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ABSTRACT

Understanding the evolution of satellite galaxies of the Milky Way (MW) and M31 requires modelling their orbital histories
across cosmic time. Many works that model satellite orbits incorrectly assume or approximate that the host halo gravitational
potential is fixed in time and is spherically symmetric or axisymmetric. We rigorously benchmark the accuracy of such models
against the FIRE-2 cosmological baryonic simulations of MW/M31-mass haloes. When a typical surviving satellite fell in
(3.4-9.7 Gyr ago), the host halo mass and radius were typically 26-86 per cent of their values today, respectively. Most of this
mass growth of the host occurred at small distances, » < 50kpc, opposite to dark matter only simulations, which experience
almost no growth at small radii. We fit a near-exact axisymmetric gravitational potential to each host at z = 0 and backward
integrate the orbits of satellites in this static potential, comparing against the true orbit histories in the simulations. Orbital
energy and angular momentum are not well conserved throughout an orbital history, varying by 25 per cent from their current
values already 1.6—4.7 Gyr ago. Most orbital properties are minimally biased, <10 per cent, when averaged across the satellite
population as a whole. However, for a single satellite, the uncertainties are large: recent orbital properties, like the most recent
pericentre distance, typically are 20 per cent uncertain, while earlier events, like the minimum pericentre or the infall time, are
~40-80 per cent uncertain. Furthermore, these biases and uncertainties are lower limits, given that we use near-exact host mass
profiles at z = 0.
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potential, to what extent can we accurately recover orbit properties,

1 INTRODUCTION . . .
such pericentre distances and times?

The satellite galaxies of the Milky Way (MW) and M31 are the
most rigorously studied low-mass galaxies, given their proximity to
us. The dynamics and evolution of these low-mass galaxies encode
rich information about their past and the host halo environment in
which they orbit. These low-mass galaxies also differ from the non-
satellite galaxies within the Local Group (LG) given that their host
galaxies, either the MW or M31, regulated their star formation, and
they probe deep within their host potentials. Important questions
about their orbital histories include: When did each satellite fall
into the MW/M31 halo? How close have they orbited, and when
did they experience pericentric passages? How has the mass of
the MW/M31 changed over time, and how has it impacted satellite
orbits? How well conserved are orbital properties such as energy or
angular momentum? Given a near-perfect representation of the host
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Satellites in the LG are the only low-mass galaxies for which we
can measure their full 6D phase-space coordinates. One historically
challenging phase-space component to measure is proper motion.
Many studies used the Hubble Space Telescope (HST) to derive
proper motion estimates for galaxies in the LG to estimate their
star-formation histories, determine companionship with the Large
Magellanic Cloud (LMC), and to study the planar structure of
satellites around both the MW and Andromeda (M31) (e.g. van
der Marel et al. 2012; Kallivayalil et al. 2013; Sohn et al. 2020;
Pawlowski & Sohn 2021). Recent HST treasury programs (such as
GO-14734, PI Kallivayalil; GO-15902, PI Weisz; GO-17174, Ben-
net; HSTPROMO) are obtaining proper motions for the remaining
satellites; we soon will have orbital dynamics information for all
known satellites in the LG.

Furthermore, the Gaia space telescope has been revolutionary in
providing a wealth of data, such as positions, magnitudes, and proper
motions, for over 1 billion sources, including globular clusters and the
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satellite galaxies of the MW (Gaia Collaboration 2018). Numerous
studies use Gaia’s kinematic data to study group infall of satellites,
including satellites of the LMC (e.g. Kallivayalil et al. 2018; Fritz
et al. 2018a; Patel et al. 2020). Because proper motion measurements
improve with multiple observations, many studies now use HST and
Gaia data in conjunction to reduce uncertainties in satellite galaxy
proper motions (such as Bennet et al. 2022; del Pino et al. 2022;
Warfield et al. 2023). Current observational programs such as the
Satellites Around Galactic Analogs (SAGA) survey (Geha et al.
2017; Mao et al. 2021) are observing satellite galaxies around other
MW-mass galaxies. JWST soon will be able to obtain proper motions
of even more distant low-mass galaxies, beyond the LG (Weisz et al.
2023), and the Vera Rubin Telescope will catalogue more than 10
billion stars within the low-mass galaxies around the MW.

Using the phase-space information of satellite galaxies, in tandem
with a model of the Galactic potential, many studies investigate
satellite infall and orbital histories. A galaxy becomes a satellite
galaxy when it first crosses the virial radius of a more massive
halo, which can quench the lower-mass galaxy’s star formation
(e.g. Gunn & Gott 1972; van den Bosch et al. 2008; Rodriguez
Wimberly et al. 2019; Samuel et al. 2022a, b). As satellites reach
their closest approach to the host galaxy at pericentre, they orbit
in the denser host CGM and feel strong tidal forces ram pressure
(e.g. McCarthy et al. 2008; Simons et al. 2020; Martin-Navarro
et al. 2021; Samuel et al. 2022a). Many studies use different models
for the MW/M31 potential and numerically integrate the orbits for
their satellite galaxies to derive orbit properties. However, the results
depend strongly on modelling the total mass profile of the MW and
M31 (e.g. Fritz et al. 2018a, b; Gaia Collaboration 2018). Another
study by Fillingham et al. (2019) jointly used Gaia data with the
Phat ELVIS (pELVIS; Kelley et al. 2019) dark matter only (DMO)
simulations, which include the gravitational effects of a central
galaxy, to match simulated satellites to observed satellites in 6D
phase space. They then used the distribution of infall times of the
matched simulated satellites to infer the infall times for 37 satellites
of the MW, which ranged from ~ 1-11 Gyr ago, similar to other
simulation-focused studies (e.g. Wetzel, Deason & Garrison-Kimmel
2015; Bakels, Ludlow & Power 2021; Santistevan et al. 2023).
Deriving these infall and orbit history properties is generally difficult,
given that we do not know precisely how the mass distribution of the
MW or M31 has changed over time.

Stellar streams arise from the disruption of satellite galaxies
or globular clusters. Therefore, studying the orbits of streams or
globular clusters gives insight into the possible future orbits of
satellites that will eventually merge into their host galaxy (e.g.
Ibata, Gilmore & Irwin 1994; Majewski, Munn & Hawley 1996;
Bullock & Johnston 2005; Price-Whelan et al. 2016, 2019; Bonaca
etal. 2021; Panithanpaisal et al. 2021; Ishchenko et al. 2023). Several
studies used both the Dark Energy Survey (DES; Dark Energy Survey
Collaboration 2016) and the Southern Stellar Stream Spectroscopic
Survey (S°; Li et al. 2019) to discover these small systems and
measure their kinematics (e.g. Shipp et al. 2018, 2019; Li et al. 2021,
2022). Comparisons with cosmological simulations in Shipp et al.
(2023) suggest that undetected stellar streams may exist around the
MW, which the upcoming Vera Rubin Observatory could potentially
discover.

Cosmological simulations of MW-mass galaxies allow us to
study theoretically the orbital evolution of satellites. Many studies
used DMO simulations to understand how subhaloes respond to
pericentric events (Robles & Bullock 2021), how subhalo orbits
respond to various MW environments (Pefiarrubia, Kroupa & Boily
2002; Pefiarrubia & Benson 2005; Ogiya, Taylor & Hudson 2021)
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and pre-processing and group accretion (Rocha, Peter & Bullock
2012; Wetzel, Deason & Garrison-Kimmel 2015; Li et al. 2020;
Bakels, Ludlow & Power 2021). However, many such studies did
not account for the important effects of baryons (e.g. Brooks &
Zolotov 2014; Bullock & Boylan-Kolchin 2017; Sales, Wetzel &
Fattahi 2022).

Of utmost importance in deriving the satellite orbit histories is
understanding the mass distribution of the MW and M31. Studies
such as Bovy & Rix (2013) and Bovy et al. (2016) focused on fitting
and deriving parameters for the disc, such as the scale height and
length, while other studies estimated the total mass of the MW or
M31 (e.g. Eadie, Springford & Harris 2017; Patel et al. 2018; Eadie &
Juri¢ 2019; Patel & Mandel 2023). One method of defining the total
virial mass of a galaxy is by summing the mass within a given radius,
such as Rpom, the radius that encompasses 200 x the matter density
of the Universe (Bryan & Norman 1998). Using constraints from
globular cluster kinematics, Vasiliev (2019a) found that the virial
mass of the MW is Magom = 1.2 x 101 Mg, which is in line with the
studies mentioned above and with the currently accepted virial mass
in the literature of Mo, = 1-2 x 10'2 M, (e.g. Bland-Hawthorn &
Gerhard 2016). Many studies use the orbits of satellite galaxies to
constrain the mass of the MW or M31 (e.g. Evans & Wilkinson
2000; van der Marel & Guhathakurta 2008; Watkins, Evans & An
2010; Irrgang et al. 2013). Patel & Mandel (2023) suggested the
mass of M31 to be more massive, Mo, = 2.85-3.02 x 102 M,
from proper motions from HST and Gaia of satellite galaxies.

Many studies used numerical tools to backward integrate the orbits
of satellites, stellar streams, or globular clusters, such as GALPY
(Bovy 2015), AGAMA (Vasiliev 2019b), and GALA (Price-Whelan
2017). However, such orbit modelling often makes approximations
by keeping the host mass profile fixed over time (e.g. Patel, Besla &
Sohn 2017; Fritz et al. 2018a; Fillingham et al. 2019; Pace, Erkal &
Li 2022), sometimes varying the MW centre of mass, including
an LMC-mass satellite, or including dynamical friction (Weinberg
1986; Lux, Read & Lake 2010; Gémez et al. 2015; Garavito-Camargo
et al. 2019; Patel et al. 2020; Garavito-Camargo et al. 2021; Correa
Magnus & Vasiliev 2022; Lilleengen et al. 2023).

Lux, Read & Lake (2010) compared various orbit history prop-
erties of subhaloes in the DMO Via Lactea I simulation (Diemand,
Kuhlen & Madau 2007) to the orbits of MW satellites by using proper
motion measurements from the literature and integrating their orbits
in fixed potentials. In another study, Arora et al. (2022) compared four
models with and without time dependence to investigate the effects
of different mass models on stellar streams dynamics in simulations,
and found that although most models conserve stream orbit stability,
the only model that conserves stability over long periods of time is
the time-evolving model. D’Souza & Bell (2022) used two MW-
mass host haloes from the ELVIS suite of DMO simulations to
test how well orbit modelling recovers the cosmological orbits of
subhaloes. Although the majority of dynamical models applied to
the MW and M31 assume static host potentials, the fiducial model
in D’Souza & Bell (2022) accounted for the true mass growth of
each MW-mass host. They compared results from host haloes with
and without LMC-mass satellites and showed that orbit modelling
better recovers the more recent pericentres and apocentres when
compared to the second or third-most recent. They also tested models
in which they did not account for any mass growth of the MW-mass
host, or the presence of an LMC-like satellite, and found varying
degrees of uncertainty associated with each simple model. However,
these simulations lacked baryonic physics, including the gravitational
effects of a central galaxy, and various works noted the importance of
modelling baryonic physics on these scales (e.g. Brooks & Zolotov
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2014; El-Badry et al. 2016; Bullock & Boylan-Kolchin 2017; Sales,
Wetzel & Fattahi 2022).

In Santistevan et al. (2023), we studied the orbital dynamics and
histories of satellite galaxies in the FIRE-2 cosmological zoom-in
simulations of MW-mass galaxies. We investigated trends between
the present-day dynamical properties, such as velocity, total energy,
and specific angular momentum, with the satellite infall times,
present-day distance from the MW-mass host, and satellite stellar
mass. We also similarly checked for trends with properties at
pericentre and found that the most recent pericentre was not the
smallest, contrary to the expectation that satellite orbits only shrink
over time.

In this paper, we further study the infall and orbital histories of
the same satellites. We model an axisymmetric mass profile for each
simulated MW-mass host to within a few percent at z = 0, and we
backward integrate the orbits of satellites within each one. We then
compare these results against the ‘true’ orbital histories of satellite
galaxies in the simulations. Our goal is to quantify rigorously the
strengths and limitations of modelling satellite orbits in a static host
halo potential, a commonly used technique. Although we focus on
satellite galaxies, our results are relevant for orbit models of stellar
streams and globular clusters.

Key questions that we address are: (1) How much has the mass
profile of a MW-mass host evolved over the orbital histories of typical
satellites? (2) How well does orbit modelling in a static axisymmetric
host potential recover key orbital properties in the history of a typical
satellite? (3) How far back in time can one reliably model the orbital
history of satellites in a static axisymmetric host potential?

2 METHODS

2.1 FIRE-2 simulations

We use the cosmological zoom-in baryonic simulations of MW-
mass galaxies in both isolated and LG-like environments from the
Feedback In Realistic Environments (FIRE) project' (Hopkins et al.
2018). We ran these simulations using the hydrodynamic plus N-
body code GizMO (Hopkins 2015), with the mesh-free finite-mass
(MFM) hydrodynamics method (Hopkins 2015), and the FIRE-2
physics model that includes several radiative heating and cooling
processes such as Compton scattering, Bremsstrahlung emission,
photoionization and recombination, photoelectric, metal-line, molec-
ular, fine-structure, dust-collisional, and cosmic-ray heating across
temperatures 10-10'° K (Hopkins et al. 2018). The FIRE-2 physics
model also includes the spatially uniform and redshift-dependent
cosmic ultraviolet (UV) background from Faucher-Giguere et al.
(2009), for which HI reionization occurs at Zjo, &~ 10. Stars form
in gas that is self-gravitating, Jeans unstable, molecular (following
Krumholz & Gnedin 2011), and dense (ny > 1000 cm™3), and
represent single stellar populations, assuming a Kroupa (2001) initial
mass function. Stars then evolve along stellar population models from
STARBURST99 v7.0 (Leitherer et al. 1999), inheriting masses and
elemental abundances from their progenitor gas cells. Other stellar
feedback processes we implement in the FIRE-2 simulations include
core-collapse and white-dwarf (Type Ia) supernovae, stellar winds,
and radiation pressure.

We generated cosmological zoom-in initial conditions at z
~ 99 within periodic cosmological boxes of comoving length
70.4-172 Mpc, which are large enough to avoid unrealistic periodic

ISee the FIRE project web site: http:/fire.northwestern.edu
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Table 1. Properties at z = 0 of the 13 MW/M31-mass galaxies/haloes in
the FIRE-2 simulations that we analyse, ordered by decreasing stellar mass.
Simulations with ‘m12’ names are isolated galaxies from the Latte suite,
while the others are from the ‘ELVIS on FIRE’ suite of Local Group-like
pairs. Columns: host name; M, 9o is the host’s stellar mass within Rgar, 90,
the disc radius enclosing 90 per cent of the stellar mass within 20 kpc; Maoom
is the halo total mass; Rygom is the halo radius; and Ngaeeite 1S the number of
satellite galaxies at z = 0 with Mgy, > 3 % 10* Mg that ever orbited within
R200m, totalling 493 across the suite.

