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Abstract

Micron-scale robots (ubots) have recently shown great promise for emerging med-
ical applications, and accurate control of pbots is a critical next step to deploying
them in real systems. In this work, we develop the idea of a nonlinear mismatch
controller to compensate for the mismatch between the disturbed unicycle model
of a rolling pbot and trajectory data collected during an experiment. We exploit
the differential flatness property of the rolling pbot model to generate a map-
ping from the desired state trajectory to nominal control actions. Due to model
mismatch and parameter estimation error, the nominal control actions will not
exactly reproduce the desired state trajectory. We employ a Gaussian Process
(GP) to learn the model mismatch as a function of the desired control actions, and
correct the nominal control actions using a least-squares optimization. We demon-
strate the performance of our online learning algorithm in simulation, where we
show that the model mismatch makes some desired states unreachable. Finally,
we validate our approach in an experiment and show that certain error metrics
are reduced by up to 40%.
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1 Introduction

Interest in micron-scale robots (ubots) has grown exponentially in recent decades [1].
Medical applications have been of particular interest, including drug delivery [2, 3],
biopsy [4], microsurgery [5], and cellular manipulation [6-9]. Despite these advances,
there are numerous challenges associated with the control of pbots. The extremely
small scale of pbots incentivizes novel actuation techniques, such as electrophoretic
actuation [10], optical actuation [11], magnetic field actuation [12], thermal actuation
[13], or by attachment to swimming microorganisms [14]. The small size of pbots also
implies that Brownian motion plays a significant role in their dynamics (see [15, 16]).

In this article, we explore the dynamic behavior of rolling pbots (see [17, 18] for
further details); our pbots consist of microspheres coated with strips of nickel, which
cause them to rotate and align with an externally applied magnetic field. The 3D
magnetic field system induces a rotating moment on the pbot, which causes it to
roll along the substrate surface during experiments. Using a magnetic field to induce
rolling requires significantly less energy than other actuation methods, e.g., translating
particles using strong magnetic gradients. Our pbots are non-toxic to living cells,
and can be embedded within cells without damaging them (see [17]). This makes the
rolling pubots an ideal candidate for emerging medical applications involving cellular
manipulation.

A similar vision-based control system to manipulate rolling pbots was presented
in [19], where the authors use visual feedback to navigate through an environment
with impurities and obstacles. In contrast, we propose an open-loop strategy that pre-
processes a reference control signal to minimize tracking error. Thus, our approach is
easily extensible to receding horizon control and other closed-loop feedback strategies
that periodically re-plan to compensate for drift. Another system for manipulation
and control with the micron scale “rod-bot” was introduced in [20]. In that work, a
rod-shaped robot was magnetized to roll subject to a global magnetic field. A learning-
based approach to controlling swimming micron-scale robots is discussed in [21]. The
swimming robot has a corkscrew-like shape, which propels it through the fluid environ-
ment. The authors use a neural network to learn a set of control actions that drive the
agent in a circle; in contrast, we propose a model-based learning technique that com-
pensates for model mismatch and parameter estimation errors. A recent survey [22]
further details different actuation techniques and resulting motion control strategies
for magnetically-actuated micron-scale robots.

Inspired by [23], in this work we derive a nonlinear mismatch controller to compen-
sate for model mismatch and disturbances in the tracking controller for an individual
pbot. This technique can be used with feedback linearizable and differentially flat sys-
tems, where a nominal model is used to generate control actions based on a reference
trajectory. In addition to learning the model parameters from data, our nonlinear
mismatch approach learns the model’s error as a function of the state and control
variables. Unlike the approach of [23], we correct the control signal generated by our
model rather than updating the reference state. We also show that this minimizes the
tracking error of the pbots, which implies significantly better performance compared
to parameter estimation alone.



In addition to the novelty of our experimental testbed and application, we make
the following contributions to learning for control systems:

e we adapt the inverse nonlinear mismatch approach of [23] from a 1D LQR
minimization to a nonlinear mismatch approach for the 2D tracking problem,

® we derive an explicit functional form of the ubot’s velocity error, which demonstrates
the nonlinear effect of model mismatch error on the dynamics,

® we explicitly correct the model mismatch through a least-squares optimization, and

® we demonstrate improvement in the pbot’s tracking capability in simulation and
experiment, and show that our online learning approach is real-time implementable.

