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Abstract— The control of swarm systems is relatively well
understood for simple robotic platforms at the macro scale.
However, there are still several unanswered questions about
how similar results can be achieved for microrobots. In this
paper, we propose a modeling framework based on a dynamic
model of magnetized self-propelling Janus microrobots under
a global magnetic field. We verify our model experimentally
and provide methods that can aim at accurately describing
the behavior of microrobots while modeling their simultaneous
control. The model can be generalized to other microrobotic
platforms in low Reynolds number environments.

I. INTRODUCTION

Living organisms that are capable of remarkable large-

scale organization and coordination—the kind of which seen

in fish schools, vegetation patterns, or microbial mats—are

hypothesized to coordinate their behavior by using a mix

of short and long-distance interactions, including physical

contact and chemical communication. It is reasonably well

understood how to engineer coordination in large collections

of relatively simple communication-sensing-actuation plat-

forms at the macro scale [1]. However, there are many open

questions about how similar behaviors can be achieved at

the micro scale (<100 micron). Micron scale robots have

seen a lot of interest in the last three decades [2] due to

their potential applications in fields such as targeted drug

delivery [3], [4], cleaning clogged arteries, cell sorting,

biopsy [5], cell manipulation [6]–[9], microsurgery [10],

mixing of particles [11], and micro-assembly [12], [13].

Since actuators and transducers cannot be scaled down to

the micron level, numerous actuation techniques have been

proposed for microrobots, including electrophoretic actuation

[14], optical actuation [15], magnetic field actuation [16],

thermal actuation [17], and by attachment to swimming

microorganisms [18]. In spite of this progress, there are

several challenges associated with controlling multiple mi-

crorobots simultaneously at low Reynolds numbers. First,

microscopic, or kinematic, reversibility means that actions at

the microscale are time-independent. Second, fluid motion

at the micro and nanoscale imparts Brownian motion, and

thus the trajectory of any driven robot in a solution tends

to become stochastic over measurable intervals of time due

to Brownian diffusion [19], [20]. Third, controlling multiple

magnetic microrobots simultaneously presents a challenge.
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This comes from the fact that all the microrobots receive the

same global control signal, which couples their dynamics.

Finally, there is either a repulsive or attractive force between

magnetic microrobots due to the magnetic field gradients

generated by each individual. This attraction and repulsion

can be manipulated to navigate the individual microrobots by

controlling the orientation of the magnets with the external

field [21]. Methods that use selective electrostatic clamps

[16], [22] or inconsistencies in the field [23] to navigate

individual microrobots have been successfully demonstrated.

However, these approaches require structured and striped

surfaces and environments. Even with these issues resolved,

interference between microrobots in a group yields a smaller

net velocity than an unaccompanied microrobot [24].

Previously, ensemble control of multiple microrobots with-

out the application of heterogeneous control schemes or

specialized substrate surfaces was introduced in [19], where

we combined magnetic control with catalytically powered

microrobots. In particular, we designed microrobots that were

powered by chemical reactions [25], and were steered by

a global magnetic field. These microrobotic systems utilize

commercially available paramagnetic colloids and overlay

their inherent heterogeneous magnetizations with the restric-

tions of catalytic self-propelled motion.

A. Motivation

While there have been a number of control algorithms for

multi-agent robot systems [26], a good model of microrobot

motion is necessary before model-based control algorithms

can be developed. The motion of these microrobots depends

on a number of microscale forces, e.g., surface tension,

surface friction, and viscous forces. An accurate estimation

of these forces is very challenging. For example, in our

previous work [19], we attempted to model the behavior of

the catalytic magnetic microrobots using a simple kinematic

model. This kinematic model had only two parameters: the

magnetic field strength, which was a binary on-off signal, and

the initial speed of the microrobots. However, this kinematic

model was insufficient to model the simultaneous control

of multiple microrobots as it did not accurately capture the

dynamics of the microrobots and the associated acting forces.