Name Mstar, 90 Ma00m Rooom Niateltite Ref
(10Mg)  (10”Mo)  (kpe)

ml2m 10.0 1.6 371 47 A
Romulus 8.0 2.1 406 57 B
m12b 7.3 14 358 32 C
ml12f 6.9 1.7 380 44 D
Thelma 6.3 14 358 34 C
Romeo 5.9 1.3 341 36 C
m12i 5.5 1.2 336 27 E
ml2c 5.1 1.4 351 41 C
ml2w 4.8 1.1 319 39 F
Remus 4.0 1.2 339 36 B
Juliet 33 1.1 321 40 C
Louise 2.3 1.2 333 34 C
ml2z 1.8 0.9 307 26 C
Average 5.5 1.4 348 38

Note. Simulation introduced in: A: Hopkins et al. (2018), B: Garrison-Kimmel
et al. (2019b), C: Garrison-Kimmel et al. (2019a), D: Garrison-Kimmel et al.
(2017), E: Wetzel et al. (2016), F: Samuel et al. (2020).

gravity effects on individual MW-mass hosts, using the code MUSIC
(Hahn & Abel 2011). We saved 600 snapshots for each simulation
with time spacing of ~ 25 Myr down to z = 0, assuming a flat ACDM
cosmology with the following cosmological parameters consistent
with Planck Collaboration (2020): 2 = 0.68-0.71, o3 = 0.801-0.82,
ng = 0.961-0.97, Q25 = 0.69-0.734, Q,, = 0.266-0.31, and 2, =
0.0449-0.048.

We analyse a similar set of galaxies as Santistevan et al. (2023),
only we omit ‘m12r’°, because of its low stellar mass compared to the
MW and because we are not able to fit its mass profile to sufficiently
high precision (see Appendix A). We also include ‘m12z’, first
introduced in Garrison-Kimmel et al. (2019a). Our sample is from
both the Latte suite of isolated MW/M31-mass galaxies, introduced
in Wetzel et al. (2016), and the ‘ELVIS on FIRE’ suite of LG-like
MW -+ M31 pairs, introduced in Garrison-Kimmel et al. (2019a).
Table 1 lists several of their properties at z = 0, such as stellar mass,
Miar, 90, halo mass, Mpoom, and radius, Rypom, and the number of
satellite galaxies at z = 0 with M, > 3 x 10* Mg, Nyeliice-

The Latte suite of isolated MW/M31-mass galaxies includes
haloes at z = 0 with Magm = 1-2 x 10'2 Mg, with no other haloes
of similar mass within 5 Ryoom. We also chose m12w to have LMC-
mass satellite analogues near z ~ 0, and m12z to have a smaller
DM halo mass at z = 0 (Samuel et al. 2020). Star particles and
gas cells are initialized with masses of 7100 Mg, however, because
of stellar mass loss, the typical is ~ 5000 M. The mass of dark-
matter (DM) particles is 3.5 x 10* Mg, within the zoom-in region.
The gravitational softening lengths for star and DM particles are fixed
at 4 and 40 pc (Plummer equivalent), respectively, comoving at z >
9 and physical thereafter. The gas cells use adaptive force softening,
consistent with their hydrodynamic kernel smoothing, down to 1 pc.

The selection criteria for each pair of haloes in the ‘ELVIS
on FIRE’ suite of LG-like galaxies is based on their individ-
ual masses (Mapm = 1-3 x 102 M), combined masses (M =

MNRAS 527, 8841-8864 (2024)
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2-5 x 10'2 M), their relative separation (600-1000 kpc) and radial
velocities (Urag < Okms™!) at z = 0. The mass resolution in the
‘ELVIS on FIRE’ suite is ~2 x better than the Latte suite, with
initial masses of star particles and gas cells of & 35004000 Mg,.

Our 13 simulated galaxies display broadly consistent properties
as similar MW/M31-mass galaxies and exhibit comparable obser-
vational properties to the MW or M31, such as: MW/M31-like
morphologies (Ma et al. 2017; El-Badry et al. 2018; Garrison-
Kimmel et al. 2018; Sanderson et al. 2020) that follow stellar-to-halo
mass relations (Hopkins et al. 2018), realistic stellar haloes (Bonaca
et al. 2017; Sanderson et al. 2018), and dynamics of metal-poor stars
from early galaxy mergers (Santistevan et al. 2021). Each galaxy
also hosts a satellite galaxy population with properties comparable
to the satellites within the local Universe, such as: stellar masses and
internal velocity dispersions (Wetzel et al. 2016; Garrison-Kimmel
etal. 2019b), radial and 3-D spatial distributions (Samuel et al. 2020,
2021), star-formation histories and quiescent fractions (Garrison-
Kimmel et al. 2019b; Samuel et al. 2022b).

2.2 Halo/galaxy catalogs and merger trees

To generate the (sub)halo catalogs at each of the 600 snapshots,
we use the ROCKSTAR 6D halo finder (Behroozi, Wechsler &
Wu 2013a) using DM particles only, and we use CONSISTENT-
TREES (Behroozi et al. 2013b) to generate merger trees. None of
the (sub)haloes that we analyse have any low-resolution DM particle
contamination, given the sufficiently large zoom-in volumes.

We briefly review how we implement star particle assignment in
post-processing here, but we refer the reader to Samuel et al. (2020)
for details. First, we select star particles within d < 0.8 Ry,10, OUt to a
maximum distance of 30 kpc, with velocities within v < 2 Vire max Of
the (sub)halo’s centre-of-mass (COM) velocity. We then keep the star
particles within d < 1.5 Ry, 90 of the (then) current member stellar
population’s COM and (sub)halo centre position, where Ry, 9o 1s the
radius that encloses 90 per cent of the stellar mass. Then, we select
the star particles with velocities within v < 2 0ye| star Of the COM
velocity of the member star particles, where o ye| s 1S the velocity
dispersion of the current member star particles. Finally, we iterate
on both the spatial and kinematic criteria until the (sub)halo’s stellar
mass converges to within 1 percent. This also guarantees that the
COM of the galaxy and its (sub)halo are consistent with one another.

We use two publicly available analysis packages: HALOANALYSIS?
(Wetzel & Garrison-Kimmel 2020a) for assigning star particles
to haloes and for reading and analysing halo catalogs/trees, and
GIZMOANALYSIS® (Wetzel & Garrison-Kimmel 2020b) for reading
and analysing particles from Gizmo snapshots.

2.3 Selection of satellites

We select satellites in the same manner as Santistevan et al. (2023). To
summarize, we include all satellites at z = 0 with M, > 3 x 10* Mg
that ever orbited within their MW-mass halo’s virial radius, Ropm.
This stellar mass limit corresponds to roughly ~6 star particles,
which reasonably resolves the total stellar mass (Hopkins et al.
2018). At our selection threshold of My, > 3 x 10* Mg, the median
peak halo mass is Mhaio,peak ~ 9 X 108 Mg, which corresponds to >
2 x 10* dark-matter particles. Thus, we resolve satellite subhaloes
well, to prevent significant numerical disruption according to the

Zhttps://bitbucket.org/awetzel/halo_analysis
3https://bitbucket.org/awetzel/gizmo_analysis
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criteria in van den Bosch & Ogiya (2018); see Samuel et al. (2020)
for more discussion on our satellite resolution convergence.

We include ‘splashback’ satellite galaxies that currently orbit
outside of the MW-mass halo’s Rygon, but are gravitationally bound to
it (e.g. Wetzel etal. 2014). As Table 1 shows, the number of surviving
satellites at z = O per host, including the splashback population, is
26-57, and our sample totals 493 satellites.

To avoid biasing our results to the hosts with more satellites, we
oversample the satellites, so that each host contributes a near equal
fraction of satellites to the total, to within 5 per cent; see Santistevan
et al. (2023) for details.

2.4 Calculating orbit properties

Many dynamical modelling studies implement a static gravitational
potential for the host, consisting of a sum of potentials for each
component of the galaxy, such as the stellar/gaseous disc, the bulge,
the stellar halo, and the dark-matter halo (see for example Kallivayalil
et al. 2013; Gomez et al. 2015; Patel, Besla & Sohn 2017). To
numerically integrate orbits through time, these studies then often use
common numerical tools, such as GALPY, to solve the equations of
motion at each timestep.

In our analysis, we backward integrate the orbits of satellite
galaxies in mass profiles that we fit to each MW-mass host in the
FIRE-2 simulations. In short, we model the mass profiles of the hosts
at z = 0 with a generalized form of the spherical Navarro-Frenk-
White (NFW, Navarro, Frenk & White 1996) density profile using
dark matter and hot gas (T > 10° K) particles within » < 10kpc, and
all particles at » = 100-500 kpc. We model the disc with two double-
exponential disc profiles, one for the inner disc (bulge) and one for the
outer disc, using star particles and cold gas (T < 10° K). The median
fit across all 13 MW-mass hosts is within ~5 per cent of the enclosed
mass profiles in the simulations at » > 10 kpc out to the virial radius.
Thus, we test orbit modelling under a best-case scenario, at least for
a static axisymmetric potential, with near perfect knowledge of mass
profile at present day. We note that we do not model the additional
gravitational potential for any given satellite galaxy. See Appendix A
for more details on our fits to each MW-mass host.

Next, we select the cylindrical positions (R, ¢, Z) and velocities
(Vr, vy, vz) of the satellites at the z = O snapshot and use this
6D phase-space information to initialize their orbits. We then use the
galactic dynamics python package GALPY* (Bovy 2015) to backward
integrate the satellite orbits for 13.8 Gyr within each host’s static
axisymmetric potential. Because the MW-mass host is the only
gravitational potential we account for, we do not include any move-
ment of the MW-mass host throughout the satellite orbit integration.
This paper focuses on understanding the base uncertainties in static
potential orbit modelling, thus, we do not account for dynamical
friction in our model. Including dynamical friction may improve the
model orbits, however this is outside of the scope of this paper.

We explore numerous properties of satellite orbits, each of which
provides insight into their orbit histories. For example, pericentres
occur when the satellite is at its closest approach to the MW-mass
host, when the satellite feels the strongest tidal forces and is deepest
in the host CGM. Some studies use the first post-infall apocentre
distance, also called the turn-around radius, as an alternate definition
for the radius of the host galaxy (e.g. More, Diemer & Kravtsov
2015; Diemer 2017). The orbital eccentricity of satellites describes
the orbit shape, which can change over time in the simulations, but is

“http://github.com/jobovy/galpy
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fixed in the fixed potential models. The orbital energy is invariant in a
time-independent potential, and in a spherically symmetric potential,
total angular momentum is invariant. Thus, comparing the evolution
of these properties with the simulations informs us to what extent
this holds. We calculate the following properties for the satellites in
our sample.

Pericentre distance, time, velocity, and number: We define the
virial properties at Ryoom, the radius that encloses 200 x the mean
matter density of the Universe. We calculate pericentres in the
same manner as Santistevan et al. (2023). First, we track the main
progenitor of the satellites back in time through all 600 snapshots
using the merger trees, and first confirm that the satellite is within the
virial radius, Ryoom, of the MW-mass host halo at a given snapshot.
Then, we find local minima in its galactocentric distance within a
420 snapshot window, which corresponds to ~ 1 Gyr in time. Given
the ~ 25 Myr time spacing between snapshots, we then fit a cubic
spline to the distance, time, and velocity arrays in this snapshot
window, and save the spline interpolated minimum distances, and
the corresponding times and velocities at these pericentres. Finally,
we assign the total number of pericentres to a satellite based on
the number of times the above criteria are met. As mentioned in
Santistevan et al. (2023), we checked our pericentre calculations
using a snapshot window of +4, 8, 10 snapshots and saw that our
fiducial window of +20 snapshots best eliminates ‘false’ pericentres,
that is, cases where the pipeline finds a pericentre in either numerical
noise or short-lived perturbations in the orbits. Additionally, whether
we centre the distances on the satellite or MW-mass host galaxies or
DM (sub)haloes does not affect our results.

Apocentre distance: We calculate apocentres similar to the way that
we calculate pericentres. We first confirm that the satellite has orbited
within Ry of the MW-mass host halo before a given snapshot,
however, we do not require it to be within Rypom at the snapshot of
interest so that we may catch apocentres in the ‘splashback’ phase.
We then find local maxima in the satellite’s galactocentric distance
within a similar window of 420 snapshots. Finally, we similarly fit
a cubic spline to the distance and save these values.

Infall time: To calculate infall time, we simply ensure that the satel-
lite is within Rpm at a given snapshot, and save the corresponding
time that this first happens. In orbit modelling, we calculate infall
time in two different ways depending on how we treat Rypn. The
first method involves using the evolving R,pn, from the simulations,
and finding when the model orbit first crosses this distance, similar
to how we calculate infall time for the satellites in the simulations.
However, in our second method, we keep the present-day Ryoom as a
fixed quantity over time, that is, Rypom (i = 0), Where 7}, is lookback
time. We find the instances in which the model orbit first crosses
within this fixed distance. In the case that the model orbit was always
within Ragom(fy = 0), we set the infall time equal to the beginning
of the simulations, 13.8 Gyr ago.

Eccentricity: We approximate orbital eccentricity as:

e~ dapo - dperi (1)
dapo + dperi

where dy,, and dp.; are the apocentre and pericentre distances,
respectively. Defined this way, the eccentricity is a constant for a
Keplerian orbit. However, it will vary within our model here, thus
we choose adjacent pairs of apocentres and pericentres in the actual
integrated orbit from the model to calculate it. We make no distinction
in the ordering of pericentre/apocentre combinations, i.e. whether not
to choose an apocentre only after pericentre, or pericentre only after
an apocentre.

Testing orbit modelling of satellites ~ 8845

Orbital period: We approximate the orbital period by simply
calculating the time between adjacent pericentres. We checked how
this compares to the timing between adjacent apocentres and found
consistent results.

Specific orbital energy: We take the specific orbital energy of a
satellite to be the sum of the kinetic and potential energy per mass
at each snapshot. The simulation snapshots store the gravitational
potential at the location of each particle, which we use to compute
at the location of a satellite. Following Santistevan et al. (2023),
we select all star, gas, and dark matter particles within £5 kpc of
the satellite’s virial radius, and use the median potential of these
particles, to minimize the satellite’s self-potential.

