
MNRAS 527, 8841–8864 (2024) https://doi.org/10.1093/mnras/stad3757 
Advance Access publication 2023 December 09 
Modelling the orbital histories of satellites of Milky Way-mass galaxies: 
testing static host potentials against cosmological simulations 
Isaiah B. Santiste v an , 1 ‹† Andre w W etzel , 1 Erik T ollerud, 2 Robyn E. Sanderson , 3 , 4 Jorge Moreno 4 , 5 
and Ekta Patel 6 
1 Department of Physics & Astronomy, University of California, Davis, CA 95616, USA 
2 Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA 
3 Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA 
4 Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA 
5 Department of Physics and Astronomy, Pomona Colleg e , Claremont, CA 91711, USA 
6 Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, Utah 84112, USA 
Accepted 2023 No v ember 29. Received 2023 November 22; in original form 2023 September 8 
A B S T R A C T 
Understanding the evolution of satellite galaxies of the Milky Way (MW) and M31 requires modelling their orbital histories 
across cosmic time. Many works that model satellite orbits incorrectly assume or approximate that the host halo gravitational 
potential is fixed in time and is spherically symmetric or axisymmetric. We rigorously benchmark the accuracy of such models 
against the FIRE-2 cosmological baryonic simulations of MW/M31-mass haloes. When a typical surviving satellite fell in 
(3 . 4 –9 . 7 Gyr ago), the host halo mass and radius were typically 26–86 per cent of their values today , respectively . Most of this 
mass growth of the host occurred at small distances, r ! 50 kpc , opposite to dark matter only simulations, which experience 
almost no growth at small radii. We fit a near-exact axisymmetric gravitational potential to each host at z = 0 and backward 
integrate the orbits of satellites in this static potential, comparing against the true orbit histories in the simulations. Orbital 
energy and angular momentum are not well conserved throughout an orbital history, varying by 25 per cent from their current 
values already 1 . 6 –4 . 7 Gyr ago. Most orbital properties are minimally biased, ! 10 per cent, when averaged across the satellite 
population as a whole. Ho we ver, for a single satellite, the uncertainties are large: recent orbital properties, like the most recent 
pericentre distance, typically are ≈20 per cent uncertain, while earlier events, like the minimum pericentre or the infall time, are 
≈40–80 per cent uncertain. Furthermore, these biases and uncertainties are lower limits, given that we use near-exact host mass 
profiles at z = 0. 
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1  I N T RO D U C T I O N  
The satellite galaxies of the Milky Way (MW) and M31 are the 
most rigorously studied lo w-mass galaxies, gi ven their proximity to 
us. The dynamics and evolution of these low-mass galaxies encode 
rich information about their past and the host halo environment in 
which they orbit. These low-mass galaxies also differ from the non- 
satellite galaxies within the Local Group (LG) given that their host 
galaxies, either the MW or M31, regulated their star formation, and 
they probe deep within their host potentials. Important questions 
about their orbital histories include: When did each satellite fall 
into the MW/M31 halo? How close have they orbited, and when 
did they experience pericentric passages? How has the mass of 
the MW/M31 changed o v er time, and how has it impacted satellite 
orbits? How well conserved are orbital properties such as energy or 
angular momentum? Given a near-perfect representation of the host 
⋆ E-mail: ibsantiste v an@ucdavis.edu 
† Hubble Fellow 

potential, to what extent can we accurately reco v er orbit properties, 
such pericentre distances and times? 

Satellites in the LG are the only low-mass galaxies for which we 
can measure their full 6D phase-space coordinates. One historically 
challenging phase-space component to measure is proper motion. 
Many studies used the Hubble Space Telescope ( HST ) to derive 
proper motion estimates for galaxies in the LG to estimate their 
star-formation histories, determine companionship with the Large 
Magellanic Cloud (LMC), and to study the planar structure of 
satellites around both the MW and Andromeda (M31) (e.g. van 
der Marel et al. 2012 ; Kalli v ayalil et al. 2013 ; Sohn et al. 2020 ; 
P a wlowski & Sohn 2021 ). Recent HST treasury programs (such as 
GO-14734, PI Kalli v ayalil; GO-15902, PI Weisz; GO-17174, Ben- 
net; HSTPROMO) are obtaining proper motions for the remaining 
satellites; we soon will have orbital dynamics information for all 
known satellites in the LG. 

Furthermore, the Gaia space telescope has been revolutionary in 
providing a wealth of data, such as positions, magnitudes, and proper 
motions, for o v er 1 billion sources, including globular clusters and the 
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satellite galaxies of the MW (Gaia Collaboration 2018 ). Numerous 
studies use Gaia ’s kinematic data to study group infall of satellites, 
including satellites of the LMC (e.g. Kalli v ayalil et al. 2018 ; Fritz 
et al. 2018a ; Patel et al. 2020 ). Because proper motion measurements 
impro v e with multiple observations, many studies now use HST and 
Gaia data in conjunction to reduce uncertainties in satellite galaxy 
proper motions (such as Bennet et al. 2022 ; del Pino et al. 2022 ; 
Warfield et al. 2023 ). Current observational programs such as the 
Satellites Around Galactic Analogs (SAGA) surv e y (Geha et al. 
2017 ; Mao et al. 2021 ) are observing satellite galaxies around other 
MW-mass galaxies. JWST soon will be able to obtain proper motions 
of even more distant low-mass galaxies, beyond the LG (Weisz et al. 
2023 ), and the Vera Rubin Telescope will catalogue more than 10 
billion stars within the low-mass galaxies around the MW. 

Using the phase-space information of satellite galaxies, in tandem 
with a model of the Galactic potential, many studies investigate 
satellite infall and orbital histories. A galaxy becomes a satellite 
galaxy when it first crosses the virial radius of a more massive 
halo, which can quench the lower-mass galaxy’s star formation 
(e.g. Gunn & Gott 1972 ; van den Bosch et al. 2008 ; Rodriguez 
Wimberly et al. 2019 ; Samuel et al. 2022a , b ). As satellites reach 
their closest approach to the host galaxy at pericentre, they orbit 
in the denser host CGM and feel strong tidal forces ram pressure 
(e.g. McCarthy et al. 2008 ; Simons et al. 2020 ; Mart ́ın-Navarro 
et al. 2021 ; Samuel et al. 2022a ). Many studies use different models 
for the MW/M31 potential and numerically integrate the orbits for 
their satellite galaxies to derive orbit properties. Ho we ver, the results 
depend strongly on modelling the total mass profile of the MW and 
M31 (e.g. Fritz et al. 2018a , b ; Gaia Collaboration 2018 ). Another 
study by Fillingham et al. ( 2019 ) jointly used Gaia data with the 
Phat EL VIS (pEL VIS; Kelley et al. 2019 ) dark matter only (DMO) 
simulations, which include the gravitational effects of a central 
galaxy, to match simulated satellites to observed satellites in 6D 
phase space. They then used the distribution of infall times of the 
matched simulated satellites to infer the infall times for 37 satellites 
of the MW, which ranged from ≈ 1 –11 Gyr ago, similar to other 
simulation-focused studies (e.g. Wetzel, Deason & Garrison-Kimmel 
2015 ; Bakels, Ludlow & Power 2021 ; Santistevan et al. 2023 ). 
Deriving these infall and orbit history properties is generally difficult, 
given that we do not know precisely how the mass distribution of the 
MW or M31 has changed o v er time. 

Stellar streams arise from the disruption of satellite galaxies 
or globular clusters. Therefore, studying the orbits of streams or 
globular clusters gives insight into the possible future orbits of 
satellites that will eventually merge into their host galaxy (e.g. 
Ibata, Gilmore & Irwin 1994 ; Majewski, Munn & Ha wle y 1996 ; 
Bullock & Johnston 2005 ; Price-Whelan et al. 2016 , 2019 ; Bonaca 
et al. 2021 ; Panithanpaisal et al. 2021 ; Ishchenko et al. 2023 ). Several 
studies used both the Dark Energy Surv e y (DES; Dark Energy Surv e y 
Collaboration 2016 ) and the Southern Stellar Stream Spectroscopic 
Surv e y ( S 5 ; Li et al. 2019 ) to disco v er these small systems and 
measure their kinematics (e.g. Shipp et al. 2018 , 2019 ; Li et al. 2021 , 
2022 ). Comparisons with cosmological simulations in Shipp et al. 
( 2023 ) suggest that undetected stellar streams may exist around the 
MW, which the upcoming Vera Rubin Observatory could potentially 
disco v er. 

Cosmological simulations of MW-mass galaxies allow us to 
study theoretically the orbital evolution of satellites. Many studies 
used DMO simulations to understand how subhaloes respond to 
pericentric events (Robles & Bullock 2021 ), how subhalo orbits 
respond to various MW environments (Pe ̃ narrubia, Kroupa & Boily 
2002 ; Pe ̃ narrubia & Benson 2005 ; Ogiya, Taylor & Hudson 2021 ) 

and pre-processing and group accretion (Rocha, Peter & Bullock 
2012 ; Wetzel, Deason & Garrison-Kimmel 2015 ; Li et al. 2020 ; 
Bakels, Ludlo w & Po wer 2021 ). Ho we v er, man y such studies did 
not account for the important effects of baryons (e.g. Brooks & 
Zolotov 2014 ; Bullock & Boylan-Kolchin 2017 ; Sales, Wetzel & 
Fattahi 2022 ). 

Of utmost importance in deriving the satellite orbit histories is 
understanding the mass distribution of the MW and M31. Studies 
such as Bovy & Rix ( 2013 ) and Bovy et al. ( 2016 ) focused on fitting 
and deriving parameters for the disc, such as the scale height and 
length, while other studies estimated the total mass of the MW or 
M31 (e.g. Eadie, Springford & Harris 2017 ; Patel et al. 2018 ; Eadie & 
Juri ́c 2019 ; Patel & Mandel 2023 ). One method of defining the total 
virial mass of a galaxy is by summing the mass within a given radius, 
such as R 200 m , the radius that encompasses 200 × the matter density 
of the Universe (Bryan & Norman 1998 ). Using constraints from 
globular cluster kinematics, Vasiliev ( 2019a ) found that the virial 
mass of the MW is M 200 m = 1 . 2 × 10 12 M ⊙, which is in line with the 
studies mentioned abo v e and with the currently accepted virial mass 
in the literature of M 200 m = 1 –2 × 10 12 M ⊙ (e.g. Bland-Hawthorn & 
Gerhard 2016 ). Many studies use the orbits of satellite galaxies to 
constrain the mass of the MW or M31 (e.g. Evans & Wilkinson 
2000 ; van der Marel & Guhathakurta 2008 ; Watkins, Evans & An 
2010 ; Irrgang et al. 2013 ). Patel & Mandel ( 2023 ) suggested the 
mass of M31 to be more massive, M 200 m = 2 . 85 –3 . 02 × 10 12 M ⊙, 
from proper motions from HST and Gaia of satellite galaxies. 

Many studies used numerical tools to backward integrate the orbits 
of satellites, stellar streams, or globular clusters, such as GALPY 
(Bovy 2015 ), AGAMA (Vasiliev 2019b ), and GALA (Price-Whelan 
2017 ). Ho we ver, such orbit modelling often makes approximations 
by keeping the host mass profile fix ed o v er time (e.g. Patel, Besla & 
Sohn 2017 ; Fritz et al. 2018a ; Fillingham et al. 2019 ; Pace, Erkal & 
Li 2022 ), sometimes varying the MW centre of mass, including 
an LMC-mass satellite, or including dynamical friction (Weinberg 
1986 ; Lux, Read & Lake 2010 ; G ́omez et al. 2015 ; Garavito-Camargo 
et al. 2019 ; Patel et al. 2020 ; Garavito-Camargo et al. 2021 ; Correa 
Magnus & Vasiliev 2022 ; Lilleengen et al. 2023 ). 

Lux, Read & Lake ( 2010 ) compared various orbit history prop- 
erties of subhaloes in the DMO Via Lactea I simulation (Diemand, 
Kuhlen & Madau 2007 ) to the orbits of MW satellites by using proper 
motion measurements from the literature and integrating their orbits 
in fixed potentials. In another study, Arora et al. ( 2022 ) compared four 
models with and without time dependence to investigate the effects 
of different mass models on stellar streams dynamics in simulations, 
and found that although most models conserve stream orbit stability, 
the only model that conserves stability o v er long periods of time is 
the time-evolving model. D’Souza & Bell ( 2022 ) used two MW- 
mass host haloes from the ELVIS suite of DMO simulations to 
test how well orbit modelling reco v ers the cosmological orbits of 
subhaloes. Although the majority of dynamical models applied to 
the MW and M31 assume static host potentials, the fiducial model 
in D’Souza & Bell ( 2022 ) accounted for the true mass growth of 
each MW-mass host. They compared results from host haloes with 
and without LMC-mass satellites and showed that orbit modelling 
better reco v ers the more recent pericentres and apocentres when 
compared to the second or third-most recent. They also tested models 
in which they did not account for any mass growth of the MW-mass 
host, or the presence of an LMC-like satellite, and found varying 
degrees of uncertainty associated with each simple model. Ho we ver, 
these simulations lacked baryonic physics, including the gravitational 
effects of a central galaxy, and various works noted the importance of 
modelling baryonic physics on these scales (e.g. Brooks & Zolotov 
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2014 ; El-Badry et al. 2016 ; Bullock & Boylan-Kolchin 2017 ; Sales, 
Wetzel & Fattahi 2022 ). 

In Santiste v an et al. ( 2023 ), we studied the orbital dynamics and 
histories of satellite galaxies in the FIRE-2 cosmological zoom-in 
simulations of MW-mass galaxies. We investigated trends between 
the present-day dynamical properties, such as velocity, total energy, 
and specific angular momentum, with the satellite infall times, 
present-day distance from the MW-mass host, and satellite stellar 
mass. We also similarly checked for trends with properties at 
pericentre and found that the most recent pericentre was not the 
smallest, contrary to the expectation that satellite orbits only shrink 
o v er time. 

In this paper, we further study the infall and orbital histories of 
the same satellites. We model an axisymmetric mass profile for each 
simulated MW-mass host to within a few per cent at z = 0, and we 
backward integrate the orbits of satellites within each one. We then 
compare these results against the ‘true’ orbital histories of satellite 
galaxies in the simulations. Our goal is to quantify rigorously the 
strengths and limitations of modelling satellite orbits in a static host 
halo potential, a commonly used technique. Although we focus on 
satellite galaxies, our results are rele v ant for orbit models of stellar 
streams and globular clusters. 

