acquisition of

high-resolution experimental images, which contain intricate

regular patterns and a large number of defects, sometimes

numbering in the thousands. This makes it difficult to use

deep learning, as creating an accurately annotated dataset

would be a laborious process due to the large number

of defects. Furthermore, common deep learning models

such as YOLO and Faster R-CNN were not designed to

detect thousands of small objects. Benchmarks with both

methods show that performance degrades when detecting

small objects, with Faster R-CNN maintaining a slight

advantage over YOLO [26].

Correlation-based granulometry is a technique that can be

used to detect a large number of small objects in the image.

It was proposed by Maruta et al. [40], [41] to analyze the

distribution of square and circular pores in the macroporous

silicon layer in scanning electron microscope images. This

technique is called ‘‘granulometry’’ because the objective

of the original application was to obtain a histogram of

pore distribution as a function of size. It was later used by

Araújo et al. [42] to detect individual bean grains, analyze

each grain, and calculate the quality of the bean batch.

This technique performs multiple template matchings to

achieve robustness against angle and shape variations, and

then performs non-maximum suppression to avoid finding the
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same object multiple times. However, this technique could

not be applied directly in our problem, because defects in

labyrinthine magnetic structures vary greatly in shape and

cannot be accurately detected using only template matchings.

To address these challenges, we developed a new

two step technique that we named Template Matching -

Convolutional Neural Network (TM-CNN), which integrates

correlation-based granulometry with the CNN classifier.

First, a series of template matchings detects potential

candidates for junctions and terminals. By setting a low

threshold, we cast a broad net for candidates detection,

minimizing false negatives but increasing false positives.

These candidates are filtered by non-maximum suppression

to avoid multiple detections of the same defect. Second,

a CNN classifier filters out the false positives.

We demonstrate that this method substantially outperforms

template matching alone, while streamlining the image

annotation process and reducing the computational burden

typically associated with deep learning detection techniques.

We also show that the TM-CNN technique outperforms

Faster R-CNN, achieving a significantly higher F1-score in

junctions and terminals detection. TM-CNN executable files

for Windows are available for download for demonstration

purposes.1

D. STRUCTURE OF THE ARTICLE

The remainder of this work is organized as follows.

Section II presents existing techniques for detecting junctions

and terminals, differentiating classical and deep learning

approaches. Section III describes the dataset used and the

proposed TM-CNN technique in detail. Section IV presents

experimental results from the detection of defects in mag-

netic labyrinthine patterns and discusses their significance

in understanding physical phenomena. Finally, Section V

concludes the article by reflecting on the merits of our work.

II. RELATED WORKS

A. JUNCTIONS AND TERMINALS DETECTION

Junctions and terminals are shapes with relevance that extend

beyond materials. Within computer vision, recognizing and

enumerating them has been performed in diverse contexts,

such as natural landscapes [43], biology [44] and handwriting

images [45].

B. CLASSICAL METHODS FOR JUNCTIONS AND

TERMINALS DETECTION

One prevalent approach for detecting junctions and terminals

involves using skeletonization as a pre-processing step.

This process reduces the image to one-pixel-wide lines

to represent its structures. Points in skeleton can then be

identified as terminals, junctions and crossings based on

their neighboring pixels. This technique has been applied

in vascular images [46] and in the analysis of handwritten

Chinese characters [47].

1https://github.com/okami361/TM-CNN/releases/tag/Windows_v2.3.7

Pre-processing techniques using contour information

have also been explored for junction detection. Lee and

Wu [48] investigated stroke extraction in Chinese characters.

Their method segments regions according to their con-

tour, identifying junctions by counting neighboring regions.

Maire et al. [49] proposed a junction detector in natural

images by locating intersecting contours. This approach

applies an expectation–maximization style algorithm to

iteratively select relevant contours and suggest the junction’s

position.

However, skeletonization and contour finding are noise-

sensitive processes and a pre-processing error will lead to a

detection error.

Junctions and terminals can also be identified by analyzing

the arrangement of linear structures within the image.

