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Abstract— The control of swarm systems is relatively well
understood for simple robotic platforms at the macro scale.
However, there are still several unanswered questions about
how similar results can be achieved for microrobots. In this
paper, we propose a modeling framework based on a dynamic
model of magnetized self-propelling Janus microrobots under
a global magnetic field. We verify our model experimentally
and provide methods that can aim at accurately describing
the behavior of microrobots while modeling their simultaneous
control. The model can be generalized to other microrobotic
platforms in low Reynolds number environments.

I. INTRODUCTION

Living organisms that are capable of remarkable large-
scale organization and coordination—the kind of which seen
in fish schools, vegetation patterns, or microbial mats—are
hypothesized to coordinate their behavior by using a mix
of short and long-distance interactions, including physical
contact and chemical communication. It is reasonably well
understood how to engineer coordination in large collections
of relatively simple communication-sensing-actuation plat-
forms at the macro scale [1]. However, there are many open
questions about how similar behaviors can be achieved at
the micro scale (<100 micron). Micron scale robots have
seen a lot of interest in the last three decades [2] due to
their potential applications in fields such as targeted drug
delivery [3], [4], cleaning clogged arteries, cell sorting,
biopsy [5], cell manipulation [6]-[9], microsurgery [10],
mixing of particles [11], and micro-assembly [12], [13].
Since actuators and transducers cannot be scaled down to
the micron level, numerous actuation techniques have been
proposed for microrobots, including electrophoretic actuation
[14], optical actuation [15], magnetic field actuation [16],
thermal actuation [17], and by attachment to swimming
microorganisms [18]. In spite of this progress, there are
several challenges associated with controlling multiple mi-
crorobots simultaneously at low Reynolds numbers. First,
microscopic, or kinematic, reversibility means that actions at
the microscale are time-independent. Second, fluid motion
at the micro and nanoscale imparts Brownian motion, and
thus the trajectory of any driven robot in a solution tends
to become stochastic over measurable intervals of time due
to Brownian diffusion [19], [20]. Third, controlling multiple
magnetic microrobots simultaneously presents a challenge.
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This comes from the fact that all the microrobots receive the
same global control signal, which couples their dynamics.
Finally, there is either a repulsive or attractive force between
magnetic microrobots due to the magnetic field gradients
generated by each individual. This attraction and repulsion
can be manipulated to navigate the individual microrobots by
controlling the orientation of the magnets with the external
field [21]. Methods that use selective electrostatic clamps
[16], [22] or inconsistencies in the field [23] to navigate
individual microrobots have been successfully demonstrated.
However, these approaches require structured and striped
surfaces and environments. Even with these issues resolved,
interference between microrobots in a group yields a smaller
net velocity than an unaccompanied microrobot [24].

Previously, ensemble control of multiple microrobots with-
out the application of heterogeneous control schemes or
specialized substrate surfaces was introduced in [19], where
we combined magnetic control with catalytically powered
microrobots. In particular, we designed microrobots that were
powered by chemical reactions [25], and were steered by
a global magnetic field. These microrobotic systems utilize
commercially available paramagnetic colloids and overlay
their inherent heterogeneous magnetizations with the restric-
tions of catalytic self-propelled motion.

A. Motivation

While there have been a number of control algorithms for
multi-agent robot systems [26], a good model of microrobot
motion is necessary before model-based control algorithms
can be developed. The motion of these microrobots depends
on a number of microscale forces, e.g., surface tension,
surface friction, and viscous forces. An accurate estimation
of these forces is very challenging. For example, in our
previous work [19], we attempted to model the behavior of
the catalytic magnetic microrobots using a simple kinematic
model. This kinematic model had only two parameters: the
magnetic field strength, which was a binary on-off signal, and
the initial speed of the microrobots. However, this kinematic
model was insufficient to model the simultaneous control
of multiple microrobots as it did not accurately capture the
dynamics of the microrobots and the associated acting forces.
In this paper, we introduce a stokes flow based mathematical
model that accurately models these multifunctional catalytic
and magnetic microrobots. We also demonstrate that this
model accurately describes the simultaneous control of mul-
tiple catalytic and magnetic microrobots.