Because we track satellites across time, we must properly nor-
malize the potentials at each snapshot. Our sample includes 3 LG-
like pairs of MW/M31-mass hosts, thus, we cannot normalize the
potentials at arbitrarily large distances. Therefore, we choose to
normalize potentials with:

Usal(ry tlb) = Usal,snap(ry tlb) - Uhosl,snap(r =500 kPC, llb)
G x M(< 500kpe, i, =0) G x M(< 500kpc, )
500 kpc 500 kpc

(@)

where Ugy, snap(7, #1p) is potential of a satellite at a given snapshot,
Uhost,snap(r = 500kpc, 11,) is the potential for particles within a
spherical shell at » = 500 = 5 kpc around the MW-mass host, and
the last two terms are the analytic gravitational potentials, G X
M(< r)/r, for the mass enclosed within 500kpc at present-day
and any given lookback time, respectively. We choose 500 kpc for
several reasons: (i) the bound mass for a given MW-mass host
does not change by more than a few percent beyond this, (ii)
satellites typically orbit as far as the ‘splashback’ radius, which
we approximate as & 1.5 Rpom ~ 500 kpc from a spherical collapse
model (e.g. Fillmore & Goldreich 1984; Bertschinger 1985), and (iii)
we must choose distances smaller than the separation between the
two MW-mass hosts (= 840 kpc).
For the analytic potentials, we get

o M
oo [ OxMn, 3
500 kpc r

and because the enclosed mass does not change significantly at
500 kpc, this integral results in ® ~ —G x M (< 500 kpc)/500 kpc.
The last three terms in equation (2) ensure that the potential is
properly normalized across different snapshots.

When we examine differences in total energy, we divide by the
virial potential of the host halo, Usgom,o0 = G X M(r < Ryoom, tiy =
0)/ Ry0om, because each host has different Moo, and Rogom, SO this
ensures that we compare satellite evolution in a similar manner.
However, the snapshots for ‘m12z’, ‘Romulus’, and ‘Remus’ do not
have stored potential values, thus, we exclude them when we compare
orbital energies.

Specific angular momentum: We calculate a satellite’s specific
angular momentum at each snapshot with £ = r x v, where r is the
total distance between the satellite and the centre of the MW-mass
host, and v is the total velocity of the satellite with respect to the
centre of the MW-mass host.

Tidal acceleration: Finally, we calculate the tidal acceleration a
satellite feels by taking the derivative of a = G x M(< r)/r* with
respect to r, where M(< r) is the total enclosed mass of the host
within a distance r. We calculate this at every snapshot and save only
the maximum |da/dr| that a satellite experienced after first infall,
although this almost always coincides with when the satellite is at its
closest approach to the MW-mass host.

MNRAS 527, 8841-8864 (2024)

202 AINf 9z U0 159nB Aq Zi189%//1 ¥88/E/L2S/I0E/SEIUL/WOY dNO"0IWepED.//:SdyY WOy papeojumoq



8846 I B. Santistevan et al.

redshift
6 3 2 1 0705 03 01 0,

=) 1.0 Satellite infall times EO

m 112 5
re)
iff 0.8} 1o =
g —
fe)
Q 0.6f B =
= c
-~ 04 6 8
—_ - o
E-l S

) -
£ IS

S 0.2 5

N 12 8

= S

0.0 ‘ ‘ : ! ! . 0
12 10 8 6 4 0

2
Lookback Time [Gyr]

redshift
0 32 10705 03 01 04

1.0
) v
sl 1o
a 1300 =
= —
£ 5
8 0.6 <
o o
s 1200 8
’\B 0.4} x
= g

J100 =

£ ool =
o
& =
o

0071 8 6 4 o

2
Lookback Time [Gyr]

Figure 1. Left: Total (baryonic plus dark matter) mass of an MW/M31-mass halo, M>pom, enclosed within Rapom as a function of lookback time, . The left
axis shows Mpoom at fp relative to Mpoom today, while the right axis converts this to the median Mo across our sample. The black line shows the median,
and the dark and light shaded regions show the 68th and 95th percentiles, respectively, across our 13 hosts. The vertical grey line and shaded region show the
median and 68th percentile range of the lookback times of infall for surviving satellites. The typical host halo had 54 per cent of its final M>po, When a typical
satellite fell in & 7.4 Gyr ago, so M2pom nearly has doubled over that time. Right: Same, for the growth of the MW/M31-mass halo radius, Ryoom. R200m shows
nearly linear growth with time over the last & 12 Gyr. The typical host halo had 43 per cent of its final Rypom When a typical satellite fell in &~ 7.4 Gyr ago, again

highlighting significant change over the orbital history of a typical satellite.

2.5 Disc orientation

We use the 6D phase-space coordinates of satellites at z = O relative
to the MW-mass disc, but the disc precesses over time. In Santistevan
et al. (2021), we showed that after the disc stabilizes ~ 5-11.5 Gyr
ago (when the angular momentum vector of the disc stopped rapidly
fluctuating in its orientation), the disc continued to precess between
5-130° until z = 0. Satellites reach their closest approach to the MW-
mass disc when they are at pericentre, so pericentre properties are
likely most sensitive to the host disc configuration. Thus, we explore
different disc orientations and models to investigate how they affect
the resultant satellite orbits in Appendix B. To summarize, in one
model we rotate the disc by 90° while keeping the same coordinates
for satellites at z = 0. In another model, we use a point mass model
for the disc. In both models, the median differences between all orbit
properties we explore between our fiducial model and these different
configurations is small, less than 1 per cent. Therefore the details of
the geometric configuration of the galactic potential do not matter
much to satellite galaxy orbits. For more discussion about this see
Appendix B and Table B1.

3 RESULTS

Many studies integrate satellite orbits using a model of a static
axisymmetric MW/M31 potential at z = 0, which is unphysical given
that the MW evolves over time. Therefore, to provide context for our
results on satellite orbits, we first quantify the mass evolution of MW-
mass hosts in our simulations, over both long and short timescales,
including how this depends on distance. We then explore the extent to
which satellites conserve energy and angular momentum. Finally, we
explicitly compare results between the simulations and the idealized
axisymmetric model. Because many of these distributions are non-
Gaussian, throughout we present the median trends across the sample
of host galaxies or satellites, as well as the half-width of the 68th or
95th percentile range, which for brevity we refer to as the 1o and 20
scatter, respectively.

MNRAS 527, 8841-8864 (2024)

3.1 Growth of the Milky Way-mass host
3.1.1 Halo virial properties

We define virial properties at Ryoom, the radius that encloses 200 x
the mean matter density of the universe. Fig. 1 shows the evolution
of both the total (baryonic plus dark matter) virial mass of the hosts,
M00m, and their virial radii, Ropon. We show the median trend along
with the 68th and 95th percentiles. The left-hand axes show the virial
properties normalized to the present day (#, = 0), while the right-
hand axes show these in physical units, scaling to the median. The
grey line and shaded region also show the median and 68th percentile
of the infall times, #[%, yw» Of the satellites in our sample.

The median MW-mass host Maoom grew more quickly at earlier
times, slowing around 4 Gyr ago. As Santistevan et al. (2020) showed,
the fractional stellar mass growth of these MW-mass hosts is broadly
consistent with studies based on abundance matching and dark-
matter-only simulations (e.g. Behroozi et al. 2013b; Hill et al. 2017).
Most satellites fell in 3.4-9.7 Gyr ago, when the median MW-mass
host had ~33-86 per cent of its mass at z = 0.

Fig. 1 (right) shows the growth of Ryy is nearly linear in time,
with relatively small fractional scatter. When the typical surviving
satellites fell in, the median MW-mass host had 26—73 per cent of its
Ro0om(z = 0). Thus, the MW-mass hosts grew considerably in mass
and radius, which affects the orbits of satellites.

3.1.2 Mass within fixed physical radii

Fig. 1 showed the enclosed mass within R,pon(f). However, for
satellites that already fell into the MW-mass halo, the additional
growth 2 Rygom, may not matter much, given that the orbits depend
primarily on just the mass within an orbit. Therefore, Fig. 2 shows
the ratio of the enclosed mass within a given fixed physical radius,
r, at a given lookback time, f, relative to today, M(< r, t,)/M(<
r, i, = 0). We show the median ratios of enclosed mass within r <
50, 100, and 150 kpc, along with the 68th and 95th percentiles for
r < 50kpc. Because the satellite orbits are sensitive to the enclosed
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Figure 2. Total mass of the MW/M31-mass host within a fixed physical
distance, r, normalized to the value today, versus lookback time, #,. We show
the median mass ratio within r = 50, 100, and 150 kpc, and the 68th and 95th
percentiles for r < 50kpc. This ‘physical’ mass growth is less significant
than that of M2pom (based on an evolving Room) in Fig. 1. However, because
of baryonic gas cooling, the fractional mass growth of the host is larger at
smaller distance. The mass growth reverses at f1p = 11 Gyr, when a given
distance experienced its initial collapse from the Hubble expansion. For
context, the median pericentre distance experienced by surviving satellites
is &~ 50kpc. A typical satellite fell in 3.4-9.7 Gyr ago (grey shaded region),
when the typical enclosed mass was ~61-93 per cent of its value today.

mass, we choose to measure the enclosed mass within these distances
because typical pericentre distances for the satellites in our sample
are ~ 50kpc and typical apocentres are ~ 200 kpc.

Because we show enclosed mass within fixed physical radii, the
increase with lookback time 2> 12 Gyr ago represents the Hubble
expansion, prior to the collapse within that radius. The enclosed mass
was ~62-91 per cent of its present value during the typical infall
times of surviving satellites; larger than for Myy, in Fig. 1 during
the same time range. The spikes in the 95th percentile range likely
arise from massive satellites. The enclosed mass fractions withinr <
100kpc and r < 150 kpc were larger at nearly all lookback times,
meaning that mass has grown fractionally less at larger radii. In other
words, the significant growth of the central galaxy, largely via gas
cooling/accretion, leads to more significant mass grows at smaller
radii.

Fig. 3 (top) shows the evolution of the enclosed mass profile across
time from r = 5-500 kpc, where r is the satellite distance from the
MW-mass host. We first calculate the median profile over all 13
hosts at each distance and snapshot with ~ 1 Gyr time spacing; see
the colourbar for the lookback time of a given mass ratio. Then we
normalize the curves for each snapshot to the median profile of the
hosts at present day.

In general, at each r the enclosed mass ratio increased over time,
and likewise, at each time, the enclosed mass ratio increases with
distance. Similar to Fig. 2, the mass growth over time at large r was
not as significant compared to small . For example, typical recent
pericentre distances for satellites in the simulations are ~ 50-60 kpc,
and compared to present day, the enclosed mass was only 74 per cent
during typical satellite infall times. The median present-day distance
of the satellite galaxies in the simulations is around 175 kpc, and at
i, = 7.4 Gyr ago, the enclosed mass was ~83 per cent of its mass at
z = 0. However, near the virial radius and beyond, the enclosed mass
was already 97 per cent during typical satellite infall times.
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Figure 3. Top: Average long-term evolution of the mass profile (Sec-
tion 3.1.2). Similar to Fig. 2, the total mass within a given physical distance,
r, relative to the value today, but now as a function of . We show the median
across our 13 MW/M31-mass hosts, at various lookback times, f,, back to
11 Gyr, which encompasses the infall times of >95 percent of surviving
satellites. The enclosed mass increases over time at essentially all r, with
the inner halo near the galaxy experiencing the most fractional mass growth.
Thus, the approximation of a static halo mass/potential is least accurate
for satellites with the smallest pericentres. For context, the median recent
pericentre of surviving satellites is & 50kpc. Bottom: Typical short-term
fluctuations in the host halo mass profile (Section 3.1.3). The 1o and 20
standard deviation of the fractional change/fluctuation of the total mass of
the host over the last 2 Gyr, which is the typical of the orbital timescale of
satellites at » &~ 30kpc. These fluctuations in enclosed mass are weaker at
larger distances. On average, the host mass growth/fluctuations over the last
2 Gyr are < 5 percent, though such fluctuations would be even higher for
haloes with a massive (LMC- or M33-mass) satellite.

3.1.3 Short-term evolution of host mass

The enclosed mass at any given time is subject to the perturbations
of satellite galaxies that are orbiting around and merging within the
main host. To examine the variability in the enclosed masses, we
calculate a time-averaged enclosed mass profile over the last 2 Gyr,
and we normalize the enclosed mass at every snapshot between
iy = 0-2 Gyr to this time-averaged one. Fig. 3 (bottom) shows the
lo and 20 scatter of these ratios at each distance in the solid and
dashed blue lines, respectively, in the bottom panel of Fig. 3.

Similar to the top panel, the 1o scatter shows larger variability at
small r, suggesting that the fractional growth in the inner regions of
the MW-mass host is larger than at large ». However, the 20 scatter
does monotonically decrease with distance, but it is constant between
r = 10-100kpc.

Haloes and their galaxies grow hierarchically over time, and each
figure in this section explicitly quantifies this idea in the evolving
virial region (Fig. 1), within fixed distance apertures (Fig. 2), and at
fixed time (Fig. 3). Modelling the enclosed mass/potential of a host
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Figure 4. The difference in a satellite’s specific orbital energy and specific orbital angular momentum between today and at first infall into the MW-mass
halo, versus lookback time of infall (left), current distance from host, r (middle), and satellite M, (right). Orbit modelling nearly always assumes that these
quantities are conserved. Solid lines show the median for all satellites within the 13 MW-mass hosts, and the dark and light shaded regions show the 68th and
95th percentiles. Top row: Change in specific orbital total energy, E, relative to the virial energy of the MW-mass host halo today, Usoom,z=0 = G M200m/ R200m-
The median decreases from 0 to —2.5 with increasing infall lookback time, meaning that satellites have lost energy and become more bound since infall, because
the host has grown (Figs 1-3). Because r inversely correlates with infall time, the median change in energy increases from —2 to —0.2 with r (middle) and is
constant with satellite mass at Mg, < 107 Mg, but it decreases at higher mass because of dynamical friction. Although E correlates with these properties, the
widths of the 68th percentiles span &1.2—1.5, highlighting the significant variation (and thus uncertainty) for any given satellite. Bottom row: Change in specific
orbital angular momentum, ¢, relative to the value today. The median fractional difference is generally zero for satellites that fell in < 9.5 Gyr ago, but earlier
infalling satellites have increased by up to ~45 per cent. We find little to no change in the median £ with r or My, except for satellites with My, > 107 Mg,
which experienced stronger dynamical friction. The mean widths of the 68th percentiles in the fractional change in £ span 70 per cent versus infall time and r,
and 100 per cent versus Mar. These uncertainties in both E and € imply that we cannot infer the initial energy or angular momentum of a given satellite’s orbit

at its time of infall to better than 2 2..

at z = 0 and holding that potential fixed across many Gyr does not
account for the real, substantial growth of the host halo environment
in which satellites orbit.