Su et al. [50] describe a technique for identifying these linear

structures using the Hessian Matrix. This approach has been

validated in biological images such as blood vessels, neutrites

and tree branches. Xia et al. [43] present a junction detection

method in natural images, based on amplitudes and phases of

the normalized gradients of the image.

Template-based approaches quantify the similarity of the

appearance of image regions and the template. Deriche and

Blaszka [51] modeled this approach as energy minimization,

which is calculated by the deviation between the image and

a predetermined model. This enabled the detection of key

image features, such as edges, corners and terminals.

C. DEEP LEARNING METHODS FOR JUNCTIONS AND

TERMINALS DETECTION

Owing to the success of R-CNN based detection techniques,

Pratt et al. [44] developed a pipeline for identifying junctions

and crossings in retinal vascular structures. Their method

involves two main steps: initially, detection regions are

proposed centred along the blood vessels, which are then

classified as junctions, crossings or background. To generate

the detection regions, their approach requires a binary

segmented version of the exam. These images undergo a

skeletonization process, with the resulting points serving as

references for the centers of the blood vessels.

Zhao et al. [52], addressing the same problem, proposed

using a Mask R-CNN based model [27] for region proposal.

This strategy enables inference without the need for binary

segmented version of the exam. However, during training, the

segmented images are still used in the Mask R-CNN model

to enhance its learning capabilities. This approach surpassed

the performance of previous techniques in the detection of

junctions and crossings in retinal vascular images.

D. DEFECTS DETECTION IN MAGNETIC LABYRINTHINE

IMAGES

In the context of magnetic labyrinthine patterns, a previous

work employed a notably smaller dataset, consisting only of

several dozen defects, for manual defect detection [10].
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Recently, persistent homology has been used to extract

the topological features of the labyrinthine patterns in a

systematic way [53]. In this method, a persistent diagram

is constructed for binarized magnetic domain images to

extract the geometric characteristics of their spatial structure.

By combining the persistent diagram with principal compo-

nent analysis, one can map the real-space distribution of junc-

tions, terminals, and bending points within the labyrinthine

patterns, while their classification remains difficult.

In this work, we achieved the systematic detection and clas-

sification, enabling us to investigate the labyrinthine patterns

in a quantitative manner. To characterize the evolution of the

labyrinthine patterns, we applied the TM-CNN technique to

444 images and investigated how the number of defects and

their locations change step by step.

III. METHODOLOGY

A. DATASET

In this study, we used films of a ferromagnetic material of

recognized technological importance, bismuth doped yttrium

iron garnet, or Bi:YIG, and obtained magnetic images of

the labyrinthine patterns using a microscope with polarized

light [54]. We specifically focused on the evolution of

the labyrinthine patterns under the demagnetization field

protocol described below. First, we prepared the sample in the

fully saturated state by applying a sufficiently large magnetic

field in +z direction, which is perpendicular to the films.

In this state, magnetic moments in the Bi:YIG film are

forced to point in the field direction. Next, we instantaneously

dropped the field to zero and hold it for 10 seconds to get the

image. Since the magnetic field is zero, magnetic moments

can point upward and downward, resulting in the labyrinthine

patterns shown in Fig. 1; the bright and dark regions represent

the domains with opposite directions of magnetic moments.

Such a process involving switching on and off the magnetic

fields is considered half of the demagnetization step. In the

remaining half step, a magnetic field was applied with a

reduced amplitude and oriented in the opposite direction.

We again captured the magnetic domain image after reducing

the magnetic field to zero. By repeating these protocols up

to 18 steps, we investigated the evolution of the labyrinthine

patterns in the demagnetization process step by step. The

amplitude of the magnetic field was exponentially reduced

with each step. We conducted a series of demagnetization

processes from the fully saturated state, repeating this

cycle 6 times. Furthermore, we explored another situation,

where the magnetic field was initially applied in the

−z direction, and its direction was alternated step by step.

Consequently, a total of 12 demagnetization processes were

performed, yielding a collection of 444 domain images.

All measurements reported here were performed at room

temperature. The experimentally obtained images covered an

area of 2 mm × 1.8 mm.