In this paper, we introduce a stokes flow based mathematical

model that accurately models these multifunctional catalytic

and magnetic microrobots. We also demonstrate that this

model accurately describes the simultaneous control of mul-

tiple catalytic and magnetic microrobots.

These microrobots are different from the purely phoretic

swimmers in [27], since they have a magnetic component



along with the catalytic reaction driving their motion. The

magnetic field is designed to be weak and not drive the

forward motion of the microrobots, instead it act as a steering

knob to control the orientation of multiple microbots simul-

taneously. In addition, these microrobots are confined to 2D

due to their hydrodynamic interactions with the environment,

as described in [19], [25]. Using our proposed physics-based

model, we are able to match the simulated behavior of a

microrobot experiment in simulation.

This remainder of the paper is structured as follows. In

Section II, we describe the experimental design for the

catalytic microrobots and demonstrate the previous results.

In Section III, we provide a mathematical model of micro-

robot motion. In Section IV, we demonstrate our modeling

approach and how it pertains to the experiments. Finally, in

Section VI, we delineate the conclusions and directions for

future research in this domain.

II. SYSTEM DESCRIPTION AND EXPERIMENTAL RESULTS

Catalytic microrobots [28] self propel at the microscale

using the decomposition of hydrogen peroxide (H2O2) by

platinum into water and oxygen. This mode of propulsion

has become fairly popular in microrobotics, with a multitude

of catalytic powered microrobots being developed [19], [29],

[30]. Their thrust mechanism is self-electrophoretic by na-

ture [31]. Self-propelled microrobots are appealing devices

for various microscale tasks, as they are capable of fully

autonomous motion [3]. Our magnetic Janus microrobots

consist of a non-catalytic hemisphere and a platinum-covered

hemisphere, which provide the particle with a propulsion

force due to catalytic decomposition of the hydrogen per-

oxide on the platinum surface. The Janus microrobots also

incorporate a magnetic component in the form of embedded

magnetic particles, which allow the microrobot to align its

magnetic moment along the direction of an external magnetic

field [32]. Incorporating these magnetic particles enables

the orientation of all Janus microrobots to be controlled

simultaneously through an external magnetic field.

Our system consists of 4.6 µm spherical polystyrene

particles doped with magnetic nanoparticles. These catalytic

Janus spheres are prepared by spin coating a 0.1% (by

weight) dispersion of paramagnetic polystyrene microspheres

(Spherotech, diameter = 4.6 µm) from ethanol onto freshly

cleaned glass microscope slides. A 10 nm thick layer of

platinum (> 99.9% Sigma Aldrich) is then evaporated onto

one side of the microspheres under vacuum in a Lesker

PVD75 electron beam evaporator. The magnetic field is

generated using four identical in-plane electromagnetic coils.

In our earlier work [19], we demonstrated simultaneous

steering of multiple Janus microrobots to arbitrary locations

using four, in-plane, electromagnetic coils. The Janus micro-

robots were contained in a solution of H2O2 within a sealed

chamber in the center of the setup. Each microrobot’s for-

ward velocity was controlled by catalysis, resulting in motion

directed along the axis that passes through the center of the

catalytic cap. The microrobots’ heading was controlled via

magnetization. Since the magnetic microrobots have different

directions of magnetization, relative to the hemisphere of

the catalytic caps, we obtained different directions of motion

from a uniform global magnetic field. We also demonstrated

open loop control of multiple microrobots using a single

uniform global magnetic field (see supplementary video 1),

and were able to move the microrobots in three different

directions simultaneously.

III. MATHEMATICAL MODELING

The control of multiple Janus microrobots is challenging,

as it is underactuated and operates under a single global

magnetic signal. Thus, the development of a simple yet

accurate analytical model is critical to develop novel model-

based control methods. Motivated by previous work and

the geometry of the experimental setup [19], we model the

particles as rigid bodies in the R
2 plane.