3.2 Orbital energy and angular momentum

In a time-independent potential, the specific energy of a satellite’s
orbit is conserved. Likewise, in a spherically symmetric potential,
the specific angular momentum, £ = r X v, is conserved, while the
component of £ along the minor axis is conserved in an axisymmetric
potential. In Santistevan et al. (2023), we showed that satellites that
fell in < 10 Gyr ago conserve their median £ across the population,
but importantly with large scatter of ~40 per cent. However, we did
not examine trends as a function of lookback time across an orbit.
We next examine how well orbital energy and angular momentum of
a satellite’s orbit are conserved. We stress that we show trends across
the full population of satellites, including the full range of values
of satellites with a particular infall time, distance, and M, which
gives a sense of conservation on a satellite-by-satellite basis.

Fig. 4 (top row) shows the difference in the total orbital energy
between present-day and infall into the MW-mass halo. To scale to
the characteristic energy of a given halo, we divide these differences
by Uzoom.0 = G Ma0om/ Ra00m, the virial gravitational potential of the
host halo today. We show these fractional energy differences as a
function of the lookback time of satellite infall into MW-mass host,
1w distance from the MW-mass host, r, and satellite stellar
mass, M.

Generally, the median fractional difference in specific energy
decreases with increasing ti'fl’fanvMW from 0 to —2.5 (top left). Thus,
satellites that fell into their MW-mass halo earlier lost more energy,
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because the MW-mass host grew in mass by 2 20 percent (Fig.
2). Next, the median fractional difference in total energy increases
with » (top middle), from —2 to roughly —0.2 for satellites near
Rooom. Satellites that currently orbit at smaller distances have lost
more energy since infall, compared to satellites that orbit at larger
distances, which only recently fell in. The fractional difference in
total energy only weakly depends on Mg, (top right). Satellites
below My, < 107° Mg have a median fractional energy difference
of roughly —0.5, and the fractional energy difference for more
massive satellites decreases to as low as —1.6, but we caution that
there is only one satellite with M, > 10° Mg.

Next, we investigate the specific angular momentum of satellite
orbits, £. My studies implement a spherically symmetric component
to the potential, such as an NFW profile for the DM halo (e.g.
Kallivayalil et al. 2013; Patel, Besla & Sohn 2017; Besla, Peter &
Garavito-Camargo 2019), in which the total angular momentum is
constant. We show in Appendix B that satellite orbits are insensitive
to the direction/details of the axisymmetric component of the
potential, the disc, so we show results in ¢ and not the component of
£ along the minor axis of the potential.

In Santistevan et al. (2023), we discussed trends in the angular
momentum difference today versus infall, normalized by the angular
momentum at satellite infall; (€9 — Lingan)/Cintan- Fig. 4 (bottom
row) shows the same difference, only now normalized by the
angular momentum at present-day, that is, (£y — Cinga1)/€o. Similar
to Santistevan et al. (2023), we find weak dependence in the median
fractional change in £ across the population since infall. The median
is as large as ~45 per cent compared to the values at infall. These
satellites make up roughly 20 percent of the total sample. The
fractional difference in £ shows virtually no dependence with r or
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Mg, The average 1o scatter is ~40 and 50 per cent versus r and
Mstar-

Our results suggest that satellite populations do not show overall
conservation of energy or angular momentum. If we focus on the 68th
and 95th percentile ranges in each panel, we see cases in which the
energies or specific angular momenta for some satellites at present-
day are similar to their values at infall, for a large range of infall
time, r, and Mg,,. However, this is not true for all satellites, and the
uncertainties in £ and £ suggest that one cannot determine the orbital
energy or angular momentum of a given satellite at infall to within
a factor of Z 2 from present-day measurements. Rather, satellites
commonly lose some orbital energy since infall, likely because of
the growth of the MW-mass host potential over time, the effects of
dynamical friction on high-mass satellites, and also satellite-satellite
interactions that may torque the satellite orbits.

We also investigate the extent to which the kinetic and potential
energy components are conserved with respect to infall time, r, and
M. Versus infall time, the fractional change in the kinetic energy
of satellites that fell in recently is positive and the fractional change
in the potential energy was negative, suggesting these satellites are
likely on their first infall and nearing their first pericentre. Satellites
with larger infall times often had negative fractional changes in
kinetic and potential energies, because of both dynamical friction
slowing the satellites and the growing host potential over time.
Within r < 100 kpc, the circular velocity profile rises significantly,
and satellites that orbit today have much larger kinetic energies
compared to infall. We note no strong trends with M,,.

Having quantified the change in orbital energy and angular
momentum from first infall to today, Fig. 5 quantifies the extent
to which a satellite conserves E and £ as a function of lookback
time. We show the median trend across the population of satellites
in the dashed lines. For simplicity, we present the 1o scatter across
the entire population, at a given snapshot in the solid lines. We
include only galaxies that were still satellites at a given lookback
time, including splashback satellites, so the size of the sample
monotonically decreases with lookback time.

Fig. 5 (top) shows the difference in the satellite orbital energy
between a given lookback time and today, E(f) — Ej, normalized by
the MW-mass halo potential today, Usoom, 0. Over the last ~ 3.5 Gyr,
the median total energy is relatively unchanged, but at earlier times,
this fractional difference increases with increasing lookback time
from O to as large as &2 at 11.75 Gyr ago. The fractional change in
E reaches 25 per cent at &~ 4.8 Gyr ago, 50 percent at 7.9 Gyr ago,
and 100 per cent at 9.2 Gyr ago.

Although the median fractional energy change over the last 3.5 Gyr
is small, this is only a statement about the population, and it does
not imply energy conservation for a typical satellite, given the large
scatter. The 1o scatter reaches 25 per cent already at &~ 1.6 Gyr ago,
50 per cent at 6.1 Gyr ago, and 100 per cent 9.1 Gyr ago.

Fig. 5 (bottom) shows the fractional change in the specific angular
momentum of satellites, ¢. Similar to energy, we compute the
difference of ¢ at each lookback time with the value today, but now
we normalize this difference by ¢ today. The median £ is constant
for longer, over the last &~ 6 Gyr, before which it decreases. This
implies that early-infalling satellites gained angular momentum on
average, as we showed in Santistevan et al. (2023). The median
fractional difference reaches 25 percent at a much later time of
~ 11.9 Gyr ago, and 50 per cent at 11.4 Gyr ago. Compared to the
fractional change in E, the 1o scatter reaches a given fraction later,
25 percent at &~ 4.2 Gyr ago, 50 per cent at 9.3 Gyr ago. We stress
again that, although the population median is conserved longer, this
does not imply that a given satellite’s € is conserved for this long.
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Figure 5. Fractional change in specific energy, E, and specific angular
momentum, £, of satellite orbits versus lookback time. Solid line shows
the median across all satellites and dashed line shows the lo scatter. We
only include galaxies that are satellites at a given lookback time, including
splashback satellites. The vertical line and shaded region represent the median
satellite infall time and 68th percentile range of values, respectively. Top:
Specific energy. The median fractional change increases with lookback time,
that is, they were less bound at infall than they are today, because the host
has grown (Figs 1-3). While the median, which represents the systematic
bias across the population, reaches 25 per cent at 4.8 Gyr ago, the 1o scatter,
which represents the uncertainty for a given satellite, reaches 25 per cent
already at 1.6 Gyr ago. Bottom row: Specific angular momentum. The median
is about zero over the last & 6 Gyr, but at earlier times the angular momentum
decreases, down to —60 per cent, meaning that the specific angular momentum
systematically has increased since infall. Again, the lo scatter reaches
25 percent already 4.7 Gyr ago. Thus, while inferences of orbital energy
and angular momentum, based on their conservation, are relatively unbiased
(for the overall population) over the last &~ 5-8 Gyr, their uncertainties for a
given satellite are large already ~ 1 Gyr ago.

Rather, the 1o scatter represents the typical uncertainty for a given
satellite.

Figs 4 and 5 show that neither E nor £ are conserved across time,
which agrees with Figs 1-3, and results from the growth and general
time dependence of the host halo potential. The 1o scatter represents
the typical uncertainty for a given satellite, which is as large as
~50 per cent for £ around 9.3 Gyr ago, and as large as a factor of 2
for E at 9.1 Gyr ago.

3.3 Orbit modelling in static axisymmetric host potential

We now compare orbit properties of satellites from our cosmological
simulations to properties derived in an idealized, static, axisymmetric
model. As we describe in detail in Appendix A, we fit the present-
day host potential, keep it fixed over time, and initialize the satellite
orbits at z = 0 using the same 6D phase-space coordinates as in
the cosmological simulations. Thus, the orbital energy and angular
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Figure 6. Four case studies of satellite orbital histories. Orbital distance from the host galaxy, r (top row), total velocity (second row), specific angular momentum
(third row), and specific total energy (bottom row). We show four satellites based on how well the most recent pericentre agrees between the simulations and
orbit modelling, (dperi, model — @peri, sim)/@peri, sim» With increasing error from left to right (see the legend). Black lines show the simulations, while blue lines show
model-based orbits in a static axisymmetric host potential. Black vertical dashed lines show the first infall into the MW-mass halo in the simulation, and in the
top row the grey line shows Ropom(#) of the host halo. Green vertical dotted lines show pericentres in the simulation. In the left case study, the orbit model and
simulation agree for nearly two full orbits, while the right case study shows agreement for less than half an orbit. Orbit modelling tends to recover the timing
of the most recent pericentres better than their distances. As the bottom rows show, specific angular momentum and total energy of the orbit are not generally

conserved; see also Figs 4 and 5.

momentum of satellites remain constant, and the satellites orbit
periodically across 13.8 Gyr.

Fig. 6 shows four representative satellites: each column shows
varying degrees of how well orbit modelling reproduces the most
recent pericentre distance. To quantify how well orbit modelling
does in reproducing the recent pericentre distance, we measure
Adperi/dperi = (dperi, model — dpeﬁ, sim)/dperi, sim- From top to bOttOl’Il, we
compare the host-centric distance, the total velocity, specific angular
momentum, and specific energy of the orbit.

Orbit modelling agrees well with the simulations during the
satellites’ recent histories. In the left two columns, orbit modelling
recovers the orbits well for one half to two orbits, the third column
shows agreement with the timing of the orbit for two and a half orbits
but less agreement for the distance and velocity, and the right column
show agreement for less than half an orbit.

Even in the left two cases, in which the model does well at
reproducing the most recent pericentre distance, orbit modelling does
not accurately recover previous pericentres, especially the timing of
the pericentres, which continues to become more out of phase with
time, likely due to the lack of dynamical friction. The right column
shows cases in which the timing of the most recent pericentre is within
~ 0.5 Gyr but the pericentre distance is off by nearly a factor of 2.

MNRAS 527, 8841-8864 (2024)

Finally, the third and bottom rows of Fig. 6 show the lack of
conservation in specific angular momentum and specific energy
for the satellites in the simulations. For each satellite, we show
the fractional change in £ compared to present-day, that is, (4(f)
— £o)/¢y. Even after a satellite falls into its MW-mass halo, its
angular momentum can increase or decrease 2 50 per cent over time.
The lack of conservation in ¢ is likely a combination of complex
processes, including the growth of the MW-mass host, satellite-
satellite interactions, mergers, and the non-symmetric potential.
In the bottom row, we calculate the fractional change in energy
compared to present-day, normalized by the host virial potential
energy today, that is, (E(f) — Eo)/Ur2oom,0- Similar to the results
in Figs 4 and 5, the specific energy of a satellite orbit decreases
over time, primarily because of the growth of the MW-mass
host.

In the following subsections, we quantify differences in orbit
properties across the entire satellite population. It is worth noting
that dynamical friction acts more efficiently at higher masses to rob
the satellites of their orbital energy and cause them to merge away
(e.g. Boylan-Kolchin, Ma & Quataert 2008). We remind the reader
that when interpreting the plots, we do not include a model for
dynamical friction.
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Figure 7. The fractional difference between orbit modelling and the simu-
lations for the host-centric distance versus lookback time. The dashed line
shows the absolute value of the median across all satellites and the solid
line shows the lo scatter of the sample. We choose to show the absolute
value of the fractional difference to keep all values positive for visual clarity,
however, the median is negative for lookback times < 7.5 Gyr, and positive for
earlier times. Similar to Fig. 5, we only include the instantaneous population
of satellites for a given lookback time. The median reaches 25 percent at
9.7 Gyr ago, but the 1o scatter reaches 25 per cent already at 4 Gyr ago.

3.3.1 Orbital distance

First, Fig. 7 shows the absolute fractional difference in host-centric
distance from the simulations versus from orbit modelling, versus
lookback time. We show the absolute value of the median to keep
all values positive and visual clarity, however, the median is negative
for lookback times of #, < 7.5 Gyr, and positive for #, 2 7.5 Gyr.
Over the last 8.5 Gyr, the median fractional difference is relatively
constant at < 10 per cent. Before this, the median then increases to 25
and 50 per cent, around 9.7 and 10 Gyr ago. Prior to & 11.7 Gyr ago,
less than 1 per cent of these satellites today were still satellites. The
lo scatter reaches a 25, 50, and 100 per cent fractional difference at
4, 6.3, and 8.6 Gyr ago.

3.3.2 Virial infall time

Many studies focus on when low-mass galaxies first become satel-
lites, and their properties, such as mass, during infall (for in-
stance Boylan-Kolchin, Besla & Hernquist 2011; Wetzel, Deason &
Garrison-Kimmel 2015; Patel, Besla & Sohn 2017). We investigate
two ways of calculating the time of first infall into the host halo within
orbit modelling, #iy infan, model- First, when a satellite first crossed
within the MW-mass halo, accounting for the growth of its Rypom
over time. Second, we record when a satellite’s orbit first crossed
within Rypom at z = 0. Nearly 60 percent of all satellites in orbit
modelling always have orbited within Rapom(fi, = 0), so we simply
define these infall times to be 13.8 Gyr ago. We take the difference
of each ty infail, model to the infall time in the simulations, fip, infail, sim
(calculated with an evolving Raoom)- Fig. 8 shows these differences,
versus the infall times in the simulations (left) and versus satellite
My (right).

In the left panel, using an evolving Rypom(#p), the median dif-
ference between orbit modelling and the simulations is generally
within &~ 2 Gyr. The peak in the curve at 1.5 Gyr is driven by 11
of the 20 satellites in this particular bin in infall time, where orbit

Testing orbit modelling of satellites 8851

modelling predicts that these galaxies fell in 2 5 Gyr earlier than
in the simulations. Similarly, a slightly smaller peak at 7.5 Gyr is
caused by the model overpredicting #i, infall, model for nearly half of
the satellites by 2 2 Gyr.