These microrobots are different from the purely phoretic
swimmers in [27], since they have a magnetic component



along with the catalytic reaction driving their motion. The
magnetic field is designed to be weak and not drive the
forward motion of the microrobots, instead it act as a steering
knob to control the orientation of multiple microbots simul-
taneously. In addition, these microrobots are confined to 2D
due to their hydrodynamic interactions with the environment,
as described in [19], [25]. Using our proposed physics-based
model, we are able to match the simulated behavior of a
microrobot experiment in simulation.

This remainder of the paper is structured as follows. In
Section II, we describe the experimental design for the
catalytic microrobots and demonstrate the previous results.
In Section III, we provide a mathematical model of micro-
robot motion. In Section IV, we demonstrate our modeling
approach and how it pertains to the experiments. Finally, in
Section VI, we delineate the conclusions and directions for
future research in this domain.

II. SYSTEM DESCRIPTION AND EXPERIMENTAL RESULTS

Catalytic microrobots [28] self propel at the microscale
using the decomposition of hydrogen peroxide (H2Os) by
platinum into water and oxygen. This mode of propulsion
has become fairly popular in microrobotics, with a multitude
of catalytic powered microrobots being developed [19], [29],
[30]. Their thrust mechanism is self-electrophoretic by na-
ture [31]. Self-propelled microrobots are appealing devices
for various microscale tasks, as they are capable of fully
autonomous motion [3]. Our magnetic Janus microrobots
consist of a non-catalytic hemisphere and a platinum-covered
hemisphere, which provide the particle with a propulsion
force due to catalytic decomposition of the hydrogen per-
oxide on the platinum surface. The Janus microrobots also
incorporate a magnetic component in the form of embedded
magnetic particles, which allow the microrobot to align its
magnetic moment along the direction of an external magnetic
field [32]. Incorporating these magnetic particles enables
the orientation of all Janus microrobots to be controlled
simultaneously through an external magnetic field.

Our system consists of 4.6 pm spherical polystyrene
particles doped with magnetic nanoparticles. These catalytic
Janus spheres are prepared by spin coating a 0.1% (by
weight) dispersion of paramagnetic polystyrene microspheres
(Spherotech, diameter = 4.6 um) from ethanol onto freshly
cleaned glass microscope slides. A 10 nm thick layer of
platinum (> 99.9% Sigma Aldrich) is then evaporated onto
one side of the microspheres under vacuum in a Lesker
PVD75 electron beam evaporator. The magnetic field is
generated using four identical in-plane electromagnetic coils.

In our earlier work [19], we demonstrated simultaneous
steering of multiple Janus microrobots to arbitrary locations
using four, in-plane, electromagnetic coils. The Janus micro-
robots were contained in a solution of HyO5 within a sealed
chamber in the center of the setup. Each microrobot’s for-
ward velocity was controlled by catalysis, resulting in motion
directed along the axis that passes through the center of the
catalytic cap. The microrobots’ heading was controlled via
magnetization. Since the magnetic microrobots have different

directions of magnetization, relative to the hemisphere of
the catalytic caps, we obtained different directions of motion
from a uniform global magnetic field. We also demonstrated
open loop control of multiple microrobots using a single
uniform global magnetic field (see supplementary video 1),
and were able to move the microrobots in three different
directions simultaneously.

III. MATHEMATICAL MODELING

The control of multiple Janus microrobots is challenging,
as it is underactuated and operates under a single global
magnetic signal. Thus, the development of a simple yet
accurate analytical model is critical to develop novel model-
based control methods. Motivated by previous work and
the geometry of the experimental setup [19], we model the
particles as rigid bodies in the R? plane.

