
RESEARCH ARTICLE

Generating information-dense promoter

sequences with optimal string packing

Virgile AndreaniID
1,2☯, Eric J. SouthID

2,3☯, Mary J. DunlopID
1,2,3*

1 Biomedical Engineering Department, Boston University, Boston, Massachusetts, United States of America,

2 Biological Design Center, Boston University, Boston, Massachusetts, United States of America,

3 Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts,

United States of America

☯ These authors contributed equally to this work.

* mjdunlop@bu.edu

Abstract

Dense arrangements of binding sites within nucleotide sequences can collectively influence

downstream transcription rates or initiate biomolecular interactions. For example, natural

promoter regions can harbor many overlapping transcription factor binding sites that influ-

ence the rate of transcription initiation. Despite the prevalence of overlapping binding sites

in nature, rapid design of nucleotide sequences with many overlapping sites remains a chal-

lenge. Here, we show that this is an NP-hard problem, coined here as the nucleotide String

Packing Problem (SPP). We then introduce a computational technique that efficiently

assembles sets of DNA-protein binding sites into dense, contiguous stretches of double-

stranded DNA. For the efficient design of nucleotide sequences spanning hundreds of base

pairs, we reduce the SPP to an Orienteering Problem with integer distances, and then lever-

age modern integer linear programming solvers. Our method optimally packs sets of 20–

100 binding sites into dense nucleotide arrays of 50–300 base pairs in 0.05–10 seconds.

Unlike approximation algorithms or meta-heuristics, our approach finds provably optimal

solutions. We demonstrate how our method can generate large sets of diverse sequences

suitable for library generation, where the frequency of binding site usage across the returned

sequences can be controlled by modulating the objective function. As an example, we then

show how adding additional constraints, like the inclusion of sequence elements with fixed

positions, allows for the design of bacterial promoters. The nucleotide string packing

approach we present can accelerate the design of sequences with complex DNA-protein

interactions. When used in combination with synthesis and high-throughput screening, this

design strategy could help interrogate how complex binding site arrangements impact either

gene expression or biomolecular mechanisms in varied cellular contexts.

Author summary

The way protein binding sites are arranged on DNA can influence the regulation and

transcription of downstream genes. Areas with a high concentration of binding sites can

enable complex interplay between transcription factors, a feature that is exploited by

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Andreani V, South EJ, Dunlop MJ (2024)

Generating information-dense promoter sequences

with optimal string packing. PLoS Comput Biol

20(7): e1012276. https://doi.org/10.1371/journal.

pcbi.1012276

Editor: Stefan Klumpp, Georg-August-Universitat

Gottingen, GERMANY

Received: February 3, 2024

Accepted: June 25, 2024

Published: July 24, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1012276

Copyright: © 2024 Andreani et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The solver is

implemented in an open-source library available at:

https://gitlab.com/dunloplab/dense-arrays. The

code used to generate the data and make the

figures from this paper is available on the “paper”

https://orcid.org/0000-0002-2383-1478
https://orcid.org/0000-0003-4426-3729
https://orcid.org/0000-0002-9261-8216
https://doi.org/10.1371/journal.pcbi.1012276
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012276&domain=pdf&date_stamp=2024-07-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012276&domain=pdf&date_stamp=2024-07-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012276&domain=pdf&date_stamp=2024-07-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012276&domain=pdf&date_stamp=2024-07-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012276&domain=pdf&date_stamp=2024-07-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1012276&domain=pdf&date_stamp=2024-07-24
https://doi.org/10.1371/journal.pcbi.1012276
https://doi.org/10.1371/journal.pcbi.1012276
https://doi.org/10.1371/journal.pcbi.1012276
http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/dunloplab/dense-arrays

natural promoters. However, designing synthetic promoters that contain dense arrange-

ments of binding sites is a challenge. The task involves overlapping many binding sites,

each typically about 10 nucleotides long, within a constrained sequence area, which

becomes increasingly difficult as sequence length decreases and binding site variety

increases. We introduce an approach to design nucleotide sequences with optimally

packed protein binding sites, which we call the nucleotide String Packing Problem (SPP).

We show that the SPP can be solved efficiently using integer linear programming to iden-

tify the densest arrangements of binding sites for a specified sequence length. We show

how adding additional constraints, like the inclusion of sequence elements with fixed

positions, allows for the design of bacterial promoters. The presented approach enables

the rapid design and study of nucleotide sequences with complex, dense binding site

architectures.

Introduction

The layout of binding sites within nucleotide sequences can define both biomolecular interac-

tions and subsequent biological processes. For example, the architecture of cis-regulatory

regions—stretches of non-coding DNA containing binding sites for transcription factors and

other regulatory proteins—plays a key role in controlling the expression of downstream genes.

These regions serve to recruit regulators and convert cellular signals into transcriptional out-

puts [1–4]. Regions with few binding sites are thought to enable transcription factors to bind

and then permit higher overall transcription levels, even when these proteins are in limited

quantities [5]. Conversely, dense clusters of binding sites can elicit complex phenomena such

as cooperative binding effects [6–9], steric hindrance [10,11], and transcription factor sharing

[5]. These emergent properties can lead to nonlinear transcriptional regulatory logic, wide

dynamic ranges, and context-sensitive gene expression [12–14].

As the complexity of cis-regulatory regions becomes more evident, researchers have begun

to employ forward engineering approaches to systematically map promoter sequences to tran-

scriptional readouts. One of the most prominent methods in this regard is the use of massively

parallel reporter assays (MPRAs) [15–17]. These assays link the expression of a reporter gene

to a specific cis-regulatory variant, which is often situated upstream on either an episomal or

genomically integrated locus [18]. Traditionally, the design of promoter variant libraries for

MPRAs has followed one of two different strategies: either diffuse nucleotide diversification,

achieved through methods like error-prone PCR or random mutagenesis [19,20], or hybrid

engineering approaches that fuse core promoter subregions with other discrete binding site

elements [21,22]. In hybrid engineering approaches, the design of sequence variants for

MPRAs has typically focused on adjusting binding site spacing and consensus sequences, often

placed in adjacent or proximal positions, while overlooking the potential for overlapping bind-

ing sites [15,23–26]. While these studies offer insights into how binding site positioning and

biophysical constraints inform promoter strength, their general omission of overlapping bind-

ing sites has limited the characterization of nonlinear, emergent properties that can arise in

natural densely arranged cis-regulatory regions.

Designing nucleotide sequences with overlapping binding sites becomes challenging when

the total length of the desired binding sites, each typically about 10 nucleotides long [27], sur-

passes the fixed length of the intended output sequence. The overall problem increases in com-

plexity as the pool of binding sites expands, causing an exponential increase in potential

binding site configurations. Studies that have tackled the design of overlapping sequences, and

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 2 / 22

branch of this repository. All dense array

sequences generated in the manuscript are

available in the repository. The /benchmarks folder

provides detailed information for each dense array.

Funding: This work was supported by the National

Science Foundation (MCB-2143289 and MCB-

2324909 to MJD). EJS received support from the

National Institutes of Health under award number

T32GM130546. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012276

their effects on transcriptional regulatory logic, often rely on ad hoc methods or generate a lim-

ited set of short sequences [26,28–30], thus restricting the generation of large libraries. Mean-

while, generative AI techniques are starting to show promise in emulating the complexity of

context-dependent promoters [31–37]. Many of these models are trained on large datasets of

natural sequences [38–40], leading to synthetic promoters that mimic these natural examples.

However, these models may struggle to generate sequences with cis-regulatory logic that is not

present in natural genomes, as they tend to produce sequences within their training distribu-

tion. The choice of training data significantly shapes the model, mirroring assumptions about

the sequence distributions to explore [41]. Consequently, there is growing interest in using

synthetic DNA to generate training data to facilitate the discovery of novel expression

responses [42].

Here we present a novel computational method for the design of nucleotide sequences with

densely packed DNA-protein binding sites, which we name the nucleotide String Packing

Problem (SPP), related to the classical Shortest Common Superstring problem in theoretical

computer science [43]. We deliberately use the terminology “string” instead of “sequence” in

the problem name to avoid confusion with the concept from computer science of a “subse-

quence,” which is not necessarily contiguous. This distinction is crucial for distinguishing the

SPP, where an individual binding site must not be split, from a potential “Sequence Packing

Problem” where the sequence AGGA of length 4 would fit the three elements AA, GG, AGA

(among others), due to the non-contiguous nature of subsequences.

After proving that the SPP is NP-hard, we reduce it to the Orienteering Problem with inte-

ger distances, which is an optimization problem related to the Traveling Salesman Problem

[44]. This reduction allows us to formulate nucleotide string packing as an integer linear pro-

gramming problem, which can then be solved efficiently with a variety of open-source and

commercial solvers. This formulation not only underscores the computational complexity of

the design task but also lays the groundwork for generating sequences that accommodate a

maximal number of protein binding sites. The expressivity of integer linear programming also

allows for a variety of design objectives and constraints, which can be used to tailor the specif-

ics of the output nucleotide sequence. We demonstrate how a modification to the model

makes it possible to adjust the order of solutions returned to favor a more uniform representa-

tion of binding sites across sequences. We also demonstrate that by adding additional con-

straints to the SPP, like the inclusion of sequence elements with fixed positions, we can

effectively interweave dense regions of binding sites around -35 and -10 sigma factor recogni-

tion sites. This approach enables the design of complex bacterial promoters that interact with

multiple sigma factors. The integer linear programming model and all its extensions have been

made available to the community as part of an open-source Python library available at https://

gitlab.com/dunloplab/dense-arrays. Equally applicable to large-scale libraries and more

focused studies, this computational approach serves as a resource for designing nucleotide

sequences with complex DNA-protein binding architectures.