The original high-resolution color images were con-

verted to grayscale and their resolutions were reduced to

1300 × 972 to facilitate processing. Furthermore, a median

filter with kernel size 3 was applied to reduce noise.

B. TM-CNN OVERVIEW

Our approach to detect junctions and terminals in magnetic

labyrinthine patterns consists of two sequential steps: pro-

posal of potential detections and their classification between

junction, terminal and false detections. It is inspired by other

cascaded object detection techniques like Viola and Jones

face detection [18], R-CNN [22], and scale and rotation

invariant template matching [55].

Fig. 3 illustrates the overall structure of TM-CNN. In the

first phase, the algorithm generates a preliminary set of

potential detections. It must propose all true defects, even

if it also generates many false positives. We achieve this by

applying template matching detection with a low threshold,

followed by a non-maximum suppression. In the second

phase, in order to eliminate the false positives, each potential

detection is filtered by a CNN classifier.

C. TEMPLATE MATCHING

The basic form of template matching finds instances of a

smaller template T within a larger image I . This is done

by calculating some similarity metric between the model T

and the content of a moving window located at each possible

position of I . We measured the similarity between the image

and the template using the Normalized Cross Correlation

(NCC). NCC is invariant to linear changes in brightness

and/or contrast. NCCbetween template T and image I at pixel

(x, y) is calculated as:

NCCT ,I (x, y)=

∑

x ′,y′ (T̃ (x
′, y′) · Ĩ (x+x ′, y+y′))

√

∑

x ′,y′ T̃ (x
′, y′)2 ·

∑

x ′,y′ Ĩ (x+x
′, y+y′)2

(1)

where (x ′, y′) is the coordinate inside the template, T̃ (x ′, y′) is

the mean-corrected template value at (x ′, y′), and Ĩ (x, y) is the

value of the mean-corrected image inside the moving window

at pixel (x, y). Mean-correction consists of subtracting the

average value from each pixel. Template matching using

NCC can be implemented very efficiently using Fast Fourier

Transform (FFT) [56].

This basic approach is not well suited for detecting junc-

tions and terminals in the magnetic labyrinthine structures

because a single template is not capable of modeling:

1) All possible rotations;

2) All deformed shapes of defects.

To solve problem, we employ a rotation-invariant template

matching based on exhaustive evaluation of rotated templates.

There are some alternative rotation-invariant techniques

based on circular and radial projections [55], [57], and on

Fourier coefficients of circular and radial projections [58].

These techniques can reduce computational requirements,

but their implementations are complex and require param-

eter tuning. Furthermore, our application does not require
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FIGURE 3. TM-CNN overview: (a) The algorithm receives a magnetic labyrinthine image. (b) It applies template matchings to compute correlation maps.
(c) These maps measure the similarity between the templates and each region of the image. (d) TM-CNN looks for high values in the maps and applies
non-maximum suppression. (e) The potential detections are located at the highest correlation values. (f) The algorithm extracts patches centered on each
detection. (g) A CNN classifies the detection as junction, terminal or false detection.

exceptional computational performance, as the processing is

offline. Thus, our technique uses the standard OpenCV2 tem-

plate matching implementation, which is highly optimized

using FFT and special processor instructions.

Problem arises from complex shape variations of defects

in magnetic labyrinthine patterns. Typically, terminals and

junctions do not align perfectly with the templates, mainly

because real magnetic strips have non-uniform curvatures

and widths. Template matching allows for slight shape

variations. However, to further improve flexibility, we use

masks. Many template matching implementations allow

you to specify a mask, besides the template, indicating

which pixels in the template will not be considered in the

correlation calculation. White pixels in the mask indicate

significant template pixels, and black pixels indicate template

pixels to disregard (‘‘don’t care’’). If the mean-corrected

template value at some pixel (x ′, y′) is zero, that is

T̃ (x ′, y′) = 0, this pixel will not be taken into account

to compute NCC. On the other hand, one cannot use FFT

to speed up the NCC calculation if it contains conditional

executions. Therefore, it is very likely that optimized

implementations will assign zero to the template pixels

corresponding to the black mask pixels, after the mean

correction.