A. Equations of Motion

We express the motion of the particle using Newtonian

dynamics, with a fixed workspace reference (xo, yo, zo), to

describe the motion of a magnetic Janus microrobot in a

viscous fluid,

Fm(t) + Fhd

(

v(t)
)

+ Fprop(θ) + Fe(t) = m
dv(t)

dt
, (1)

Tm(t) + Thd

(

ω(t)
)

+ Tprop + Te(t) = J
dω(t)

dt
, (2)

where t ∈ R>0 is time, Fm(t) ∈ R
2 and Tm(t) ∈ R

are the force and torque imposed on the microrobot by the

magnetic field, respectively; Fhd(t) and Thd(t) represent the

hydrodynamic drag force and torque, respectively; Fprop and

Tprop are related to the self-propulsion mechanism; Fe and

Te correspond to the other external forces and torques; m

and J are the mass and the moment of inertia of the particle,

respectively; v and ω are linear and angular velocities of the

particle, respectively.

B. External Magnetic Control

The particle with magnetization M experiences a force

and torque when in the presence of a magnetic field, B. The

Biot-Savart equation describes the magnetic field engendered

by a current loop,

B =
µ0

4

∫

C

I(t) l̂

|l|2
ds, (3)

where µo is the permeability constant for air, I(t) is the

current passing through the loop of wire, l̂ is the unit vector

from the wire segment to a point of focus in the workspace,

and a closed-loop integral is taken around the entire current

loop, C, for each wire segment ds.

The underlying principle for the navigational control of the

microrobots is to control the magnetic field, B, in order to

induce the magnetic force and accompanying torque on the

magnetized particle operating in the R
2 plane. The magnetic

force and torque generated by a magnetic flux B is

Fm(t) = V (M · ∇)B(t), (4)

Tm(t) = V (M×B(t)) · ẑ, (5)



where V is the volume of the robot, M is the magnetization

of the robot, and ẑ is a unit vector pointing out of the

R
2 plane. In practice, the externally applied magnetic fields

are designed to engender minor forces on the microrobots

and substantial torques. Hence, magnetic forces are negli-

gible relative to catalytic forces, yet torques cause nearly

instantaneous reorientation of microrobots. Thus, in the later

derivation of our model, we will neglect the effect of (4)

on microrobot motion. The value for the magnetization of

the microrobot, M, depends on the geometry and material

properties of the microrobot.

C. Hydrodynamic Interactions

In our analysis, we use the Navier-Stokes equations to

model the hydrodynamics of a rigid body moving through a

fluid. Assuming a steady, incompressible viscous fluid with

low Reynolds number, the drag force, Fhd, and torque, Thd,

on a spherical Janus microrobot [33] are given by

Fhd

(

v(t)
)

= −6π η r v(t) (6)

Thd

(

ω(t)
)

= −8π η r3 ω(t), (7)

where r is the radius and velocity of the particle and η is

the dynamic viscosity of the fluid medium.

D. Catalytic Propulsion

The magnetic Janus microrobots are covered with plat-

inum on one half and swim in 5-20% H2O2 solution. They

produce forward momentum via the catalytic conversion of

hydrogen peroxide into water and oxygen by platinum, which

gives rise to protons. Due to the unevenness of the platinum

cap thickness, an ionic gradient is generated on the platinum

cap between the poles and equator. The resulting current

drives each microrobot, and they swim with their polystyrene

side forward [19], [34]. For all such catalytic microrobots,

their self-propulsion occurs with no external energy supply,

and their thrust mechanism is self-electrophoretic by nature

[31]. The terminal velocity of a Janus particle is highly

dependent on its size [35], and the self-propelling force that

acts on it is proportional to the concentration of H2O2 in the

environment [25], i.e.,

Fprop(θ) ∝ C(H2O2)Rθx̂, (8)

where C(H2O2) is the concentration of H2O2, and Rθ

describes the rotation of the microrobot’s polystyrene face

relative to the reference axis, x̂. The effect of catalytic

propulsion is negligible, and thus we let Tm = 0 for our

analysis.