A. Equations of Motion

We express the motion of the particle using Newtonian
dynamics, with a fixed workspace reference (X,, Yo, Zo), tO
describe the motion of a magnetic Janus microrobot in a
viscous fluid,

dv(t)

Fm(t) + th(v(t)) + Fpmp(a) + Fe(t) =m dt ()
Ton(t) + Tha(w(t)) + Tprop + Te(t) = Jd%f), )

where ¢t € Ry is time, F,,(t) € R? and T,,(t) € R
are the force and torque imposed on the microrobot by the
magnetic field, respectively; F,q(t) and Tj4(t) represent the
hydrodynamic drag force and torque, respectively; F,.,, and
T)yrop are related to the self-propulsion mechanism; F, and
T, correspond to the other external forces and torques; m
and J are the mass and the moment of inertia of the particle,
respectively; v and w are linear and angular velocities of the
particle, respectively.

B. External Magnetic Control

The particle with magnetization M experiences a force
and torque when in the presence of a magnetic field, B. The
Biot-Savart equation describes the magnetic field engendered

by a current loop,
po [ I(t)1
B=— d 3

where p, is the permeability constant for air, I(¢) is the
current passing through the loop of wire, [ is the unit vector
from the wire segment to a point of focus in the workspace,
and a closed-loop integral is taken around the entire current
loop, C, for each wire segment ds.

The underlying principle for the navigational control of the
microrobots is to control the magnetic field, B, in order to
induce the magnetic force and accompanying torque on the
magnetized particle operating in the R? plane. The magnetic
force and torque generated by a magnetic flux B is

T,(t) = V (M x B(1)) -2, )




where V' is the volume of the robot, M is the magnetization
of the robot, and z is a unit vector pointing out of the
R? plane. In practice, the externally applied magnetic fields
are designed to engender minor forces on the microrobots
and substantial torques. Hence, magnetic forces are negli-
gible relative to catalytic forces, yet torques cause nearly
instantaneous reorientation of microrobots. Thus, in the later
derivation of our model, we will neglect the effect of (4)
on microrobot motion. The value for the magnetization of
the microrobot, M, depends on the geometry and material
properties of the microrobot.

C. Hydrodynamic Interactions

In our analysis, we use the Navier-Stokes equations to
model the hydrodynamics of a rigid body moving through a
fluid. Assuming a steady, incompressible viscous fluid with
low Reynolds number, the drag force, F} 4, and torque, T4,
on a spherical Janus microrobot [33] are given by

Fra(v(t)) = —6mnrv(t) (6)
Tha(w(t)) = =877’ w(t), (7)

where r is the radius and velocity of the particle and 7 is
the dynamic viscosity of the fluid medium.

D. Catalytic Propulsion

The magnetic Janus microrobots are covered with plat-
inum on one half and swim in 5-20% H2Os solution. They
produce forward momentum via the catalytic conversion of
hydrogen peroxide into water and oxygen by platinum, which
gives rise to protons. Due to the unevenness of the platinum
cap thickness, an ionic gradient is generated on the platinum
cap between the poles and equator. The resulting current
drives each microrobot, and they swim with their polystyrene
side forward [19], [34]. For all such catalytic microrobots,
their self-propulsion occurs with no external energy supply,
and their thrust mechanism is self-electrophoretic by nature
[31]. The terminal velocity of a Janus particle is highly
dependent on its size [35], and the self-propelling force that
acts on it is proportional to the concentration of HoO, in the
environment [25], i.e.,

Fpmp(O) X C(HQOQ) Rg)A(, (8)

where C(H202) is the concentration of HoOo, and Ry
describes the rotation of the microrobot’s polystyrene face
relative to the reference axis, X. The effect of catalytic
propulsion is negligible, and thus we let 7,, = 0 for our
analysis.

E. External Disturbances

The external disturbance force and torque terms include
any relevant external nano-scale forces, e.g., electrostatic,
van der Waals, and thermal actions. In this paper, the
motion of a microrobot is assumed to be disturbed only by
random fluctuations, which we consider to be Brownian. The
Langevin equation is frequently used to model the Brownian
motion is F.(t) = F&(t) , Te(t) = t&(t), where F&(t) and
t€(t) represent the stochastic force and torque due to random
fluctuations, respectively.