D. TEMPLATES AND MASKS USED IN THE EXPERIMENT

We manually designed templates and masks, and empirically

tuned them to capture various junction and terminal shapes.

They have a resolution of 21 × 21 and are generated at

runtime. Templates represent magnetic strips as black lines

radiating from their center drawn on a white background.

Meanwhile, masks are created from black backgrounds with

2Open Source Computer Vision Library, https://opencv.org.

TABLE 1. Templates and masks used to detect junctions and terminals.

white areas defining relevant coordinates used in template

matching. Their main purpose is to obscure the space between

strips and background, addressing variations in widths and

curvatures, and to limit the background regions to reduce

interference from neighboring strips. Table 1 exemplifies

the templates and masks used to detect junctions and

terminals.

We created 439 junction templates to accommodate

variations in shapes and rotations. Junction templates consist

of three radial lines at rotation α, β, γ ∈ N with 0◦ ≤

α < β < γ < 360◦ (Table 1). These templates are drawn

iteratively in steps of 15◦, while maintaining a difference of

at least 70◦ and at most 190◦ between two consecutive angles.

For each triple of parameters (α, β, γ ), a single template

is generated along with three masks: two masks ‘‘type A’’

where the effective background is parallel to strips and one

mask ‘‘type B’’ where the effective background is positioned

between the strips (Table 2). Masks are created according to
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TABLE 2. Collection of masks used in our study (measurements in pixels).

the rotations α, β, γ and width values wbg,wbs,wsp ∈ N,

representing the width of the effective background, the width

between effective background and strip, and the width of the

effective strip, respectively (Table 1).

Terminal templates are simpler and use a single rotation

parameter α ∈ N, varying within 0◦ ≤ α < 360◦ in steps

of 3◦, totaling 120 variants. To model variations in terminal

and background shapes, we created five masks for each

model. Terminal masks are determined by six parameters,

including the previous four (α,wbg,wbs,wsp), and the two

additional radius parameters Rbs,Rbg that define the two

circles at the tip of the terminal, reflecting the strip and

background respectively.

Template matching is applied separately for each

(template, mask) pair. Several template matchings are

computed in parallel using the OpenMP library.3 This process

takes about 80 seconds to process an image on an i7-9750H

processor.

To obtain the final correlation map corr , we calculate the

maximum value among all n = 3 × 439 + 5 × 120 = 1917

NCC maps for each position (x, y), that is:

corr(x, y) = MAXn
i=1

[

NCCi(x, y)
]

(2)

Pixels where corr(x, y) exceed a predefined threshold t

are considered potential detections. However, a single junc-

tion/terminal may encompass multiple neighboring points

with correlation values greater than the threshold t . There-

fore, it is necessary to perform some form of non-maximum

suppression to eliminate duplicate detections and select

only the true center of junction/terminal. Kim et al. [41]

present a solution to this problem: Whenever two potential

detection points p1 and p2 are separated by a distance smaller

than a threshold c, the point with the lowest correlation

value is discarded. In this work, we use a slightly different

approach, but with the same practical result: Whenever

the algorithm finds a potential detection, it executes a

3Open Multi-Processing, https://www.openmp.org/.

breadth-first search algorithm. This algorithm recursively

searches adjacent pixels (x, y) where the correlation exceeds

80% of the threshold (that is, corr(x, y) > 0.8 t) and

saves the pixel with the highest correlation. Subsequently, the

searched area has its correlation value set to zero to avoid

re-detection. Fig. 3d highlights the searched area in red. The

pixel with the highest correlation is chosen as the center of the

junction/terminal. This process performs detection in a single

pass.

E. DATASET ANNOTATION

To classify potential detections into true or false using a CNN

classifier, we must first create annotated training images.

TM-CNN makes it easier to create training examples, as it

allows one to annotate the examples semi-automatically. This

process is divided in two phases.

1) TEMPLATE MATCHING-ASSISTED ANNOTATION

In this phase, only a small set of images are annotated.