Results

Complexity of the String Packing Problem (SPP)

The problem of packing DNA-protein binding sites into a DNA sequence of a fixed length can

be formulated more generally as an optimization problem on strings: consider a finite alphabet

S, a collection R of strings from S*, and a natural integer L. The goal is to find a string w of

length L that maximizes the number of different strings of R contained in w, that is, the num-

ber of strings x 2 R such that there exists w0 2 S* and w1 2 S* such that w = w0×w1 (Fig 1A).

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 3 / 22

https://gitlab.com/dunloplab/dense-arrays
https://gitlab.com/dunloplab/dense-arrays
https://doi.org/10.1371/journal.pcbi.1012276

To determine the complexity of this problem, let us first consider the associated decision

problem (SPP-DECISION): given the alphabet S, the collection of strings R, two natural inte-

gers L and N, is there a string of length L or shorter that contains N or more of the strings of R?

We will show that this problem is NP-complete, that is, it belongs to the set of NP problems at

least as hard as all other NP problems.

Fig 1. Formulation of the nucleotide String Packing Problem (SPP) as an Orienteering Problem (OP). (A) The SPP consists of

fitting as many different strings from a binding site collection R as possible inside a string of a given length L. bp, base pairs. (B) We

define an asymmetrical metric between strings i and j, dij, as the least number of shifts needed for the prefix of the second string to

match the suffix of the first string. (C) After adding Start and End vertices, we construct the complete graph between binding site

strings with the associated shift, dij, between strings shown. The OP is solved on this graph. For the double-stranded problem, we also

include the reverse-complements of all the binding sites, omitted here for clarity. (D) Representative solutions for two different values

of L.

https://doi.org/10.1371/journal.pcbi.1012276.g001

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 4 / 22

https://doi.org/10.1371/journal.pcbi.1012276.g001
https://doi.org/10.1371/journal.pcbi.1012276

To show that SPP-DECISION is NP-complete, we first need to show that it is an NP prob-

lem, and then that it is at least as hard as all other NP problems. (1) To show that it is an NP

problem, we need to show that we can construct certificates of positive answers, with sizes that

are polynomial in the size of the input, which can then be verified by a polynomial-time algo-

rithm. (2) To show that SPP-DECISION is at least as hard as all other NP problems, we will

proceed by reduction from another NP-complete problem: the decision problem correspond-

ing to the Shortest Common Superstring problem (SCS-DECISION) [45] (as described in

[43]). The proof follows:

1. SPP-DECISION is in NP: A certificate of existence of a superstring can be a list of the

strings included in it with their offsets from the beginning of the superstring. The size of

this certificate is polynomial in the size of the problem input. Moreover, this certificate can

be verified by a polynomial-time algorithm. SPP-DECISION is then in NP.

2. SCS-DECISION is reducible to SPP-DECISION: The SCS-DECISION problem is closely

related to the SPP-DECISION problem, in that given S, R, and L, the question is to deter-

mine if there exists a string of length L or shorter that contains all strings from R. Consider-

ing any SCS-DECISION problem described by (S, R, L), we can build an SPP-DECISION

problem described by the same alphabet S, collection of strings R, and integer L, and where

N = |R|. A positive (respectively negative) answer to this SPP-DECISION problem implies a

positive (respectively negative) answer to the original SCS-DECISION problem, which

shows that SCS-DECISION is reducible to SPP-DECISION, and thus that SPP-DECISION

is NP-complete.

Let us now consider the original optimization problem, SPP, which is not a decision prob-

lem. We will show that it is NP-hard, that is, every problem in NP is reducible to it. To show

this, we will show that SPP-DECISION, which we just showed is NP-complete, is reducible to

the SPP. Let us consider any SPP-DECISION problem, described by (S, R, L, N). We can con-

struct the SPP described by (S, R, L). Let us call M the number of different substrings (i.e.,

binding sites) of R included in the optimal solution to this problem. It is enough to compare M
to N to answer the SPP-DECISION problem, thus showing that SPP-DECISION is reducible

to SPP and therefore that SPP is NP-hard.

Performance and scalability

Brute force approaches to solving the SPP are not scalable, due to the NP-hardness of the task.

No polynomial-time algorithms are known to solve it optimally, and the only deterministic

algorithms known all eventually rely on an exponential number of steps in the worst case. But

the choice of the approach greatly impacts the practical solve time. For example, for a binding

site collection with |R| = 50 binding sites and a sequence of length L = 200 base pairs, one

brute force approach could be to enumerate all possible 4200 � 10120 sequences, which is com-

putationally infeasible. Despite their computational challenges, many NP-hard problems hold

significant practical value. This has led to the development of specialized solvers designed to

efficiently manage these problems, although they may face difficulties with extremely large

instances [46]. Many numerical solvers have been developed to tackle the NP-hard integer lin-

ear programming problem, which restricts linear programming to integer variables. We for-

mulated the SPP as an integer linear programming problem by reducing it to a variant of the

Travelling Salesman Problem (TSP) known as the Orienteering Problem (OP) [44,47,48] (see

Methods for the integer linear model). This formulation abstracts away the notion of nucleo-

tides and considers instead the interaction between binding sites through a shifting metric

defined between every pair of binding sites (Fig 1B), leading to a dramatic decrease in the

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 5 / 22

https://doi.org/10.1371/journal.pcbi.1012276

complexity of the problem. Indeed, a brute force approach to solve this formulation would

now only need to enumerate all possible paths in the graph visiting each binding site at most

once (Fig 1C and 1D). For the binding site collection considered above (|R| = 50 and L = 200),

there are about 1065 such paths (as calculated using the approach in Ref. [49]), which is still

astronomically large, but much less than 10120. Thus, the same problem can be formulated in

different ways, and the amount of computational work needed to solve them can be very dif-

ferent. The algorithms in integer linear programming are also exponential but are designed to

dramatically decrease the exponential constant. While they cannot cheat the exponential for

very large tasks, they embed heuristics that help them to quickly find an optimal solution in

many cases. Here, thanks to their internal algorithms and heuristics, the integer linear pro-

gramming solvers do not have to explore all 1065 paths of the OP, and thus are able to find a

solution for a problem of size |R| = 50 and L = 200 highly efficiently, returning solutions within

seconds. The strength of our approach relies on two factors: the formulation of the initial SPP

as a graph problem abstracts the notion of nucleotides and eliminates the need to represent

them individually, which drastically cuts down the search space, and the use of an optimized

solver further reduces the complexity by tackling this problem using state of the art

algorithms.

Solve times for the SPP are expected to be dependent on the parameters of the problem

(size of the binding site collection, |R|, and length of the sequence, L). To investigate the influ-

ence of these parameters, we considered collection sizes, |R|, between 10–100 distinct binding

sites, each with a random length between 5 and 15 base pairs, where these lengths are based on

known protein-DNA interactions [27]. We also considered typical lengths of cis-regulatory

regions between 20–300 base pairs [50] to use as our sequence length, L. Using the highly effi-

cient Gurobi solver as a backend for the integer linear programming, we found that the solve

times were rapid (Fig 2A). For example, the collection with |R| = 50 binding sites and a

sequence length of L = 200 base pairs can be solved in 2 seconds on a laptop. We found that

solve time scales proportionally with the number of variables of the model, that is, with the

square of the binding site collection size. The solve time is also largely independent of the

length of the sequence (Fig 2B), which may be explained by the fact that this parameter does

not change the number of variables or the structure of the model. It is also possible that

increasing the length of the sequence may increase the number of optimal solutions, making it

easier for the solver to find one of them, despite their increasing complexity. The solve times

range from fractions of seconds for collections of size |R| = 20, to 10 seconds for collections of

size 100, making this is an efficient and accessible method for practical nucleotide design tasks.

Heuristic approaches to solve the problem

In some cases, it is not necessary to reach the optimal solution to an NP-hard problem if a sub-

optimal but sufficiently good solution is acceptable. It can be much easier to find suboptimal

solutions, and this can often be achieved by “approximation algorithms,” many of which run

in polynomial time. For instance, in the case of the TSP, the nearest neighbor algorithm—

always visiting the closest city not yet visited—operates in time proportional to the square of

the number of cities, yet it may yield solutions significantly worse than the optimal. For metric

TSPs (i.e., when the distance respects the triangle inequality), the Christofides–Serdyukov

algorithm is a polynomial-time algorithm that is guaranteed to return a solution no longer

than 1.5 times the optimal solution [51–53]. Approximation algorithms also exist for the SCS

problem [54]. The greedy algorithm (repetitively merging the two strings with the best overlap,

until there is only one remaining) will return a superstring at most 3.425 times longer than the

optimal string. A recent approximation algorithm allows this factor to be lowered to 2.475

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 6 / 22

https://doi.org/10.1371/journal.pcbi.1012276

[55]. Thus, if adapted to our problem, a similar strategy would create an array in the worst case

less than half as dense as it could be.

To test if an approximation method could produce results comparable to the optimal results

returned by our integer linear programming approach, we employed a greedy algorithm. This

algorithm involves repetitively merging the two binding sites with the best overlap until only

one is left (in the worst case this is 3.425 times longer than the optimal solution). If this result-

ing sequence is shorter than the targeted sequence length, while fitting all binding sites in the

collection, it is an optimal solution and is thus returned. If the sequence extends beyond the

target length, we apply a sliding window corresponding to our target length, and then locate

the sequence segment containing the highest number of binding sites; this segment is subse-

quently returned. In a numerical study using randomly generated sequences to represent bind-

ing sites, we compared the number of binding sites in the solutions returned by this greedy

algorithm to the optimal number computed with our integer linear programming formulation.