Key questions that we address are: (1) How much has the mass 
profile of a MW-mass host evolv ed o v er the orbital histories of typical 
satellites? (2) How well does orbit modelling in a static axisymmetric 
host potential reco v er ke y orbital properties in the history of a typical 
satellite? (3) How far back in time can one reliably model the orbital 
history of satellites in a static axisymmetric host potential? 
2  M E T H O D S  
2.1 FIRE-2 simulations 
We use the cosmological zoom-in baryonic simulations of MW- 
mass galaxies in both isolated and LG-like environments from the 
Feedback In Realistic Environments (FIRE) project 1 (Hopkins et al. 
2018 ). We ran these simulations using the hydrodynamic plus N - 
body code GIZMO (Hopkins 2015 ), with the mesh-free finite-mass 
(MFM) hydrodynamics method (Hopkins 2015 ), and the FIRE-2 
physics model that includes se veral radiati ve heating and cooling 
processes such as Compton scattering, Bremsstrahlung emission, 
photoionization and recombination, photoelectric, metal-line, molec- 
ular, fine-structure, dust-collisional, and cosmic-ray heating across 
temperatures 10 –10 10 K (Hopkins et al. 2018 ). The FIRE-2 physics 
model also includes the spatially uniform and redshift-dependent 
cosmic ultraviolet (UV) background from Faucher-Gigu ̀ere et al. 
( 2009 ), for which HI reionization occurs at z reion ≈ 10. Stars form 
in gas that is self-gravitating, Jeans unstable, molecular (following 
Krumholz & Gnedin 2011 ), and dense ( n H > 1000 cm −3 ), and 
represent single stellar populations, assuming a Kroupa ( 2001 ) initial 
mass function. Stars then evolve along stellar population models from 
STARBURST99 V7.0 (Leitherer et al. 1999 ), inheriting masses and 
elemental abundances from their progenitor gas cells. Other stellar 
feedback processes we implement in the FIRE-2 simulations include 
core-collapse and white-dwarf (Type Ia) supernovae, stellar winds, 
and radiation pressure. 

We generated cosmological zoom-in initial conditions at z 
≈ 99 within periodic cosmological boxes of comoving length 
70 . 4 –172 Mpc , which are large enough to a v oid unrealistic periodic 
1 See the FIRE project web site: http://fire.northwestern.edu 

Table 1. Properties at z = 0 of the 13 MW/M31-mass galaxies/haloes in 
the FIRE-2 simulations that we analyse, ordered by decreasing stellar mass. 
Simulations with ‘m12’ names are isolated galaxies from the Latte suite, 
while the others are from the ‘ELVIS on FIRE’ suite of Local Group-like 
pairs. Columns: host name; M star, 90 is the host’s stellar mass within R star, 90 , 
the disc radius enclosing 90 per cent of the stellar mass within 20 kpc; M 200 m 
is the halo total mass; R 200 m is the halo radius; and N satellite is the number of 
satellite galaxies at z = 0 with M star > 3 × 10 4 M ⊙ that ever orbited within 
R 200 m , totalling 493 across the suite. 
Name M star, 90 M 200 m R 200 m N satellite Ref 

(10 10 M ⊙) (10 12 M ⊙) (kpc) 
m12m 10.0 1.6 371 47 A 
Romulus 8.0 2.1 406 57 B 
m12b 7.3 1.4 358 32 C 
m12f 6.9 1.7 380 44 D 
Thelma 6.3 1.4 358 34 C 
Romeo 5.9 1.3 341 36 C 
m12i 5.5 1.2 336 27 E 
m12c 5.1 1.4 351 41 C 
m12w 4.8 1.1 319 39 F 
Remus 4.0 1.2 339 36 B 
Juliet 3.3 1.1 321 40 C 
Louise 2.3 1.2 333 34 C 
m12z 1.8 0.9 307 26 C 
Average 5.5 1.4 348 38 - 
Note. Simulation introduced in: A: Hopkins et al. ( 2018 ), B: Garrison-Kimmel 
et al. ( 2019b ), C: Garrison-Kimmel et al. ( 2019a ), D: Garrison-Kimmel et al. 
( 2017 ), E: Wetzel et al. ( 2016 ), F: Samuel et al. ( 2020 ). 
gravity effects on individual MW-mass hosts, using the code MUSIC 
(Hahn & Abel 2011 ). We saved 600 snapshots for each simulation 
with time spacing of ≈ 25 Myr down to z = 0, assuming a flat " CDM 
cosmology with the following cosmological parameters consistent 
with Planck Collaboration ( 2020 ): h = 0.68–0.71, σ 8 = 0.801–0.82, 
n s = 0.961–0.97, $" = 0.69–0.734, $m = 0.266–0.31, and $b = 
0.0449–0.048. 

We analyse a similar set of galaxies as Santiste v an et al. ( 2023 ), 
only we omit ‘m12r’, because of its low stellar mass compared to the 
MW and because we are not able to fit its mass profile to sufficiently 
high precision (see Appendix A ). We also include ‘m12z’, first 
introduced in Garrison-Kimmel et al. ( 2019a ). Our sample is from 
both the Latte suite of isolated MW/M31-mass galaxies, introduced 
in Wetzel et al. ( 2016 ), and the ‘ELVIS on FIRE’ suite of LG-like 
MW + M31 pairs, introduced in Garrison-Kimmel et al. ( 2019a ). 
Table 1 lists several of their properties at z = 0, such as stellar mass, 
M star, 90 , halo mass, M 200 m , and radius, R 200 m , and the number of 
satellite galaxies at z = 0 with M star > 3 × 10 4 M ⊙, N satellite . 

The Latte suite of isolated MW/M31-mass galaxies includes 
haloes at z = 0 with M 200 m = 1 –2 × 10 12 M ⊙ with no other haloes 
of similar mass within 5 R 200 m . We also chose m12w to have LMC- 
mass satellite analogues near z ≈ 0, and m12z to have a smaller 
DM halo mass at z = 0 (Samuel et al. 2020 ). Star particles and 
gas cells are initialized with masses of 7100 M ⊙, ho we ver, because 
of stellar mass loss, the typical is ≈ 5000 M ⊙. The mass of dark- 
matter (DM) particles is 3 . 5 × 10 4 M ⊙ within the zoom-in region. 
The gravitational softening lengths for star and DM particles are fixed 
at 4 and 40 pc (Plummer equi v alent), respecti v ely, como ving at z > 
9 and physical thereafter. The gas cells use adaptive force softening, 
consistent with their hydrodynamic kernel smoothing, down to 1 pc. 

The selection criteria for each pair of haloes in the ‘ELVIS 
on FIRE’ suite of LG-like galaxies is based on their individ- 
ual masses ( M 200 m = 1 –3 × 10 12 M ⊙), combined masses ( M tot = 
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2 –5 × 10 12 M ⊙), their relative separation (600 –1000 kpc ) and radial 
velocities ( υrad < 0 km s −1 ) at z = 0. The mass resolution in the 
‘ELVIS on FIRE’ suite is ≈2 × better than the Latte suite, with 
initial masses of star particles and gas cells of ≈ 3500 –4000 M ⊙. 

Our 13 simulated galaxies display broadly consistent properties 
as similar MW/M31-mass galaxies and exhibit comparable obser- 
vational properties to the MW or M31, such as: MW/M31-like 
morphologies (Ma et al. 2017 ; El-Badry et al. 2018 ; Garrison- 
Kimmel et al. 2018 ; Sanderson et al. 2020 ) that follow stellar-to-halo 
mass relations (Hopkins et al. 2018 ), realistic stellar haloes (Bonaca 
et al. 2017 ; Sanderson et al. 2018 ), and dynamics of metal-poor stars 
from early galaxy mergers (Santiste v an et al. 2021 ). Each galaxy 
also hosts a satellite galaxy population with properties comparable 
to the satellites within the local Universe, such as: stellar masses and 
internal velocity dispersions (Wetzel et al. 2016 ; Garrison-Kimmel 
et al. 2019b ), radial and 3-D spatial distributions (Samuel et al. 2020 , 
2021 ), star-formation histories and quiescent fractions (Garrison- 
Kimmel et al. 2019b ; Samuel et al. 2022b ). 
2.2 Halo/galaxy catalogs and merger trees 
To generate the (sub)halo catalogs at each of the 600 snapshots, 
we use the ROCKSTAR 6D halo finder (Behroozi, Wechsler & 
Wu 2013a ) using DM particles only, and we use CONSISTENT- 
TREES (Behroozi et al. 2013b ) to generate merger trees. None of 
the (sub)haloes that we analyse have any low-resolution DM particle 
contamination, given the sufficiently large zoom-in volumes. 

We briefly re vie w ho w we implement star particle assignment in 
post-processing here, but we refer the reader to Samuel et al. ( 2020 ) 
for details. First, we select star particles within d < 0 . 8 R halo , out to a 
maximum distance of 30 kpc , with velocities within υ < 2 V circ , max of 
the (sub)halo’s centre-of-mass (COM) velocity. We then keep the star 
particles within d < 1 . 5 R star, 90 of the (then) current member stellar 
population’s COM and (sub)halo centre position, where R star, 90 is the 
radius that encloses 90 per cent of the stellar mass. Then, we select 
the star particles with velocities within υ < 2 σvel , star of the COM 
velocity of the member star particles, where σ vel, star is the velocity 
dispersion of the current member star particles. Finally, we iterate 
on both the spatial and kinematic criteria until the (sub)halo’s stellar 
mass converges to within 1 per cent. This also guarantees that the 
COM of the galaxy and its (sub)halo are consistent with one another. 

We use two publicly available analysis packages: HALOANALYSIS 2 
(Wetzel & Garrison-Kimmel 2020a ) for assigning star particles 
to haloes and for reading and analysing halo catalogs/trees, and 
GIZMOANAL YSIS 3 (W etzel & Garrison-Kimmel 2020b ) for reading 
and analysing particles from Gizmo snapshots. 
2.3 Selection of satellites 
We select satellites in the same manner as Santiste v an et al. ( 2023 ). To 
summarize, we include all satellites at z = 0 with M star > 3 × 10 4 M ⊙
that ever orbited within their MW-mass halo’s virial radius, R 200 m . 
This stellar mass limit corresponds to roughly ≈6 star particles, 
which reasonably resolves the total stellar mass (Hopkins et al. 
2018 ). At our selection threshold of M star > 3 × 10 4 M ⊙, the median 
peak halo mass is M halo , peak ≈ 9 × 10 8 M ⊙ which corresponds to " 
2 × 10 4 dark-matter particles. Thus, we resolve satellite subhaloes 
well, to prevent significant numerical disruption according to the 
2 https:// bitbucket.org/ awetzel/ halo analysis 
3 https:// bitbucket.org/ awetzel/ gizmo analysis 

criteria in van den Bosch & Ogiya ( 2018 ); see Samuel et al. ( 2020 ) 
for more discussion on our satellite resolution convergence. 

We include ‘splashback’ satellite galaxies that currently orbit 
outside of the MW-mass halo’s R 200 m but are gravitationally bound to 
it (e.g. Wetzel et al. 2014 ). As Table 1 shows, the number of surviving 
satellites at z = 0 per host, including the splashback population, is 
26–57, and our sample totals 493 satellites. 

To a v oid biasing our results to the hosts with more satellites, we 
o v ersample the satellites, so that each host contributes a near equal 
fraction of satellites to the total, to within 5 per cent; see Santiste v an 
et al. ( 2023 ) for details. 
2.4 Calculating orbit properties 
Many dynamical modelling studies implement a static gravitational 
potential for the host, consisting of a sum of potentials for each 
component of the galaxy, such as the stellar/gaseous disc, the bulge, 
the stellar halo, and the dark-matter halo (see for example Kalli v ayalil 
et al. 2013 ; G ́omez et al. 2015 ; Patel, Besla & Sohn 2017 ). To 
numerically integrate orbits through time, these studies then often use 
common numerical tools, such as GALPY , to solve the equations of 
motion at each timestep. 

In our analysis, we backward integrate the orbits of satellite 
galaxies in mass profiles that we fit to each MW-mass host in the 
FIRE-2 simulations. In short, we model the mass profiles of the hosts 
at z = 0 with a generalized form of the spherical Navarro-Frenk- 
White (NFW, Navarro, Frenk & White 1996 ) density profile using 
dark matter and hot gas ( T > 10 5 K ) particles within r < 10 kpc , and 
all particles at r = 100 –500 kpc . We model the disc with two double- 
exponential disc profiles, one for the inner disc (bulge) and one for the 
outer disc, using star particles and cold gas ( T < 10 5 K ). The median 
fit across all 13 MW-mass hosts is within ≈5 per cent of the enclosed 
mass profiles in the simulations at r > 10 kpc out to the virial radius. 
Thus, we test orbit modelling under a best-case scenario, at least for 
a static axisymmetric potential, with near perfect knowledge of mass 
profile at present day . We note that we do not model the additional 
gravitational potential for an y giv en satellite galaxy. See Appendix A 
for more details on our fits to each MW-mass host. 

Next, we select the cylindrical positions ( R , φ, Z ) and velocities 
( v R , v φ , v Z ) of the satellites at the z = 0 snapshot and use this 
6D phase-space information to initialize their orbits. We then use the 
galactic dynamics python package GALPY 4 (Bovy 2015 ) to backward 
integrate the satellite orbits for 13 . 8 Gyr within each host’s static 
axisymmetric potential. Because the MW-mass host is the only 
gravitational potential we account for, we do not include any move- 
ment of the MW-mass host throughout the satellite orbit integration. 
This paper focuses on understanding the base uncertainties in static 
potential orbit modelling, thus, we do not account for dynamical 
friction in our model. Including dynamical friction may impro v e the 
model orbits, ho we ver this is outside of the scope of this paper. 

We explore numerous properties of satellite orbits, each of which 
provides insight into their orbit histories. For example, pericentres 
occur when the satellite is at its closest approach to the MW-mass 
host, when the satellite feels the strongest tidal forces and is deepest 
in the host CGM. Some studies use the first post-infall apocentre 
distance, also called the turn-around radius, as an alternate definition 
for the radius of the host galaxy (e.g. More, Diemer & Kravtsov 
2015 ; Diemer 2017 ). The orbital eccentricity of satellites describes 
the orbit shape, which can change o v er time in the simulations, but is 
4 http:// github.com/ jobovy/ galpy 
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fixed in the fixed potential models. The orbital energy is invariant in a 
time-independent potential, and in a spherically symmetric potential, 
total angular momentum is invariant. Thus, comparing the evolution 
of these properties with the simulations informs us to what extent 
this holds. We calculate the following properties for the satellites in 
our sample. 