Initially, we apply template matching followed by non-

maximum suppression to identify the centers of possible

detections, together with their probable labels (junction

or terminal). Without this help from template matching,

we would have to manually and precisely locate the centers

of thousands of defects. Subsequently, a human reviewer

makes corrections to ensure that the labels given by the

template matching are correct. The reviewer may change

the labels to junction, terminal or false detection. After all

positive detections are annotated along with a small set of

false detections, a larger set of false detections is created

by lowering the template matching threshold and sampling

new false detections. These images, now with positive and

negative annotations, are used to train a preliminary version

of the CNN classifier.

2) DEEP LEARNING-ASSISTED ANNOTATION

Due to the small number of images in the initial training set,

the preliminary CNN classifier cannot accurately classify all

magnetic stripe defects. Nonetheless, this preliminary model

is integrated into the annotation procedure to alleviate the

required workload. In the second phase, we continue using

template matching to generate the initial set of detections.

However, the preliminary CNN classifier is employed to

identify most of the template matching errors, thus speeding

up the annotation process. As new images are annotated,more

accurate models are trained to further simplify the annotation

workload. The final training set consists of 17 images derived

from a single annealing protocol, selected to cover varied

experimental configurations of ascending and descending

magnetic fields at different magnitudes. Out of these, 16 were

selected from the quenched (unordered) state, as they

represent a more diverse set of shapes and represent a greater

challenge for classification. The training set encompasses a

total of 33,772 detections, which includes 12,144 junctions,

12,777 terminals, and 8,851 false detections.
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FIGURE 4. CNN architecture to classify a patch in junction, termination or
false detection.

F. CANDIDATE FILTERING BY CNN

Our algorithm extracts small 50 × 50 patches centered

around each detection point and a CNN classifies them into

three classes: junction, terminal or false positive. The size

of patches for CNN classification is larger than the size of

template matching models (21 × 21), allowing CNN to use

more contextual information than template matching.

We use a simple CNN model to classify the small patches

(Fig. 4). It has four convolutional layers with 32, 64,

128 and 256 filters, all using 3 × 3 kernels. The first three

convolutional layers are followed by max pooling layers to

downsample the feature maps and global max pooling is

applied after the last convolutional layer. This is followed

by dropout and two fully connected layers: the first with

128 nodes and the second with three output nodes. The

ReLU activation function is used across the model, except

at the output layer where the softmax is used. In total,

this network has only 422,608 parameters. For comparison,

VGG-16 and ResNet-50 (common backbones for detection)

have 138 million and 25 million parameters, respectively.

Thanks to its simplicity, our model can make predictions even

without GPUs and takes around 30 seconds for filtering each

image using an i7-9750H processor and 16 GB of RAM with

no dedicated graphics or AI accelerators.

We implemented this model in Python using the Tensor-

Flow library.4 To enhance rotational invariance, we employed

data augmentation techniques, performing random rotations

of the images in multiples of 90◦. We pre-trained it using the

MNIST [59] dataset for 15 epochs. We then fine-tuned the

model for our application for another 20 epochs. We used

categorical cross-entropy as the loss function, and the model

was optimized using Adam with the learning rate of 10−3.

The model was trained using the Google Colab environment5

on a single V100 GPU.

IV. EXPERIMENTS AND RESULTS

A. PERFORMANCE EVALUATION

Evaluating TM-CNN poses a certain challenge because there

are no benchmarks or published results for direct comparison.

So, we defined that junction and terminal detections reviewed

by human observers as the gold standard and compared

the algorithms against this standard. For testing purposes,

we annotated 10 images from a separate experimental

4https://www.tensorflow.org/
5https://colab.google/

TABLE 3. Performance of different algorithms to detect junctions and
terminals.

FIGURE 5. F1-score obtained for each test image.

trial, using the same procedure as the training images

(subsection III-E). False detections were excluded since they

do not contribute to the detection evaluation. In total, the test

set contained 7,374 junctions and 7,431 terminals.