E. External Disturbances

The external disturbance force and torque terms include

any relevant external nano-scale forces, e.g., electrostatic,

van der Waals, and thermal actions. In this paper, the

motion of a microrobot is assumed to be disturbed only by

random fluctuations, which we consider to be Brownian. The

Langevin equation is frequently used to model the Brownian

motion is Fe(t) =
fξ(t) , Te(t) =

tξ(t), where fξ(t) and
tξ(t) represent the stochastic force and torque due to random

fluctuations, respectively.

IV. PROPOSED PHYSICS-BASED MODEL

In this section, we derive a simplified physics-based model

of the micro-robot using standard linear control techniques

[36]. We take the expectation of (1) and (2) with respect to

Fe and Te, respectively, and we neglect the force imposed

on the Janus particle as it moves through the magnetic field.

For (1), this yields a deterministic equation that captures

the interaction between the self-propelling force and the

hydrodynamic drag, i.e.,

mv̇(t) = FRφu(t)− 6πηrv(t), (9)

where m is the mass of the particle, F = |Fprop(θ)| is

the magnitude of the self-propelling force, u(t) is a unit

vector pointing in the direction of the magnetic field, Rφ is

a rotation matrix that captures the offset angle between the

particle’s direction of motion and the magnetic field, and the

remaining hydrodynamic terms come from (6). Note that the

Brownian motion terms do not appear in (9), as it has zero-

mean. Several parameters of (9) have standard values, and to

determine the magnitude of the self-propelling acceleration

we extracted position and velocity data from a portion of the

experimental data presented in [19] (see supplementary video

1). Using this data, we estimated the terminal velocity of each

particle and applied (9), i.e., let v̇(t) = 0, to determine the

value of F for each particle. These values are presented in

Table I.

TABLE I

SELF-PROPELLED PARTICLE DATA FIT THE EXPERIMENT, DATA AND THE

STANDARD VALUES FOR EACH SYSTEM PARAMETER.

F/m (m/s2) m (ng) η (cP) R (µm)

1.00, 1.18, 1.34 0.401 1.245 4.6

Rearranging (9) yields a first-order linear dynamical sys-

tem for the velocity of the microrobot in the direction of

Rφu(t),

v̇φ(t) +
6πηr

m
vφ(t) =

F

m
, (10)

where vφ(t) = v(t) · Rφu(t). The dynamics in (10) corre-

spond to a first-order linear system with a constant forcing

function of F
m

. Substituting the values in Table I yields a time

constant of τ = 3.72 µs, which is six orders of magnitude

smaller than the timescale of microrobotic experiments. This

also implies that the microparticle achieves 95% of its

terminal velocity within 3τ = 11.16 µs. Next, we simplify

(10) to only consider the steady-state velocity in the direction

of motion, i.e., v̇(t) = 0 at steady state,

vss = vφ(t) =
F

6πηr
, (11)

where vss is the steady-state velocity in the direction of Rφu.

As an example of this steady-state model’s accuracy, consider

that the distance a microrobot must move before the transient

period is less than 1% of the total trajectory. We estimate this

distance by taking the product of vss and 300τ , which yields,

for the values in Table I, distances of 40.3 nm, 47.5 nm, and



54.0 nm. This equates to approximately 1% of the radius of

a particle, which clearly demonstrates that there is no benefit

to utilizing Stokes’ Drag compared to a first-order terminal

velocity model.

Next, consider the rotational forces that impact the motion

of a particle. We take the expectation of (2) with respect to

the external disturbances and let Tm = 0. The expectation

yields the deterministic interaction between the torque im-

posed by the magnetic field (5) and hydrodynamic drag from

Stokes’ Law (7),

Iω̇(t) =
(

(dRφRθx̂)× (u(t)B)
)

· ẑ− 8πηr3ω(t), (12)

where I is the moment of inertia of the particle, d is the

magnitude of the particle’s dipole moment, u(t)B = B(t)
denotes the external magnetic field, and ω(t) is the angular

rotation rate of the particle in the R
2 plane. This implies a

linear first-order system with a non-linear forcing function,

ω̇(t) +
8πηr3

I
ω(t) =

(

(RφRθx̂
T × u(t))

)

· ẑ
B d

I
, (13)

which, using the parameters Table I, yields a time constant

of τ = 1.11 µs. Note that while the forcing function contains

the angle of the particle, i.e., θ̇(t) = ω(t), it is equal to zero

when the particle’s dipole is aligned with u(t). Additionally,

the dynamics of (13) drives the forcing function to zero.