IV. PROPOSED PHYSICS-BASED MODEL

In this section, we derive a simplified physics-based model
of the micro-robot using standard linear control techniques
[36]. We take the expectation of (1) and (2) with respect to
F. and T, respectively, and we neglect the force imposed
on the Janus particle as it moves through the magnetic field.
For (1), this yields a deterministic equation that captures
the interaction between the self-propelling force and the
hydrodynamic drag, i.e.,

mv(t) = FRyu(t) — 6mnrv(t), )

where m is the mass of the particle, F' = |Fp.,(0)] is
the magnitude of the self-propelling force, u(t) is a unit
vector pointing in the direction of the magnetic field, Ry is
a rotation matrix that captures the offset angle between the
particle’s direction of motion and the magnetic field, and the
remaining hydrodynamic terms come from (6). Note that the
Brownian motion terms do not appear in (9), as it has zero-
mean. Several parameters of (9) have standard values, and to
determine the magnitude of the self-propelling acceleration
we extracted position and velocity data from a portion of the
experimental data presented in [19] (see supplementary video
1). Using this data, we estimated the terminal velocity of each
particle and applied (9), i.e., let v(¢) = 0, to determine the
value of F' for each particle. These values are presented in
Table I.

TABLE I
SELF-PROPELLED PARTICLE DATA FIT THE EXPERIMENT, DATA AND THE
STANDARD VALUES FOR EACH SYSTEM PARAMETER.

F/m (m/s?) | m (ng)
1.00, 1.18, 1.34 | 0.401

n (cP) R (pm)
1.245 4.6

Rearranging (9) yields a first-order linear dynamical sys-
tem for the velocity of the microrobot in the direction of
Ryu(t),
6mnr F

t)=—

——vs(t) = —,

where vy (t) = v(t) - Ryu(t). The dynamics in (10) corre-
spond to a first-order linear system with a constant forcing
function of % Substituting the values in Table I yields a time
constant of 7 = 3.72 ps, which is six orders of magnitude
smaller than the timescale of microrobotic experiments. This
also implies that the microparticle achieves 95% of its
terminal velocity within 37 = 11.16 us. Next, we simplify
(10) to only consider the steady-state velocity in the direction
of motion, i.e., v(t) = 0 at steady state,

_F
6’

b (t) + (10)

Vss = U¢(t) (11)
where v, is the steady-state velocity in the direction of Ryu.
As an example of this steady-state model’s accuracy, consider
that the distance a microrobot must move before the transient
period is less than 1% of the total trajectory. We estimate this
distance by taking the product of v, and 3007, which yields,
for the values in Table I, distances of 40.3 nm, 47.5 nm, and



54.0 nm. This equates to approximately 1% of the radius of
a particle, which clearly demonstrates that there is no benefit
to utilizing Stokes’ Drag compared to a first-order terminal
velocity model.

Next, consider the rotational forces that impact the motion
of a particle. We take the expectation of (2) with respect to
the external disturbances and let 7;,, = 0. The expectation
yields the deterministic interaction between the torque im-
posed by the magnetic field (5) and hydrodynamic drag from
Stokes’ Law (7),

Io(t) = ((d RyRe%) x (u(t)B)) g — 8mrdw(t), (12)

where [ is the moment of inertia of the particle, d is the
magnitude of the particle’s dipole moment, u(t)B = B(t)
denotes the external magnetic field, and w(¢) is the angular
rotation rate of the particle in the R? plane. This implies a
linear first-order system with a non-linear forcing function,

o)+ Tt = ((RoRox™ x (1)) 227,

which, using the parameters Table I, yields a time constant
of 7 = 1.11 ps. Note that while the forcing function contains
the angle of the particle, i.e., () = w(t), it is equal to zero
when the particle’s dipole is aligned with u(t). Additionally,
the dynamics of (13) drives the forcing function to zero.
Therefore, we expect w(t) to decay to zero, and the particle
to align with the magnetic field, with the same order of
magnitude as the time constant.