We tested four algorithms: template matching only (our

TM-CNN algorithm, without CNN from the second stage);

the proposed TM-CNN algorithm; the widely used Faster

R-CNN; and its variant CLSConv4 proposed by Eggert et al.

that improves small object detection [60]. The Faster R-CNN

model had to be adapted, since it was originally designed

to detect large objects. We used a single anchor of size

24 × 24, as all defects are approximately this size. The

model’s backbone was VGG16, in line with Ren et al. [24].

This backbone was initially pre-trained on theMNIST dataset

for digit classification. We fine-tuned the model for junction

and terminal detection for 25 epochs using the 17 training

images, with learning rate of 10−5 and the Adam optimizer.

We used precision, recall and F1-score as evaluation

metrics. A detection was considered positive if it achieved

Intersection over Union (IoU) greater than 0.5, and the

detection threshold was adjusted to optimize the F1-score.

Table 3 presents the averages and standard deviations of

the performance metrics across the 10 tests, showing that

TM-CNN substantially outperforms template matching only,

Faster R-CNN and its variant CLSConv4. To demonstrate

the consistency of the results, Fig. 5 displays the F1-scores

obtained for each test image by the four algorithms.

TM-CNN always present F1-score superior to the other

three algorithms. TM-CNN achieves detection accuracy close

to 100% and most mistakes are in detections where a
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FIGURE 6. Examples of TM-CNN detection errors, highlighted in red.
Green and cyan dots are respectively junctions and terminals detected by
TM-CNN.

human observer would also be in doubt about the correct

classification (Fig. 6).

B. RESULTS FROM A PHYSICS PERSPECTIVE

In Bi:YIG films, it is known that a perfect stripe pattern

is the most energetically favorable and stable configuration

of magnetic moments [10]. In this structure, the magnetic

moments exhibit stripes aligning straight in one direction

throughout the entire structure, resulting in large spatial

coherence. Meanwhile, the experimentally obtained struc-

tures often manifest labyrinthine patterns, as illustrated by

dark and bright stripes in Fig. 1. In these labyrinthine patterns,

stripes are aligned within small domains but propagate in

different directions between different domains, and thus

the spatial coherence of stripes is smaller than the perfect

stripe. Notably, junctions and terminals are defects emerging

in the formation of these labyrinthine patterns, intricately

linked to the growth of spatial coherence in the system.

Introducing such defects into the perfect stripe structure leads

to the bending and branching of the initially aligned stripes,

eventually reducing spatial coherence accompanied by the

transformation to labyrinthine patterns. Indeed, a plethora

of defects are observed in the labyrinthine patterns shown

in Fig. 2. Conversely, the elimination of these defects plays

a crucial role in the transition from a quenched state to

an annealed state, where the system increases the spatial

coherence. Hence, the evolution of the labyrinthine patterns

would be systematically quantified through the number of

junctions and terminals.

These defects fall within a distinctive category known

as topological defects. Each defect cannot be eliminated

alone by continuous deformation of the stripes due to

their topological properties, while they can be removed

in pairs. For example, in Fig. 2, terminals branch from

junctions and can be removed in pairs, reducing the branching

distance. The property that defects cannot be removed and

created individually by continuous deformation arises from

geometric constraints and has become one of the important

features of topological defects [13], [15]. Given that the

stripe order emerges from labyrinthine patterns by removing

defect, one might intuitively anticipate that the number of

junctions and terminals would be comparable and decrease

with increasing the spatial coherence.

Fig. 7 illustrates the step dependence of the number of

junctions and terminals during the demagnetization process.

In the experiment, two types of processes were performed:

one where the magnetic field starts from the upwards

direction, referred to as the positive process, and the other

where it starts from the downwards direction, referred to

as the negative process. The results for each are shown in

Figs. 7a and 7b, respectively.6

Results from six different experimental runs were averaged

for each process to estimate the number of defects. In the

initial three steps, the numbers of junctions and terminals

increase with steps from ∼ 750 to ∼ 850. After that, the

numbers sharply decrease to ∼ 700 around step 5 and remain

nearly unchanged from step 10 onward. Consequently, the

transition to the quenched state is inferred to start before

step 5 and be completed by step 10. The reduction in the

number of defects during the demagnetization process is

compatible with the naive expectation based on the physical

argument that the number of defects would decrease in

association with the increase in the spatial coherence of

the stripes. Furthermore, in each process, the numbers of

junctions and terminals are within the margin of error bars

for both processes. This is consistent with the topological

argument that junctions and terminals are paired. We note

that these numbers are comparable between the positive and

negative processes, which serves as collateral evidence that

our TM-CNN algorithm appropriately detects defects.