Pericentre distance , time , velocity, and number : We define the 
virial properties at R 200 m , the radius that encloses 200 × the mean 
matter density of the Universe. We calculate pericentres in the 
same manner as Santiste v an et al. ( 2023 ). First, we track the main 
progenitor of the satellites back in time through all 600 snapshots 
using the merger trees, and first confirm that the satellite is within the 
virial radius, R 200 m , of the MW-mass host halo at a given snapshot. 
Then, we find local minima in its galactocentric distance within a 
±20 snapshot window, which corresponds to ≈ 1 Gyr in time. Given 
the ≈ 25 Myr time spacing between snapshots, we then fit a cubic 
spline to the distance, time, and velocity arrays in this snapshot 
window, and save the spline interpolated minimum distances, and 
the corresponding times and velocities at these pericentres. Finally, 
we assign the total number of pericentres to a satellite based on 
the number of times the abo v e criteria are met. As mentioned in 
Santiste v an et al. ( 2023 ), we checked our pericentre calculations 
using a snapshot window of ±4, 8, 10 snapshots and saw that our 
fiducial window of ±20 snapshots best eliminates ‘false’ pericentres, 
that is, cases where the pipeline finds a pericentre in either numerical 
noise or short-lived perturbations in the orbits. Additionally, whether 
we centre the distances on the satellite or MW-mass host galaxies or 
DM (sub)haloes does not affect our results. 

Apocentre distance : We calculate apocentres similar to the way that 
we calculate pericentres. We first confirm that the satellite has orbited 
within R 200 m of the MW-mass host halo before a given snapshot, 
ho we ver, we do not require it to be within R 200 m at the snapshot of 
interest so that we may catch apocentres in the ‘splashback’ phase. 
We then find local maxima in the satellite’s galactocentric distance 
within a similar window of ±20 snapshots. Finally, we similarly fit 
a cubic spline to the distance and save these values. 

Infall time : To calculate infall time, we simply ensure that the satel- 
lite is within R 200 m at a given snapshot, and save the corresponding 
time that this first happens. In orbit modelling, we calculate infall 
time in two different ways depending on how we treat R 200 m . The 
first method involves using the evolving R 200 m from the simulations, 
and finding when the model orbit first crosses this distance, similar 
to how we calculate infall time for the satellites in the simulations. 
Ho we ver, in our second method, we keep the present-day R 200 m as a 
fix ed quantity o v er time, that is, R 200 m ( t lb = 0), where t lb is lookback 
time. We find the instances in which the model orbit first crosses 
within this fixed distance. In the case that the model orbit was always 
within R 200 m ( t lb = 0), we set the infall time equal to the beginning 
of the simulations, 13 . 8 Gyr ago. 

Eccentricity : We approximate orbital eccentricity as: 
e ≈ d apo − d peri 

d apo + d peri (1) 
where d apo and d peri are the apocentre and pericentre distances, 
respectively. Defined this way, the eccentricity is a constant for a 
K eplerian orbit. Ho we ver, it will v ary within our model here, thus 
we choose adjacent pairs of apocentres and pericentres in the actual 
integrated orbit from the model to calculate it. We make no distinction 
in the ordering of pericentre/apocentre combinations, i.e. whether not 
to choose an apocentre only after pericentre, or pericentre only after 
an apocentre. 

Orbital period : We approximate the orbital period by simply 
calculating the time between adjacent pericentres. We checked how 
this compares to the timing between adjacent apocentres and found 
consistent results. 

Specific orbital energy : We take the specific orbital energy of a 
satellite to be the sum of the kinetic and potential energy per mass 
at each snapshot. The simulation snapshots store the gravitational 
potential at the location of each particle, which we use to compute 
at the location of a satellite. Following Santistevan et al. ( 2023 ), 
we select all star, gas, and dark matter particles within ±5 kpc of 
the satellite’s virial radius, and use the median potential of these 
particles, to minimize the satellite’s self-potential. 

Because we track satellites across time, we must properly nor- 
malize the potentials at each snapshot. Our sample includes 3 LG- 
like pairs of MW/M31-mass hosts, thus, we cannot normalize the 
potentials at arbitrarily large distances. Therefore, we choose to 
normalize potentials with: 
U sat ( r, t lb ) = U sat, snap ( r, t lb ) − U host, snap ( r = 500 kpc , t lb ) 

−G × M( < 500 kpc , t lb = 0) 
500 kpc + G × M( < 500 kpc , t lb ) 

500 kpc (2) 
where U sat, snap ( r , t lb ) is potential of a satellite at a given snapshot, 
U host, snap ( r = 500 kpc , t lb ) is the potential for particles within a 
spherical shell at r = 500 ± 5 kpc around the MW-mass host, and 
the last two terms are the analytic gravitational potentials, G ×
M ( < r )/ r , for the mass enclosed within 500 kpc at present-day 
and an y giv en lookback time, respectiv ely. We choose 500 kpc for 
several reasons: (i) the bound mass for a given MW-mass host 
does not change by more than a few per cent beyond this, (ii) 
satellites typically orbit as far as the ‘splashback’ radius, which 
we approximate as ≈ 1 . 5 R 200 m ≈ 500 kpc from a spherical collapse 
model (e.g. Fillmore & Goldreich 1984 ; Bertschinger 1985 ), and (iii) 
we must choose distances smaller than the separation between the 
two MW-mass hosts ( " 840 kpc ). 

For the analytic potentials, we get 
' = ∫ ∞ 

500 kpc G × M ( < r ) 
r 2 d r (3) 

and because the enclosed mass does not change significantly at 
500 kpc , this integral results in ' ≈ −G × M( < 500 kpc ) / 500 kpc . 
The last three terms in equation ( 2 ) ensure that the potential is 
properly normalized across different snapshots. 

When we examine differences in total energy, we divide by the 
virial potential of the host halo, U 200m , 0 ≡ G × M( r < R 200 m , t lb = 
0) /R 200 m , because each host has different M 200 m and R 200 m , so this 
ensures that we compare satellite evolution in a similar manner. 
Ho we ver, the snapshots for ‘m12z’, ‘Romulus’, and ‘Remus’ do not 
have stored potential values, thus, we exclude them when we compare 
orbital energies. 

Specific angular momentum : We calculate a satellite’s specific 
angular momentum at each snapshot with ℓ = r × v, where r is the 
total distance between the satellite and the centre of the MW-mass 
host, and v is the total velocity of the satellite with respect to the 
centre of the MW-mass host. 

Tidal acceleration : Finally, we calculate the tidal acceleration a 
satellite feels by taking the deri v ati ve of a = G × M ( < r )/ r 2 with 
respect to r , where M ( < r ) is the total enclosed mass of the host 
within a distance r . We calculate this at every snapshot and save only 
the maximum | da / dr | that a satellite experienced after first infall, 
although this almost al w ays coincides with when the satellite is at its 
closest approach to the MW-mass host. 
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Figure 1. Left: Total (baryonic plus dark matter) mass of an MW/M31-mass halo, M 200 m , enclosed within R 200 m as a function of lookback time, t lb . The left 
axis shows M 200 m at t lb relative to M 200 m today, while the right axis converts this to the median M 200 m across our sample. The black line shows the median, 
and the dark and light shaded regions show the 68th and 95th percentiles, respectively, across our 13 hosts. The vertical grey line and shaded region show the 
median and 68th percentile range of the lookback times of infall for surviving satellites. The typical host halo had 54 per cent of its final M 200 m when a typical 
satellite fell in ≈ 7 . 4 Gyr ago, so M 200 m nearly has doubled o v er that time. Right: Same, for the growth of the MW/M31-mass halo radius, R 200 m . R 200 m shows 
nearly linear growth with time o v er the last ≈ 12 Gyr . The typical host halo had 43 per cent of its final R 200 m when a typical satellite fell in ≈ 7 . 4 Gyr ago, again 
highlighting significant change o v er the orbital history of a typical satellite. 
2.5 Disc orientation 
We use the 6D phase-space coordinates of satellites at z = 0 relative 
to the MW-mass disc, but the disc precesses o v er time. In Santiste v an 
et al. ( 2021 ), we showed that after the disc stabilizes ≈ 5 –11 . 5 Gyr 
ago (when the angular momentum vector of the disc stopped rapidly 
fluctuating in its orientation), the disc continued to precess between 
5–130 ◦ until z = 0. Satellites reach their closest approach to the MW- 
mass disc when they are at pericentre, so pericentre properties are 
likely most sensitive to the host disc configuration. Thus, we explore 
different disc orientations and models to investigate how they affect 
the resultant satellite orbits in Appendix B . To summarize, in one 
model we rotate the disc by 90 ◦ while keeping the same coordinates 
for satellites at z = 0. In another model, we use a point mass model 
for the disc. In both models, the median differences between all orbit 
properties we explore between our fiducial model and these different 
configurations is small, less than 1 per cent. Therefore the details of 
the geometric configuration of the galactic potential do not matter 
much to satellite galaxy orbits. For more discussion about this see 
Appendix B and Table B1 . 
3  RESU LTS  
Man y studies inte grate satellite orbits using a model of a static 
axisymmetric MW/M31 potential at z = 0, which is unphysical given 
that the MW evolves over time. Therefore, to provide context for our 
results on satellite orbits, we first quantify the mass evolution of MW- 
mass hosts in our simulations, o v er both long and short timescales, 
including how this depends on distance. We then explore the extent to 
which satellites conserve energy and angular momentum. Finally, we 
explicitly compare results between the simulations and the idealized 
axisymmetric model. Because many of these distributions are non- 
Gaussian, throughout we present the median trends across the sample 
of host galaxies or satellites, as well as the half-width of the 68th or 
95th percentile range, which for brevity we refer to as the 1 σ and 2 σ
scatter, respectively. 

3.1 Growth of the Milky Way-mass host 
3.1.1 Halo virial properties 
We define virial properties at R 200 m , the radius that encloses 200 ×
the mean matter density of the universe. Fig. 1 shows the evolution 
of both the total (baryonic plus dark matter) virial mass of the hosts, 
M 200 m , and their virial radii, R 200 m . We show the median trend along 
with the 68th and 95th percentiles. The left-hand axes show the virial 
properties normalized to the present day ( t lb = 0), while the right- 
hand axes show these in physical units, scaling to the median. The 
grey line and shaded region also show the median and 68th percentile 
of the infall times, t lb infall , MW , of the satellites in our sample. 

The median MW-mass host M 200 m grew more quickly at earlier 
times, slowing around 4 Gyr ago. As Santistevan et al. ( 2020 ) showed, 
the fractional stellar mass growth of these MW-mass hosts is broadly 
consistent with studies based on abundance matching and dark- 
matter-only simulations (e.g. Behroozi et al. 2013b ; Hill et al. 2017 ). 
Most satellites fell in 3 . 4 –9 . 7 Gyr ago, when the median MW-mass 
host had ≈33–86 per cent of its mass at z = 0. 

Fig. 1 (right) shows the growth of R 200 m is nearly linear in time, 
with relatively small fractional scatter. When the typical surviving 
satellites fell in, the median MW-mass host had 26–73 per cent of its 
R 200 m ( z = 0). Thus, the MW-mass hosts grew considerably in mass 
and radius, which affects the orbits of satellites. 
3.1.2 Mass within fixed physical radii 
Fig. 1 showed the enclosed mass within R 200 m ( t). Ho we ver, for 
satellites that already fell into the MW-mass halo, the additional 
growth " R 200 m , may not matter much, given that the orbits depend 
primarily on just the mass within an orbit. Therefore, Fig. 2 shows 
the ratio of the enclosed mass within a given fixed physical radius, 
r , at a given lookback time, t lb , relative to today, M ( < r , t lb )/ M ( < 
r , t lb = 0). We show the median ratios of enclosed mass within r < 
50, 100, and 150 kpc, along with the 68th and 95th percentiles for 
r < 50 kpc . Because the satellite orbits are sensitive to the enclosed 
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Figure 2. Total mass of the MW/M31-mass host within a fixed physical 
distance, r , normalized to the value today, versus lookback time, t lb . We show 
the median mass ratio within r = 50, 100, and 150 kpc, and the 68th and 95th 
percentiles for r < 50 kpc . This ‘physical’ mass growth is less significant 
than that of M 200 m (based on an evolving R 200 m ) in Fig. 1 . However, because 
of baryonic gas cooling, the fractional mass growth of the host is larger at 
smaller distance. The mass gro wth re verses at t lb " 11 Gyr , when a given 
distance experienced its initial collapse from the Hubble e xpansion. F or 
context, the median pericentre distance experienced by surviving satellites 
is ≈ 50 kpc . A typical satellite fell in 3 . 4 –9 . 7 Gyr ago (grey shaded region), 
when the typical enclosed mass was ≈61–93 per cent of its value today. 
mass, we choose to measure the enclosed mass within these distances 
because typical pericentre distances for the satellites in our sample 
are ∼ 50 kpc and typical apocentres are ∼ 200 kpc . 

Because we show enclosed mass within fixed physical radii, the 
increase with lookback time " 12 Gyr ago represents the Hubble 
expansion, prior to the collapse within that radius. The enclosed mass 
was ≈62–91 per cent of its present value during the typical infall 
times of surviving satellites; larger than for M 200 m in Fig. 1 during 
the same time range. The spikes in the 95th percentile range likely 
arise from massive satellites. The enclosed mass fractions within r < 
100 kpc and r < 150 kpc were larger at nearly all lookback times, 
meaning that mass has grown fractionally less at larger radii. In other 
words, the significant growth of the central galaxy, largely via gas 
cooling/accretion, leads to more significant mass grows at smaller 
radii. 

Fig. 3 (top) shows the evolution of the enclosed mass profile across 
time from r = 5–500 kpc, where r is the satellite distance from the 
MW-mass host. We first calculate the median profile o v er all 13 
hosts at each distance and snapshot with ≈ 1 Gyr time spacing; see 
the colourbar for the lookback time of a given mass ratio. Then we 
normalize the curves for each snapshot to the median profile of the 
hosts at present day. 

In general, at each r the enclosed mass ratio increased o v er time, 
and likewise, at each time, the enclosed mass ratio increases with 
distance. Similar to Fig. 2 , the mass growth o v er time at large r was 
not as significant compared to small r . For example, typical recent 
pericentre distances for satellites in the simulations are ≈ 50 –60 kpc , 
and compared to present day, the enclosed mass was only 74 per cent 
during typical satellite infall times. The median present-day distance 
of the satellite galaxies in the simulations is around 175 kpc , and at 
t lb = 7 . 4 Gyr ago, the enclosed mass was ≈83 per cent of its mass at 
z = 0. Ho we v er, near the virial radius and be yond, the enclosed mass 
was already 97 per cent during typical satellite infall times. 