Thus, as with the linear motion, we expect the particle to
align with the magnetic field on a timescale that is orders of
magnitude faster than the timescale of motion control. This
leads to our final first-order dynamic model for motion of a
Janus particle,

8mr3

13)

p(t) = vssRyu(t).

Our analysis shows that our proposed model will have a
negligible variation from a Stokes’ drag-based model, and
in the following section we show that it incurs a lower
computational cost. Finally, note that while our model is not
stochastic, one could argue that it is impossible to predict
the exact values that the Brownian motion will take in a
physical experiment. Therefore, having a computationally
fast microrobot model will allow real-time feedback control
techniques that compensate for particle drift throughout the
experiment.

(14)

V. EXPERIMENTAL VALIDATION

To validate our model, we simulated the 3-particle experi-
ment from [19] using our proposed model and compared it to
the full dynamic model using Stokes’ law. In this experiment,
each particle moves in a straight line for 2—6 seconds while
the control input (magnetic field direction) remains constant.

We extracted the initial position of the particles from a
video recording of the experiment and estimated the terminal
velocity of each particle over one time interval of constant
control input to derive the values of F' in Table I. Next,
to determine the value of ¢ for each particle, we applied a

linear regression over the same interval. These parameters
are listed in Table II along with the experimental results,
which we discuss next.

TABLE I
PARTICLE ANGLE AND RESULTING ROOT MEAN SQUARE ERROR (RMSE)
FOR THE SIMULATED PARTICLES TO TRACK THE EXPERIMENT.

1] RMSE (Approach 1)  RMSE (Approach 2)
Particle 1~ -1.09 rad 4.11 pm 6.91 pm
Particle 2 3.82 rad 5.62 pum 5.56 pm
Particle 3 2.64 rad 4.02 pm 5.77 pm

First, to demonstrate the benefits of our approach over
the full model, we performed each of the simulations using
Stokes’ law (10) and our proposed model (11) to compare
their accuracy and computational cost on a desktop PC
(intel i5-3570, 12 GB Ram). We simulated the microrobots
in Matlab R2018b using a standard stiff numerical solver
(ODEL15s) for the Stokes’ law model and a forward Euler’s
method with a time step of approximately 0.02 seconds
for our proposed model. Table III presents the results of
these experiments, where the computational time is averaged
over 100 runs and the RMSE is relative to the experimental
data. Note that the actual time of the physical experiment
is approximately 15 seconds. Thus, while each model may
be sufficiently fast to embed in a model-based control
framework, our approach has the benefit of running 5% faster
and having no discernible impact on the overall accuracy of
the simulation. Furthermore, our model is first-order and is
therefore significantly simpler to embed in existing model-
based control frameworks.

TABLE III
COMPUTATION TIME COMPARISON FOR STOKES’ LAW AND OUR
PROPOSED MODEL.

Stokes’ Law Proposed
Runtime: 2.13 seconds  2.04 seconds
Mean RMSE :  4.59 microns  4.59 microns

Next, we performed two simulations to quantify the effect
of the particle’s terminal velocity on the accuracy of the
simulation. In the first approach, used the values of % in
Table 1. The trajectories of each particle for this case are
presented in Fig. 1 overlaid on the experimental data. Each
of the particles is able to track the longitudinal position of
the experimental particle within a few microns, although
in each case the experimental particles experience lateral
drift relative to their simulated counterparts. However, we
expect this drift to emerge in any model of the microrobots’
stochastic motion. To quantify the error between the physical
and simulated particles, we calculated the root mean square
error (RMSE) between the simulated and actual position at
each time step, using the experiment clock. This value is
reported in Table II for both approaches. Due to Brownian
motion, the tracking error does increase with time, however,
the RMSE at the end of the experiment is not significantly
larger than a single particle’s radius (4.6 pm).
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Fig. 1. Comparison of experimental data and our simulated model, where

each particle’s terminal velocity was extracted from a portion of the data.