Now,we delve into the evolution of the number of junctions

and terminals from the energy landscape perspective. In our

experiments, diverse metastable labyrinthine patterns were

observed, yet the energetically most stable stripe patterns

were never observed. The transitions between these different

metastable states can be analogously understood as traversing

potential hills to move from one valley to another in the

complex energy landscape of Bi:YIG. Realizing the stripe

order corresponds to finding the deepest valley within it.

In the initial stage of the demagnetization process, a large

magnetic field is applied to ‘‘shake’’ the system, thus

6As described in Sec. III-A, imaging is conducted upon quenching the
magnetic field to zero. Within a single step of the positive process, the
magnetic field is first applied upwards, followed by quenching, and then
applied downwards before another quenching. The field direction is reversed
for the negative process. Therefore, two images are obtained at each step.
In Fig. 7, we present the number of defects in the images obtained after
quenching from the negative field for the fair comparison between the
positive and negative processes.
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FIGURE 7. Experimental averages of junction and terminal counts per
step with one standard deviation shaded for the demagnetization
processes starting from (a) the positive and (b) negative magnetic fields
(see the texts for details).

facilitating transitions between different valleys in pursuit

of lower energy states. Consequently, the number of defects

changes significantly in the first ten steps, where the

transition from the quenched state to the annealed state takes

place. However, progressing into the latter stage, the number

of defects remains unchanged as the amplitude of the field

decreases. This result indicates the presence of numerous

metastable states, each of which is deep, making transitions

less likely for smaller fields. Further quantification of the

evolution of the labyrinthine patterns based on the spatial

distribution of the defects (and not only on their numbers)

is discussed in another article [16].

V. CONCLUSION

In this work, we presented a new algorithm named TM-CNN

to detect defects in magnetic labyrinthine patterns, contribut-

ing to a pioneering analysis in material science. Our study

characterized the evolution of junctions and terminals in

magnetic stripes during demagnetization procedures, aiming

at better understanding defect arrangement in magnetic

materials [16].

TM-CNN employs a two-stage detection procedure,

combining template matching for initial detection and a

convolutional network classifier for refining misdetections.

This approach ensures a high detection accuracy and

facilitates dataset annotation through a semi-automatic

procedure.

In our experiments, TM-CNN exhibited performance

superior to other techniques, achieving an impressive F1

score of 0.991. This high performance is mainly due to TM-

CNN’s ability to locate small and clustered objects. TM-CNN

achieves almost 100% accuracy with a simple CNN classifier

with less than half a million parameters and can be used even

on computers without GPUs.

However, since TM-CNN uses manually defined templates

and masks for object representation, it may not be ideal for

detecting objects with complex shape variations. In general,

the varieties of defects in materials depend on the degrees

of freedom of the order parameters, giving rise to diverse

defects with distinct morphologies. Consequently, additional

enhancements are necessary to achieve impartial detection of

diverse defects. Additionally, our technique is much slower

than most modern object detectors, many of them designed

for real-time object detection. Addressing these challenges

could further enhance TM-CNN’s applicability.

While TM-CNN was developed for defect detection in

labyrinthine magnetic patterns, its potential applications are

not limited to this field. Future research could explore the use

of TM-CNN in other domains, such as identifying bifurca-

tions in blood vessels or adapting it to other structures that can

be modeled using templates. In addition, correlation analysis

based on these detections would be an important future task,

specifically from the viewpoint of Physics. Taking junctions

and terminals as examples, the distance between defects

along the domains is known to characterize transformations

of labyrinthine patterns [11]. Such a correlation analysis is

also eagerly awaited to characterize the material properties in

a more accurate and statistical manner.
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