The 68th percentile range is largest for the most recently in-
falling satellites and decreases with increasing lookback time. Orbit
modelling generally overestimates the infall time compared to the
simulations, because the model orbits are periodic and more likely
to cross the virial radius at earlier times. The model overpredicts
the infall time for roughly 65 percent of all satellites. Even when
accounting for the evolving Ragom, the 1o scatter spans 2> 1Gyr,
which highlights the large uncertainty in orbit modelling.

When using a fixed Rypom(ti, = 0), the median shows relatively
good agreement for satellites that fell in within the last ~ 4 Gyr.
Beyond 4 Gyr ago, the median difference in infall time increases
until ~ 7 Gyr ago, where it decreases again. The orbits of these
satellites were generally within Rypom(fiy = 0) at all times, so the
difference between orbit modelling and simulations follows the
relation 13.8 Gyr — fip infasim- Of the subset of satellites that fell
in between 1-2 Gyr ago, only 2 of the 17 satellites were always
within Raom, Which is why the 68th percentile dips down close to 0.
However, the associated uncertainties in this method of calculating
infall time are much worse, and the 1o scatter reaches as large as
~ 5.7 Gyr.

Versus My, both infall metrics follow the same general trends:
better agreement for satellites with M, < 10’ Mg, and larger offsets
for higher-mass satellites. The offset between the medians, and 68th
percentiles, is roughly 3—4 Gyr between the two infall metrics. The
values associated with the fixed Rypom(fiy = 0) method skew to larger
values, because many of the model orbits always orbited within this
distance. The 1o scatters each span roughly 2.5-3 Gyr, so one cannot
accurately determine a satellite galaxy’s infall time at any given mass
to within & 2.5 Gyr.

3.3.3 Pericentre properties

We next investigate various properties associated with pericentric
passages relative to the host galaxy, when the tidal acceleration and
ram pressure from the host CGM tend to be strongest.

Most works assume that satellite orbits only shrink over time,
because of dynamical friction and the time-dependent host potential
(e.g. Weinberg 1986; Taylor & Babul 2001; Amorisco 2017), which
implies that the most recent pericentre should be the smallest
experienced. However, as we showed in Santistevan et al. (2023), for
67 per cent of our satellites with N > 2 the most recent pericentre
is not the smallest, because many satellite orbits have grown in
pericentre distances over time. Patel et al. (2020) also saw cases in
which the most recent pericentre was not the smallest, and suggest
that the presence of a massive satellite alone can cause this effect.
Therefore, we present trends for the most recent and the minimum
pericentres.

Fig. 9 compares pericentre distances, dp.ri, the velocity at pericen-
tre, v, the number of pericentric passages, Ny, and the timing of
pericentres, f,.q, versus the lookback time of infall into the MW-
mass halo, present-day distance, r, and satellite M, For each
pericentre property, we show the difference between orbit models and
simulations, except for pericentre distance, for which we compare
the fractional difference.

Fig. 9 (top row) shows the trends for pericentre distance, for both
the most recent, dperi, rec, and the minimum pericentre, dperi, min- For
a given satellite, all of its pericentre distances are the same in our
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Figure 8. The difference in infall time, from orbit modelling versus the simulations, as a function of infall time in the simulations (left) and satellite M, (right).
For orbit modelling, we measure infall time two ways: using a non-evolving host halo radius, Ryoom(fip = 0) (green) and using Room(f1p) from the simulations
(purple). Solid lines show the median and shaded regions show the 68th percentile ranges across our satellites. Left: The median infall time is generally accurate
for orbit modelling if using an accurate Raoom(fib), with a median offset of < 2 Gyr and a typical scatter of 2.4 Gyr. The spike at 1.5 Gyr comes from orbit
modelling overpredicting the infall times for most satellites by 2 5 Gyr, given errors in modelling recent apocentre distances. By contrast, orbit modelling using
fixed Rooom(fin = 0) works well for recently infalling satellites but vastly overestimates the lookback time to infall for earlier-infalling satellites, with an average
1o scatter of 2.8 Gyr. Right: The median and 68th percentile for both infall time metrics show similar trends with satellite mass, offset by & 3 Gyr. The typical
lo scatters range from roughly 3 Gyr and 2.5 Gyr when using either the fixed Rooom(fin = 0) or accurate Rogom(f1), respectively. Orbit modelling fails most
significantly for satellites with My, > 107 Mg, because dynamical friction has shrunk their orbits.

(static) orbit models. With respect to satellite infall time (left panel),
the model recovers the median dpe oc Well, but this is across the
entire population of satellites, not for a given satellite. The median
fractional difference is within ~20 percent, and the average lo
scatter is roughly 19 per cent, smaller than many other properties we
present here. Thus, although the median pericentre distance across
the population looks reasonable, the prediction for any particular
satellite is uncertain by 220 per cent. Orbit modelling recovers the
median dperi, min Well for satellites that fell in S 5 Gyr ago, because
all but one of these satellites experienced only one pericentre, so
the minimum is the most recent. For satellites that fell in 2 5 Gyr
ago, the median fractional offset in dperi, min diverges from that of
dperi, rec- Roughly 60 percent of satellites that fell in 2 5 Gyr ago
experienced multiple pericentres, and because the orbit models only
predict a single dj,,; for a given satellite, these positive values suggest
that the satellites in the simulations orbit at closer distances than in
our static model. The 1o scatter for dpe, min reaches 100 per cent
around 9.5 Gyr ago, thus one cannot accurately predict the minimum
pericentre to within 2> 2 for satellites that fell in earlier than this.

In the middle panel, median dperi, min and dperi, rec between the orbit
models and simulations show general consistency across all distances
The fractional difference in dperi, rec is < 5 per cent, and < 25 per cent
for dperi, min- As we will discuss below, ~95 per cent of satellites that
currently orbit beyond 300 kpc completed only one pericentre, so the
median and 68th percentiles are the same between both dyeri, min and
dperi, rec. Conversely, 2/3 of satellites currently within 300 kpc have
Nperi > 2 and, similar to the left panel, the median and scatter for
peri, min iNCreases to positive values, indicating that orbit modelling
overpredicts dperi, min for these satellites. For the satellites within
300 kpc, nearly 85 per cent fell into their MW-mass hosts over 5 Gyr
ago. As with the left panel, the range in the lo scatter is larger
for dperi, min than in dper, rec, With average values of 55 percent and
24 per cent, respectively.

MNRAS 527, 8841-8864 (2024)

Finally, the median fractional difference in both pericentre metrics
shows no dependence on stellar mass for M, < 1057 Mg (right
panel). Lower-mass satellites typically fell in earlier, orbit at closer
distances, and completed more pericentres, so their minimum and
most recent pericentres are more likely to diverge. Only one satellite
in our sample has M, > 10° M.

Fig. 9 (second row) shows trends in the total velocity of pericentre,
Vperi» and similar to dpe, we show trends in both the minimum,
Uperi, min> aNd MOSt Tecent, Vper rec. Again, satellites at small infall
time, large r, and high M, only experienced one pericentre, so
the median trends in both vperi, min and vVper, rec are the same. The
model recovers both the median vper, min and Vperi, rec to Within A2
30kms~! across all infall times and r, and nearly all M. Although
the model recovers the median dpeyi, rec Well, it overestimates vper, rec
in all panels presumably because of the lack of dynamical friction
and gravitational perturbations from other satellites.

Fig. 9 (third row) compares the number of pericentric passages
a satellite experienced, Npi. For the model orbits, we only count
the number of pericentric passages a satellite experienced since first
infall. We count N; from the two infall metrics in Section 3.3.2:
since infall into the MW-mass halo accounting for an evolving
R>00m(tiv), and since infall while keeping a fixed Rapom R200m(fin = 0).
We show the mean and standard deviation for N, because it is an
integer for a given satellite.

These results for N are not particularly sensitive to the two
ways in which we calculate first infall. In the left panel, the mean
difference in N slightly increases with infall time, because orbits
in the models are periodic, so longer integration times lead to larger
Nperi- The middle panel shows trends versus host distance, r: for
satellites at S 250kpc, orbit modelling overpredicts Ny, because
these satellites typically fell into their MW-mass hosts earlier than
satellites at larger r. Finally, the mean difference in N is generally
flat at My, < 10"° Mg, but the difference increases for more
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Figure 9. Comparing various properties of orbital pericentres, between the simulations and orbit modelling, for surviving satellites versus their lookback
time of infall into the MW-mass halo (left), present-day distance from the MW-mass host, r (middle), and satellite Mg, (right). Solid lines show the median,
and the shaded regions show the 68th and 95th percentiles, across all satellites. Top row: Fractional difference between pericentre distances, (dperi, model —
dperi, sim)/dperi, sim» for both the most recent and the minimum pericentre. Orbit modelling predicts larger minimum pericentres, as high as 100 per cent in the
median, for satellites that fell in > 12 Gyr ago (left), and within 25 per cent for satellites at small r (middle), and for satellites << 107 Mg, (right). Second row:
Difference between the total velocity at pericentre, Vperi, model — Vmodel, sim» for both the most recent and the minimum pericentre. Orbit modelling generally
overpredicts both pericentre velocities by & 10-20kms~!. Third row: Difference between the mean number of pericentric passages about the MW-mass host,
since first crossing the growing host Ryoom (f1b) and since first crossing Rooom (i = 0). This difference slightly increases from ~0 to 1 with #;, (left) and decreases
from 2 to 0 with r (middle), because satellites at small distance typically fell in earlier, which means that they orbited longer in the model. Fourth row: Ditference
between the lookback time of the most recent pericentre, fperi, model — Zperi, sim» Which shows weak trends with any properties. Although the median trends across
the satellite population agree well in most cases, the substantial scatter in all panels implies significant uncertainty for a given satellite’s orbit history.

massive satellites, given the lack of dynamical friction in the orbit
models.

Finally, Fig. 9 (bottom row) compares the timing of just the most
recent pericentre, tlla';[i. The median difference is < 0.2 Gyr across
all three panels. The median is also consistently negative, indicating

that orbit modelling predicts more recent pericentres, likely because

in the orbit models the MW-mass host does not reduce in mass going
back in time.

Typically maximized near a pericentric passage, satellites feel a
tidal acceleration from the host, which strips their mass. We calculate
the acceleration to be a = GM(< r)/¥*, where M(< r) is the total
enclosed mass of the host within a distance . We then compute the

MNRAS 527, 8841-8864 (2024)
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Figure 10. Comparing the maximum tidal acceleration, |da/dr|, from the MW-mass host that satellites experienced via orbit modelling versus in the simulations,
as a function of lookback time of infall into the MW-mass halo (left), distance from the host, r (middle), and satellite M, (right). Solid lines show the median
and the dark and light shaded regions show the 68th and 95th percentiles across all satellites. These trends mirror those for the minimum pericentre distance,
dperi, min> in Fig. 9 (top). Because this orbit modelling does not account for the growth of the MW-mass host and the orbits are periodic, it increasingly overpredicts

the pericentre distance, and underpredicts the tidal acceleration, with increasing

ti]:fall mw = 5 Gyr. The dependence on r and My, are weak. However, the 1o

scatters span more than 50 per cent in each of the panels here, and up to a factor of 2, highlighting the large uncertainties.

derivative with respect to r and save the maximum |da/dr| that a
satellite experienced after first infall.

Fig. 10 compares the maximum |da/dr| experienced between the
simulation and model. Satellites that fell in i, \w = 2.5-7 Gyr
ago typically have larger minimum pericentres in the simulations
than in orbit modelling, so the model overpredicts |da/dr| for these
satellites by up to 45 percent. Conversely, satellites that fell in
ti'f,’fa,LMW 2 7 Gyr ago show larger minimum pericentres in the orbit
models, so underpredicts |da/dr| for the earliest satellites by up
to 55 percent. Because the simulations and orbit models agree in
dperi, min for satellites that fell in tilfl’fa",MW < 2.5 Gyr ago, the median
fractional difference is near zero.

Fig. 10 (middle and right) shows that |da/dr| has little to no
dependence on present-day satellite distance or My, Although the
median fractional difference is close to 0 in both panels, the 1o scatter
increases from 0.39 to 2 with r, and the mean scatter versus M,
is 73 percent. In all three panels, the 20 scatter spans 100 per cent
or more, so while the median |da/dr| across the population from
orbit modelling is relatively accurate, for any given satellite, orbit
modelling over- or underpredicts |da/dr| typically by a factor of 2.

Finally, Appendix C compares both the timing and distance of
pericentres between orbit modelling and the simulations at each
previous lookback pericentric event. The bias in both the distance and
timing of pericentres increases with increasing lookback pericentre
events to roughly 20 percent in distance, and ~ 1.5 Gyr in time.
The uncertainty in these measurements increases up to the 4th most
recent pericentre to ~50 percent in distance and ~ 1 Gyr in time.
Beyond this, < 8 percent of satellites experienced 5 pericentres or
more.

In summary, we compared various pericentre properties for both
the minimum and most recent pericentre events. Across the full
sample, the median fractional difference, or bias across the popula-
tion, for the minimum and most recent pericentre distances are 2.5—
6.6 per cent. The bias in the pericentre velocity is within ~ 20 km s~!,
within 0.2 Gyr for the timing of the most recent pericentre, and <2
for the number of pericentric events. Finally, the bias in the maximum
tidal acceleration is typically 10’s of per cent across infall time, r, and
M. Just as importantly, the typical 1o scatter, which represents the
uncertainty for a given satellite, is significant at ~10-70 per cent.

MNRAS 527, 8841-8864 (2024)

3.3.4 Apocentre, orbital period, and eccentricity

The apocentre measure how far a satellite orbits from its host,
and an orbit spends most of its time near apocentre. Fig. 11 (top)
compares trends in the most recent apocentre distance, dypo, rec. We
only measure an apocentre that occurs after infall into the MW-mass
halo. About 68 percent of our satellites experienced an apocentre;
the rest are on first infall.

Versus infall time (top left), 8 satellites fell into the host between
1 mw = 2-3 Gyr ago, and orbit modelling generally overpredicts
dapo, rec Y 2 75 per cent for half of them. The fractional difference
in apocentre distance is smaller for earlier-infalling satellites, and
the median is ~0.015 with a mean 1o scatter of 0.06. Fig. 11 (top
middle) shows little dependence with r. Satellites that currently orbit
at smaller distances generally fell into the MW-mass host earlier,
so orbit modelling somewhat underpredicts dypo, rec for satellites
within < 250kpc, similar to how it underpredicted dypo, rec at large
1w (top left). Overall, the mean lo scatter is ~0.08. Finally,
the median fractional difference in apocentre distance decreases
weakly with Mg, (top right). Lower-mass satellites typically fell
into their MW-mass halo earlier, and they have smaller fractional
differences.