Figure 3. Top: Average long-term evolution of the mass profile (Sec- 
tion 3.1.2 ). Similar to Fig. 2 , the total mass within a given physical distance, 
r , relative to the value today, but now as a function of r . We show the median 
across our 13 MW/M31-mass hosts, at various lookback times, t lb , back to 
11 Gyr , which encompasses the infall times of > 95 per cent of surviving 
satellites. The enclosed mass increases o v er time at essentially all r , with 
the inner halo near the galaxy experiencing the most fractional mass growth. 
Thus, the approximation of a static halo mass/potential is least accurate 
for satellites with the smallest pericentres. For context, the median recent 
pericentre of surviving satellites is ≈ 50 kpc . Bottom: Typical short-term 
fluctuations in the host halo mass profile (Section 3.1.3 ). The 1 σ and 2 σ
standard deviation of the fractional change/fluctuation of the total mass of 
the host o v er the last 2 Gyr, which is the typical of the orbital timescale of 
satellites at r ≈ 30 kpc . These fluctuations in enclosed mass are weaker at 
larger distances. On average, the host mass growth/fluctuations over the last 
2 Gyr are ! 5 per cent, though such fluctuations would be even higher for 
haloes with a massive (LMC- or M33-mass) satellite. 
3.1.3 Short-term evolution of host mass 
The enclosed mass at an y giv en time is subject to the perturbations 
of satellite galaxies that are orbiting around and merging within the 
main host. To examine the variability in the enclosed masses, we 
calculate a time-averaged enclosed mass profile o v er the last 2 Gyr, 
and we normalize the enclosed mass at every snapshot between 
t lb = 0 –2 Gyr to this time-averaged one. Fig. 3 (bottom) shows the 
1 σ and 2 σ scatter of these ratios at each distance in the solid and 
dashed blue lines, respectively, in the bottom panel of Fig. 3 . 

Similar to the top panel, the 1 σ scatter shows larger variability at 
small r , suggesting that the fractional growth in the inner regions of 
the MW-mass host is larger than at large r . Ho we ver, the 2 σ scatter 
does monotonically decrease with distance, but it is constant between 
r = 10 –100 kpc . 

Haloes and their galaxies grow hierarchically o v er time, and each 
figure in this section explicitly quantifies this idea in the evolving 
virial region (Fig. 1 ), within fixed distance apertures (Fig. 2 ), and at 
fixed time (Fig. 3 ). Modelling the enclosed mass/potential of a host 
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Figure 4. The difference in a satellite’s specific orbital energy and specific orbital angular momentum between today and at first infall into the MW-mass 
halo, versus lookback time of infall (left), current distance from host, r (middle), and satellite M star (right). Orbit modelling nearly always assumes that these 
quantities are conserved. Solid lines show the median for all satellites within the 13 MW-mass hosts, and the dark and light shaded regions show the 68th and 
95th percentiles. Top row: Change in specific orbital total energy, E , relative to the virial energy of the MW-mass host halo today, U 200m , z = 0 = GM 200 m /R 200 m . 
The median decreases from 0 to −2.5 with increasing infall lookback time, meaning that satellites have lost energy and become more bound since infall, because 
the host has grown (Figs 1 –3 ). Because r inversely correlates with infall time, the median change in energy increases from −2 to −0.2 with r (middle) and is 
constant with satellite mass at M star ! 10 7 . 5 M ⊙, but it decreases at higher mass because of dynamical friction. Although E correlates with these properties, the 
widths of the 68th percentiles span ≈1.2–1.5, highlighting the significant variation (and thus uncertainty) for any given satellite. Bottom row: Change in specific 
orbital angular momentum, ℓ , relative to the value today. The median fractional difference is generally zero for satellites that fell in ! 9 . 5 Gyr ago, but earlier 
infalling satellites have increased by up to ∼45 per cent. We find little to no change in the median ℓ with r or M star , except for satellites with M star " 10 7 M ⊙, 
which experienced stronger dynamical friction. The mean widths of the 68th percentiles in the fractional change in ℓ span 70 per cent versus infall time and r , 
and 100 per cent versus M star . These uncertainties in both E and ℓ imply that we cannot infer the initial energy or angular momentum of a given satellite’s orbit 
at its time of infall to better than " 2. . 
at z = 0 and holding that potential fixed across many Gyr does not 
account for the real, substantial growth of the host halo environment 
in which satellites orbit. 
3.2 Orbital energy and angular momentum 
In a time-independent potential, the specific energy of a satellite’s 
orbit is conserved. Likewise, in a spherically symmetric potential, 
the specific angular momentum, ℓ = r × v, is conserved, while the 
component of ℓ along the minor axis is conserved in an axisymmetric 
potential. In Santiste v an et al. ( 2023 ), we showed that satellites that 
fell in ! 10 Gyr ago conserve their median ℓ across the population, 
but importantly with large scatter of ≈40 per cent. Ho we ver, we did 
not examine trends as a function of lookback time across an orbit. 
We next examine how well orbital energy and angular momentum of 
a satellite’s orbit are conserved. We stress that we show trends across 
the full population of satellites, including the full range of values 
of satellites with a particular infall time, distance, and M star , which 
gives a sense of conservation on a satellite-by-satellite basis. 

Fig. 4 (top row) shows the difference in the total orbital energy 
between present-day and infall into the MW-mass halo. To scale to 
the characteristic energy of a given halo, we divide these differences 
by U 200m , 0 = GM 200 m /R 200 m , the virial gravitational potential of the 
host halo today. We show these fractional energy differences as a 
function of the lookback time of satellite infall into MW-mass host, 
t lb infall , MW , distance from the MW-mass host, r , and satellite stellar 
mass, M star . 

Generally, the median fractional difference in specific energy 
decreases with increasing t lb infall , MW from 0 to −2.5 (top left). Thus, 
satellites that fell into their MW-mass halo earlier lost more energy, 

because the MW-mass host grew in mass by " 20 per cent (Fig. 
2 ). Next, the median fractional difference in total energy increases 
with r (top middle), from −2 to roughly −0.2 for satellites near 
R 200 m . Satellites that currently orbit at smaller distances have lost 
more energy since infall, compared to satellites that orbit at larger 
distances, which only recently fell in. The fractional difference in 
total energy only weakly depends on M star (top right). Satellites 
below M star ! 10 7 . 5 M ⊙ have a median fractional energy difference 
of roughly −0.5, and the fractional energy difference for more 
massive satellites decreases to as low as −1.6, but we caution that 
there is only one satellite with M star > 10 9 M ⊙. 

Ne xt, we inv estigate the specific angular momentum of satellite 
orbits, ℓ . My studies implement a spherically symmetric component 
to the potential, such as an NFW profile for the DM halo (e.g. 
Kalli v ayalil et al. 2013 ; Patel, Besla & Sohn 2017 ; Besla, Peter & 
Garavito-Camargo 2019 ), in which the total angular momentum is 
constant. We show in Appendix B that satellite orbits are insensitive 
to the direction/details of the axisymmetric component of the 
potential, the disc, so we show results in ℓ and not the component of 
ℓ along the minor axis of the potential. 

In Santiste v an et al. ( 2023 ), we discussed trends in the angular 
momentum difference today versus infall, normalized by the angular 
momentum at satellite infall; ( ℓ 0 − ℓ infall )/ ℓ infall . Fig. 4 (bottom 
ro w) sho ws the same difference, only now normalized by the 
angular momentum at present-day, that is, ( ℓ 0 − ℓ infall )/ ℓ 0 . Similar 
to Santiste v an et al. ( 2023 ), we find weak dependence in the median 
fractional change in ℓ across the population since infall. The median 
is as large as ≈45 per cent compared to the values at infall. These 
satellites make up roughly 20 per cent of the total sample. The 
fractional difference in ℓ shows virtually no dependence with r or 
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M star . The average 1 σ scatter is ≈40 and 50 per cent versus r and 
M star . 

Our results suggest that satellite populations do not show o v erall 
conservation of energy or angular momentum. If we focus on the 68th 
and 95th percentile ranges in each panel, we see cases in which the 
energies or specific angular momenta for some satellites at present- 
day are similar to their values at infall, for a large range of infall 
time, r , and M star . Ho we ver, this is not true for all satellites, and the 
uncertainties in E and ℓ suggest that one cannot determine the orbital 
energy or angular momentum of a given satellite at infall to within 
a factor of " 2 from present-day measurements . Rather, satellites 
commonly lose some orbital energy since inf all, lik ely because of 
the growth of the MW-mass host potential o v er time, the effects of 
dynamical friction on high-mass satellites, and also satellite-satellite 
interactions that may torque the satellite orbits. 

We also investigate the extent to which the kinetic and potential 
energy components are conserved with respect to infall time, r , and 
M star . Versus infall time, the fractional change in the kinetic energy 
of satellites that fell in recently is positive and the fractional change 
in the potential energy was ne gativ e, suggesting these satellites are 
likely on their first infall and nearing their first pericentre. Satellites 
with larger infall times often had ne gativ e fractional changes in 
kinetic and potential energies, because of both dynamical friction 
slowing the satellites and the growing host potential o v er time. 
Within r < 100 kpc , the circular velocity profile rises significantly, 
and satellites that orbit today have much larger kinetic energies 
compared to infall. We note no strong trends with M star . 

Having quantified the change in orbital energy and angular 
momentum from first infall to today, Fig. 5 quantifies the extent 
to which a satellite conserves E and ℓ as a function of lookback 
time. We show the median trend across the population of satellites 
in the dashed lines. For simplicity, we present the 1 σ scatter across 
the entire population, at a given snapshot in the solid lines. We 
include only galaxies that were still satellites at a given lookback 
time, including splashback satellites, so the size of the sample 
monotonically decreases with lookback time. 

Fig. 5 (top) shows the difference in the satellite orbital energy 
between a given lookback time and today, E ( t ) − E 0 , normalized by 
the MW-mass halo potential today, U 200m, 0 . Over the last ≈ 3 . 5 Gyr , 
the median total energy is relatively unchanged, but at earlier times, 
this fractional difference increases with increasing lookback time 
from 0 to as large as ≈2 at 11 . 75 Gyr ago. The fractional change in 
E reaches 25 per cent at ≈ 4 . 8 Gyr ago, 50 per cent at 7 . 9 Gyr ago, 
and 100 per cent at 9 . 2 Gyr ago. 

Although the median fractional energy change o v er the last 3 . 5 Gyr 
is small, this is only a statement about the population, and it does 
not imply energy conservation for a typical satellite, given the large 
scatter. The 1 σ scatter reaches 25 per cent already at ≈ 1 . 6 Gyr ago, 
50 per cent at 6 . 1 Gyr ago, and 100 per cent 9 . 1 Gyr ago. 

Fig. 5 (bottom) shows the fractional change in the specific angular 
momentum of satellites, ℓ . Similar to energy, we compute the 
difference of ℓ at each lookback time with the value today, but now 
we normalize this difference by ℓ today. The median ℓ is constant 
for longer, o v er the last ≈ 6 Gyr , before which it decreases. This 
implies that early-infalling satellites gained angular momentum on 
average, as we showed in Santistevan et al. ( 2023 ). The median 
fractional difference reaches 25 per cent at a much later time of 
≈ 11 . 9 Gyr ago, and 50 per cent at 11 . 4 Gyr ago. Compared to the 
fractional change in E , the 1 σ scatter reaches a given fraction later, 
25 per cent at ≈ 4 . 2 Gyr ago, 50 per cent at 9 . 3 Gyr ago. We stress 
again that, although the population median is conserved longer, this 
does not imply that a given satellite’s ℓ is conserved for this long. 

Figure 5. Fractional change in specific energy, E , and specific angular 
momentum, ℓ , of satellite orbits versus lookback time. Solid line shows 
the median across all satellites and dashed line shows the 1 σ scatter. We 
only include galaxies that are satellites at a given lookback time, including 
splashback satellites. The vertical line and shaded region represent the median 
satellite infall time and 68th percentile range of v alues, respecti vely. Top: 
Specific energy. The median fractional change increases with lookback time, 
that is, they were less bound at infall than they are today, because the host 
has grown (Figs 1 –3 ). While the median, which represents the systematic 
bias across the population, reaches 25 per cent at 4 . 8 Gyr ago, the 1 σ scatter, 
which represents the uncertainty for a given satellite, reaches 25 per cent 
already at 1 . 6 Gyr ago. Bottom row: Specific angular momentum. The median 
is about zero o v er the last ≈ 6 Gyr , but at earlier times the angular momentum 
decreases, down to −60 per cent, meaning that the specific angular momentum 
systematically has increased since infall. Again, the 1 σ scatter reaches 
25 per cent already 4 . 7 Gyr ago. Thus, while inferences of orbital energy 
and angular momentum, based on their conservation, are relatively unbiased 
(for the o v erall population) o v er the last ≈ 5 –8 Gyr , their uncertainties for a 
given satellite are large already ≈ 1 Gyr ago. 
Rather, the 1 σ scatter represents the typical uncertainty for a given 
satellite. 

Figs 4 and 5 show that neither E nor ℓ are conserved across time , 
which agrees with Figs 1 –3 , and results from the growth and general 
time dependence of the host halo potential. The 1 σ scatter represents 
the typical uncertainty for a given satellite, which is as large as 
≈50 per cent for ℓ around 9 . 3 Gyr ago, and as large as a factor of 2 
for E at 9 . 1 Gyr ago. 
3.3 Orbit modelling in static axisymmetric host potential 
We now compare orbit properties of satellites from our cosmological 
simulations to properties derived in an idealized, static, axisymmetric 
model. As we describe in detail in Appendix A , we fit the present- 
day host potential, keep it fix ed o v er time, and initialize the satellite 
orbits at z = 0 using the same 6D phase-space coordinates as in 
the cosmological simulations. Thus, the orbital energy and angular 
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Figure 6. Four case studies of satellite orbital histories. Orbital distance from the host galaxy, r (top row), total velocity (second row), specific angular momentum 
(third row), and specific total energy (bottom ro w). We sho w four satellites based on how well the most recent pericentre agrees between the simulations and 
orbit modelling, ( d peri, model − d peri, sim )/ d peri, sim , with increasing error from left to right (see the legend). Black lines show the simulations, while blue lines show 
model-based orbits in a static axisymmetric host potential. Black vertical dashed lines show the first infall into the MW-mass halo in the simulation, and in the 
top row the grey line shows R 200 m ( t) of the host halo. Green vertical dotted lines show pericentres in the simulation. In the left case study, the orbit model and 
simulation agree for nearly two full orbits, while the right case study shows agreement for less than half an orbit. Orbit modelling tends to reco v er the timing 
of the most recent pericentres better than their distances. As the bottom rows show, specific angular momentum and total energy of the orbit are not generally 
conserved; see also Figs 4 and 5 . 
momentum of satellites remain constant, and the satellites orbit 
periodically across 13 . 8 Gyr . 