Therefore, we expect ω(t) to decay to zero, and the particle

to align with the magnetic field, with the same order of

magnitude as the time constant.

Thus, as with the linear motion, we expect the particle to

align with the magnetic field on a timescale that is orders of

magnitude faster than the timescale of motion control. This

leads to our final first-order dynamic model for motion of a

Janus particle,

ṗ(t) = vssRφu(t). (14)

Our analysis shows that our proposed model will have a

negligible variation from a Stokes’ drag-based model, and

in the following section we show that it incurs a lower

computational cost. Finally, note that while our model is not

stochastic, one could argue that it is impossible to predict

the exact values that the Brownian motion will take in a

physical experiment. Therefore, having a computationally

fast microrobot model will allow real-time feedback control

techniques that compensate for particle drift throughout the

experiment.

V. EXPERIMENTAL VALIDATION

To validate our model, we simulated the 3-particle experi-

ment from [19] using our proposed model and compared it to

the full dynamic model using Stokes’ law. In this experiment,

each particle moves in a straight line for 2–6 seconds while

the control input (magnetic field direction) remains constant.

We extracted the initial position of the particles from a

video recording of the experiment and estimated the terminal

velocity of each particle over one time interval of constant

control input to derive the values of F in Table I. Next,

to determine the value of φ for each particle, we applied a

linear regression over the same interval. These parameters

are listed in Table II along with the experimental results,

which we discuss next.

TABLE II

PARTICLE ANGLE AND RESULTING ROOT MEAN SQUARE ERROR (RMSE)

FOR THE SIMULATED PARTICLES TO TRACK THE EXPERIMENT.

φ RMSE (Approach 1) RMSE (Approach 2)

Particle 1 -1.09 rad 4.11 µm 6.91 µm
Particle 2 3.82 rad 5.62 µm 5.56 µm
Particle 3 2.64 rad 4.02 µm 5.77 µm

First, to demonstrate the benefits of our approach over

the full model, we performed each of the simulations using

Stokes’ law (10) and our proposed model (11) to compare

their accuracy and computational cost on a desktop PC

(intel i5-3570, 12 GB Ram). We simulated the microrobots

in Matlab R2018b using a standard stiff numerical solver

(ODE15s) for the Stokes’ law model and a forward Euler’s

method with a time step of approximately 0.02 seconds

for our proposed model. Table III presents the results of

these experiments, where the computational time is averaged

over 100 runs and the RMSE is relative to the experimental

data. Note that the actual time of the physical experiment

is approximately 15 seconds. Thus, while each model may

be sufficiently fast to embed in a model-based control

framework, our approach has the benefit of running 5% faster

and having no discernible impact on the overall accuracy of

the simulation. Furthermore, our model is first-order and is

therefore significantly simpler to embed in existing model-

based control frameworks.

TABLE III

COMPUTATION TIME COMPARISON FOR STOKES’ LAW AND OUR

PROPOSED MODEL.

Stokes’ Law Proposed

Runtime: 2.13 seconds 2.04 seconds
Mean RMSE : 4.59 microns 4.59 microns

Next, we performed two simulations to quantify the effect

of the particle’s terminal velocity on the accuracy of the

simulation. In the first approach, used the values of F
m

in

Table I. The trajectories of each particle for this case are

presented in Fig. 1 overlaid on the experimental data. Each

of the particles is able to track the longitudinal position of

the experimental particle within a few microns, although

in each case the experimental particles experience lateral

drift relative to their simulated counterparts. However, we

expect this drift to emerge in any model of the microrobots’

stochastic motion. To quantify the error between the physical

and simulated particles, we calculated the root mean square

error (RMSE) between the simulated and actual position at

each time step, using the experiment clock. This value is

reported in Table II for both approaches. Due to Brownian

motion, the tracking error does increase with time, however,

the RMSE at the end of the experiment is not significantly

larger than a single particle’s radius (4.6 µm).