The remainder of this article is organized as follows: We formulate the tracking
problem in Section 2 and present our learning approach in Section 3. Simulation and
experimental results are included in Section 4, and we draw conclusions and discuss
future work in Section 5. Finally, information on the experimental testbed and ubot
fabrication is presented in the Appendix.

2 Problem Formulation and Approach

We model the pbot as a unicycle that navigates a 2D environment by rolling along a
planar surface subject to a disturbance term,

cos(«)
sin(«)

p:aof[ }—FD, (1)

where p € R? is the position, ag € R~q is an empirically determined constant, f, o €
R are the control inputs that determine the robot’s rolling frequency and heading,
respectively, and D € R? is a disturbance term. This is illustrated in Fig. 1, along
with microscope images of the pbot.

Z

Fig. 1 Left to right: Schematic illustrating the effect of the magnetic field angle a on the motion of
the pbot, fluorescent and brightfield microscopy images of ubot.

Our objective is to design a low-level controller that tracks a desired open loop
trajectory wvg(t) over some time interval ¢ € [0,7] C RR. A control block diagram



outlining our nonlinear mismatch controller is presented in Fig. 2, and we present our
working assumptions next.
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Fig. 2 A control block diagram showing how our proposed system (yellow box) transforms the
desired velocity signal (vg) into a desired rolling speed (ag) using the learned model; the Nonlinear
Mismatch block yields the corrected output o* that is sent to the system.

Assumption 1. The environmental disturbances and model mismatch are isotropic
and do not depend on the pbot’s position p.
Assumption 2. The error in aligning the pbot to the magnetic field is negligible.

Assumptions 1 and 2 simplify the learning process and are reasonable for the
laboratory environment. The disturbance acting on the pbots is primarily Brownian
motion, which acts uniformly at random to disturb the velocity. Assumption 1 could be
relaxed by having the pbots infer hydrodynamic disturbances caused by heat, density,
and chemical concentration differences, e.g., using an approach similar to [24]. In
previous work, we have also found that the alignment of pbots to the global magnetic
field is nearly instantaneous (see [25]), which motivates Assumption 2.

Assumption 3. The pbot is controlled to roll at a constant rate, i.e., f(t) is a
constant.

Assumption 3 does not affect the derivation of our controller, and it is not restric-
tive on our analysis; it can be relaxed by including f(¢) as an argument in the Gaussian
Process (GP). This increases the amount of training data and learning time, but not
prohibitively so. Furthermore, the pubots operate orders of magnitude faster than most
medical applications require, and operating them with a constant rolling frequency is
a common practice [17].

3 Learning-Based Controller

The pbot’s dynamics (1) are differentially flat with the output variables y = [p®, p¥]T
(see [26]). A system is differentially flat if and only if the state and control variables
z(t) € X € RN u(t) € U C RM can be written as an explicit function of output
variables y C RM and a finite number of their derivatives (see [27]). This implies the
existence of a diffeomorphism (smooth bijective mapping) between the original space
X x U and an output space Y. Thus, we can analyze the simpler integrator system
in ) to generate control actions that map back to the original nonlinear system in
X xU. The differential flatness property enables us to write the ubot’s desired control



actions as an explicit function of a desired velocity,

vy — DY
agq = arctan [ ——— |,
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where * denotes model parameter estimates, and the superscripts z,y denote the
corresponding Cartesian vector components.

In general, the parameter ag cannot be measured directly (see [18]), and it is likely
a function of the rolling frequency f, properties of the workspace fluid, local chemical
concentrations, temperature, and asymmetry in the pbot. Similarly, the disturbance
D includes model mismatch terms, stochastic Brownian motion, and other micron-
scale disturbances. Substituting the model (2) directly into the dynamics (1) yields

the realized velocity,
v:@(vdff))+D, (3)
ao

which is a function of the model parameter mismatch Zg and disturbance mismatch

D — D. Note that (3) is a nonlinear function of the model parameter Gy and the
disturbance model ﬁ, which explains why a model parameter estimation alone is
insufficient to achieve a desired trajectory.