Fig. 6 shows four representative satellites: each column shows 
varying degrees of how well orbit modelling reproduces the most 
recent pericentre distance. To quantify how well orbit modelling 
does in reproducing the recent pericentre distance, we measure 
) d peri / d peri = ( d peri, model − d peri, sim )/ d peri, sim . From top to bottom, we 
compare the host-centric distance, the total velocity, specific angular 
momentum, and specific energy of the orbit. 

Orbit modelling agrees well with the simulations during the 
satellites’ recent histories. In the left two columns, orbit modelling 
reco v ers the orbits well for one half to two orbits, the third column 
shows agreement with the timing of the orbit for two and a half orbits 
but less agreement for the distance and velocity, and the right column 
show agreement for less than half an orbit. 

Even in the left two cases, in which the model does well at 
reproducing the most recent pericentre distance, orbit modelling does 
not accurately reco v er previous pericentres, especially the timing of 
the pericentres, which continues to become more out of phase with 
time, likely due to the lack of dynamical friction. The right column 
shows cases in which the timing of the most recent pericentre is within 
≈ 0 . 5 Gyr but the pericentre distance is off by nearly a factor of 2. 

Finally, the third and bottom rows of Fig. 6 show the lack of 
conservation in specific angular momentum and specific energy 
for the satellites in the simulations. For each satellite, we show 
the fractional change in ℓ compared to present-day, that is, ( ℓ ( t ) 
− ℓ 0 )/ ℓ 0 . Even after a satellite falls into its MW-mass halo, its 
angular momentum can increase or decrease " 50 per cent o v er time. 
The lack of conservation in ℓ is likely a combination of complex 
processes, including the growth of the MW-mass host, satellite- 
satellite interactions, mergers, and the non-symmetric potential. 
In the bottom row, we calculate the fractional change in energy 
compared to present-day, normalized by the host virial potential 
energy today, that is, ( E ( t ) − E 0 )/ U R200m, 0 . Similar to the results 
in Figs 4 and 5 , the specific energy of a satellite orbit decreases 
o v er time, primarily because of the growth of the MW-mass 
host. 

In the following subsections, we quantify differences in orbit 
properties across the entire satellite population. It is worth noting 
that dynamical friction acts more efficiently at higher masses to rob 
the satellites of their orbital energy and cause them to merge away 
(e.g. Boylan-Kolchin, Ma & Quataert 2008 ). We remind the reader 
that when interpreting the plots, we do not include a model for 
dynamical friction. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/8841/7468142 by guest on 26 July 2024



Testing orbit modelling of satellites 8851 

MNRAS 527, 8841–8864 (2024) 

Figure 7. The fractional difference between orbit modelling and the simu- 
lations for the host-centric distance versus lookback time. The dashed line 
shows the absolute value of the median across all satellites and the solid 
line shows the 1 σ scatter of the sample. We choose to show the absolute 
value of the fractional difference to keep all v alues positi ve for visual clarity, 
ho we ver, the median is negative for lookback times ! 7 . 5 Gyr , and positive for 
earlier times. Similar to Fig. 5 , we only include the instantaneous population 
of satellites for a given lookback time. The median reaches 25 per cent at 
9 . 7 Gyr ago, but the 1 σ scatter reaches 25 per cent already at 4 Gyr ago. 
3.3.1 Orbital distance 
First, Fig. 7 shows the absolute fractional difference in host-centric 
distance from the simulations versus from orbit modelling, versus 
lookback time. We show the absolute value of the median to keep 
all v alues positi ve and visual clarity, ho we v er, the median is ne gativ e 
for lookback times of t lb ! 7 . 5 Gyr , and positive for t lb " 7 . 5 Gyr . 
Over the last 8 . 5 Gyr , the median fractional difference is relatively 
constant at ! 10 per cent. Before this, the median then increases to 25 
and 50 per cent, around 9.7 and 10 Gyr ago. Prior to ≈ 11 . 7 Gyr ago, 
less than 1 per cent of these satellites today were still satellites. The 
1 σ scatter reaches a 25, 50, and 100 per cent fractional difference at 
4, 6.3, and 8 . 6 Gyr ago. 
3.3.2 Virial infall time 
Many studies focus on when low-mass galaxies first become satel- 
lites, and their properties, such as mass, during infall (for in- 
stance Boylan-Kolchin, Besla & Hernquist 2011 ; Wetzel, Deason & 
Garrison-Kimmel 2015 ; Patel, Besla & Sohn 2017 ). We investigate 
tw o w ays of calculating the time of first infall into the host halo within 
orbit modelling, t lb, infall, model . First, when a satellite first crossed 
within the MW-mass halo, accounting for the growth of its R 200 m 
o v er time. Second, we record when a satellite’s orbit first crossed 
within R 200 m at z = 0. Nearly 60 per cent of all satellites in orbit 
modelling al w ays have orbited within R 200 m ( t lb = 0), so we simply 
define these infall times to be 13 . 8 Gyr ago. We take the difference 
of each t lb, infall, model to the infall time in the simulations, t lb, infall, sim 
(calculated with an evolving R 200 m ). Fig. 8 shows these differences, 
versus the infall times in the simulations (left) and versus satellite 
M star (right). 

In the left panel, using an evolving R 200 m ( t lb ), the median dif- 
ference between orbit modelling and the simulations is generally 
within ≈ 2 Gyr . The peak in the curve at 1 . 5 Gyr is driven by 11 
of the 20 satellites in this particular bin in infall time, where orbit 

modelling predicts that these galaxies fell in " 5 Gyr earlier than 
in the simulations. Similarly, a slightly smaller peak at 7 . 5 Gyr is 
caused by the model o v erpredicting t lb, infall, model for nearly half of 
the satellites by " 2 Gyr . 

The 68th percentile range is largest for the most recently in- 
falling satellites and decreases with increasing lookback time. Orbit 
modelling generally o v erestimates the infall time compared to the 
simulations, because the model orbits are periodic and more likely 
to cross the virial radius at earlier times. The model o v erpredicts 
the infall time for roughly 65 per cent of all satellites. Even when 
accounting for the evolving R 200 m , the 1 σ scatter spans " 1 Gyr , 
which highlights the large uncertainty in orbit modelling. 

When using a fixed R 200 m ( t lb = 0), the median shows relatively 
good agreement for satellites that fell in within the last ≈ 4 Gyr . 
Beyond 4 Gyr ago, the median difference in infall time increases 
until ≈ 7 Gyr ago, where it decreases again. The orbits of these 
satellites were generally within R 200 m ( t lb = 0) at all times, so the 
difference between orbit modelling and simulations follows the 
relation 13 . 8 Gyr − t lb , infall , sim . Of the subset of satellites that fell 
in between 1 –2 Gyr ago, only 2 of the 17 satellites were al w ays 
within R 200 m , which is why the 68th percentile dips down close to 0. 
Ho we ver, the associated uncertainties in this method of calculating 
infall time are much worse, and the 1 σ scatter reaches as large as 
≈ 5 . 7 Gyr . 

Versus M star , both infall metrics follow the same general trends: 
better agreement for satellites with M star < 10 7 M ⊙ and larger offsets 
for higher-mass satellites. The offset between the medians, and 68th 
percentiles, is roughly 3 –4 Gyr between the two infall metrics. The 
values associated with the fixed R 200 m ( t lb = 0) method skew to larger 
values, because many of the model orbits al w ays orbited within this 
distance. The 1 σ scatters each span roughly 2 . 5 –3 Gyr , so one cannot 
accurately determine a satellite galaxy’s infall time at an y giv en mass 
to within ≈ 2 . 5 Gyr . 
3.3.3 Pericentre properties 
We ne xt inv estigate various properties associated with pericentric 
passages relative to the host galaxy, when the tidal acceleration and 
ram pressure from the host CGM tend to be strongest. 

Most works assume that satellite orbits only shrink o v er time, 
because of dynamical friction and the time-dependent host potential 
(e.g. W einberg 1986 ; T aylor & Babul 2001 ; Amorisco 2017 ), which 
implies that the most recent pericentre should be the smallest 
experienced. Ho we ver, as we sho wed in Santiste v an et al. ( 2023 ), for 
67 per cent of our satellites with N peri ≥ 2 the most recent pericentre 
is not the smallest, because many satellite orbits have grown in 
pericentre distances o v er time. P atel et al. ( 2020 ) also sa w cases in 
which the most recent pericentre was not the smallest, and suggest 
that the presence of a massive satellite alone can cause this effect. 
Therefore, we present trends for the most recent and the minimum 
pericentres. 

Fig. 9 compares pericentre distances, d peri , the velocity at pericen- 
tre, v, the number of pericentric passages, N peri , and the timing of 
pericentres, t peri , versus the lookback time of infall into the MW- 
mass halo, present-day distance, r , and satellite M star . For each 
pericentre property, we show the difference between orbit models and 
simulations, except for pericentre distance, for which we compare 
the fractional difference. 

Fig. 9 (top row) shows the trends for pericentre distance, for both 
the most recent, d peri, rec , and the minimum pericentre, d peri, min . For 
a given satellite, all of its pericentre distances are the same in our 
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Figure 8. The difference in infall time, from orbit modelling versus the simulations, as a function of infall time in the simulations (left) and satellite M star (right). 
For orbit modelling, we measure infall time two ways: using a non-evolving host halo radius, R 200 m ( t lb = 0) (green) and using R 200 m ( t lb ) from the simulations 
(purple). Solid lines show the median and shaded regions show the 68th percentile ranges across our satellites. Left: The median infall time is generally accurate 
for orbit modelling if using an accurate R 200 m ( t lb ), with a median offset of ! 2 Gyr and a typical scatter of 2 . 4 Gyr . The spike at 1 . 5 Gyr comes from orbit 
modelling o v erpredicting the infall times for most satellites by " 5 Gyr , given errors in modelling recent apocentre distances. By contrast, orbit modelling using 
fixed R 200 m ( t lb = 0) works well for recently infalling satellites but vastly o v erestimates the lookback time to infall for earlier-infalling satellites, with an average 
1 σ scatter of 2 . 8 Gyr . Right: The median and 68th percentile for both infall time metrics show similar trends with satellite mass, offset by ≈ 3 Gyr . The typical 
1 σ scatters range from roughly 3 Gyr and 2 . 5 Gyr when using either the fixed R 200 m ( t lb = 0) or accurate R 200 m ( t lb ), respectively. Orbit modelling fails most 
significantly for satellites with M star " 10 7 M ⊙, because dynamical friction has shrunk their orbits. 
(static) orbit models. With respect to satellite infall time (left panel), 
the model reco v ers the median d peri, rec well, but this is across the 
entire population of satellites, not for a given satellite. The median 
fractional difference is within ≈20 per cent, and the average 1 σ
scatter is roughly 19 per cent, smaller than many other properties we 
present here. Thus, although the median pericentre distance across 
the population looks reasonable, the prediction for any particular 
satellite is uncertain by ≈20 per cent. Orbit modelling reco v ers the 
median d peri, min well for satellites that fell in ! 5 Gyr ago, because 
all but one of these satellites experienced only one pericentre, so 
the minimum is the most recent. For satellites that fell in " 5 Gyr 
ago, the median fractional offset in d peri, min diverges from that of 
d peri, rec . Roughly 60 per cent of satellites that fell in " 5 Gyr ago 
experienced multiple pericentres, and because the orbit models only 
predict a single d peri for a given satellite, these positi ve v alues suggest 
that the satellites in the simulations orbit at closer distances than in 
our static model. The 1 σ scatter for d peri, min reaches 100 per cent 
around 9 . 5 Gyr ago, thus one cannot accurately predict the minimum 
pericentre to within " 2 for satellites that fell in earlier than this. 

In the middle panel, median d peri, min and d peri, rec between the orbit 
models and simulations show general consistency across all distances 
The fractional difference in d peri, rec is ! 5 per cent, and ! 25 per cent 
for d peri, min . As we will discuss below, ≈95 per cent of satellites that 
currently orbit beyond 300 kpc completed only one pericentre, so the 
median and 68th percentiles are the same between both d peri, min and 
d peri, rec . Conversely, 2/3 of satellites currently within 300 kpc have 
N peri ≥ 2 and, similar to the left panel, the median and scatter for 
d peri, min increases to positive values, indicating that orbit modelling 
o v erpredicts d peri, min for these satellites. For the satellites within 
300 kpc , nearly 85 per cent fell into their MW-mass hosts o v er 5 Gyr 
ago. As with the left panel, the range in the 1 σ scatter is larger 
for d peri, min than in d peri, rec , with average values of 55 per cent and 
24 per cent, respectively. 

Finally, the median fractional difference in both pericentre metrics 
shows no dependence on stellar mass for M star < 10 8 . 75 M ⊙ (right 
panel). Lower-mass satellites typically fell in earlier, orbit at closer 
distances, and completed more pericentres, so their minimum and 
most recent pericentres are more likely to diverge. Only one satellite 
in our sample has M star > 10 9 M ⊙. 

Fig. 9 (second row) shows trends in the total velocity of pericentre, 
v peri , and similar to d peri , we show trends in both the minimum, 
v peri, min , and most recent, v peri, rec . Again, satellites at small infall 
time, large r , and high M star , only experienced one pericentre, so 
the median trends in both v peri, min and v peri, rec are the same. The 
model reco v ers both the median v peri, min and v peri, rec to within ≈
30 km s −1 across all infall times and r , and nearly all M star . Although 
the model reco v ers the median d peri, rec well, it o v erestimates v peri, rec 
in all panels presumably because of the lack of dynamical friction 
and gravitational perturbations from other satellites. 

Fig. 9 (third row) compares the number of pericentric passages 
a satellite e xperienced, N peri . F or the model orbits, we only count 
the number of pericentric passages a satellite experienced since first 
infall. We count N peri from the two infall metrics in Section 3.3.2 : 
since infall into the MW-mass halo accounting for an evolving 
R 200 m ( t lb ), and since infall while keeping a fixed R 200 m R 200 m ( t lb = 0). 
We show the mean and standard deviation for N peri , because it is an 
integer for a given satellite. 