We found that the approximation algorithm often returned fewer binding sites than optimal

(60% of the optimal in the worst cases), with large binding site collection sizes (|R|) and com-

pact sequence lengths (L) posing challenges that only the integer linear programming formula-

tion was able to tackle (S1 Fig). Meta-heuristics—general strategies applicable to a range of

problems—are an alternative approach and have shown promise in identifying quality

Fig 2. Performance of the SPP. Solve time as a function of (A) binding site collection size, |R|, and (B) sequence length, L. All experiments were run 10

times, with the Gurobi v10.0.1 backend. The shaded regions represent the bootstrapped 95% confidence interval around the mean. All replicates use a

different, randomly sampled binding site collection, with random binding sites of uniformly random length between 5 and 15 base pairs. The binding site

collection size and sequence length are specified on the figure. Double-strand optimization is performed here. For all these experiments, Gurobi was given

access to an Intel Xeon E5-2650 v2 CPU (16 logical threads) and its memory usage was under 3 GB. A timeout of 600 seconds was set, reached only 8 times

out of 1500, which we excluded from these data.

https://doi.org/10.1371/journal.pcbi.1012276.g002

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 7 / 22

https://doi.org/10.1371/journal.pcbi.1012276.g002
https://doi.org/10.1371/journal.pcbi.1012276

suboptimal solutions. Genetic algorithms, for instance, have shown efficacy in similar nucleo-

tide overlapping problems [28,29]. However, the practical application of these algorithms is

limited by difficulties in tuning them to yield good solutions quickly.

Diversity of the generated solutions

Next, we returned to our integer linear programming approach and quantified the diversity of

sequence solutions returned by the algorithm. Some applications might require the generation

of multiple sequences, composed of binding sites from the same collection, for the purposes of

library curation or biological screening. For example, generating diverse DNA sequences from

the same binding site collection can enable nuanced studies in functional genomics, or facili-

tate comparative analysis during either drug screens or synthetic biology circuit optimizations.

We found that maximizing the number of sites in a sequence introduces a bias for smaller

binding sites (S2 Fig). Interestingly, we found that this bias is not exclusively tied to size varia-

tion, as it manifests even among equally sized binding sites. To demonstrate this, we created

random binding site collections of |R| = 10 binding sites of 10 base pairs each. We enumerated

the best solutions for a final sequence of length L = 50 base pairs: in all cases, six binding sites

were fit in this sequence at best (score = 6) (Fig 3A). For the three random collections we

tested, the number of different sequences realizing this best score were 1854, 2654, and 10,922,

where the higher numbers correspond to a case where there were more ways to create

sequences composed of 6 binding sites, for example due to similar sequences in the starting

binding site collection. If the frequency of binding site inclusion was perfectly uniform, we

would expect each binding site to occur with a frequency of 0.1 (1/|R|). However, we found

that every binding site was not equally likely to be part of these best solutions (Fig 3B). To rule

out the chance that these findings were simply due to sampling variations, we used a control

experiment where we randomly selected six binding sites from the collection as many times as

there were solutions, removing the constraint that these sites needed to fit into a sequence. To

compare the sampling bias between these two scenarios, we sorted binding sites by decreasing

frequency (Fig 3B and 3C). The flatter the line, the more uniform the distribution is. Con-

versely, a steeper slope indicates a less diverse distribution, tending to favor certain binding

sites over others. We found that the creation of dense arrays inherently tends to favor specific

binding sites, shaped by the unique interplay among sites within each specific binding site col-

lection (Fig 3D). We next investigated the reasons for discrepancies in the representation of

binding sites that were all the same length, focusing on results across the top scoring dense

arrays. We compared each binding sites’ average shift metric dij to and from other binding

sites, representing their average overlap with other binding sites, with their rate of appearance

in top-scoring solutions. As expected, we found that the binding sites with the highest average

overlap with others were more represented in the top-scoring solutions (S3 Fig).

Bias in binding site selection due to size (S2 Fig) or sequence (Fig 3D) can potentially be

transiently amplified by solver-specific tendencies: when faced with solutions of equal score

and no additional constraints, the solver is free to generate outcomes in an order that reflects

its intrinsic algorithms, often more akin to local exploration than direct sampling. Indeed, dif-

ferent solvers return the same solutions of equal score in different orders (S4 Fig). This implies

that the distribution of the binding sites involved in the first few solutions of equal score (for

instance, those containing 6 binding sites), may not accurately represent the distribution of the

entire set. To create a sample of the best solutions with a more balanced distribution of binding

sites, one could ask the solver for a much larger number of solutions and filter this set to

homogenize the representation of binding sites. However, this is computationally wasteful, as

many of the generated solutions are discarded.

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 8 / 22

https://doi.org/10.1371/journal.pcbi.1012276

Generation of more representative solution sets

We address the issue of binding site representation bias by making a minor adjustment to our

integer linear programming model. By maintaining a count of the binding sites included in

previously generated solutions, we adjust the objective of the integer linear program to favor

those binding sites that are underrepresented compared to the average. Concretely, we modify

the objective to
P

i2½0;n�;j2½1;n�
cij xij where cij is set to 1 for j corresponding to binding sites more

represented than the average so far, and to 1+� for binding sites less represented than the

Fig 3. Assessing binding site representation across dense arrays. (A) For the |R| = 10 randomly generated binding sites of Collection 1 we found

1854 optimal sequences (each fitting 6 binding sites within L = 50 bp). We then tallied up the binding sites involved in these sequences. (B) The

frequency of binding site distribution is represented as a histogram. Three random binding site collections of |R| = 10 binding sites, each of 10 base

pairs in length, were used to create sequences of length L = 50 bp. The bar plots show the frequency at which each of the 10 binding sites was present

in these sequences. Optimal solutions using the dense array approach with the SPP (blue) and using random samples of 6 binding sites (gray) are

shown. (C) Sorting the histogram gives an idea of the heterogeneity of the distribution, where larger differences between the frequency of binding site

usage correspond to larger sampling biases. (D) The histograms from (B) were first sorted by decreasing frequency, then assembled on this plot for

comparison. The slope of the curve is an indicator of the diversity (or lack thereof) in the corresponding distributions.

https://doi.org/10.1371/journal.pcbi.1012276.g003

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 9 / 22

https://doi.org/10.1371/journal.pcbi.1012276.g003
https://doi.org/10.1371/journal.pcbi.1012276

average. The value of � is irrelevant if it is sufficiently small to never allow the score of a solu-

tion with fewer binding sites to overcome the score of a solution with more binding sites (any

strictly positive value that is smaller than 1/n meets this criterion). We apply this change after

every generated solution. This change allows the solver to break ties between solutions in a dif-

ferent way each time. We refer to the original solution method as “solver order,” because the

specific solver implementation determines how ties are broken. We refer to our modified ver-

sion of this approach that directs the algorithm towards the use of underrepresented sites as

“diversity-driven order,” because the addition of the weighting terms controls how the solver

breaks ties when selecting which binding site to include (Fig 4A).

Whereas the solver order strategy leads to a pool of solutions that never represents every

binding site equally (Fig 4B), we found that the diversity-driven strategy is effective at generat-

ing solutions in an order that transiently improves inclusivity in binding site representation

(Fig 4C). In this example, |R| = 10 so equal representation of binding sites would have their fre-

quency of appearance at 0.1. Both approaches ultimately result in the same binding site distri-

bution because in the limit where they generate the maximum number of top-scoring

solutions, the two strategies produce the same set of solutions. Critically, what is different is

the order in which these solutions are returned before this maximum is reached. To summa-

rize the results across the different solution methods, we calculated the entropy of the solver

order and diversity-driven order strategies (Fig 4D). Higher entropy values correspond to

more diverse solutions, where the theoretical maximum is log(|R|), reached only if all binding

sites have been uniformly involved (with frequency 1/|R|) in the solutions. The diversity-

driven order solutions exhibited a rapid increase in entropy that was maintained across many

rounds of binding site selection (Fig 4D), demonstrating its efficacy in generating solutions

with broad representation. The diversity-driven order also produced higher entropy distribu-

tions than the solver order for collections with size differences among binding sites (S5 Fig).

Incorporating positional constraints for promoter design

We next incorporated more constraints into the solver to facilitate the inclusion of sequence

elements at fixed positions. As an example, we focused on the design of bacterial promoters.

Sigma factor recognition sites are crucial elements in bacterial promoters, and they typically

appear around -35 and -10 base pairs away from the transcriptional start site [56]. Incorporat-

ing constraints at specific locations forces the solver to place user-defined sites within dense

arrangements of binding sites on the forward strand (Fig 5A and 5B, see Methods for the

implementation of the constraints). We designed the constraints to be flexible enough that the

user can specify arbitrary ranges, for example specifying that the downstream element should

start between the -9 and -11 positions relative to the end of the sequence. This option for incor-

porating positional flexibility helps the solver to find feasible solutions that align with user-

defined constraints and allows for the specification of multiple fixed sequence elements (or

pairs thereof) to be positioned at defined proximal distances from one another. For example,

using this strategy, the solver can design dense arrays that contain tightly interlocked primary

and alternative sigma factor recognition elements (Fig 5C and 5D). In nature, promoters often

overlap, resulting in transcription start sites that are shared or close to each other, each linked

to specific sigma factor recognition sites upstream [1]. The positioning and spacing of these

sites is shaped by the biophysical constraints of the corresponding sigma factor [57]. Incorpo-

rating multiple sigma factor pairings into synthetic promoters helps sustain transcriptional

strength across diverse environments and transient stress responses, which can be valuable for

biotechnological applications [26,58]. As an example, we incorporated three distinct promot-

ers within a single dense array, featuring consensus sequences for σD, σS, and σN. These sigma

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 10 / 22

https://doi.org/10.1371/journal.pcbi.1012276

factors are linked with housekeeping genes, stationary phase and the general stress response,

and nitrogen metabolism, respectively. This combination enables the downstream genes of

this synthetic promoter to theoretically respond to variations in any of these conditions. With

fixed sequence lengths and positional constraints, we used random sequences to represent

binding sites and generated dense arrays. The solver successfully returned solutions that placed

specified binding sites in predetermined positions (Fig 5D).