Fig.11 (middle row) shows trends in the most recent orbital period,
torbit- We define the orbit period as the time difference between the two
most recent pericentric passages, and we find nearly identical results
using the times between apocentres. 47 per cent of the satellites in
our sample experienced 2 or more pericentres in both the simulations
and orbit modelling.

In the left panel, satellites that fell in £0, yw < 4.5 Gyr ago
did not have enough time to undergo 2 pericentres. For earlier
infalling satellites, the median difference in #..,;; varies by as much
as —0.4 Gyr, but the mean across all infall times is —0.15. The
difference in 74 is negligible versus r. Orbit modelling does not
account for dynamical friction, therefore, for satellites with Npe > 2,
if orbit modelling underpredicts djer, rec compared to the simulations,
it suggests more bound orbits and smaller 7 values, which is what
we see for these satellites with My, > 10%° M.

Finally, Fig. 11 (bottom row) compares the orbital eccentrici-
ties, e. Fig. 11 (bottom left) shows that, for satellites that fell in
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Figure 11. Comparing the most recent apocentre distance, dapo, orbital period, Zorit, and orbital eccentricity, e, from orbit modelling versus the simulations,
as a function of lookback time of infall in the MW-mass halo (left), current distance from MW-mass host, r (middle), and satellite M, (right). Solid lines
show the median and the dark and light shaded regions show the 68th and 95th percentiles across all satellites. Top row: The most recent apocentre distance.
Versus infall time, the median is roughly constant at —2 per cent for satellites that fell in 2 3.5 Gyr ago. The model recovers the median apocentre distance to
within £5 per cent versus r, but the median decreases slightly with Mg, from ~0 to 8 per cent at M, = 1032% M. Although the medians in each panel may
only be within a few per cent, the 1o scatters span ~5—10 per cent or more, highlighting the uncertainty for a given satellite. Middle row: Difference between
the most recent orbital time, foit, defined as the difference in time between the two most recent pericentres. Because orbit modelling generally underpredicts
the recent pericentre lookback times, and because the orbits are periodic, the median difference in foi¢ is slightly negative across all panels, and even as low
as 0.5-1.5 Gyr for satellites with My 2 107-2% Mg Bottom row: Difference between most recent orbital eccentricity, e = (dapo — dperi)/(dapo + dperi). The
difference in e varies by at most 0.06 versus tilgfan,MW and r, but satellites with Mg > 1085 Mg have differences >0.15. In general, orbit modelling recovers
the median properties here within &7 per cent (see Table 2), though with significant scatter. The 1o scatters span 8—15 per cent, likely because these properties

all depend on pericentre and apocentre events that occur in the recent past.

fircmw S 4 Gyr ago, orbit modelling recovers dper, rec Well (Fig. 9,
top left) and overpredicts dypo, rec. Similarly, although orbit modelling
1ecovers dypo, rec Well for satellites up to £y, yw = 7.5 Gyr ago,
it also underpredicts dperi, rec, Which drives e to be higher in orbit
modelling. Orbit models and simulations show similar results for
earlier-infalling satellites. The median difference in e is flat with r
and My, < 1082 Mg,

Again, we compute all results in this subsection based on the most
recent pericentre and apocentre, but as Fig. 9 showed, orbit modelling
performs worse for earlier properties of an orbit, so comparison of
orbital period and eccentricity at earlier stages of these orbits would
show even larger disagreements.

3.3.5 Recoverability of orbit properties

We compared 15 properties of satellite orbits in our cosmological
simulations against orbit models using static axisymmetric potentials
that we fit near-exactly to our hosts at z = 0. Table 2 lists the
properties that we tested, as well as the median offsets and lo
and 20 scatters across our sample of satellites. We compare both

the raw difference of a given orbit property, X, defined as Xpodel
— Xsim, as well as the fractional difference, (Xmodel — Xsim)/Xsim-
Additionally, we show the fractional change in orbital specific energy
since infall relative to the MW-mass potential, (Ey — Einf)/Usoom, 0 and
the fractional change in orbital specific angular momentum relative
to today, (£o — £in)/€o. The orbit models conserve these quantities by
definition.

We quantify the goodness of the orbit models in terms of their
‘bias’ (accuracy) and ‘uncertainty’ (precision) in the right-most
columns of Table 2. The ‘bias’ describes how well orbit modelling
accurately recovers the median orbital property across the satellite
population: we define a property to be minimally, moderately, or
highly biased if the median fractional offset of the satellite population
between orbit modelling and the simulations is <10 percent, 10—
25 percent, or >25 percent, respectively. However, even in cases
where this bias is small (accuracy is high), orbit modelling can have
severe limitations if it cannot model the history of a given satellite to
good precision. Thus, we also quantify the ‘uncertainty’ via how large
the scatter in this difference between orbit models and simulations is
across the satellite population. We define a property to be minimally,
moderately, or highly uncertain if the 1o scatter is <25 per cent,
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Table 2. Comparing the results of orbit modelling in a static axisymmetric host potential against cosmological baryonic simulations.Column
list: property name; variable; median offset, 1o scatter, 20 scatter.The left columns compare the raw difference, Xmodel — Xsim, While the middle
columns compare the fractional difference, (Xmodel — Xsim)/Xsim-Additionally, we describe the strength of the bias (median fractional offset) and
uncertainty (1o scatter of the fractional offset) associated with each property.In the bottom two rows, we show the difference in the orbital energy
between present day and the infall time, normalized by the host halo potential energy at present-day, (Eo — Einf)/U200m, 0, and the fractional
change in the orbital specific angular momentum relative to present-day, (€9 — £inf)/€0.Given that energy and angular momentum are always
conserved in the model, we place them below a horizontal line to distinguish them.

Raw Fractional
Difference Difference
Orbital property Variable Median lo 20 Median lo 20 Bias  Uncertainty
offset scatter scatter offset scatter scatter
Recent pericentre dperi, rec [kpc] —1.26 12.1 68.8 —0.025 0.21 1.19 Min Min
distance
Min pericentre dperi, min [ kpc] 3.23 18.5 80.1 0.066 0.53 3.56 Min High
distance
Lookback time of tperi, rec [ Gyr] —0.03 0.25 1.72 —0.028 0.09 0.64 Min Min
recent pericentre
Number of pericentres Nperi 0.63 1.14 2.28 0.32 0.72 1.44 High High
within Rygom (1)
Number of pericentres Nperi, fixed 0.53 1.18 2.36 0.24 0.74 1.48 Mod High
within Ryoom, 0
Velocity at Uperi, rec [ km s 7.69 26.8 106 0.030 0.10 0.38 Min Min
recent pericentre
Velocity at VUperi, min [ km s 3.10 434 132 0.012 0.17 0.43 Min Min
min pericentre
Recent apocentre dapo, rec [ kpc] —-2.75 12.1 97.3 —-0.013 0.06 0.38 Min Min
distance
Lookback time of tinf [ Gyr] 0.57 2.33 5.53 0.09 0.41 2.50 Min Mod
infall within Rgom(7)
Lookback time of tinf, fixed [ GyT] 4.17 3.55 8.80 0.44 0.55 2.92 High High
infall within R200m, 0
Recent eccentricity Crec 0.003 0.07 0.21 0.005 0.15 0.54 Min Min
Recent period Trec [ Gyr] —0.19 0.49 1.84 —0.071 0.13 0.41 Min Min
Max tidal acceleration |daldr| [Gyr’z] —0.07 15.7 353 —0.017 0.66 4.20 Min High
Energy change (Eo — Eint)/U200m, 0 - - - —0.54 0.82 1.83 High High
since infall
Angular momentum (Lo — Linp)/ o - - - —0.015 0.42 1.68 Min Mod

change since infall

25-50 per cent, or >50 per cent. Because bias is more problematic
(systematic) than uncertainty, we impose stricter criteria for it.
Fig.12 visually represents these summary results, via the median
offsets, and 1o and 20 scatters, for the fractional differences between
orbit modelling and simulations. We rank order each property

independently in each panel.

The median fractional offset (representing the ‘bias’) of all
properties ranges from —0.54 for the fractional change in specific
energy to 0.44 for the lookback time of satellite infall using a
fixed Rypom(fiv = 0). The properties whose median agrees to within
=+5 per cent across the population include: the most recent pericentre
distance, dperi, rec, the lookback time of the most recent pericentre,
tr')l;ri,rec, the maximum value of the derivative of the tidal acceleration,
|daldr|, the fractional change in the angular momentum relative to
today, (€g — fintain)/€o, the most recent apocentre distance, dapo, recs
the eccentricity of the most recent orbit, e, and the total satellite
velocities at the minimum and most recent pericentres, Vperi, min
and Vper, rec, respectively. Not surprisingly, orbit modelling tends to
model/recover recent properties of an orbit with the least bias across

a population.
Properties that agree moderately, to within 5-10 per cent, include

the distance of the minimum pericentre, dyeri, min, the lookback time of
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infall into the MW-mass host, #{f, - and the most recent satellite
orbit period, fomit, rec- Both till?fall, mw and dperi, min Occurred further back
in time than the properties that show the least bias.

Finally, the properties that are most systematically biased in orbit
modelling are: the number of pericentric passages both with an
evolving and fixed Raoom, Nperi and Nperi, fixed» the lookback time of
infall when keeping a fixed Rypom = Ra0om(fip = 0), and the change
in orbital energy since infall, Ej,.

Just as important as examining the bias (offset in the median
across the population) is the uncertainty for a given satellite,
via the scatter across the population. This ranges across ~0.06—
0.82 at 1o and ~0.38—4.2 at 20. Again, properties that oc-
curred more recently generally have smaller 1o scatter (aside from
Uperi, min)-

At best, the uncertainty for a given satellite is 6 percent in
the apocentre distance, and 2 10 percent for all other properties.
Additionally, these uncertainties reach nearly a factor of ~2 in
energy, and the 20 scatters are > 40 per cent.

Because we model the host potential to within a few per cent at
z = 0, the uncertainties in Table 2 represent lower limits to the
bias/uncertainty in orbit modelling in practice.
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Figure 12. Rank ordering the 15 properties of the orbit histories of satellite galaxies, as Table 2 lists, based on the fractional level of agreement between orbit
modelling in a static axisymmetric host potential and the cosmological baryonic simulations. For clarity, we shorten (Ey — Einr)/U2oom, 0 to Einf, and (€9 —
Lint)/€o to Lins, and we show the absolute change of Ejyr in the left panel to more easily compare with the other properties. The left panel shows the median
offset, in order from negative to positive values, and the middle and right panels show the 1o and 20 scatters in order of agreement. Satellite orbit properties that
occurred recently, such as the recent pericentre distances/times/velocities, show smaller median offsets, <3 per cent, compared to properties that occurred further
in the past, such as the minimum pericentre distances or infall times, 225 per cent. The same is generally true for the 1o scatter, but not always for the 20 scatter,
despite the strong correlation between the two. Thus, deriving orbit parameters in the recent past yields median results largely consistent with cosmological
simulations, but almost always with significant scatter (uncertainty) always 210 per cent, and orbit parameters that occurs further in the past generally suffer
from non-trivial bias and significant uncertainty. Furthermore, these results are best-case scenarios for static axisymmetric host potentials, because we fit them
near-exact to the simulations at z = 0.

4 SUMMARY & DISCUSSION more physical growth occurs at smaller distances, most relevant for
satellites with smaller pericentres.

4.1 Summary of results . . . . .
How well does orbit modelling in a static axisymmetric host

We compared 15 orbit properties for 493 satellite galaxies around potential recover key orbital properties in the history of a typical
13 MW-mass hosts in the FIRE-2 suite of cosmological baryonic satellite?
simulations against orbit histories derived from orbit modelling in a

static, axisymmetric potential for the same hosts, to quantify rigor- (i) Calculating the infall time of a satellite in the model with a
ously the accuracy and precision of this orbit modelling technique. growing Raoom () yields more consistent results with the simulations,
Specifically, we fit axisymmetric potentials to each MW-mass hosts at < 2 Gyr offset, compared to using the fixed Raoom(# = 0) at present-
z =0 to within a few per cent, which also means that the uncertainties day, but the 1o~ uncertainties in both metrics can be as high as ~
that we present are lower limits to a more realistic scenario applied 5_6_ F}yr (Eig. .8)' i
to the MW/M31 with uncertainty in the underlying host potential. (ii) Orbit history properties that occurred more recently have
We now discuss the key questions we raised in the Introduction and smaller fractional offsets and uncertainties than properties that
our corresponding results. occurred in the past. For instance, the timing and distance of the
How much has the mass profile of a MW-mass host evolved over most recent pericentre have median fractional offsets (uncertainties)
the orbital histories of typical satellites? S 3 (9-21) per cent, compared to the minimum pericentre distance,

which occurred further back in time, which has a fractional offset
(uncertainty) of 7 (53) per cent (Figs 8 and 9 and Table 2).

(i) Most surviving satellites first fell into their MW-mass halo (iii) The orbit properties that orbit modelling recovers best (with
3.4-9.7 Gyr ago. During that time, Moo, and Rpom of the host were the smallest bias and uncertainty) include the distance, timing, and
33-86 per cent and 26-73 per cent of their values today (Fig. 1), so velocity of the recent pericentre, the velocity at the minimum peri-
they roughly doubled since then. centre, the most recent apocentre distance, and the orbit eccentricity

(i) Perhaps more relevant for satellite orbits, the total enclosed and period. The properties that are not recovered well (largest bias
mass within a fixed physical distance increased meaningfully (Figs 2 and/or uncertainty) include the minimum pericentre distance, number
and 3). Within 50 kpc, the typical recent pericentre distance of our of pericentric passages, the lookback time of infall into MW-mass
satellites, the enclosed mass was only &~74 per cent of its present-day host halo, maximum strength of the tidal field, and the change in
value at typical satellite infall times (& 7.4 Gyr ago). total orbital energy (Fig. 12 and Table 2).

(iii) The fractional increase in the enclosed mass of the host is (iv) Even with near-perfect knowledge of the mass distribu-
larger at smaller distances (Figs 2 and 3). This is contrary to the tion/potential at z = 0 in the host galaxies, the typical uncertainties
expectations of ‘inside-out” growth of a dark-matter halo from DMO in these orbit properties range from 6-82 per cent. Furthermore, the
simulations, where most halo growth occurs at larger radii (e.g. satellite-to-satellite variations in each, that is, the 20 scatters, are
Diemand, Kuhlen & Madau 2007; Wetzel & Nagai 2015). With 2> 40 percent. Thus, one cannot recover these orbit properties to
the inclusion of baryonic physics (most importantly gas cooling), within a factor of ~2 or so, which cautions against overgeneralizing
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the results for a single satellite from the median trends (Fig. 12 and
Table 2).