To enhance our ability to track the desired trajectory beyond the capability of
parameter estimation, we follow the approach outlined by [23] and explicitly define a
velocity error v,

Ve =V — vy, (4)

which has the explicit functional form,

ve:vd(@—l)—l—D—@ﬁ. (5)
aop Ao

Thus, our objective is to learn the velocity error v, as a function of a, f (both come
from vy through (2)) and the arguments of D. Then, given an estimate of v, we update
the control inputs a and f to compensate for the model mismatch and disturbances.
Note that if we replace the desired velocity vy in (4) with a velocity command vepq
meant to minimize our tracking error, the resulting velocity is,

Vemd(a) + ve(a) = v, (6)

where we seek to select « such that the difference between v and vy is minimzied. We
achieve this by first learning the velocity error v, as a function of o under Assumptions
1-3 using GP regression. This determines, in a probabilistic manner, what underlying
function fits the velocity error for a given pbot.. Then, we substitute our model into
Vemd, and select the value of « that minimizes our pbot’s deviation from the desired
velocity.



3.1 Optimization-Based Controller

To learn the velocity error for our pubot, we employ a GP. A GP is completely defined
by its mean u(a) and kernel (or covariance) K (a, o) functions. The prior of the mean
is generally zero, while the kernel describes a statistical distribution over a function
space. For accurate regression, the kernel should be a basis for the underlying function
ve(a). In this work, we learn the velocity error v, from experimental data, where the
two Cartesian axes of v, are each captured by a GP. This yield a Gaussian distribution
at each point a*, with a mean that predicts the expected value of v, () and a standard
deviation that predicts the uncertainty in that estimate. We exploit this property to
predict model mismatch and correct our control input before acting on the system,
and the resulting error bounds could also be exploited by a high-level planner as a
measure of the trajectory’s robustness.

Substituting our learned model into the velocity command vem,q of (6), and
assuming the GP has sufficiently learned the velocity error function v., implies

cos(w)
sin(«)

f[ ]+ﬁ+u<a>=v<a>, (7)

where p is the GPs’ estimate for each component of the velocity error. To minimize
the velocity error of our pbot, we perform a least squares minimization of (7) from
the desired velocity, i.e.,

min [[v(a) — val[*. (8)

Applying Assumptions 1-3 and expanding (8) yields a one-dimensional least-squares
cost function,

J(@) = (a0f cos(a) + (@) + D7 — o) + (a0 sin() + p(a) + DV —03)". ()

Expanding the cost function and applying the Pythagorean identity yields,

M) = (ol + ) + D = wall + 200 (w(e) + D~ %) - [ 2] (10

Thus, at each time instant, we seek the value of « that minimizes the least squares
error, i.e.,

J(@) = amin (a0f)® + [lu(e) + D — vl + 200 (@) + D =) {2?583] ’

(11)
which is a 1D, bounded, continuous, and differentiable optimization problem.

3.2 Online Learning

We train the GP during an initial learning phase, where the ubot is given a sequence
of control inputs, either from a human operator or open-loop control sequence. We



collect position and control action data for the ubot at discrete time steps tj; we denote
the position data by P = {p(tx)} and action data as X = {a(t;)}. We calculate
the actual velocity v(tx) by taking a numerical derivative of P and passing the result
through a low-pass filter; this yields the achieved velocity of the pbot at each step,
which we store in the set V = {v(tx)}. Once the data is collected, we estimate the
model parameters and desired velocity as follows.

First, we estimate D by applying a control input of f(t) = a(t) = 0 which yields,

p=D. (12)

Taking the expectation of both sides yields the mean disturbance,

> Jjo(ty)|| = E[D] = D, (13)

| | v(tg)EV

1

where |- | is set cardinality. Note that for systems subject to purely Brownian motion,
D=o.

Next, we determine ag using data from an open loop control sequence; taking the
expectation of (1) and squaring both sides yields,

E[||lv - D||)* = a2f>. (14)

We estimate the expectation of v using the data set V; this yields the best statistical
estimate for ag,

. 1 v(ty) — D
v(tp)EV
Finally, the resulting set of velocity errors is

y:{%quwzv@qumﬁ, (16)

where vy(tx) is the desired velocity of the pbot at each time t;. We use (16), in
conjunction with our empirical model (2), to generate the velocity error and control
action at each time step. With this data, we compute a posterior distribution on the
mean and standard deviation of the GP to determine the expected velocity error and
its uncertainty for each control input.

4 Experimental Results

We validated our learning approach in silico and in situ!; we present our simulation
results in Subsection 4.1 and experimental findings in Subsection 4.2. In both cases, we
first perform an online learning step, where we apply a pre-computed control input to
generate training data. Then, to validate our learning approach, we apply a pre-defined

1Videos of the experiments and supplemental material are available online: https://sites.google.com/udel.
edu/l4ub
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sequence of control actions in open-loop with and without the Nonlinear Mismatch
module (Fig. 2). This yields the corrected and baseline cases, respectively, which we
use to explicitly quantify the impact of our approach.