Fig 4. A minor modification to the model fosters a diverse representation of binding sites as solutions are returned. (A) Schematic

representing binding site selection frequencies using solver order (top) or diversity-driven order (bottom). The color intensity of each vertex

represents the absolute counts with which it was included in a solution. (B) Solver order, using the Gurobi solver, and (C) diversity-driven

order approaches generate different frequencies of binding site representation. Each color represents a different binding site (|R| = 10 binding

sites). The three columns represent the three binding site collections presented in Fig 3, with respective number of top-scoring solutions of

1854, 2654, and 10,922. (D) The distribution entropy of the solver order and diversity-driven order strategies. In all cases, the entropy of the

diversity-driven order is the same or higher than the entropy of the solver order.

https://doi.org/10.1371/journal.pcbi.1012276.g004

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 11 / 22

https://doi.org/10.1371/journal.pcbi.1012276.g004
https://doi.org/10.1371/journal.pcbi.1012276

Transcription factor binding sites play varied roles in gene expression; for instance, some

facilitate activation while others cause repression, depending on the activity of their associated

regulator or their relative position to a transcription start site. Notably, it has been thought

that binding sites for activators typically lie upstream of the -35 sigma factor recognition ele-

ment, with their effectiveness diminishing if they are placed further downstream [23,56]. To

demonstrate how the model can accommodate this, we classified random sequences that rep-

resented binding sites as being associated with either activators or repressors, and then

adjusted the model to position activator sites more upstream and repressor sites more down-

stream (Fig 6A, see Methods for the implementation). Modifying the linear objective in this

way provides an additional layer of optimization to the solver, where otherwise equally scored

solutions (e.g., two dense arrays that each can fit 19 binding sites) will be differentiated based

on where activator sites and repressor sites appear in their sequences (Fig 6B).

Discussion

Dense arrangements of DNA-protein binding sites within nucleotide sequences can collec-

tively influence downstream transcription rates or initiate biomolecular interactions. Despite

the prevalence of such sequences in nature, rapidly generating large stretches of DNA with

Fig 5. Stipulating positional constraints to design bacterial promoters. (A) By applying additional constraints, the solver is guided to

create sequences with user-defined binding sites at predetermined locations. u, upstream site; d, downstream site. (B) This technique enables

interweaving of dense binding site regions around -35 and -10 sigma factor recognition sites. (C) Extending this, the solver can incorporate

both primary and alternative sigma factor sites, placed within densely packed binding sites. (D) Summary of results from 350 binding site

collections. Each collection contained random sequences to represent binding sites and was used to generate an output sequence of L = 100

base pairs. Each collection contained |R| = 20 binding sites, with sizes uniformly chosen between 5 to 15 base pairs. Alongside the ordinary

binding sites in each collection, six additional fixed binding sites were introduced with varying constraints: TTGACA/TATAAT, with its

upstream position within 40–60 base pairs from the beginning of the sequence and a spacer length of 16–18 base pairs; TTGACA/TATACT,

with its upstream position within 50–70 base pairs and also with a spacer length of 16–18 base pairs; and TGGCAGG/TTGCA, with its

upstream position within 60–80 base pairs, but with a shorter spacer length of 3–5 base pairs. The total number of random binding site

collections generated was 700: in half of the cases, the solver reported that no solution satisfying the constraints existed.

https://doi.org/10.1371/journal.pcbi.1012276.g005

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 12 / 22

https://doi.org/10.1371/journal.pcbi.1012276.g005
https://doi.org/10.1371/journal.pcbi.1012276

overlapping binding sites remains a challenge. Here, we present a computational method to

pack nucleotide sequence binding sites into dense arrays (Fig 1). We initially formulated the

task as a problem that we denote as the nucleotide SPP, which we showed to be NP-hard. The

SPP takes its place within the classical NP-hard problems, in that its relation with the Shortest

Common Superstring mirrors the relation of other pairs of classic NP-hard problems, such as

Maximum Coverage and Set Cover, Multiple Knapsack and Bin Packing, or Orienteering

Problem and Travelling Salesman Problem. We then reduced the task to an Orienteering

Problem with integer distances, which we expressed as a problem that can be solved using inte-

ger linear programming—a highly expressive framework that is amenable to the inclusion of

user-defined constraints, while also enabling the use of modern and efficient solvers. Although

the task is still NP-hard, this approach allowed us to dramatically increase the computational

efficiency of obtaining solutions over brute force approaches. Importantly, for biologically

realistic parameters (e.g., sequence lengths of L = 50–300 base pairs with several dozen binding

sites), this formulation can be solved in seconds (Fig 2). In contrast, a greedy polynomial-time

method was only able to reach the optimal solution when the problem was at its easiest (e.g.,

with few binding sites in a long sequence involving little to no compression (S1 Fig)).

By enumerating the best solutions in order, we found that there can be a multitude of

sequences that achieve optimal packing for a given binding site collection and sequence size

(Fig 3). However, there is a strong bias in the representation of binding sites in the set of opti-

mal solutions, where shorter binding sites appear more frequently (S2 Fig) and collection-spe-

cific effects impact binding site representation (Fig 3). While we highlight here how sampling

binding sites from a collection can produce a library of distinct sequence variants, the problem

of sampling is independent of the SPP. Sampling efforts can be customized in several ways to

generate sets of sequences that meet specific binding site representation requirements. This

can be achieved by iteratively modifying the integer linear programming model itself, such as

by assigning different weights to various binding sites in the solution score, as demonstrated in

our approach (Figs 4 and S4). We also demonstrate how the solver can incorporate specific

Fig 6. Modifying the linear integer programming model objective to include a position bias for activator sites and repressor sites.

(A) Classifying binding sites as either activator or repressor sites and then modifying the model to favor said sites by minimizing/

maximizing the position where they appear in the sequence. (B) The histogram was generated from data obtained from 120 random

binding site collections, each consisting of |R| = 20 binding sites. These binding sites, classified randomly either as activator sites or

repressor sites, varied in length from 5 to 15 base pairs, and were used to assemble sequences of L = 100 base pairs. Additionally, two

6-base pair sites, representing sigma factor recognition elements, were included with specific constraints: the downstream element was

positioned between positions 89 and 91 (corresponding to the -10 site), with a spacer of 16–18 base pairs (following the -35 site).

https://doi.org/10.1371/journal.pcbi.1012276.g006

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 13 / 22

https://doi.org/10.1371/journal.pcbi.1012276.g006
https://doi.org/10.1371/journal.pcbi.1012276

sequence elements at fixed positions within the dense arrays through additional constraints.

This method allows for the strategic placement of binding sites (or pairings thereof) at defined

locations, enabling the scalable design of bacterial promoters with intricate binding site archi-

tectures (Fig 5). Moreover, solutions can be further refined by adding solver incentives based

on the functional role of binding sites, such as being associated with either activators or repres-

sors. This approach can guide preferential placement of binding sites either upstream or

downstream within the dense array (Fig 6). Notably, we have observed that solve time

increases as more constraints and incentives are applied. Tasks like generating dense arrays

constrained only by binding site collection size |R| and sequence length L (as shown in Fig 2)

typically resolve in seconds. In contrast, more complex arrays stipulated with "diversity-driven

order" (Fig 4) or "positional bias" (Fig 6) exhibit greater variability in solve time, ranging from

seconds to tens of seconds. Occasionally, the solver may time out—for example due to the

imposition of too many constraints, resulting in no viable solutions for the given binding site

collection or sequence length.

It is also worth noting that the presented method can extend beyond cis-regulatory regions

and nucleotides. It can, in theory, densely pack strings made from any set of characters. There-

fore, it is amenable to forming continuous stretches of virtually any primary biological

sequence. The advantage of this graph-based approach is expected to increase as the alphabet

size increases because our formulation is independent of the size of the alphabet, in contrast to

methods modeling each letter individually. Beyond biological applications, the SPP introduced

here could find use cases in data compression, as seen with its variant the SCS problem

[59,60].

Further work could explore designing constraints that account for additional structural and

proximal factors influencing gene expression. This includes exploring how a regulator’s

bound, helical positioning on the DNA influences its distance to RNA polymerase, thus affect-

ing its regulatory effectiveness [56]. Another consideration for bacterial promoter design is the

prevalence of transcription factors that operate as homodimers, which form binding sites that

resemble “spaced dyads,” characterized by less conserved middle regions [56]. The dense

arrangement of these dyads may present additional constraints and challenges to the solver,

necessitating more nuanced and sophisticated design strategies. However, many binding sites

are defined as fuzzy, in contrast to the strict binding sites associated with restriction enzymes,

thus many arrangements of densely packed binding sites would likely give rise to nuanced and

complex dynamics in cis-regulatory regions. In addition, existing tools in the field of computa-

tional promoter design, such as predictive DNA sequence-to-activity models, could be applied

to dense arrays generated by the SPP—ascribing features such as promoter likeness or expres-

sion strength, with potential applications for in silico directed evolution.