(v) At fixed mass, the spatial extent or orientation of the host
galaxy disc does not significantly affect the orbital properties of the
satellites. Compared to a disc that is rotated by 90°, or a point mass
disc model, the median offsets between the fiducial disc model are
within ~~1073 per cent, and the widths of the 68th percentiles are less
than 6 x 1072 per cent (Table B1).

How far back in time can one reliably model the orbital history of
satellites in a static axisymmetric host potential?

(i) The specific energy and specific angular momentum of an orbit
are generally not conserved: uncertainties are less than 25 per cent
only back to ~ 3.1 Gyr. Backward integrating orbits more than &
9 Gyr results in energy uncertainties up to a factor of ~2 or more
(Figs 4, 5, and 12 and Table 2).

(ii) At the most recent orbit, the uncertainty in pericentre distance
is already ~20 per cent, and ~ 200 Myr in pericentre timing (Fig.
C1). Subsequent orbits result in larger uncertainties.

4.2 Discussion

4.2.1 Comparison to D’Souza & Bell

Our analysis is closest to that of D’Souza & Bell (2022), who
similarly fit symmetric models to MW-mass haloes from the ELVIS
suite of DMO simulations (Garrison-Kimmel et al. 2014) to study
the uncertainties associated with orbit modelling. First, we note
key differences in methods. D’Souza & Bell (2022) used DMO
simulations, which neglects the (tidal) acceleration from the central
galaxy that modify these orbits and could strip/disrupt satellites that
orbit nearby. The internal stellar feedback in a satellite also can
reduce the inner density of dark matter and make the satellites more
vulnerable to tidal disruption (Bullock & Boylan-Kolchin 2017),
although this is a second-order effect (Garrison-Kimmel et al. 2017).
Without these baryonic effects and processes, the surviving satellites
in DMO simulations typically fell into their MW-mass halo earlier
and were able to complete more pericentres, while also orbiting
closer to the centre of the host with smaller pericentric passages
than we showed in Santistevan et al. (2023). However, D’Souza &
Bell (2022) did account for the effects of dynamical friction in their
model, similar to Patel et al. (2020), which acts to slow satellites down
and ultimately merge within the host, which we do not. D’Souza &
Bell (2022) also examined the gravitational effects from LMC-like
analogues in MW-mass hosts. Because the LMC is so massive, it
hosts its own satellite population, and studies suggest that it is on
first infall into the MW and near its first pericentre (e.g. Kallivayalil
et al. 2013; Deason et al. 2015; Kallivayalil et al. 2018; Patel et al.
2020), so accounting for its gravitational influence on the surrounding
satellites is of great interest. Although some hosts in our simulations
have LMC-like analogues at previous snapshots (see Samuel et al.
2021; Barry et al. 2023), we do not analyse them specifically.
Another significant difference between D’Souza & Bell (2022)
and our analysis is that they account for the true mass growth of the
MW-mass host at every snapshot by updating their potentials while
keeping the potential fixed between snapshots. We do not account for
the mass growth of the MW-mass host, because the majority of orbit
modelling studies in the literature implement a fixed mass/potential
(e.g. Patel, Besla & Sohn 2017; Fritz et al. 2018a; Fillingham et al.
2019; Pace, Erkal & Li 2022), because we do not know the full mass
histories of the MW or M31, and also because the mass assembly
history for each MW-mass host in our simulations is unique.
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D’Souza & Bell (2022) define a recovered property as being when
the absolute value of the fractional difference is less than 30 per cent,
that is, | Xiye — Xmodet [/ Xue < 0.3, and report the fraction of satellites
that do not meet this criterion as being ‘outliers’. They centre their
results on two hosts, ‘iDouglas’ which is an isolated MW-mass
galaxy and ‘iOates’ which has an LMC analog, but they test orbits
in iOates with and without the gravitational contribution from this
massive companion. Similar to our analysis, they focus on the timing
and distance of various pericentre events, the apocentre distances,
and the infall times of satellites, and find that more recent pericentres
and apocentres have smaller outlier fractions than pericentres or
apocentres that happened at earlier times. In particular, the outlier
fractions for the most recent, and second-most recent pericentre
distances in the hosts without the additional massive satellite are
31.2-47 and 43.8-69.9 per cent, respectively. Although we do not
look specifically at the second-most recent pericentre, we do find that
the median fractional offsets and 1o uncertainties for the most recent
pericentre distance, —2.5 and 21 per cent, are smaller compared to
the same for the minimum pericentre distance which often occurred
~ 6 Gyr earlier, 0.066 and 53 per cent. The authors also show that the
timing of the most recent pericentre is often better recovered than the
distance, with an outlier fraction of 13.8-23.2 per cent. Our results
show that the median fractional offset is —2.8, which is comparable
to the offset in recent pericentre distance, but with a smaller lo
uncertainty of 9 per cent. Thus, it is often easier to recover the timing
of a pericentre than its distance.

D’Souza & Bell (2022) similarly showed that the distance of the
most recent apocentre has a smaller outlier fraction than the most
recent pericentre distance, with a value of only 6.2-34.9 per cent.
Our work also suggests that the apocentres are easier to recover,
with a median fractional offset and 1o uncertainty of —1.3 and
6 per cent, respectively. They conclude that apocentres are easier to
model because they only depend on the binding energy of a satellite
galaxy, while the pericentres depend on the angular momentum of
a satellite as well as its binding energy. Properties at apocentre
also do not intricately depend on the details of the gravitational
potential at small distances like pericentres do, and rather, what is
more important is modelling the total enclosed mass precisely, as
both studies have done. Finally, the authors also calculate the infall
times of satellites and find good agreement in their simulations and
model, with an outlier fraction of 11.2-28.9 per cent. Although we
generally see small median offsets when calculating infall time with
an evolving Ryoom(?), 6.7 percent, the associated uncertainty is
high, 241 per cent, and using a fixed Rypom(t = 0) is worse.

D’Souza & Bell (2022) explored other models for the growth
of the MW-mass host, and most comparable to our work is their
results in which they keep the mass fixed over time. They report
that, depending on the property, using the static model in some
cases produces the best results as compared with the simulations.
However, as one integrates longer in time, the static model becomes
less representative of the MW-mass environment, and thus satellite
orbit properties that occurred earlier are not modelled as well, which
is what we similarly see in the minimum pericentre properties and
infall times. The authors explored a model that accounts for the
median mass growth of the 48 MW-mass haloes in the ELVIS DMO
simulation suite and found that both the static model and median
mass growth model reproduce similar results at recent lookback times
as well. Finally, they implemented a static model with 40 per cent
more mass, and a static model with different halo concentrations,
which both returned larger biases, scatters, and outlier fractions.
Thus, modelling the mass and shape of the haloes at present-day is
important.
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Finally, D’Souza & Bell (2022) compared uncertainties in the
virial mass of the MW-mass host, and thus uncertainties in the
potential, the uncertainty in the 6D phase-space coordinates of the
satellites at z = 0, the uncertainty in modelling the recent LMC-like
accretion, and the uncertainty in modelling the motion of the MW-
mass system as it moves throughout the Universe. They concluded
that the uncertainties in the recovered orbit history properties when
using simple parametric forms of the potential or ignoring the LMC-
like contribution to the potential are comparable to the uncertainty
in results caused by a ~30 per cent uncertainty in the virial mass of
the MW-mass host.

4.2.2 Comparison to other studies

The results in Figs 2 and 3 (top) differ strikingly from those from
DMO simulations, where the enclosed mass at smaller radii is set
earlier than at larger radii. For example, using the Via Lactea DMO
simulation, Diemand, Kuhlen & Madau (2007) showed that the
enclosed dark matter mass within 100 kpc assembled prior to z &
1.7 (i, & 9.9 Gyr ago), and grew only by about 10 percent since
then. The enclosed mass at even smaller distances formed earlier. In
a related analysis, Wetzel & Nagai (2015), showed that the enclosed
dark-matter mass within a fixed physical r ~ 50-100kpc at z = 1
was already 2 85-95 per cent of its value at z = 0, compared to the
mass in stars and gas, which were only ~55-70 per cent of the mass at
z = 0. Because dark matter is collisionless and dissipationless, and
because the accretion radius grows over time, dark-matter growth
occurs largely ‘inside-out’. However, gas can cool over time, which
drives the formation of the central galaxy, and leads to more physical
mass growth at smaller radii compared with the dark matter.

To derive the orbit histories of satellites of the MW and M31, many
studies commonly apply orbit modelling in a static host potential or
use simple approximations of the growth of the host. For instance,
Kallivayalil, van der Marel & Alcock (2006) used a fixed MW-
mass potential, as well as an LMC-like potential, to determine that
the SMC was gravitationally bound to the LMC. Kallivayalil et al.
(2013) used 3 epochs of HST measurements to constrain the LMC’s
proper motions and suggest that the LMC is likely on its first infall, as
previous studies have suggested (e.g. Besla et al. 2007). The authors
compared different static models of the MW and models that account
for the growth of the MW-mass halo over the last 10 Gyr, but in the
evolving models, the authors did not account for the central galaxy.
Patel, Besla & Sohn (2017) similarly sought to understand the orbit
of the LMC around the MW, as well as the orbit of M33 around M31,
and concluded that like the LMC, M33 is likely fell into the M31
halo less than < 2 Gyr ago or so. Although these authors modelled
the many components of the main galaxy, they did not account for
any time dependence of the host potential.

Patel, Besla & Sohn (2017) also compared the orbits of massive
satellite analogues in the DMO Illustris-1-Dark simulation to an
NFW model of the MW-mass host halo with a dynamical friction
model included. The authors used the z = 0 6D phase-space
coordinates for the satellites and integrated their orbits, similar to our
pipeline, but for 6 Gyr, and suggest that this type of orbit modelling
technique shows good agreement between the two orbits for satellites
on first infall and for satellites that recently completed their first
pericentre. The orbits that we present in Fig. 6 show good agreement
between the simulations and model for recent lookback time as well,
however, only the top-left panel shows good agreement for up to
6 Gyr. There are other satellites in our sample that show agreement
for this time range, however, we choose to intentionally show test
cases in which the model does not do well in this figure as well.

Testing orbit modelling of satellites ~ 8859

Recent work not only suggests that the LMC has only recently
fallen into the MW’s halo and is currently near its first pericentre (e.g.
Kallivayalil et al. 2009, 2013), but that it has a satellite population
of its own (e.g. Deason et al. 2015; Kallivayalil et al. 2018; Patel
et al. 2020). Other studies account for the gravitational contribution
of the LMC on the other satellites of the MW. Kallivayalil et al.
(2018) used Gaia data, in conjunction with the DMO Aquarius
simulation, to determine which satellites might be gravitationally
bound to the LMC. The simulation does have an LMC analogue,
with a similar position and velocity at z = 0, but does not account
for the gravitational effect of the central galaxy. Patel et al. (2020)
used newer Gaia observations and numerically integrated the orbits
of satellites in a model of the potential with a MW, LMC, and SMC
component to determine the orbital histories of the LMC and its
satellites. Although they keep the potential fixed over time, they only
backward integrated the orbits of satellites for ~ 6 Gyr, given that
beyond this time, MW-mass haloes typically have < 80 per cent of
their mass at z = 0. The authors concluded that the derived orbits for
satellites of the LMC strongly depend on whether or not you include
the LMC in the global potential, and in some cases, the contribution
from the SMC is important as well. Finally, other studies aim to
accurately model the LMC potential with basis function expansions
fit to simulation data to understand how it affects the MW, and
its satellites, as in Garavito-Camargo et al. (2019, 2021); Correa
Magnus & Vasiliev (2022), but doing so while accounting for the
growth of the MW remains challenging.

Studies such as Fritz et al. (2018a) and Fillingham et al. (2019)
provide inferences of the infall times, pericentre and apocentre
distances, and orbit eccentricities for all satellites in the MW. Fritz
et al. (2018a) used data from Gaia DR2, and numerically integrated
the orbits of all satellites in GALPY in two different models for
the MW potential, which they kept fixed over time. Depending
on the mass of the MW, the authors showed that some of the
apocentres for the satellites can lie either inside or outside of the
virial radius, which has implications for instance in studying how a
satellite interacts with the hot gas in the MW halo. Furthermore, the
authors suggested that some satellites have pericentres as close as
~ 20kpc, where the strong tidal acceleration from the central galaxy
is important. As we showed in Figs 1-3, depending on when these
pericentres take place, the mass of the host was only a fraction of
its mass today. Fillingham et al. (2019) used the Phat ELVIS DMO
simulations, which include an analytic disc potential, to statistically
sample satellites with similar present-day positions and velocities to
make cosmologically informed predictions for what the infall times
of the MW’s satellites were. The Phat ELVIS simulations account for
the growth of the disc potential through abundance matching scaling
relations, where each disc has a unique growth rate, and thus, tidally
disrupt subhaloes that orbit close to the disc (Kelley et al. 2019).

Most of the MW-mass simulations in the FIRE-2 suite do not
have an LMC-like analogue at z = 0, but there are at least four
analogues at earlier times, within the last 67 Gyr ago, and previous
works have used these analogues to study both planar configurations
of satellites and the effect of LMC-mass satellites on subhalo
populations (Samuel et al. 2021; Barry et al. 2023). Given that the
LMC recently fell into the MW’s dark matter halo, < 2 Gyr ago (e.g.
Besla et al. 2007; Kallivayalil et al. 2013; Patel, Besla & Sohn 2017),
previous orbit modelling studies that include the effects of the LMC
to derive orbits of the MW’s satellites work well in this recent regime.
On the other hand, because we do not include the effects of an LMC
in the host potential, our work informs how well static potential
orbit modelling works in the regime before the LMC was a satellite,
that is, 2 2 Gyr ago. However, the results suggesting that the LMC
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is on first infall and just passed its first pericentre are trustworthy,
given that the mass of the MW and its dark matter halo have not
significantly changed over the last < 2 Gyr. As such, both kinds of
studies, both with and without an LMC analogue, complement each
other in understanding the full, complex MW formation history.
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APPENDIX A: MODELLING HOST MASS
PROFILES

We integrate the orbits of satellite galaxies using the galactic
dynamics PYTHON package GALPY(Bovy 2015), which allows users
to define custom host potentials. We thus fit the enclosed mass profiles
of the MW-mass hosts in our simulations as a sum of disc and halo
components, to supply to GALPY.