These results for N peri are not particularly sensitive to the two 
ways in which we calculate first infall. In the left panel, the mean 
difference in N peri slightly increases with infall time, because orbits 
in the models are periodic, so longer integration times lead to larger 
N peri . The middle panel shows trends versus host distance, r : for 
satellites at ! 250 kpc , orbit modelling o v erpredicts N peri , because 
these satellites typically fell into their MW-mass hosts earlier than 
satellites at larger r . Finally, the mean difference in N peri is generally 
flat at M star < 10 7 . 5 M ⊙, but the difference increases for more 
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Figure 9. Comparing various properties of orbital pericentres, between the simulations and orbit modelling, for surviving satellites versus their lookback 
time of infall into the MW-mass halo (left), present-day distance from the MW-mass host, r (middle), and satellite M star (right). Solid lines show the median, 
and the shaded regions show the 68th and 95th percentiles, across all satellites. Top row: Fractional difference between pericentre distances, ( d peri, model −
d peri, sim )/ d peri, sim , for both the most recent and the minimum pericentre. Orbit modelling predicts larger minimum pericentres, as high as 100 per cent in the 
median, for satellites that fell in " 12 Gyr ago (left), and within 25 per cent for satellites at small r (middle), and for satellites ! 10 7 M ⊙ (right). Second row: 
Difference between the total velocity at pericentre, v peri, model − v model, sim , for both the most recent and the minimum pericentre. Orbit modelling generally 
o v erpredicts both pericentre velocities by ≈ 10 –20 km s −1 . Third ro w: Dif ference between the mean number of pericentric passages about the MW-mass host, 
since first crossing the growing host R 200 m ( t lb ) and since first crossing R 200 m ( t lb = 0). This difference slightly increases from ≈0 to 1 with t lb (left) and decreases 
from 2 to 0 with r (middle), because satellites at small distance typically fell in earlier, which means that they orbited longer in the model. Fourth ro w: Dif ference 
between the lookback time of the most recent pericentre, t peri, model − t peri, sim , which shows weak trends with any properties. Although the median trends across 
the satellite population agree well in most cases, the substantial scatter in all panels implies significant uncertainty for a given satellite’s orbit history. 
massi ve satellites, gi ven the lack of dynamical friction in the orbit 
models. 

Finally, Fig. 9 (bottom row) compares the timing of just the most 
recent pericentre, t lb peri . The median difference is ! 0 . 2 Gyr across 
all three panels. The median is also consistently ne gativ e, indicating 
that orbit modelling predicts more recent pericentres, likely because 

in the orbit models the MW-mass host does not reduce in mass going 
back in time. 

Typically maximized near a pericentric passage, satellites feel a 
tidal acceleration from the host, which strips their mass. We calculate 
the acceleration to be a = GM ( < r )/ r 2 , where M ( < r ) is the total 
enclosed mass of the host within a distance r . We then compute the 
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Figure 10. Comparing the maximum tidal acceleration, | d a /d r | , from the MW-mass host that satellites experienced via orbit modelling versus in the simulations, 
as a function of lookback time of infall into the MW-mass halo (left), distance from the host, r (middle), and satellite M star (right). Solid lines show the median 
and the dark and light shaded regions show the 68th and 95th percentiles across all satellites. These trends mirror those for the minimum pericentre distance, 
d peri, min , in Fig. 9 (top). Because this orbit modelling does not account for the growth of the MW-mass host and the orbits are periodic, it increasingly o v erpredicts 
the pericentre distance, and underpredicts the tidal acceleration, with increasing t lb infall , MW " 5 Gyr . The dependence on r and M star are weak. Ho we ver, the 1 σ
scatters span more than 50 per cent in each of the panels here, and up to a factor of 2, highlighting the large uncertainties. 
deri v ati ve with respect to r and save the maximum | da / dr | that a 
satellite experienced after first infall. 

Fig. 10 compares the maximum | da / dr | experienced between the 
simulation and model. Satellites that fell in t lb infall , MW = 2 . 5 –7 Gyr 
ago typically have larger minimum pericentres in the simulations 
than in orbit modelling, so the model o v erpredicts | da / dr | for these 
satellites by up to 45 per cent. Conversely, satellites that fell in 
t lb infall , MW " 7 Gyr ago show larger minimum pericentres in the orbit 
models, so underpredicts | da / dr | for the earliest satellites by up 
to 55 per cent. Because the simulations and orbit models agree in 
d peri, min for satellites that fell in t lb infall , MW < 2 . 5 Gyr ago, the median 
fractional difference is near zero. 

Fig. 10 (middle and right) shows that | da / dr | has little to no 
dependence on present-day satellite distance or M star . Although the 
median fractional difference is close to 0 in both panels, the 1 σ scatter 
increases from 0.39 to 2 with r , and the mean scatter versus M star 
is 73 per cent. In all three panels, the 2 σ scatter spans 100 per cent 
or more, so while the median | da / dr | across the population from 
orbit modelling is relatively accurate, for an y giv en satellite, orbit 
modelling o v er- or underpredicts | da / dr | typically by a factor of ≈2. 

Finally, Appendix C compares both the timing and distance of 
pericentres between orbit modelling and the simulations at each 
previous lookback pericentric event. The bias in both the distance and 
timing of pericentres increases with increasing lookback pericentre 
events to roughly 20 per cent in distance, and ≈ 1 . 5 Gyr in time. 
The uncertainty in these measurements increases up to the 4th most 
recent pericentre to ≈50 per cent in distance and ≈ 1 Gyr in time. 
Beyond this, ! 8 per cent of satellites experienced 5 pericentres or 
more. 

In summary, we compared various pericentre properties for both 
the minimum and most recent pericentre events. Across the full 
sample, the median fractional difference, or bias across the popula- 
tion, for the minimum and most recent pericentre distances are 2.5–
6.6 per cent. The bias in the pericentre velocity is within ≈ 20 km s −1 , 
within 0 . 2 Gyr for the timing of the most recent pericentre, and < 2 
for the number of pericentric events. Finally, the bias in the maximum 
tidal acceleration is typically 10’s of per cent across infall time, r , and 
M star . Just as importantly, the typical 1 σ scatter, which represents the 
uncertainty for a given satellite, is significant at ≈10–70 per cent. 

3.3.4 Apocentre, orbital period, and eccentricity 
The apocentre measure how far a satellite orbits from its host, 
and an orbit spends most of its time near apocentre. Fig. 11 (top) 
compares trends in the most recent apocentre distance, d apo, rec . We 
only measure an apocentre that occurs after infall into the MW-mass 
halo. About 68 per cent of our satellites experienced an apocentre; 
the rest are on first infall. 

Versus infall time (top left), 8 satellites fell into the host between 
t lb infall , MW = 2 –3 Gyr ago, and orbit modelling generally o v erpredicts 
d apo, rec by " 75 per cent for half of them. The fractional difference 
in apocentre distance is smaller for earlier-infalling satellites, and 
the median is ≈0.015 with a mean 1 σ scatter of 0.06. Fig. 11 (top 
middle) shows little dependence with r . Satellites that currently orbit 
at smaller distances generally fell into the MW-mass host earlier, 
so orbit modelling somewhat underpredicts d apo, rec for satellites 
within ! 250 kpc , similar to how it underpredicted d apo, rec at large 
t lb infall , MW (top left). Overall, the mean 1 σ scatter is ≈0.08. Finally, 
the median fractional difference in apocentre distance decreases 
weakly with M star (top right). Lower-mass satellites typically fell 
into their MW-mass halo earlier, and the y hav e smaller fractional 
differences. 

Fig. 11 (middle row) shows trends in the most recent orbital period, 
t orbit . We define the orbit period as the time difference between the two 
most recent pericentric passages, and we find nearly identical results 
using the times between apocentres. 47 per cent of the satellites in 
our sample experienced 2 or more pericentres in both the simulations 
and orbit modelling. 

In the left panel, satellites that fell in t lb infall , MW < 4 . 5 Gyr ago 
did not have enough time to undergo 2 pericentres. For earlier 
infalling satellites, the median difference in t orbit varies by as much 
as −0 . 4 Gyr , but the mean across all infall times is −0.15. The 
difference in t orbit is negligible versus r . Orbit modelling does not 
account for dynamical friction, therefore, for satellites with N peri ≥ 2, 
if orbit modelling underpredicts d peri, rec compared to the simulations, 
it suggests more bound orbits and smaller t orbit values, which is what 
we see for these satellites with M star " 10 6 . 5 M ⊙. 

Finally, Fig. 11 (bottom row) compares the orbital eccentrici- 
ties, e . Fig. 11 (bottom left) shows that, for satellites that fell in 
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Figure 11. Comparing the most recent apocentre distance, d apo , orbital period, t orbit , and orbital eccentricity, e , from orbit modelling versus the simulations, 
as a function of lookback time of infall in the MW-mass halo (left), current distance from MW-mass host, r (middle), and satellite M star (right). Solid lines 
show the median and the dark and light shaded regions show the 68th and 95th percentiles across all satellites. Top row: The most recent apocentre distance. 
Versus infall time, the median is roughly constant at −2 per cent for satellites that fell in " 3 . 5 Gyr ago. The model reco v ers the median apocentre distance to 
within ±5 per cent versus r , but the median decreases slightly with M star from ≈0 to 8 per cent at M star = 10 8 . 25 M ⊙. Although the medians in each panel may 
only be within a few per cent, the 1 σ scatters span ≈5–10 per cent or more, highlighting the uncertainty for a given satellite. Middle row: Difference between 
the most recent orbital time, t orbit , defined as the difference in time between the two most recent pericentres. Because orbit modelling generally underpredicts 
the recent pericentre lookback times, and because the orbits are periodic, the median difference in t orbit is slightly ne gativ e across all panels, and even as low 
as 0 . 5 –1 . 5 Gyr for satellites with M star " 10 7 . 25 M ⊙. Bottom ro w: Dif ference between most recent orbital eccentricity, e = ( d apo − d peri )/( d apo + d peri ). The 
difference in e varies by at most 0.06 versus t lb infall , MW and r , but satellites with M star > 10 8 . 5 M ⊙ have differences > 0.15. In general, orbit modelling reco v ers 
the median properties here within ≈7 per cent (see Table 2 ), though with significant scatter. The 1 σ scatters span 8–15 per cent, likely because these properties 
all depend on pericentre and apocentre events that occur in the recent past. 
t lb infall , MW ! 4 Gyr ago, orbit modelling reco v ers d peri, rec well (Fig. 9 , 
top left) and o v erpredicts d apo, rec . Similarly, although orbit modelling 
reco v ers d apo, rec well for satellites up to t lb infall , MW = 7 . 5 Gyr ago, 
it also underpredicts d peri, rec , which drives e to be higher in orbit 
modelling. Orbit models and simulations show similar results for 
earlier-infalling satellites. The median difference in e is flat with r 
and M star < 10 8 . 25 M ⊙. 

Again, we compute all results in this subsection based on the most 
recent pericentre and apocentre, but as Fig. 9 showed, orbit modelling 
performs worse for earlier properties of an orbit, so comparison of 
orbital period and eccentricity at earlier stages of these orbits would 
sho w e ven larger disagreements. 
3.3.5 Recoverability of orbit properties 
We compared 15 properties of satellite orbits in our cosmological 
simulations against orbit models using static axisymmetric potentials 
that we fit near-exactly to our hosts at z = 0. Table 2 lists the 
properties that we tested, as well as the median offsets and 1 σ
and 2 σ scatters across our sample of satellites. We compare both 

the raw difference of a given orbit property, X , defined as X model 
− X sim , as well as the fractional difference, ( X model − X sim )/ X sim . 
Additionally, we show the fractional change in orbital specific energy 
since infall relative to the MW-mass potential, ( E 0 − E inf )/ U 200m, 0 and 
the fractional change in orbital specific angular momentum relative 
to today, ( ℓ 0 − ℓ inf )/ ℓ 0 . The orbit models conserve these quantities by 
definition. 

We quantify the goodness of the orbit models in terms of their 
‘bias’ (accuracy) and ‘uncertainty’ (precision) in the right-most 
columns of Table 2 . The ‘bias’ describes how well orbit modelling 
accurately reco v ers the median orbital property across the satellite 
population: we define a property to be minimally , moderately , or 
highly biased if the median fractional offset of the satellite population 
between orbit modelling and the simulations is < 10 per cent, 10–
25 per cent, or > 25 per cent, respecti vely. Ho we ver, e ven in cases 
where this bias is small (accuracy is high), orbit modelling can have 
severe limitations if it cannot model the history of a given satellite to 
good precision. Thus, we also quantify the ‘uncertainty’ via how large 
the scatter in this difference between orbit models and simulations is 
across the satellite population. We define a property to be minimally, 
moderately, or highly uncertain if the 1 σ scatter is < 25 per cent, 
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Table 2. Comparing the results of orbit modelling in a static axisymmetric host potential against cosmological baryonic simulations.Column 
list: property name; variable; median offset, 1 σ scatter, 2 σ scatter.The left columns compare the raw difference, X model − X sim , while the middle 
columns compare the fractional difference, ( X model − X sim )/ X sim .Additionally, we describe the strength of the bias (median fractional offset) and 
uncertainty (1 σ scatter of the fractional offset) associated with each property.In the bottom two rows, we show the difference in the orbital energy 
between present day and the infall time, normalized by the host halo potential energy at present-day, ( E 0 − E inf )/ U 200m, 0 , and the fractional 
change in the orbital specific angular momentum relative to present-day, ( ℓ 0 − ℓ inf )/ ℓ 0 .Given that energy and angular momentum are al w ays 
conserved in the model, we place them below a horizontal line to distinguish them. 

Raw 
Difference Fractional 

Difference 
Orbital property Variable Median 1 σ 2 σ Median 1 σ 2 σ Bias Uncertainty 

offset scatter scatter offset scatter scatter 
Recent pericentre d peri, rec [ kpc ] −1.26 12.1 68.8 −0.025 0.21 1.19 Min Min 
distance 
Min pericentre d peri, min [ kpc ] 3.23 18.5 80.1 0.066 0.53 3.56 Min High 
distance 
Lookback time of t peri, rec [ Gyr ] −0.03 0.25 1.72 −0.028 0.09 0.64 Min Min 
recent pericentre 
Number of pericentres N peri 0.63 1.14 2.28 0.32 0.72 1.44 High High 
within R 200m ( t ) 
Number of pericentres N peri, fixed 0.53 1.18 2.36 0.24 0.74 1.48 Mod High 
within R 200m, 0 
Velocity at v peri, rec [ km s −1 ] 7.69 26.8 106 0.030 0.10 0.38 Min Min 
recent pericentre 
Velocity at v peri, min [ km s −1 ] 3.10 43.4 132 0.012 0.17 0.43 Min Min 
min pericentre 
Recent apocentre d apo, rec [ kpc ] −2.75 12.1 97.3 −0.013 0.06 0.38 Min Min 
distance 
Lookback time of t inf [ Gyr ] 0.57 2.33 5.53 0.09 0.41 2.50 Min Mod 
infall within R 200m ( t ) 
Lookback time of t inf, fixed [ Gyr ] 4.17 3.55 8.80 0.44 0.55 2.92 High High 
infall within R 200m, 0 
Recent eccentricity e rec 0.003 0.07 0.21 0.005 0.15 0.54 Min Min 
Recent period T rec [ Gyr ] −0.19 0.49 1.84 −0.071 0.13 0.41 Min Min 
Max tidal acceleration | da / dr | [ Gyr −2 ] −0.07 15.7 353 −0.017 0.66 4.20 Min High 
Energy change ( E 0 − E inf )/ U 200m, 0 - - - −0.54 0.82 1.83 High High 
since infall 
Angular momentum ( ℓ 0 − ℓ inf )/ ℓ 0 - - - −0.015 0.42 1.68 Min Mod 
change since infall 

25–50 per cent, or > 50 per cent. Because bias is more problematic 
(systematic) than uncertainty, we impose stricter criteria for it. 