The design and application of DNA sequences composed of discrete binding sites is reliant

on the availability of accurate and biologically relevant binding site annotations. Fortunately,

continued characterization of DNA-protein binding profiles across organisms, sourced from

techniques like ChIP-seq, DAP-seq, ATAC-seq, and HT-SELEX, will support the curation of

binding sites associated with proteins and cellular mechanisms. It is worth noting that there is

no definitive threshold for classifying a sequence as a transcription factor binding site. These

sites exist on a continuum, with affinities ranging from so low as to be negligible, to so high

that the transcription factor is nearly always bound [61]. Indeed, protein-DNA binding data

for transcription factors typically encompass a range of binding peaks rather than a single

sequence. These sequences can be affiliated with varying degrees of binding affinity, deter-

mined by factors such as experimental enrichment [62] or their similarity to a consensus

sequence. In practice, when multiple binding sites with labeled affinities are available for a

transcription factor, one can choose among these binding sites as inputs for the SPP method.

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 14 / 22

https://doi.org/10.1371/journal.pcbi.1012276

This flexibility allows for the tailoring of output solutions that meet specific design criteria or

assumptions. However, comprehensive binding affinity data is available for only a limited set

of transcription factors, and representative consensus sequences do not necessarily equate to

the highest thermodynamic binding affinity [63,64]. Despite the uncertainties, the SPP is a

practical tool for studying these questions through forward engineering. Equally applicable to

large-scale libraries and more focused studies, the nucleotide string packing approach we

introduce here serves as a resource for designing information-dense promoter sequences,

which could then be used to map how intricate binding site configurations influence gene

expression or biomolecular mechanisms.

Methods

Formulation of the SPP as an integer linear program

Given that the SPP is NP-hard, there is no known algorithm that can solve it in a time that is

polynomial in the size of the input, making solving medium to large instances impractical with

naïve methods. However, many NP-hard problems have practical significance, which has led

to the development of optimized solvers [46], designed to manage the combinatorial explosion

and return optimal solutions (as time and memory constraints permit). Although these solvers

might not return solutions in large instances within their allocated time and memory limits,

they can offer surprising efficiency for smaller problems. Many numerical solvers have been

specifically developed to tackle the NP-hard integer linear programming problem, which

restricts linear programming to integer variables. We formulated the SPP as an integer linear

programming problem by reducing it to a variant of the Travelling Salesman Problem (TSP)

known as the Orienteering Problem (OP) [44,47,48]. The TSP, a classic example of an NP-

hard problem, involves determining the shortest possible route that visits every vertex of a

graph. In the OP, there is an allocated time budget to traverse the graph, and the goal is to visit

as many distinct vertices as possible within that time budget. The OP’s relation to the TSP mir-

rors the SPP’s relation to the SCS problem. In fact, this relationship is shared by several other

pairs of classical NP-hard problems, where one problem consists of minimizing the cost of

covering all possible elements (e.g. Set Cover, Bin Packing, Traveling Salesman, Shortest Com-

mon Superstring), and the other consists of maximizing the number of elements covered

within an arbitrary given cost (respectively: Maximum Coverage, Multiple Knapsack, Orien-

teering Problem, and the String Packing Problem which to our knowledge had not been

named yet). Note that although similar, these pairs of problems are not equivalent, nor can

they be solved or approximated with the same efficiency. For instance, while Maximum Cover-

age admits a constant-factor polynomial-time approximation algorithm [65], it has been dem-

onstrated that Set Cover cannot be approximated to ð1 � oð1ÞÞ ln n unless P = NP [66]. We

can map any SPP to an OP by representing binding sites as vertices on a complete directed

graph.

We define a metric dij to represent the cost associated with going from one nucleotide string

to another in the graph. Specifically, the edge that connects string a and string b is given a nat-

ural integer weight, which represents the offset needed for the prefix of string b to match the

suffix of string a (Fig 1B). In other words, it describes the minimal number of spaces that string

b needs to be shifted to the right to coincide with and cover the end of string a. For example,

the directed edge from AGC to CAG is weighted 2, while the reverse edge is weighted 1. If no

suffix of a matches a prefix of b, then we consider that the empty suffix of a matches the empty

prefix of b, such that CGT to CAG is weighted 3. Importantly, a suffix of a needs to match a

prefix of b, such that b overhangs at the end of a (possibly by 0 characters), but cannot stop

before the end of a, for example, the directed edge from AGCAG to GC must be weighted 4,

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 15 / 22

https://doi.org/10.1371/journal.pcbi.1012276

not 1 (1 shift does not allow GC to overhang in the end of AGCAG). This requirement allows

the path to resume from the last vertex visited (here, GC) without any additional constraints. It

also makes the metric dij satisfy the triangle inequality. Finally, we create two additional verti-

ces: a start vertex with distance 0 to all other vertices, and an end vertex, such that the distance

of any binding site to the end vertex is the length of this binding site (Fig 1C). Maximizing the

number of binding sites included within a string of length L is then equivalent to maximizing

the number of graph vertices visited between the start and end vertices, with a sum of edge

weights not larger than the total budgeted length L. This corresponds to solving the OP on this

graph. Because all the distances are integers, this problem can be modeled as an integer linear

program. We adapt the Miller–Tucker–Zemlin TSP formulation [67] to consider the specifici-

ties of our problem, as follows:

Variables

We represent a path in the graph with binary variables. For every edge between two binding

sites, we create one binary variable to indicate if this edge is taken, that is, if the second binding

site comes directly after the first one in the final sequence (with the specified overlap). This cre-

ates n2+n+1 binary variables: with the index 0 representing both the start and end vertex, we

have n(n-1) edges between internal vertices (xij with i 6¼ j), n edges between the start and all

internal vertices (x0j), n edges between all internal vertices and the end vertex (xi0), as well as

one edge between the start and the end (x00) (taken if and only if no binding sites can fit in the

solution, that is, if the sequence length L is shorter than all binding sites).

Objective

The solver’s task is to maximize the number of vertices visited by the path in the graph. This is

equivalent to maximizing the sum of binary variables representing edges that enter an internal

vertex (not the end vertex):
P

i2½0;n�;j2½1;n�
xij. The following constraints impose that xij = 1 if and

only if the path contains the edge going from i to j.

Constraints

1. The path must start at the start vertex and end at the end vertex:
P

i2½0;n�
xi0 ¼ 1 and

P
j2½0;n�

x0j ¼ 1.

2. Vertices cannot be visited more than once: 8i 2 ½1; n�;
P

j2½0;n�
xij � 1 and

8j 2 ½1; n�;
P

i2½0;n�
xij � 1.

3. Any given internal vertex is entered and exited the same number of times:

8k 2 ½1; n�;
P

i2½0;n�
xik ¼

P
j2½0;n�

xkj.

4. The total length of the path is not longer than the desired final sequence:
P

i2½1;n�;j2½0;n�
dij xij � L where dij represents the metric described above.

5. Miller–Tucker–Zemlin subtour elimination constraints introduce one additional integer

variable per binding site, 8i 2 ½1; n�; ui 2 ½1; n�, and n(n-1) additional constraints:

8i 2 ½1; n�; 8j 2 ½1; n�; ui � uj þ 1 � nð1 � xijÞ. These additional variables and constraints

implement a counter that must increase along the path, which prevents subtours (loops dis-

connected from the main path).

Reconstructing the solution from the xij variables yields solutions such as those pictured in

Fig 1D. The expressivity of integer linear programming allows us to modify this base model to

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 16 / 22

https://doi.org/10.1371/journal.pcbi.1012276

include additional constraints and specifications. For example, double-stranded optimization

(allowing binding sites to appear not only in one strand but also as their reverse-complement

on the other) can be implemented by duplicating every vertex, reverse-complementing the

sequences, and modifying constraint 2 to prevent the algorithm from visiting both a binding

site and its reverse complement. Note that while the single-strand version of the SPP mirrors

the OP, the double-strand version of the problem is not strictly an OP, as it involves additional

constraints such as restricting the inclusion of both a binding site and its reverse complement.

However, both single and double stranded versions can be solved efficiently using integer lin-

ear programming. We implemented the SPP integer linear programming model with the

OR-Tools optimization toolbox [46], which is able to call open-source (CBC [68] or SCIP

[69]) or commercial (Gurobi [70]) integer linear programming solvers. Unless otherwise

noted, we use the Gurobi solver due to its superior speed (S1 Table).

Implementation of the promoter constraints

Promoter constraints are formulated in terms of absolute positions in the DNA sequence:

these positions must then be encoded in the linear integer model. We achieve this with a set of

n integer variables with values from 0 to L-1 (both included), and the following linear

constraints:

8i 2 ½0; n�; 8j 2 ½1; n�; i 6¼ j; dijxij � ðL � 1Þð1 � xijÞ � positionj � positioni � dijxij

þðL � 1Þð1 � xijÞ
where position0 = 0 (the position of the empty start vertex).

This follows a similar approach as the subtour elimination constraints, forcing positionj−po-
sitioni to be equal to dij if and only if xij = 1 (otherwise, any value is possible).

With these position variables defined, we implement the promoter position constraints as

follows:

• If binding site k corresponds to a fixed binding site, it must appear in the sequence:
P

i2½0;n�; i6¼k xik � 1

• If binding site k corresponds to a fixed binding site that needs to start between positions α
and β, then α�positionk�β

• If binding sites k and l are the upstream and downstream elements of a promoter where the

spacer length is constrained to be between α and β base pairs: a � positionl � lengthl �

positionk � b with lengthl being the length of binding site l

Implementation of the side bias

The side biases (introducing binding sites with upstream or downstream preferences) can be

implemented using the position variables described in the previous subsection. We add the

term ±positioni/K to the score function if binding site i has an upstream preference (−) or a

downstream preference (+). These terms are added to an integer-step scoring function (the

number of binding sites in the sequence). The value of the strictly positive constant K is thus

irrelevant as long as the sum of all these terms cannot take a value outside of [−0.5, 0.5]: this

ensures that two solutions with different numbers of binding sites cannot be reordered.