Fig. 1. Comparison of experimental data and our simulated model, where
each particle’s terminal velocity was extracted from a portion of the data.

In our second approach, we selected the mean value

of F
m

= 1.17 m/s2 from Table I and gave each particle

an identical terminal velocity. This approach may be more

representative of our model’s performance, as the value of F

may not be known a priori. The trajectories of each particle

are presented in Fig. 2 overlaid on the experimental data.

This case leads to significantly more error, as only the median

particle with F = 1.18 (top-center of Fig. 2) is physically

similar to the imposed terminal velocity. This is confirmed in

Table II, where Particles 1 and 3 (left and right side of Fig. 2

respectively) have a higher RMSE tracking error. In fact, the

average difference in RMSE between the first and second

approach is approximately 30%, which coincides with the

the 30% average deviation in the value of F in Table I.

These observations make us feel comfortable argue that the

model is capturing the behavior of the particles, and that

the RMSE is directly proportional to the error in estimating

system parameters.

It is important to note that the microrobots are not indepen-

dent because all the particles were controlled under the same

global magnetic field. Besides, we could not pick and control

only one microrobot while keeping others unaffected under

this circumstance. The experimental validation of the model

outlines this simultaneous control in Fig. 3. Fig. 3 shows

the experimental trajectory of three microrobots in the same

workspace over the same time period and same magnetic

field switches. The directions of the global magnetic field and

microrobots at t=0s, 2s, 5s and 7s are shown. In the top pane

of the Figure, when the magnetic field is applied to the Right

(+x) at t = 0s, the three microrobots were converging on one

another. The second pane of Figure is the time when the

magnetic field switched by 90 degrees clockwise and pointed

in the Down direction (-y) at t = 2s, the particles changed

their heading by about 90 degrees clockwise. Similar changes

in the orientation of particles could be found in the third and

fourth pane of Figure. Besides, we also noticed that the angle

Fig. 2. Comparison of experimental data and our simulated model, where
all particles share a common terminal velocity.

between any two of the three particles remained the same as

the global magnetic field changed during a fixed amount of

time.

VI. CONCLUSIONS

In this paper, we demonstrated that a first-order physics-

based model of a magnetized self-propelled particle can

accurately describe simultaneous control of catalytic mi-

crorobots controlled by a single external magnetic signal.

The equations describing the microrobot dynamics can be

generalized and used for most microrobots in low Reynolds

number systems. In our exposition, first, we adapted a

deterministic physics-based model based on Stokes’ Law

and rigid body dynamics for these microrobots. Then, using

classical linear control techniques, we demonstrated that time

scale of particle motion is separable from the hydrodynamic

and electromagnetic forces, and thus their dynamics can be

separated. In addition, we showed that the proposed model is

significantly faster than Stokes’ Law to compute trajectories.

Finally, we validated the model by comparing the generated

trajectories to experimental data.

It is our hope that this approach could potentially allow us

to develop accurate motion planning and control algorithms

for these microrobots in the future. The biggest challenge

in the proposed model is calculating the two parameters,

i.e., the net dipole moment orientation, φ, and self-propelled

particle force, F , for each particle during an experiment.

One potential direction for future research is to develop an

adaptive model-based control algorithm that can estunate

these parameters online. Analyzing the controllability of an

arbitrary number of magnetically-actuated microrobots could

be another compelling direction for future research along

with generating particular desired formation for collective

transport and drug delivery. Finally, including a control term

that captures the deflection of particles in the presence of

a heated laser point is another area that deserves futher

investigation.



Fig. 3. Timelapse of the three microrobots controlled by uniform global
fields. In the top pane of this figure, three microrobots are converging on
one another. In the second pane, the field is switched 90 degrees clockwise
and the particles also switch their heading. In the third pane, the field is
switched another 90 degrees clockwise and the particles also turn another
90 degree. Similar changes in orientation happen in pane four.
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