Fig. 12 visually represents these summary results, via the median 
offsets, and 1 σ and 2 σ scatters, for the fractional differences between 
orbit modelling and simulations. We rank order each property 
independently in each panel. 

The median fractional offset (representing the ‘bias’) of all 
properties ranges from −0.54 for the fractional change in specific 
energy to 0.44 for the lookback time of satellite infall using a 
fixed R 200 m ( t lb = 0). The properties whose median agrees to within 
±5 per cent across the population include: the most recent pericentre 
distance, d peri, rec , the lookback time of the most recent pericentre, 
t lb peri , rec , the maximum value of the derivative of the tidal acceleration, 
| da / dr | , the fractional change in the angular momentum relative to 
today, ( ℓ 0 − ℓ infall )/ ℓ 0 , the most recent apocentre distance, d apo, rec , 
the eccentricity of the most recent orbit, e rec , and the total satellite 
velocities at the minimum and most recent pericentres, v peri, min 
and v peri, rec , respectively. Not surprisingly, orbit modelling tends to 
model/reco v er recent properties of an orbit with the least bias across 
a population. 

Properties that agree moderately, to within 5–10 per cent, include 
the distance of the minimum pericentre, d peri, min , the lookback time of 

infall into the MW-mass host, t lb infall , MW , and the most recent satellite 
orbit period, t orbit, rec . Both t lb infall , MW and d peri, min occurred further back 
in time than the properties that show the least bias. 

Finally, the properties that are most systematically biased in orbit 
modelling are: the number of pericentric passages both with an 
evolving and fixed R 200 m , N peri and N peri, fixed , the lookback time of 
infall when keeping a fixed R 200 m = R 200 m ( t lb = 0), and the change 
in orbital energy since infall, E inf . 

Just as important as examining the bias (offset in the median 
across the population) is the uncertainty for a given satellite, 
via the scatter across the population. This ranges across ≈0.06–
0.82 at 1 σ and ≈0.38–4.2 at 2 σ . Again, properties that oc- 
curred more recently generally have smaller 1 σ scatter (aside from 
v peri, min ). 

At best, the uncertainty for a given satellite is 6 per cent in 
the apocentre distance, and " 10 per cent for all other properties. 
Additionally, these uncertainties reach nearly a factor of ≈2 in 
energy, and the 2 σ scatters are " 40 per cent. 

Because we model the host potential to within a few per cent at 
z = 0, the uncertainties in Table 2 r epr esent lower limits to the 
bias/uncertainty in orbit modelling in pr actice . 
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Figure 12. Rank ordering the 15 properties of the orbit histories of satellite galaxies, as Table 2 lists, based on the fractional level of agreement between orbit 
modelling in a static axisymmetric host potential and the cosmological baryonic simulations. For clarity, we shorten ( E 0 − E inf )/ U 200m, 0 to E inf , and ( ℓ 0 −
ℓ inf )/ ℓ 0 to ℓ inf , and we sho w the absolute change of E inf in the left panel to more easily compare with the other properties. The left panel sho ws the median 
offset, in order from ne gativ e to positiv e values, and the middle and right panels show the 1 σ and 2 σ scatters in order of agreement. Satellite orbit properties that 
occurred recently, such as the recent pericentre distances/times/velocities, show smaller median offsets, ! 3 per cent, compared to properties that occurred further 
in the past, such as the minimum pericentre distances or infall times, " 5 per cent. The same is generally true for the 1 σ scatter, but not al w ays for the 2 σ scatter, 
despite the strong correlation between the two. Thus, deriving orbit parameters in the recent past yields median results largely consistent with cosmological 
simulations, but almost al w ays with significant scatter (uncertainty) al w ays " 10 per cent, and orbit parameters that occurs further in the past generally suffer 
from non-trivial bias and significant uncertainty. Furthermore, these results are best-case scenarios for static axisymmetric host potentials, because we fit them 
near-exact to the simulations at z = 0. 
4  SU M M A RY  &  DISCUSSION  
4.1 Summary of results 
We compared 15 orbit properties for 493 satellite galaxies around 
13 MW-mass hosts in the FIRE-2 suite of cosmological baryonic 
simulations against orbit histories derived from orbit modelling in a 
static, axisymmetric potential for the same hosts, to quantify rigor- 
ously the accuracy and precision of this orbit modelling technique. 
Specifically, we fit axisymmetric potentials to each MW-mass hosts at 
z = 0 to within a few per cent, which also means that the uncertainties 
that we present are lower limits to a more realistic scenario applied 
to the MW/M31 with uncertainty in the underlying host potential. 
We now discuss the key questions we raised in the Introduction and 
our corresponding results. 

How much has the mass profile of a MW-mass host evolved over 
the orbital histories of typical satellites? 

(i) Most surviving satellites first fell into their MW-mass halo 
3 . 4 –9 . 7 Gyr ago. During that time, M 200 m and R 200 m of the host were 
33–86 per cent and 26–73 per cent of their values today (Fig. 1 ), so 
they roughly doubled since then. 

(ii) Perhaps more rele v ant for satellite orbits, the total enclosed 
mass within a fixed physical distance increased meaningfully (Figs 2 
and 3 ). Within 50 kpc , the typical recent pericentre distance of our 
satellites, the enclosed mass was only ≈74 per cent of its present-day 
value at typical satellite infall times ( ≈ 7 . 4 Gyr ago). 

(iii) The fractional increase in the enclosed mass of the host is 
larger at smaller distances (Figs 2 and 3 ). This is contrary to the 
expectations of ‘inside-out’ growth of a dark-matter halo from DMO 
simulations, where most halo growth occurs at larger radii (e.g. 
Diemand, Kuhlen & Madau 2007 ; Wetzel & Nagai 2015 ). With 
the inclusion of baryonic physics (most importantly gas cooling), 

more physical growth occurs at smaller distances, most rele v ant for 
satellites with smaller pericentres. 

How well does orbit modelling in a static axisymmetric host 
potential reco ver k ey orbital properties in the history of a typical 
satellite? 

(i) Calculating the infall time of a satellite in the model with a 
growing R 200 m ( t) yields more consistent results with the simulations, 
! 2 Gyr offset, compared to using the fixed R 200 m ( t = 0) at present- 
day, but the 1 σ uncertainties in both metrics can be as high as ≈
5 –6 Gyr (Fig. 8 ). 

(ii) Orbit history properties that occurred more recently have 
smaller fractional offsets and uncertainties than properties that 
occurred in the past. For instance, the timing and distance of the 
most recent pericentre have median fractional offsets (uncertainties) 
! 3 (9–21) per cent, compared to the minimum pericentre distance, 
which occurred further back in time, which has a fractional offset 
(uncertainty) of 7 (53) per cent (Figs 8 and 9 and Table 2 ). 

(iii) The orbit properties that orbit modelling reco v ers best (with 
the smallest bias and uncertainty) include the distance, timing, and 
velocity of the recent pericentre, the velocity at the minimum peri- 
centre, the most recent apocentre distance, and the orbit eccentricity 
and period. The properties that are not reco v ered well (largest bias 
and/or uncertainty) include the minimum pericentre distance, number 
of pericentric passages, the lookback time of infall into MW-mass 
host halo, maximum strength of the tidal field, and the change in 
total orbital energy (Fig. 12 and Table 2 ). 

(iv) Even with near-perfect knowledge of the mass distribu- 
tion/potential at z = 0 in the host galaxies, the typical uncertainties 
in these orbit properties range from 6–82 per cent. Furthermore, the 
satellite-to-satellite variations in each, that is, the 2 σ scatters, are 
" 40 per cent. Thus, one cannot reco v er these orbit properties to 
within a factor of ≈2 or so, which cautions against o v ergeneralizing 
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the results for a single satellite from the median trends (Fig. 12 and 
Table 2 ). 

(v) At fixed mass, the spatial extent or orientation of the host 
galaxy disc does not significantly affect the orbital properties of the 
satellites. Compared to a disc that is rotated by 90 ◦, or a point mass 
disc model, the median offsets between the fiducial disc model are 
within ≈10 −3 per cent, and the widths of the 68th percentiles are less 
than 6 × 10 −2 per cent (Table B1 ). 

How far back in time can one reliably model the orbital history of 
satellites in a static axisymmetric host potential? 

(i) The specific energy and specific angular momentum of an orbit 
are generally not conserved: uncertainties are less than 25 per cent 
only back to ≈ 3 . 1 Gyr . Backward integrating orbits more than ≈
9 Gyr results in energy uncertainties up to a factor of ≈2 or more 
(Figs 4 , 5 , and 12 and Table 2 ). 

(ii) At the most recent orbit, the uncertainty in pericentre distance 
is already ∼20 per cent, and ∼ 200 Myr in pericentre timing (Fig. 
C1 ). Subsequent orbits result in larger uncertainties. 
4.2 Discussion 
4.2.1 Comparison to D’Souza & Bell 
Our analysis is closest to that of D’Souza & Bell ( 2022 ), who 
similarly fit symmetric models to MW-mass haloes from the ELVIS 
suite of DMO simulations (Garrison-Kimmel et al. 2014 ) to study 
the uncertainties associated with orbit modelling. First, we note 
key differences in methods. D’Souza & Bell ( 2022 ) used DMO 
simulations, which neglects the (tidal) acceleration from the central 
galaxy that modify these orbits and could strip/disrupt satellites that 
orbit nearby. The internal stellar feedback in a satellite also can 
reduce the inner density of dark matter and make the satellites more 
vulnerable to tidal disruption (Bullock & Boylan-Kolchin 2017 ), 
although this is a second-order effect (Garrison-Kimmel et al. 2017 ). 
Without these baryonic effects and processes, the surviving satellites 
in DMO simulations typically fell into their MW-mass halo earlier 
and were able to complete more pericentres, while also orbiting 
closer to the centre of the host with smaller pericentric passages 
than we showed in Santistevan et al. ( 2023 ). However, D’Souza & 
Bell ( 2022 ) did account for the effects of dynamical friction in their 
model, similar to Patel et al. ( 2020 ), which acts to slow satellites down 
and ultimately merge within the host, which we do not. D’Souza & 
Bell ( 2022 ) also examined the gravitational effects from LMC-like 
analogues in MW-mass hosts. Because the LMC is so massive, it 
hosts its own satellite population, and studies suggest that it is on 
first infall into the MW and near its first pericentre (e.g. Kalli v ayalil 
et al. 2013 ; Deason et al. 2015 ; Kalli v ayalil et al. 2018 ; Patel et al. 
2020 ), so accounting for its gravitational influence on the surrounding 
satellites is of great interest. Although some hosts in our simulations 
have LMC-like analogues at previous snapshots (see Samuel et al. 
2021 ; Barry et al. 2023 ), we do not analyse them specifically. 

Another significant difference between D’Souza & Bell ( 2022 ) 
and our analysis is that they account for the true mass growth of the 
MW-mass host at every snapshot by updating their potentials while 
keeping the potential fixed between snapshots. We do not account for 
the mass growth of the MW-mass host, because the majority of orbit 
modelling studies in the literature implement a fixed mass/potential 
(e.g. Patel, Besla & Sohn 2017 ; Fritz et al. 2018a ; Fillingham et al. 
2019 ; Pace, Erkal & Li 2022 ), because we do not know the full mass 
histories of the MW or M31, and also because the mass assembly 
history for each MW-mass host in our simulations is unique. 

D’Souza & Bell ( 2022 ) define a reco v ered property as being when 
the absolute value of the fractional difference is less than 30 per cent, 
that is, | X true − X model | / X true < 0.3, and report the fraction of satellites 
that do not meet this criterion as being ‘outliers’. They centre their 
results on two hosts, ‘iDouglas’ which is an isolated MW-mass 
galaxy and ‘iOates’ which has an LMC analog, but they test orbits 
in iOates with and without the gravitational contribution from this 
massive companion. Similar to our analysis, they focus on the timing 
and distance of various pericentre events, the apocentre distances, 
and the infall times of satellites, and find that more recent pericentres 
and apocentres have smaller outlier fractions than pericentres or 
apocentres that happened at earlier times. In particular, the outlier 
fractions for the most recent, and second-most recent pericentre 
distances in the hosts without the additional massive satellite are 
31.2–47 and 43.8–69.9 per cent, respectively. Although we do not 
look specifically at the second-most recent pericentre, we do find that 
the median fractional offsets and 1 σ uncertainties for the most recent 
pericentre distance, −2.5 and 21 per cent, are smaller compared to 
the same for the minimum pericentre distance which often occurred 
≈ 6 Gyr earlier, 0.066 and 53 per cent. The authors also show that the 
timing of the most recent pericentre is often better reco v ered than the 
distance, with an outlier fraction of 13.8–23.2 per cent. Our results 
show that the median fractional offset is −2.8, which is comparable 
to the offset in recent pericentre distance, but with a smaller 1 σ
uncertainty of 9 per cent. Thus, it is often easier to reco v er the timing 
of a pericentre than its distance. 

D’Souza & Bell ( 2022 ) similarly showed that the distance of the 
most recent apocentre has a smaller outlier fraction than the most 
recent pericentre distance, with a value of only 6.2–34.9 per cent. 
Our work also suggests that the apocentres are easier to reco v er, 
with a median fractional offset and 1 σ uncertainty of −1.3 and 
6 per cent, respectiv ely. The y conclude that apocentres are easier to 
model because they only depend on the binding energy of a satellite 
galaxy, while the pericentres depend on the angular momentum of 
a satellite as well as its binding energy. Properties at apocentre 
also do not intricately depend on the details of the gravitational 
potential at small distances like pericentres do, and rather, what is 
more important is modelling the total enclosed mass precisely, as 
both studies have done. Finally, the authors also calculate the infall 
times of satellites and find good agreement in their simulations and 
model, with an outlier fraction of 11.2–28.9 per cent. Although we 
generally see small median offsets when calculating infall time with 
an evolving R 200 m ( t), ≈6.7 per cent, the associated uncertainty is 
high, ≈41 per cent, and using a fixed R 200 m ( t = 0) is worse. 