Supporting information

S1 Fig. Performance of the greedy approximation algorithm. We plotted the number of

binding sites that the approximation algorithm managed to fit into a sequence of a given

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 17 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012276.s001
https://doi.org/10.1371/journal.pcbi.1012276

length, L, normalized by the optimal solution. We repeated each scenario 10 times with ran-

dom binding sites of uniform random lengths between 5 and 15 base pairs. Shaded regions

represent the bootstrapped 95% confidence interval around the mean.

(TIF)

S2 Fig. Frequency of binding site usage as a function of binding site length. Ten binding

site collections were randomly generated with 10 binding sites each, where there is one binding

site of each length from 5 to 14 base pairs. All of the top-scoring solutions for a sequence length

L = 50 were generated every time: for one of the 10 binding site collections, 4 binding sites

were able to be fit at best, with 7184 ways to do so. For the nine others, 5 binding sites were

able to be fit at best, with 26, 72, 150, 184, 206, 278, 418, 664, 762 ways to do so. The shaded

region represents the bootstrapped 95% confidence interval around the mean.

(TIF)

S3 Fig. Within binding sites of the same size, the ones with the highest average overlap

(lowest average distance dij) with the others are disproportionately represented in the top-

scoring solutions. The blue line is the average linear regression line, the shaded region is the

94% credible interval of the mean.

(TIF)

S4 Fig. Solver order with (A) Gurobi, (B) SCIP, and (C) CBC solvers. (D) Diversity-driven

order control strategies. Details on the solve times for the different solvers are available in

S1 Table. (E) The diversity-driven order approach generally produces higher entropy distribu-

tions despite the bias in binding site representation. Note that data from Fig 4 for the Gurobi

solver, diversity-driven order, and entropy plots are replicated here for ease of comparison.

(TIF)

S5 Fig. The solver order (A) and diversity-driven order (B) strategies applied to heavily biased

libraries, where binding sites have different sizes. Every library is made of 10 randomly gener-

ated binding sites, one of size 5 base pairs, one of size 6, etc., until size 14. As the full distribu-

tion attests (rightmost point of the graphs), some binding sites are present in almost all top-

scoring solutions, while some others are present in none. Despite this, the diversity-driven

order approach generally produces higher entropy distributions (C). The solver used here was

Gurobi.

(TIF)

S1 Table. Time to enumerate all top-scoring solutions using solver order, for three differ-

ent solvers. For solve times > 20 h, we stopped computation at this point.

(PDF)

Acknowledgments

We would like to thank Hang Zhou and Rayan Chikhi for helpful comments on the

manuscript.

Author Contributions

Conceptualization: Eric J. South.

Formal analysis: Virgile Andreani.

Funding acquisition: Mary J. Dunlop.

Investigation: Virgile Andreani.

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 18 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012276.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012276.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012276.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012276.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012276.s006
https://doi.org/10.1371/journal.pcbi.1012276

Methodology: Virgile Andreani.

Project administration: Mary J. Dunlop.

Software: Virgile Andreani, Eric J. South.

Supervision: Mary J. Dunlop.

Validation: Eric J. South.

Visualization: Eric J. South.

Writing – original draft: Virgile Andreani, Eric J. South, Mary J. Dunlop.

Writing – review & editing: Virgile Andreani, Eric J. South, Mary J. Dunlop.

References
1. Mejı́a-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, et al. Redefining funda-

mental concepts of transcription initiation in bacteria. Nat Rev Genet. 2020 Nov; 21(11):699–714.

https://doi.org/10.1038/s41576-020-0254-8 PMID: 32665585

2. Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, et al. Inferring gene regulatory logic

from high-throughput measurements of thousands of systematically designed promoters. Nat Biotech-

nol. 2012 Jun; 30(6):521–30. https://doi.org/10.1038/nbt.2205 PMID: 22609971

3. LaFleur TL, Hossain A, Salis HM. Automated model-predictive design of synthetic promoters to control

transcriptional profiles in bacteria. Nat Commun. 2022 Sep 2; 13(1):5159. https://doi.org/10.1038/

s41467-022-32829-5 PMID: 36056029

4. Jensen D, Galburt EA. The Context-Dependent Influence of Promoter Sequence Motifs on Transcrip-

tion Initiation Kinetics and Regulation. J Bacteriol. 2021 Mar 23; 203(8):e00512–20. https://doi.org/10.

1128/JB.00512-20 PMID: 33139481

5. Dijk D van, Sharon E, Lotan-Pompan M, Weinberger A, Segal E, Carey LB. Large-scale mapping of

gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Res.

2017 Jan 1; 27(1):87–94. https://doi.org/10.1101/gr.212316.116 PMID: 27965290

6. Rogers JK, Guzman CD, Taylor ND, Raman S, Anderson K, Church GM. Synthetic biosensors for pre-

cise gene control and real-time monitoring of metabolites. Nucleic Acids Res. 2015; 43(15):7648–60.

https://doi.org/10.1093/nar/gkv616 PMID: 26152303

7. Hossain GS, Saini M, Miyake R, Ling H, Chang MW. Genetic Biosensor Design for Natural Product Bio-

synthesis in Microorganisms. Trends Biotechnol. 2020; 38:797–810. https://doi.org/10.1016/j.tibtech.

2020.03.013 PMID: 32359951

8. Lupo O, Kumar DK, Livne R, Chappleboim M, Levy I, Barkai N. The architecture of binding cooperativity

between densely bound transcription factors. Cell Syst [Internet]. 2023 Jul 31 [cited 2023 Aug 27]; Avail-

able from: https://www.sciencedirect.com/science/article/pii/S2405471223001850 https://doi.org/10.

1016/j.cels.2023.06.010 PMID: 37527656

9. Brodsky S, Jana T, Mittelman K, Chapal M, Kumar DK, Carmi M, et al. Intrinsically Disordered Regions

Direct Transcription Factor In Vivo Binding Specificity. Mol Cell. 2020 Aug 6; 79(3):459–471.e4.

10. Struhl K. Molecular mechanisms of transcriptional regulation in yeast. Annu Rev Biochem. 1989;

58:1051–77. https://doi.org/10.1146/annurev.bi.58.070189.005155 PMID: 2673007

11. Kazemian M, Pham H, Wolfe SA, Brodsky MH, Sinha S. Widespread evidence of cooperative DNA

binding by transcription factors in Drosophila development. Nucleic Acids Res. 2013 Sep; 41(17):8237–

52. https://doi.org/10.1093/nar/gkt598 PMID: 23847101

12. Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic

networks. FEMS Microbiol Rev. 2010 Sep 1; 34(5):628–45. https://doi.org/10.1111/j.1574-6976.2010.

00227.x PMID: 20491932

13. Rydenfelt M, Garcia HG, Iii RSC, Phillips R. The Influence of Promoter Architectures and Regulatory

Motifs on Gene Expression in Escherichia coli. PLOS ONE. 2014 Dec 30; 9(12):e114347. https://doi.

org/10.1371/journal.pone.0114347 PMID: 25549361

14. Gertz J, Cohen BA. Environment-specific combinatorial cis-regulation in synthetic promoters. Mol Syst

Biol. 2009 Jan; 5(1):244. https://doi.org/10.1038/msb.2009.1 PMID: 19225457

15. Yu TC, Liu WL, Brinck MS, Davis JE, Shek J, Bower G, et al. Multiplexed characterization of rationally

designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems. Nat

Commun. 2021 Jan 12; 12(1):325. https://doi.org/10.1038/s41467-020-20094-3 PMID: 33436562

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 19 / 22

https://doi.org/10.1038/s41576-020-0254-8
http://www.ncbi.nlm.nih.gov/pubmed/32665585
https://doi.org/10.1038/nbt.2205
http://www.ncbi.nlm.nih.gov/pubmed/22609971
https://doi.org/10.1038/s41467-022-32829-5
https://doi.org/10.1038/s41467-022-32829-5
http://www.ncbi.nlm.nih.gov/pubmed/36056029
https://doi.org/10.1128/JB.00512-20
https://doi.org/10.1128/JB.00512-20
http://www.ncbi.nlm.nih.gov/pubmed/33139481
https://doi.org/10.1101/gr.212316.116
http://www.ncbi.nlm.nih.gov/pubmed/27965290
https://doi.org/10.1093/nar/gkv616
http://www.ncbi.nlm.nih.gov/pubmed/26152303
https://doi.org/10.1016/j.tibtech.2020.03.013
https://doi.org/10.1016/j.tibtech.2020.03.013
http://www.ncbi.nlm.nih.gov/pubmed/32359951
https://www.sciencedirect.com/science/article/pii/S2405471223001850
https://doi.org/10.1016/j.cels.2023.06.010
https://doi.org/10.1016/j.cels.2023.06.010
http://www.ncbi.nlm.nih.gov/pubmed/37527656
https://doi.org/10.1146/annurev.bi.58.070189.005155
http://www.ncbi.nlm.nih.gov/pubmed/2673007
https://doi.org/10.1093/nar/gkt598
http://www.ncbi.nlm.nih.gov/pubmed/23847101
https://doi.org/10.1111/j.1574-6976.2010.00227.x
https://doi.org/10.1111/j.1574-6976.2010.00227.x
http://www.ncbi.nlm.nih.gov/pubmed/20491932
https://doi.org/10.1371/journal.pone.0114347
https://doi.org/10.1371/journal.pone.0114347
http://www.ncbi.nlm.nih.gov/pubmed/25549361
https://doi.org/10.1038/msb.2009.1
http://www.ncbi.nlm.nih.gov/pubmed/19225457
https://doi.org/10.1038/s41467-020-20094-3
http://www.ncbi.nlm.nih.gov/pubmed/33436562
https://doi.org/10.1371/journal.pcbi.1012276