We implemented our GP approach using the Scikit-Learn toolbox (see [28]) for
Python3, which provides an API to easily select a large number of kernels and train
the GP. Scikit-learn also automatically optimizes the kernel hyperparameters dur-
ing training, and this provided powerful insights for kernel selection. In particular,
some hyperparameters for the rational quadratic, Matern, and periodic kernels grew
arbitrarily small during training, which implies that these kernels include extraneous
dynamics that don’t describe the true behavior of the rolling pbot’s velocity error. We
found that a linear combination of a radial basis function and white noise yielded a
kernel that adequately captures the velocity error of the rolling pbot,

o — o]

K(a,a') =exp 5
o

+1, (17)
where o is a length hyperparameter and 7 is drawn from a normal distribution where
the mean is zero and the variance is another hyperparameter.

4.1 In Silico Experiment

We developed a pbot simulator as an OpenAl Gym? environment in Python3. We
implemented two simulation modes using a ‘model-mismatch’ flag, which disturbs the
model parameters and adds stochastic zero-mean noise to mimic a physical experiment.
Omitting this flag uses the exact model parameters with no noise to generate the
desired system trajectory. We implemented the learning approach of Section 3 as
follows. First, we applied zero input over 100 time steps (3 seconds) with the ‘model-
mismatch’ flag to estimate the mean disturbance using (13). Next, we generated a
sequence of control inputs that swept the entire control domain a € [—, 7] three times
over 1800 time steps (60 seconds) with the ‘model-mismatch’ flag, which produced
our training data. In training, we estimated do and updated the GPs using (15) and
(16), respectively. Finally, to validate our approach, we performed three experiments
in silico; 1) we generated the desired trajectory without the ‘model-mismatch’ flag,
2) we generated the baseline trajectory by repeating the experiment with the ‘model-
mismatch’ flag enabled, and 3) we updated the reference control inputs using (11) to
generate the corrected trajectory with the ‘model mismatch’ flag.

Fig. 3 shows the resulting desired, baseline, and corrected trajectories overlaid
for 100 trials with the same initial state. While the learning component significantly
improves the velocity tracking, it is unable to completely compensate for the model
mismatch—even in an environment with no noise. The velocity error estimate for one
trial is presented in Fig. 4, which demonstrates that the GP has captured a reasonably
good estimate of the velocity error at each time step. This implies that the nonlinear
mismatch approach is unable to achieve perfect tracking for the system, which is likely
related to the reachability of the system’s dynamics (7). This stems from correcting
the z and y components of the velocity error while only controlling «.

2For more information on the Gym environment see: https://github.com/openai/gym
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Fig. 3 The desired, (blue, dashed), corrected (green), and baseline (orange) trajectories from 100
different trials of the in silico experiment.
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Fig. 4 The GP’s prediction of the z (left) and y (right) axis velocity errors at each time step; orange
bands correspond to one standard deviation (65%), and the blue band corresponds to two standard
deviations (95%) of uncertainty.

4.2 In Situ Experiment

We repeated the same procedure from Section 4.1 using 24um pbots over 300 time steps
(10 seconds) at the experimental facility at the University of Delaware (the setup is
described in the Appendix). The resulting desired, baseline, and corrected trajectories
are presented in Fig. 5, along with the drift error for the baseline and corrected cases;
photos of an experiment with the trajectories overlaid are presented in Fig. 6.

The left image in Fig. 5 shows significant improvement in the pbot’s ability to
track the open-loop trajectory, and the right image shows the that the ubot’s drift was
reduced by at least 6 pixels (3.7 microns) along each axis for the majority of the exper-
iment. To calculate the pbot’s drift, we subtracted the desired and achieved velocity
of the particle along each axis to calculate the velocity error. Next, we performed a
cumulative trapezoidal integration on the absolute value of the velocity error, which
quantified the worst-case scenario for how far the pbot could drift.