A1 Modelling the disc

We model the MW-mass disc as the sum of two double exponential
discs, one for the inner disc/bulge, and one for the outer disc. The
density profile of the disc is:

PR, Z) = G e RINESIAR: 4 AQer e MIRIZ0: (Al

where A" and A" are amplitudes of mass density (Mg kpc™>),

RIMer and RYYST are disc scale radii (kpc), and A, is the disc scale
height (kpc). Given that satellite orbits are more sensitive to the
enclosed mass, rather than the local density, we first integrate out
the vertical component of equation (Al), then we integrate over

cylindrical R to obtain the disc enclosed mass given by
M(< R) =4 Athinner Rinner — eiR/Rin“ﬂ(Rinner +R)|, (AZ)

and a similar term for the outer disc component. We thus ensure that
the total enclosed mass agrees to within a few per cent at all relevant
radii when integrated over all space. We fit and model the disc with
star particles and cold gas (T < 10° K) within R = 0-20kpc and
|Z| < 3kpc. Including mass within |Z| < 4, 5 did not significantly
change the derived parameters.

The orbits of typical satellites are not sensitive to the details of the
size, geometry, or orientation of the disc, see Appendix B.
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Table Al. Best-fitting parameters to the double-exponential disc profile (equations Al and A2) and the generalized
NFW profile for the halo (equations A3 and A4). Columns: Name of host; halo amplitude, Ap,jo; halo scale radius, analo;
halo inner slope, «; halo outer slope, 8; disc inner amplitude, A-"; disc inner scale length, Rjnner; disc outer amplitude,

AOU{CT .

disc outer scale length, Royer; disc scale height, /.

disc >

disc >
Name Awlo dmlo @ B A R Alise’ R
(10" Mg)  (kpe) (10° Mo kpe™)  (kpe) (10°Mokpe™) (kpe)  (kpe)
ml12m 3.78 17.32 1.57 2.78 6.47 0.79 7.98 4.41 0.64
Romulus 5.30 6.65 0.00 2.87 8.31 0.86 2.10 8.04 0.55
m12b 3.84 16.89 1.48 2.82 18.0 0.65 6.08 4.24 0.51
m12f 3.65 14.77 1.45 2.74 8.39 0.84 2.11 7.40 0.54
Thelma 4.49 8.84 0.40 2.90 3.30 1.04 1.98 6.28 0.75
Romeo 8.99 29.91 1.47 3.23 4.61 1.02 225 6.64 0.55
ml2i 5.70 32.15 1.58 2.99 9.10 0.78 3.87 4.56 0.55
ml2c 7.93 24.37 0.90 3.05 7.05 0.71 6.41 3.65 0.57
ml2w 2.99 22.87 1.61 2.73 5.53 0.68 11.7 2.19 0.67
Remus 8.32 36.49 1.56 3.21 4.68 0.90 1.60 6.50 0.54
Juliet 2.85 9.57 0.87 2.82 6.97 0.77 1.16 6.32 0.55
Louise 2.30 6.41 0.29 2.76 1.92 0.99 0.54 9.36 0.58
ml2z 322 33.96 1.58 2.69 0.59 0.40 1.73 2.94 1.54

101 102
Host distance, r [kpc]

Figure Al. Ratio of the enclosed total mass in each best-fitting model to that
in each simulation, as a function of distance from the centre of the MW-mass
host, r, at z = 0. We fit a double-exponential profile for the inner and outer
discs (equations Al and A2) and a generalized NFW profile for the halo
(equations A3 and A4). Table Al lists all fit parameters. Black line shows
the median and the shaded regions show the 68th and 95th percentile scatter
across our 13 hosts. The median agrees to within <4 percent at all radii
and <1 percent for the mass within Ropom (344—472kpc). The ratio shows
larger host-to-host scatter at < 10kpc, but only &5 per cent of satellites in
our sample orbit this close. This level of agreement ensures that modelling
the total (axisymmetric) mass profile of each host at z = 0 is not a significant
source of error for our orbit modelling.

A2 Modelling the halo

To fit the halo component, we use a generalized form of the spherical
Navarro-Frenk—White (NFW, Navarro, Frenk & White 1996) density
profile:

Ahalo 1
47[“}1110 (r [ anaro)* (1 4 7/ anaio )P~

p(r) = (A3)

where Apgy, is the amplitude (Mg), anao is the scale radius (kpc),
and « and B are the slopes of the inner and outer density profile. We
then integrate the analytic form of p(r) to convert this to an enclosed
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mass profile:

A 3—a
%G) 2Fi(3 = o, —a + B34 — 05 = [anao)
— o \a

(A4)

M(<r)=

where ,F; is the Gauss hypergeometric function. We model and
fit this profile with dark-matter and hot gas (T > 10° K) within
r < 10kpc, and all particles (dark matter, all gas, and stars) at
r = 10-500 kpc. We obtained similar parameters selecting particles
within » < 300, 350, 400 kpc, but we use the fits out to 500 kpc,
because many satellites orbit out to there (see Santistevan et al.
2023). We tried fitting the haloes to a regular NFW profile, where
o = 1 and B = 3, but we obtained notably better agreement with the
generalized form above.

A3 Total mass profile

We use the parameters we derived from fitting the above analytic
density/mass profiles in their respective potentials in GALPY. In
GALPY, we specifically use the spherically symmetric “TwoPow-
erSphericalPotential’ for the DM halo, and axisymmetric ‘Double-
ExponentialdiscPotential’ for the inner and outer discs, and we input
all three to define the total potential of a given host, to use to integrate
the orbits of its satellites. Table A1 lists the fit parameters.

Fig. A1 shows the ratio of the halo + disc analytic model using the
parameters in Table A1l to the enclosed masses in the simulations; a
1:1 ratio is presented as the dotted horizontal line. At all distances we
show, we model the median enclosed mass to within 3—4 per cent, and
the 68th percentile range is within 5 per cent beyond 10 kpc. Within
10 kpc, the 68th and 95th percentiles of the enclosed mass ratios span
both higher and lower than what we present in the y-axis, but only
~5 per cent of surviving satellites orbited at such small distances.

Individually, we model the two-component disc to within
~4 per cent at R = 2-20 kpc and the halo to within ~10-20 per cent.
Although we double counts the star particles and cold gas between
10 and 20 kpc, the median mass ratio in Fig. Al is < 2 per cent within
this distance and produces a good fit to the data. One galaxy, m12c,
experienced a significant merger (*3:1 mass ratio) ~ 9 Gyr ago, thus
modelling this host with symmetric analytic models does not capture
the complexity in its mass distribution. Thus, the total enclosed mass
in m12c is fit to within ~15 per cent.
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Table B1. Similar to Table A1, but now comparing our fiducial model for the host disc to models in which (1) we rotate
the disc by 90° or (2) use a simple point mass. We show only the fractional differences for each property X via (Xgisc, rot
— Xaise)/Xdisc for the rotated disc model (middle columns), and (Xpoint — Xdisc)/Xdisc for the point mass model (right
columns). Column list: property name, variable, median offset, 1o scatter. We do not show the minimum pericentre
properties given that the orbits in the models are periodic. Values with an asterisk at the end represent cases where we
present the mean offset or standard deviation, instead of median and 1o scatter, because they are discrete quantities or
have medians of 0. The overall bias in any orbit property for both alternative models is less than 1 per cent, and the
1o uncertainties only reach as large as ~7 per cent for the number of pericentric passages.Thus, the orientation and
geometry of the central disc are not important factors in orbit modelling uncertainties.

Rotated disc Point mass
Property Variable  Median offset 1o scatter Median offset 1o scatter
Recent pericentre distance dperi, rec 2x 1073 2x 1073 5x 1073 7 x 1073
Timing of recent pericentre Iperi, rec 1x107° 1 x 1073 3x1073 7% 1073
Number of pericentric passages Nperi 2x 107 5% 107 —6x 1073 4x 1072
Pericentric passages post-infall at Rogom, 0 Nperi, fixed 2 x 1073 5x 1072 —8x 1073 7 x 1072
Velocity at recent pericentre Vperi, rec -3 x 1073 2x 1073 —5x 1073 7% 1073
Recent apocentre distance dapo, rec 4 x 1077 4% 107 1x1073 4 %1073
Lookback time of infall tinf —-2x 107 15x 1073 3x107% 5x107°
Lookback time of infall at Ryoom, 0 finf, fixed —1x1077 25x1073 —2x107% 3x107?
Recent orbit eccentricity Erec —4 x 1073 2x 1073 —1x 1073 5x 1073
Recent orbit period Trec 3x 1078 2% 1073 7 x 1073 1 x 1072
Max strength of tidal force |daldr| Ix107%  3x107>* —2x103 2x1072

APPENDIX B: ALTERNATIVE MODELS FOR
THE HOST GALAXY POTENTIAL: ROTATED
DISC AND POINT MASS

Here, we investigate the results of using different potential models for
the central galaxy, including (1) a disc that is rotated by 90° and (2) a
point mass. We compare these models with the fiducial disc model in
Table Al. We numerically integrate the satellites in these alternative
models and calculate the same orbit properties in Table 2. For each
property X, we present only the fractional differences between the
models, (Xdisc, rot — Xdisc)/Xdisc and (Xpoim - Xdisc)/Xdisca where Xdisc, rot
refers to the fiducial disc model rotated by 90°, Xpiy; refers to the
point mass model, and Xg;. is our fiducial model. Table B1 shows the
median offset and width of the 68th percentile. For cases in which
the median is zero, we instead show the mean offset and standard
deviation.

For the rotated disc model, the median fractional difference across
all orbit properties is 221073 or smaller, and the 1o scatters are less
than 5 percent. We also calculate the median fractional difference
only for satellites that orbit closest to the disc, with pericentres <
50kpc, and the offsets are still S 10~ percent. Thus, we conclude
that the orientation of the host galaxy isk is not important for orbit
modelling.

To implement a point mass potential, we use GALPY’s ‘KeplerPo-
tential’, which takes only the mass as the parameter. We integrate the
enclosed galaxy mass profile in equation (A2) out to 30 kpc and input
this into the point mass potential. Table B1 shows that, even for this
simplest-possible model for the central galaxy mass distribution, the
median offsets and percentile widths are < 7 per cent. This reinforces
that the details of the mass distribution of the central galaxy are not
important; what matters only is modelling the total baryonic mass of
the central galaxy.

We also tried ‘shrinking’ our fiducial disc model, by reducing the
scale radii and scale height to 90, 50, 10, and 1 percent of their
best-fitting values in Table A1, which showed results intermediate
between the rotated disc and point mass models.

These results are consistent with the tests of Garrison-Kimmel
et al. (2017), who compared the surviving subhalo populations
in two of the FIRE-2 MW-mass hosts against DMO simulations

with an embedded disc potential. They showed that the number
of surviving subhaloes in the simulations with an embedded disc
potential agrees well with those in the baryonic FIRE-2 simulations,
both of which are much smaller than in a DMO simulation without
an embedded disc. They additionally tested various embedded disc
potentials by doubling the scale length, fixing the scale height to
1 pc, doubling the total disc mass, including the gas mass to the disc,
and implementing a Hernquist sphere instead of their Miyamoto-
Nagai disc potential. Most of these alternate disc potentials led
to similar results, reinforcing that the details of the shape of the
central galaxy potential are less important than simply its overall
mass.

APPENDIX C: COMPARING DISCRETE
PERICENTRES

To understand better how well orbit modelling and cosmological
simulation agree at each orbit, Fig. C1 compares the timing and
distance of each pericentric event. We select all satellites at a given
‘lookback pericentre event’, where 1 is the most recent pericentre, 2
is the second-most recent, and so forth. We plot the fractional and
raw differences in the pericentre distance and timing.

In our sample, 86 percent of satellites experienced at least one
pericentre, 2247 per cent experienced two or more, and ~30 per cent
experienced three or more. The most pericentres experienced is 10,
but we cut the figure at 6 pericentres given that only 3.4 percent
experienced more than this.

Focusing on trends with distance, the median fractional differ-
ence in the most recent pericentre is only —2.5 percent, similar
to Fig. 9 (top row). As we compare pericentres further back in
time, the median decreases to —18 percent for satellites at their
sixth most recent pericentre. However, this is not to say that the
model never overpredicts the pericentre distances. For the most
recent pericentric passage, the model underpredicts the distance in
~60 per cent of the sample, and overpredicts the distance in the other
40 per cent.

Likewise, the 1o scatter generally increases with increasing look-
back pericentre events, where it reaches a max value of ~48 per cent
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at the Sth-most recent pericentre. Thus, the median difference
between the model and simulation increases with each orbit as we
look back in time, but also the uncertainties associated with these
pericentre distances increases.

Similar to trends in distance, Fig. C1 (bottom) shows that the
median difference in the timing of each pericentre decreases from
—30 Myr at the most recent pericentre to —1.2Gyr for the 6th
most recent. Orbit modelling continuously underpredicts pericentre
events, presumably because the host mass is unchanging as the
satellites orbit. For a given satellite, the more massive host with
a deeper gravitational potential will result in a more bound orbit
compared to the same satellite in the same MW-mass host with
less mass at earlier times. More bound satellites thus orbit deeper
in the potential with shorter orbit timescales. Regarding the most
recent pericentric passage, the model underpredicts the timing in
~66 per cent of satellites and overpredicts the timing in 30 per cent;
the remaining 4 per cent of satellites have nearly identical values. The
lo scatter spans 2> 0.5 Gyr for the second-most recent pericentre and
beyond.

These results highlight another aspect of how far back in time
orbit modelling reliably works. If one is only interested in deriving
the most recent pericentre distance or time, the model recovers
the median trends of satellites to within a few percent, but the
uncertainties are non-negligible. For the satellites that orbited more
than once, the most recent pericentre is not always the smallest
(see Santistevan et al. 2023), therefore if one is interested in
how close satellites orbited to their host, then the uncertainty in
deriving these distances will be =35 percent, and 2 0.5 Gyr in the
timing.
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Figure C1. Comparing the timing and distance of each pericentric passage
between orbit modelling and simulations, which we measure at each ‘pericen-
tre event’, where 1 is the most recent pericentre, 2 is the second most recent,
and so forth. We select all satellites that experienced (at least) a given number
of pericentres, and we show the median and lo scatter across all satellites.
Top: The median fractional difference in pericentre distance decreases from
—2.5 to —18 per cent going back 6 pericentres while the 1o scatter increases
from 18 to 48 per cent. Less than 3 per cent of satellites experienced more than
7 pericentres, in both the simulations and orbit models. Bottom: The median
difference in the timing of the pericentric events decreases with lookback
pericentre events from —30 Myr for the most recent pericentre to —1.2 Gyr.
The 1o scatter ranges from = 0.2 to 0.85 Gyr, so not only does orbit modelling
increasingly systematically underpredict the timing of a pericentre, but also,
orbit modelling becomes more uncertain, over longer lookback times.
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