16. Urtecho G, Insigne KD, Tripp AD, Brinck M, Lubock NB, Kim H, et al. Genome-wide Functional Charac-

terization of Escherichia coli Promoters and Regulatory Elements Responsible for their Function [Inter-

net]. bioRxiv; 2020 [cited 2023 Jun 15]. p. 2020.01.04.894907. Available from: https://www.biorxiv.org/

content/10.1101/2020.01.04.894907v1

17. Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S, Reilly SK, et al. Direct Identification of Hundreds of

Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell. 2016 Jun 2; 165(6):1519–

29. https://doi.org/10.1016/j.cell.2016.04.027 PMID: 27259153

18. Johns NI, Gomes ALC, Yim SS, Yang A, Blazejewski T, Smillie CS, et al. Metagenomic mining of regu-

latory elements enables programmable species-selective gene expression. Nat Methods. 2018 May; 15

(5):323–9. https://doi.org/10.1038/nmeth.4633 PMID: 30052624

19. Cuperus JT, Groves B, Kuchina A, Rosenberg AB, Jojic N, Fields S, et al. Deep learning of the regula-

tory grammar of yeast 50 untranslated regions from 500,000 random sequences. Genome Res. 2017

Dec 1; 27(12):2015–24. https://doi.org/10.1101/gr.224964.117 PMID: 29097404

20. Van Brempt M, Clauwaert J, Mey F, Stock M, Maertens J, Waegeman W, et al. Predictive design of

sigma factor-specific promoters. Nat Commun. 2020 Nov 16; 11(1):5822. https://doi.org/10.1038/

s41467-020-19446-w PMID: 33199691

21. Cazier AP, Blazeck J. Advances in promoter engineering: Novel applications and predefined transcrip-

tional control. Biotechnol J. 2021; 16(10):2100239. https://doi.org/10.1002/biot.202100239 PMID:

34351706

22. Blazeck J, Alper HS. Promoter engineering: Recent advances in controlling transcription at the most

fundamental level. Biotechnol J. 2013; 8(1):46–58. https://doi.org/10.1002/biot.201200120 PMID:

22890821

23. Cox III RS, Surette MG, Elowitz MB. Programming gene expression with combinatorial promoters. Mol

Syst Biol. 2007 Jan; 3(1):145.

24. Inukai S, Kock KH, Bulyk ML. Transcription factor–DNA binding: beyond binding site motifs. Curr Opin

Genet Dev. 2017 Apr 1; 43:110–9. https://doi.org/10.1016/j.gde.2017.02.007 PMID: 28359978

25. Mogno I, Kwasnieski JC, Cohen BA. Massively parallel synthetic promoter assays reveal the in vivo

effects of binding site variants. Genome Res. 2013 Nov 1; 23(11):1908–15. https://doi.org/10.1101/gr.

157891.113 PMID: 23921661

26. Wang Y, Liu Q, Weng H, Shi Y, Chen J, Du G, et al. Construction of Synthetic Promoters by Assembling

the Sigma Factor Binding −35 and −10 Boxes. Biotechnol J. 2019; 14(1):1800298. https://doi.org/10.

1002/biot.201800298 PMID: 30457214

27. Stewart AJ, Hannenhalli S, Plotkin JB. Why Transcription Factor Binding Sites Are Ten Nucleotides

Long. Genetics. 2012 Nov 1; 192(3):973–85. https://doi.org/10.1534/genetics.112.143370 PMID:

22887818

28. Guazzaroni ME, Silva-Rocha R. Expanding the Logic of Bacterial Promoters Using Engineered Over-

lapping Operators for Global Regulators. ACS Synth Biol. 2014 Sep 19; 3(9):666–75. https://doi.org/10.

1021/sb500084f PMID: 25036188

29. Amores GR, Guazzaroni ME, Silva-Rocha R. Engineering Synthetic cis-Regulatory Elements for Simul-

taneous Recognition of Three Transcriptional Factors in Bacteria. ACS Synth Biol. 2015 Dec 18; 4

(12):1287–94. https://doi.org/10.1021/acssynbio.5b00098 PMID: 26305598

30. Monteiro LMO, Sanches-Medeiros A, Westmann CA, Silva-Rocha R. Modulating Fis and IHF binding

specificity, crosstalk and regulatory logic through the engineering of complex promoters [Internet]. bioR-

xiv; 2019 [cited 2022 Dec 19]. p. 614396. Available from: https://www.biorxiv.org/content/10.1101/

614396v1

31. Kotopka BJ, Smolke CD. Model-driven generation of artificial yeast promoters. Nat Commun. 2020 Apr

30; 11(1):2113. https://doi.org/10.1038/s41467-020-15977-4 PMID: 32355169

32. Sample PJ, Wang B, Reid DW, Presnyak V, McFadyen IJ, Morris DR, et al. Human 50 UTR design and

variant effect prediction from a massively parallel translation assay. Nat Biotechnol. 2019 Jul; 37

(7):803–9. https://doi.org/10.1038/s41587-019-0164-5 PMID: 31267113

33. Taskiran II, Spanier KI, Christiaens V, Mauduit D, Aerts S. Cell type directed design of synthetic enhanc-

ers [Internet]. bioRxiv; 2022 [cited 2023 May 3]. p. 2022.07.26.501466. Available from: https://www.

biorxiv.org/content/10.1101/2022.07.26.501466v1

34. Seo E, Choi YN, Shin YR, Kim D, Lee JW. Design of synthetic promoters for cyanobacteria with genera-

tive deep-learning model. Nucleic Acids Res. 2023 May 29;gkad451. https://doi.org/10.1093/nar/

gkad451 PMID: 37246641

35. Gosai SJ, Castro RI, Fuentes N, Butts JC, Kales S, Noche RR, et al. Machine-guided design of syn-

thetic cell type-specific cis-regulatory elements [Internet]. bioRxiv; 2023 [cited 2023 Aug 13].

p. 2023.08.08.552077. Available from: seqprop

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 20 / 22

https://www.biorxiv.org/content/10.1101/2020.01.04.894907v1
https://www.biorxiv.org/content/10.1101/2020.01.04.894907v1
https://doi.org/10.1016/j.cell.2016.04.027
http://www.ncbi.nlm.nih.gov/pubmed/27259153
https://doi.org/10.1038/nmeth.4633
http://www.ncbi.nlm.nih.gov/pubmed/30052624
https://doi.org/10.1101/gr.224964.117
http://www.ncbi.nlm.nih.gov/pubmed/29097404
https://doi.org/10.1038/s41467-020-19446-w
https://doi.org/10.1038/s41467-020-19446-w
http://www.ncbi.nlm.nih.gov/pubmed/33199691
https://doi.org/10.1002/biot.202100239
http://www.ncbi.nlm.nih.gov/pubmed/34351706
https://doi.org/10.1002/biot.201200120
http://www.ncbi.nlm.nih.gov/pubmed/22890821
https://doi.org/10.1016/j.gde.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28359978
https://doi.org/10.1101/gr.157891.113
https://doi.org/10.1101/gr.157891.113
http://www.ncbi.nlm.nih.gov/pubmed/23921661
https://doi.org/10.1002/biot.201800298
https://doi.org/10.1002/biot.201800298
http://www.ncbi.nlm.nih.gov/pubmed/30457214
https://doi.org/10.1534/genetics.112.143370
http://www.ncbi.nlm.nih.gov/pubmed/22887818
https://doi.org/10.1021/sb500084f
https://doi.org/10.1021/sb500084f
http://www.ncbi.nlm.nih.gov/pubmed/25036188
https://doi.org/10.1021/acssynbio.5b00098
http://www.ncbi.nlm.nih.gov/pubmed/26305598
https://www.biorxiv.org/content/10.1101/614396v1
https://www.biorxiv.org/content/10.1101/614396v1
https://doi.org/10.1038/s41467-020-15977-4
http://www.ncbi.nlm.nih.gov/pubmed/32355169
https://doi.org/10.1038/s41587-019-0164-5
http://www.ncbi.nlm.nih.gov/pubmed/31267113
https://www.biorxiv.org/content/10.1101/2022.07.26.501466v1
https://www.biorxiv.org/content/10.1101/2022.07.26.501466v1
https://doi.org/10.1093/nar/gkad451
https://doi.org/10.1093/nar/gkad451
http://www.ncbi.nlm.nih.gov/pubmed/37246641
https://doi.org/10.1371/journal.pcbi.1012276

36. Nikolados EM, Oyarzún DA. Deep learning for optimization of protein expression. Curr Opin Biotechnol.

2023 Jun 1; 81:102941. https://doi.org/10.1016/j.copbio.2023.102941 PMID: 37087839

37. Sanabria M, Hirsch J, Poetsch AR. Distinguishing word identity and sequence context in DNA language

models [Internet]. bioRxiv; 2023 [cited 2023 Jul 31]. p. 2023.07.11.548593. Available from: https://www.

biorxiv.org/content/10.1101/2023.07.11.548593v1

38. Zhang P, Wang H, Xu H, Wei L, Liu L, Hu Z, et al. Deep flanking sequence engineering for efficient pro-

moter design using DeepSEED. Nat Commun. 2023 Oct 9; 14(1):6309. https://doi.org/10.1038/s41467-

023-41899-y PMID: 37813854

39. Wang H, Du Q, Wang Y, Xu H, Wei Z, Wang X. GPro: generative AI-empowered toolkit for promoter

design. Bioinformatics. 2024 Mar 1; 40(3):btae123. https://doi.org/10.1093/bioinformatics/btae123

PMID: 38429953

40. Lin J, Wang X, Liu T, Teng Y, Cui W. Diffusion-Based Generative Network for de Novo Synthetic Pro-

moter Design. ACS Synth Biol [Internet]. 2024 Apr 13 [cited 2024 Apr 17]; Available from: https://doi.

org/10.1021/acssynbio.4c00041

41. Hsu C, Fannjiang C, Listgarten J. Generative models for protein structures and sequences. Nat Biotech-

nol. 2024 Feb; 42(2):196–9. https://doi.org/10.1038/s41587-023-02115-w PMID: 38361069

42. de Boer CG, Taipale J. Hold out the genome: a roadmap to solving the cis-regulatory code. Nature.