In our second approach, we selected the mean value
of % = 1.17 m/s? from Table I and gave each particle
an identical terminal velocity. This approach may be more
representative of our model’s performance, as the value of F'
may not be known a priori. The trajectories of each particle
are presented in Fig. 2 overlaid on the experimental data.
This case leads to significantly more error, as only the median
particle with F' = 1.18 (top-center of Fig. 2) is physically
similar to the imposed terminal velocity. This is confirmed in
Table II, where Particles 1 and 3 (left and right side of Fig. 2
respectively) have a higher RMSE tracking error. In fact, the
average difference in RMSE between the first and second
approach is approximately 30%, which coincides with the
the 30% average deviation in the value of F' in Table L.
These observations make us feel comfortable argue that the
model is capturing the behavior of the particles, and that
the RMSE is directly proportional to the error in estimating
system parameters.

It is important to note that the microrobots are not indepen-
dent because all the particles were controlled under the same
global magnetic field. Besides, we could not pick and control
only one microrobot while keeping others unaffected under
this circumstance. The experimental validation of the model
outlines this simultaneous control in Fig. 3. Fig. 3 shows
the experimental trajectory of three microrobots in the same
workspace over the same time period and same magnetic
field switches. The directions of the global magnetic field and
microrobots at t=0s, 2s, 5s and 7s are shown. In the top pane
of the Figure, when the magnetic field is applied to the Right
(+x) at t = Os, the three microrobots were converging on one
another. The second pane of Figure is the time when the
magnetic field switched by 90 degrees clockwise and pointed
in the Down direction (-y) at t = 2s, the particles changed
their heading by about 90 degrees clockwise. Similar changes
in the orientation of particles could be found in the third and
fourth pane of Figure. Besides, we also noticed that the angle
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Fig. 2. Comparison of experimental data and our simulated model, where
all particles share a common terminal velocity.

between any two of the three particles remained the same as
the global magnetic field changed during a fixed amount of
time.

VI. CONCLUSIONS

In this paper, we demonstrated that a first-order physics-
based model of a magnetized self-propelled particle can
accurately describe simultaneous control of catalytic mi-
crorobots controlled by a single external magnetic signal.
The equations describing the microrobot dynamics can be
generalized and used for most microrobots in low Reynolds
number systems. In our exposition, first, we adapted a
deterministic physics-based model based on Stokes’ Law
and rigid body dynamics for these microrobots. Then, using
classical linear control techniques, we demonstrated that time
scale of particle motion is separable from the hydrodynamic
and electromagnetic forces, and thus their dynamics can be
separated. In addition, we showed that the proposed model is
significantly faster than Stokes’ Law to compute trajectories.
Finally, we validated the model by comparing the generated
trajectories to experimental data.

It is our hope that this approach could potentially allow us
to develop accurate motion planning and control algorithms
for these microrobots in the future. The biggest challenge
in the proposed model is calculating the two parameters,
i.e., the net dipole moment orientation, ¢, and self-propelled
particle force, F', for each particle during an experiment.
One potential direction for future research is to develop an
adaptive model-based control algorithm that can estunate
these parameters online. Analyzing the controllability of an
arbitrary number of magnetically-actuated microrobots could
be another compelling direction for future research along
with generating particular desired formation for collective
transport and drug delivery. Finally, including a control term
that captures the deflection of particles in the presence of
a heated laser point is another area that deserves futher
investigation.



Fig. 3.

Timelapse of the three microrobots controlled by uniform global

fields. In the top pane of this figure, three microrobots are converging on
one another. In the second pane, the field is switched 90 degrees clockwise
and the particles also switch their heading. In the third pane, the field is
switched another 90 degrees clockwise and the particles also turn another
90 degree. Similar changes in orientation happen in pane four.
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