The median velocity error along each axis is presented in Table 1, along with the
error in the pbot’s final position for each case. These results show that despite the poor
tracking in the final 3 seconds, our learning controller significantly reduces the drift of
the pbot by matching the desired open-loop control policy and brings the pbot closer to
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Fig. 5 Left: a comparison of the baseline (orange), corrected (green), and desired (blue, dashed)
trajectories from the in situ experiment. Right: improvement in the cumulative drift of the pbot
between the baseline and corrected caeses.

the desired final position. Due to the nature of the experimental environment, it is not
uncommon for unexpected disturbances, such as stiction, debris, and nearby magnetic
particles, to disturb the pubot’s trajectory in a way that our tracking controller cannot
compensate for (see the Appendix). These exogenous factors are the source of error
in the last 3 seconds of the corrected experiment.

T
Sl i oy

Fig. 6 Snapshots of another baseline (top) and corrected (bottom) experiment, taken approximately
every 8 seconds apart and showing the pbot with the position history overlaid.

‘ Baseline Corrected Improvement
Final Position Error | 19.85 px  (12.56 microns) 11.28 px (7.14 microns) 43 %
Median v; Error 1.88 px/s  (1.19 microns/s) 1.13 px/s  (0.72 microns/s) 40 %
Median v, Error 1.26 px/s  (0.80 microns/s)  0.97 px/s  (0.61 microns/s) 23 %

Table 1 Errors for the physical pbot experiment; the median uses the absolute value of the error.
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5 Conclusion

In this article, we developed a nonlinear mismatch controller to improve the perfor-
mance of a tracking controller in 2D. We motivated the use of nonlinear mismatch
over a parameter estimation scheme, and we proposed a least-squares based optimiza-
tion problem to minimize the tracking error. Finally, we demonstrated in simulation
and experiments that our approach significantly improves the tracking performance
of rolling pbots.

Future work includes relaxing Assumption 3 and including f as parameter in the
model mismatch. Deriving guarantees on the resulting velocity error using fixed-point
analysis is another interesting research direction; employing the GP’s uncertainty esti-
mate as a measure of robustness in a high-level planner may also yield useful insights.
Embedding our low-level controller inside of an MPC path planner to avoid undesired
collisions with cells and counteract Brownian diffusion in-situ is another critical next
step for this work. Finally, expanding our approach to control multiple pbots simul-
taneously would advance the state of the art, and bring us one step closer to solving
fundamental challenges in emerging medical applications.

Appendix: Experimental Setup

The experimental setup is a 3D Helmholtz system based on the Jetson Xavier NX as
described in [29]. We read frames from the FLIR BFS-U3-2855M-C USB 3.1 Blackfly®)
S Monochrome Camera, which extracts the ubot’s positions from a Zeiss Axiovert 100
inverted microscope. Similar to [18], we convert our control commands into a rotating
3D magnetic field via,

B, cos(7y) cos(a) cos(2m ft) + sin(«) sin(27 ft)
B = |By| =||B|| | —cos(v) sin(c) cos(27 ft) + cos(a) sin(2w ft) | , (18)
B, sin(y) cos(27 ft)

where B € RR? is the magnetic field strength, v € R is the constant inclination
(azimuthal angle) of the magnetic field, and «, f € R are the control actions, which
control the heading angle and rolling frequency of the pbot. These action commands
are then sent from the Jetson Xaiver to an Arduino Mega via UART to be executed,
which allows the 3 phase sine waves to be generated independent of the computer
vision software. This allows for higher frequencies, and thus, faster rolling speeds.
The pbots are constructed by plasma cleaning a plain glass slide on high for 5
minutes, wherein 24 um paramagnetic, fluorescent microspheres (Spherotech® FCM-
10052-2) mixed with ethanol are drop casted and left to dry. The microspheres are
coated with a 100 nm thick layer of Nickel in a dual electron beam deposition chamber,
which increases the pbot’s magnetic moment. Due to the inherent surface properties
of the pbot and the substrate surface, there are often very large attractive forces
that result in the pbot sticking to the surface, hindering its motion. This is highly
unpredictable and quite common despite adequate cleaning of the microscope slide
surface. As a result, two additions were made to the experimental procedure to help
reduce the likelihood of sticking. Firstly, the plasma cleaned glass slide was additionally

11



incubated in a PFOTS (1H,1H,2H,2H-perfluorooctyltrichlorosilane) vapor at 85°C for
30 minutes. This results in a hydrophobic surface that allows the ubot to more easily
roll across the surface. Secondly, instead of suspending the pbot’s in DI water, they
are suspended in a 0.1 % solution of Sodium Dodecyl Sulfate, which is a surfactant.
Although this reduces the rolling speed of the microrobot due to the increased viscosity,
it significantly reduces the chances of the microrobot sticking.
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