2024 Jan; 625(7993):41–50. https://doi.org/10.1038/s41586-023-06661-w PMID: 38093018

43. Garey MR, Johnson DS. Computers and Intractability: a guide to the theory of NP-Completeness. New

York: Freeman; 1985. (Series of books un the mathematical sciences).

44. Gunawan A, Lau HC, Vansteenwegen P. Orienteering Problem: A survey of recent variants, solution

approaches and applications. Eur J Oper Res. 2016 Dec 1; 255(2):315–32.

45. Maier D, Storer JA. A Note on the Complexity of the Superstring Problem. Computer Science Labora-

tory: Princeton University; 1977 Oct. Report No.: 233.

46. Google. OR-Tools, v9.7. 2023; Available from: https://developers.google.com/optimization/

47. Golden BL, Levy L, Vohra R. The orienteering problem. Nav Res Logist NRL. 1987; 34(3):307–18.

48. Tsiligirides T. Heuristic Methods Applied to Orienteering. J Oper Res Soc. 1984 Sep 1; 35(9):797–809.

49. OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. 2023. Entry A000522. Avail-

able from: https://oeis.org/A000522

50. Tierrafrı́a VH, Rioualen C, Salgado H, Lara P, Gama-Castro S, Lally P, et al. RegulonDB 11.0: Compre-

hensive high-throughput datasets on transcriptional regulation in Escherichia coli K-12. Microb Geno-

mics. 2022; 8(5):000833. https://doi.org/10.1099/mgen.0.000833 PMID: 35584008

51. Christofides N. Worst-case analysis of a new heuristic for the travelling salesman problem. Graduate

School of Industrial Application, Carnegie-Mellon University; 1976 Feb. Report No.: 388.

52. van Bevern R, Slugina VA. A historical note on the 3/2-approximation algorithm for the metric traveling

salesman problem. Hist Math. 2020 Nov 1; 53:118–27.

53. Сердюков АИ. О некоторых экстремальных обходах в графах. Дискретный АнализИ Исследова-
ние Операций. 1978;(17):76–9.

54. Turner JS. Approximation algorithms for the shortest common superstring problem. Inf Comput. 1989

Oct 1; 83(1):1–20.

55. Englert M, Matsakis N, Veselý P. Improved approximation guarantees for shortest superstrings using

cycle classification by overlap to length ratios. In: Proceedings of the 54th Annual ACM SIGACT Sym-

posium on Theory of Computing [Internet]. New York, NY, USA: Association for Computing Machinery;

2022 [cited 2023 Oct 12]. p. 317–30. (STOC 2022). Available from: https://doi.org/10.1145/3519935.

3520001

56. van Hijum SAFT Medema MH, Kuipers OP. Mechanisms and Evolution of Control Logic in Prokaryotic

Transcriptional Regulation. Microbiol Mol Biol Rev MMBR. 2009 Sep; 73(3):481–509. https://doi.org/10.

1128/MMBR.00037-08 PMID: 19721087

57. Bervoets I, Van Brempt M, Van Nerom K, Van Hove B, Maertens J, De Mey M, et al. A sigma factor

toolbox for orthogonal gene expression in Escherichia coli. Nucleic Acids Res. 2018 Feb 28; 46

(4):2133–44. https://doi.org/10.1093/nar/gky010 PMID: 29361130

58. Wang Y, Shi Y, Hu L, Du G, Chen J, Kang Z. Engineering strong and stress-responsive promoters in

Bacillus subtilis by interlocking sigma factor binding motifs. Synth Syst Biotechnol. 2019 Dec 1; 4

(4):197–203. https://doi.org/10.1016/j.synbio.2019.10.004 PMID: 31750410

59. Ilie L, Popescu C. The Shortest Common Superstring Problem and Viral Genome Compression. Fun-

dam Informaticae. 2006; 73(1–2):153–64.

60. Storer JA. Data compression: methods and theory. Computer Science Press, Inc.; 1987.

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 21 / 22

https://doi.org/10.1016/j.copbio.2023.102941
http://www.ncbi.nlm.nih.gov/pubmed/37087839
https://www.biorxiv.org/content/10.1101/2023.07.11.548593v1
https://www.biorxiv.org/content/10.1101/2023.07.11.548593v1
https://doi.org/10.1038/s41467-023-41899-y
https://doi.org/10.1038/s41467-023-41899-y
http://www.ncbi.nlm.nih.gov/pubmed/37813854
https://doi.org/10.1093/bioinformatics/btae123
http://www.ncbi.nlm.nih.gov/pubmed/38429953
https://doi.org/10.1021/acssynbio.4c00041
https://doi.org/10.1021/acssynbio.4c00041
https://doi.org/10.1038/s41587-023-02115-w
http://www.ncbi.nlm.nih.gov/pubmed/38361069
https://doi.org/10.1038/s41586-023-06661-w
http://www.ncbi.nlm.nih.gov/pubmed/38093018
https://developers.google.com/optimization/
https://oeis.org/A000522
https://doi.org/10.1099/mgen.0.000833
http://www.ncbi.nlm.nih.gov/pubmed/35584008
https://doi.org/10.1145/3519935.3520001
https://doi.org/10.1145/3519935.3520001
https://doi.org/10.1128/MMBR.00037-08
https://doi.org/10.1128/MMBR.00037-08
http://www.ncbi.nlm.nih.gov/pubmed/19721087
https://doi.org/10.1093/nar/gky010
http://www.ncbi.nlm.nih.gov/pubmed/29361130
https://doi.org/10.1016/j.synbio.2019.10.004
http://www.ncbi.nlm.nih.gov/pubmed/31750410
https://doi.org/10.1371/journal.pcbi.1012276

61. De Boer G C. The continuum of transcription factor affinities. Nat Rev Genet. 2024 Feb 27;1–1.

62. Jaini S, Lyubetskaya A, Gomes A, Peterson M, Tae Park S, Raman S, et al. Transcription Factor Bind-

ing Site Mapping Using ChIP-Seq. Microbiol Spectr. 2014 Apr 18; 2(2):10.1128/microbiolspec.mgm2-

0035–2013. https://doi.org/10.1128/microbiolspec.MGM2-0035-2013 PMID: 26105820

63. Stormo GD, Fields DS. Specificity, free energy and information content in protein–DNA interactions.

Trends Biochem Sci. 1998 Mar 1; 23(3):109–13. https://doi.org/10.1016/s0968-0004(98)01187-6

PMID: 9581503

64. Bulyk ML. Computational prediction of transcription-factor binding site locations. Genome Biol. 2003

Dec 23; 5(1):201. https://doi.org/10.1186/gb-2003-5-1-201 PMID: 14709165

65. Hochbaum D, editor. Approximation Algorithms for NP-Hard Problems. 1st edition. Boston: Course

Technology; 1996. 624 p.

66. Dinur I, Steurer D. Analytical approach to parallel repetition. In: Proceedings of the forty-sixth annual

ACM symposium on Theory of computing [Internet]. New York, NY, USA: Association for Computing

Machinery; 2014 [cited 2024 Jan 24]. p. 624–33. (STOC ‘14). Available from: https://doi.org/10.1145/

2591796.2591884

67. Miller CE, Tucker AW, Zemlin RA. Integer Programming Formulation of Traveling Salesman Problems.

J ACM. 1960 Oct 1; 7(4):326–9.

68. Forrest J, Ralphs T, Santos HG, Vigerske S, Forrest J, Hafer L, et al. coin-or/Cbc: Release releases/

2.10.10 [Internet]. Zenodo; 2023 [cited 2023 Oct 3]. Available from: https://zenodo.org/record/7843975

69. Bestuzheva K, Chmiela A, Müller B, Serrano F, Vigerske S, Wegscheider F. Global Optimization of

Mixed-Integer Nonlinear Programs with SCIP 8. 2023 [cited 2023 Oct 3]; Available from: https://arxiv.

org/abs/2301.00587

70. Gurobi Optimization LLC. Gurobi Optimizer Reference Manual. [Internet]. 2023. Available from: https://

www.gurobi.com

PLOS COMPUTATIONAL BIOLOGY Generating dense promoter sequences with optimal string packing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012276 July 24, 2024 22 / 22

https://doi.org/10.1128/microbiolspec.MGM2-0035-2013
http://www.ncbi.nlm.nih.gov/pubmed/26105820
https://doi.org/10.1016/s0968-0004%2898%2901187-6
http://www.ncbi.nlm.nih.gov/pubmed/9581503
https://doi.org/10.1186/gb-2003-5-1-201
http://www.ncbi.nlm.nih.gov/pubmed/14709165
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2591796.2591884
https://zenodo.org/record/7843975
https://arxiv.org/abs/2301.00587
https://arxiv.org/abs/2301.00587
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1371/journal.pcbi.1012276