D’Souza & Bell ( 2022 ) explored other models for the growth 
of the MW-mass host, and most comparable to our work is their 
results in which they keep the mass fixed over time. They report 
that, depending on the property, using the static model in some 
cases produces the best results as compared with the simulations. 
Ho we ver, as one integrates longer in time, the static model becomes 
less representative of the MW-mass environment, and thus satellite 
orbit properties that occurred earlier are not modelled as well, which 
is what we similarly see in the minimum pericentre properties and 
infall times. The authors explored a model that accounts for the 
median mass growth of the 48 MW-mass haloes in the ELVIS DMO 
simulation suite and found that both the static model and median 
mass growth model reproduce similar results at recent lookback times 
as well. Finally, they implemented a static model with 40 per cent 
more mass, and a static model with different halo concentrations, 
which both returned larger biases, scatters, and outlier fractions. 
Thus, modelling the mass and shape of the haloes at present-day is 
important. 
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Finally, D’Souza & Bell ( 2022 ) compared uncertainties in the 
virial mass of the MW-mass host, and thus uncertainties in the 
potential, the uncertainty in the 6D phase-space coordinates of the 
satellites at z = 0, the uncertainty in modelling the recent LMC-like 
accretion, and the uncertainty in modelling the motion of the MW- 
mass system as it mo v es throughout the Univ erse. The y concluded 
that the uncertainties in the reco v ered orbit history properties when 
using simple parametric forms of the potential or ignoring the LMC- 
like contribution to the potential are comparable to the uncertainty 
in results caused by a ≈30 per cent uncertainty in the virial mass of 
the MW-mass host. 
4.2.2 Comparison to other studies 
The results in Figs 2 and 3 (top) differ strikingly from those from 
DMO simulations, where the enclosed mass at smaller radii is set 
earlier than at larger radii. For example, using the Via Lactea DMO 
simulation, Diemand, Kuhlen & Madau ( 2007 ) showed that the 
enclosed dark matter mass within 100 kpc assembled prior to z ≈
1.7 ( t lb ≈ 9 . 9 Gyr ago), and grew only by about 10 per cent since 
then. The enclosed mass at even smaller distances formed earlier. In 
a related analysis, Wetzel & Nagai ( 2015 ), showed that the enclosed 
dark-matter mass within a fixed physical r ≈ 50 –100 kpc at z = 1 
was already " 85–95 per cent of its value at z = 0, compared to the 
mass in stars and gas, which were only ∼55–70 per cent of the mass at 
z = 0. Because dark matter is collisionless and dissipationless, and 
because the accretion radius grows o v er time, dark-matter growth 
occurs largely ‘inside-out’. Ho we ver, gas can cool over time, which 
drives the formation of the central galaxy, and leads to more physical 
mass growth at smaller radii compared with the dark matter. 

To derive the orbit histories of satellites of the MW and M31, many 
studies commonly apply orbit modelling in a static host potential or 
use simple approximations of the growth of the host. For instance, 
Kalli v ayalil, v an der Marel & Alcock ( 2006 ) used a fixed MW- 
mass potential, as well as an LMC-like potential, to determine that 
the SMC was gravitationally bound to the LMC. Kalli v ayalil et al. 
( 2013 ) used 3 epochs of HST measurements to constrain the LMC’s 
proper motions and suggest that the LMC is likely on its first infall, as 
previous studies have suggested (e.g. Besla et al. 2007 ). The authors 
compared different static models of the MW and models that account 
for the growth of the MW-mass halo o v er the last 10 Gyr , but in the 
evolving models, the authors did not account for the central galaxy. 
Patel, Besla & Sohn ( 2017 ) similarly sought to understand the orbit 
of the LMC around the MW, as well as the orbit of M33 around M31, 
and concluded that like the LMC, M33 is likely fell into the M31 
halo less than ! 2 Gyr ago or so. Although these authors modelled 
the many components of the main galaxy, they did not account for 
any time dependence of the host potential. 

Patel, Besla & Sohn ( 2017 ) also compared the orbits of massive 
satellite analogues in the DMO Illustris-1-Dark simulation to an 
NFW model of the MW-mass host halo with a dynamical friction 
model included. The authors used the z = 0 6D phase-space 
coordinates for the satellites and integrated their orbits, similar to our 
pipeline, but for 6 Gyr , and suggest that this type of orbit modelling 
technique shows good agreement between the two orbits for satellites 
on first infall and for satellites that recently completed their first 
pericentre. The orbits that we present in Fig. 6 show good agreement 
between the simulations and model for recent lookback time as well, 
ho we ver, only the top-left panel shows good agreement for up to 
6 Gyr . There are other satellites in our sample that show agreement 
for this time range, ho we ver, we choose to intentionally show test 
cases in which the model does not do well in this figure as well. 

Recent work not only suggests that the LMC has only recently 
fallen into the MW’s halo and is currently near its first pericentre (e.g. 
Kalli v ayalil et al. 2009 , 2013 ), but that it has a satellite population 
of its own (e.g. Deason et al. 2015 ; Kallivayalil et al. 2018 ; Patel 
et al. 2020 ). Other studies account for the gravitational contribution 
of the LMC on the other satellites of the MW. Kalli v ayalil et al. 
( 2018 ) used Gaia data, in conjunction with the DMO Aquarius 
simulation, to determine which satellites might be gravitationally 
bound to the LMC. The simulation does have an LMC analogue, 
with a similar position and velocity at z = 0, but does not account 
for the gravitational effect of the central galaxy. Patel et al. ( 2020 ) 
used newer Gaia observations and numerically integrated the orbits 
of satellites in a model of the potential with a MW, LMC, and SMC 
component to determine the orbital histories of the LMC and its 
satellites. Although they keep the potential fixed over time, they only 
backward integrated the orbits of satellites for ≈ 6 Gyr , given that 
beyond this time, MW-mass haloes typically have ! 80 per cent of 
their mass at z = 0. The authors concluded that the derived orbits for 
satellites of the LMC strongly depend on whether or not you include 
the LMC in the global potential, and in some cases, the contribution 
from the SMC is important as well. Finally, other studies aim to 
accurately model the LMC potential with basis function expansions 
fit to simulation data to understand how it affects the MW, and 
its satellites, as in Garavito-Camargo et al. ( 2019 , 2021 ); Correa 
Magnus & Vasiliev ( 2022 ), but doing so while accounting for the 
growth of the MW remains challenging. 

Studies such as Fritz et al. ( 2018a ) and Fillingham et al. ( 2019 ) 
provide inferences of the infall times, pericentre and apocentre 
distances, and orbit eccentricities for all satellites in the MW. Fritz 
et al. ( 2018a ) used data from Gaia DR2, and numerically integrated 
the orbits of all satellites in GALPY in two different models for 
the MW potential, which they kept fixed over time. Depending 
on the mass of the MW, the authors showed that some of the 
apocentres for the satellites can lie either inside or outside of the 
virial radius, which has implications for instance in studying how a 
satellite interacts with the hot gas in the MW halo. Furthermore, the 
authors suggested that some satellites have pericentres as close as 
≈ 20 kpc , where the strong tidal acceleration from the central galaxy 
is important. As we showed in Figs 1 –3 , depending on when these 
pericentres take place, the mass of the host was only a fraction of 
its mass today. Fillingham et al. ( 2019 ) used the Phat ELVIS DMO 
simulations, which include an analytic disc potential, to statistically 
sample satellites with similar present-day positions and velocities to 
make cosmologically informed predictions for what the infall times 
of the MW’s satellites were. The Phat ELVIS simulations account for 
the growth of the disc potential through abundance matching scaling 
relations, where each disc has a unique growth rate, and thus, tidally 
disrupt subhaloes that orbit close to the disc (Kelley et al. 2019 ). 

Most of the MW-mass simulations in the FIRE-2 suite do not 
have an LMC-like analogue at z = 0, but there are at least four 
analogues at earlier times, within the last 6 –7 Gyr ago, and previous 
works have used these analogues to study both planar configurations 
of satellites and the effect of LMC-mass satellites on subhalo 
populations (Samuel et al. 2021 ; Barry et al. 2023 ). Given that the 
LMC recently fell into the MW’s dark matter halo, ! 2 Gyr ago (e.g. 
Besla et al. 2007 ; Kalli v ayalil et al. 2013 ; Patel, Besla & Sohn 2017 ), 
previous orbit modelling studies that include the effects of the LMC 
to derive orbits of the MW’s satellites work well in this recent regime. 
On the other hand, because we do not include the effects of an LMC 
in the host potential, our work informs how well static potential 
orbit modelling works in the regime before the LMC was a satellite, 
that is, " 2 Gyr ago. Ho we ver, the results suggesting that the LMC 
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is on first infall and just passed its first pericentre are trustworthy, 
given that the mass of the MW and its dark matter halo have not 
significantly changed o v er the last ! 2 Gyr . As such, both kinds of 
studies, both with and without an LMC analogue, complement each 
other in understanding the full, complex MW formation history. 
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APPENDI X  A :  M O D E L L I N G  H O S T  MASS  
PROFILES  
We integrate the orbits of satellite galaxies using the galactic 
dynamics PYTHON package GALPY (Bovy 2015 ), which allows users 
to define custom host potentials. We thus fit the enclosed mass profiles 
of the MW-mass hosts in our simulations as a sum of disc and halo 
components, to supply to GALPY . 
A1 Modelling the disc 
We model the MW-mass disc as the sum of two double exponential 
discs, one for the inner disc/bulge, and one for the outer disc. The 
density profile of the disc is: 
ρ( R , Z ) = A inner 

disc e −R /R inner 
disc −| Z | /h z + A outer 

disc e −R /R outer 
disc −| Z | /h z (A1) 

where A inner 
disc and A outer 

disc are amplitudes of mass density (M ⊙ kpc −3 ), 
R inner 

disc and R outer 
disc are disc scale radii ( kpc ), and h z is the disc scale 

height ( kpc ). Given that satellite orbits are more sensitive to the 
enclosed mass , rather than the local density, we first integrate out 
the vertical component of equation ( A1 ), then we integrate over 
cylindrical R to obtain the disc enclosed mass given by 
M( < R) = 4 πAh z R inner [R inner − e −R/R inner ( R inner + R) ], (A2) 
and a similar term for the outer disc component. We thus ensure that 
the total enclosed mass agrees to within a few per cent at all rele v ant 
radii when integrated over all space. We fit and model the disc with 
star particles and cold gas ( T < 10 5 K ) within R = 0 –20 kpc and 
| Z| < 3 kpc . Including mass within | Z | < 4, 5 did not significantly 
change the derived parameters. 

The orbits of typical satellites are not sensitive to the details of the 
size, geometry, or orientation of the disc, see Appendix B . 
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Table A1. Best-fitting parameters to the double-exponential disc profile (equations A1 and A2 ) and the generalized 
NFW profile for the halo (equations A3 and A4 ). Columns: Name of host; halo amplitude, A halo ; halo scale radius, a halo ; 
halo inner slope, α; halo outer slope, β; disc inner amplitude, A inner 

disc ; disc inner scale length, R inner ; disc outer amplitude, 
A outer 

disc ; disc outer scale length, R outer ; disc scale height, h z . 
Name A halo a halo α β A inner 

disc R inner 
disc A outer 

disc R outer 
disc h z 

(10 11 M ⊙) ( kpc ) (10 9 M ⊙ kpc −3 ) ( kpc ) (10 8 M ⊙ kpc −3 ) ( kpc ) ( kpc ) 
m12m 3.78 17.32 1.57 2.78 6.47 0.79 7.98 4.41 0.64 
Romulus 5.30 6.65 0.00 2.87 8.31 0.86 2.10 8.04 0.55 
m12b 3.84 16.89 1.48 2.82 18.0 0.65 6.08 4.24 0.51 
m12f 3.65 14.77 1.45 2.74 8.39 0.84 2.11 7.40 0.54 
Thelma 4.49 8.84 0.40 2.90 3.30 1.04 1.98 6.28 0.75 
Romeo 8.99 29.91 1.47 3.23 4.61 1.02 2.25 6.64 0.55 
m12i 5.70 32.15 1.58 2.99 9.10 0.78 3.87 4.56 0.55 
m12c 7.93 24.37 0.90 3.05 7.05 0.71 6.41 3.65 0.57 
m12w 2.99 22.87 1.61 2.73 5.53 0.68 11.7 2.19 0.67 
Remus 8.32 36.49 1.56 3.21 4.68 0.90 1.60 6.50 0.54 
Juliet 2.85 9.57 0.87 2.82 6.97 0.77 1.16 6.32 0.55 
Louise 2.30 6.41 0.29 2.76 1.92 0.99 0.54 9.36 0.58 
m12z 3.22 33.96 1.58 2.69 0.59 0.40 1.73 2.94 1.54 

Figure A1. Ratio of the enclosed total mass in each best-fitting model to that 
in each simulation, as a function of distance from the centre of the MW-mass 
host, r , at z = 0. We fit a double-exponential profile for the inner and outer 
discs (equations A1 and A2 ) and a generalized NFW profile for the halo 
(equations A3 and A4 ). Table A1 lists all fit parameters. Black line shows 
the median and the shaded regions show the 68th and 95th percentile scatter 
across our 13 hosts. The median agrees to within <4 per cent at all radii 
and ! 1 per cent for the mass within R 200 m (344 –472 kpc ). The ratio shows 
larger host-to-host scatter at ! 10 kpc , but only ≈5 per cent of satellites in 
our sample orbit this close. This level of agreement ensures that modelling 
the total (axisymmetric) mass profile of each host at z = 0 is not a significant 
source of error for our orbit modelling. 

A2 Modelling the halo 
To fit the halo component, we use a generalized form of the spherical 
Na varro–Frenk–White (NFW, Na varro, Frenk & White 1996 ) density 
profile: 
ρ( r ) = A halo 

4 πa 3 halo 1 
( r /a halo ) α(1 + r/a halo ) β−α

(A3) 
where A halo is the amplitude ( M ⊙), a halo is the scale radius ( kpc ), 
and α and β are the slopes of the inner and outer density profile. We 
then integrate the analytic form of ρ( r ) to convert this to an enclosed 

mass profile: 
M ( < r ) = A halo 

3 − α

(
r 
a 
)3 −α

2 F 1 (3 − α, −α + β; 4 − α; −r/a halo ) 
(A4) 

where 2 F 1 is the Gauss hypergeometric function. We model and 
fit this profile with dark-matter and hot gas ( T > 10 5 K ) within 
r < 10 kpc , and all particles (dark matter, all gas, and stars) at 
r = 10 –500 kpc . We obtained similar parameters selecting particles 
within r < 300 , 350 , 400 kpc , but we use the fits out to 500 kpc, 
because many satellites orbit out to there (see Santiste v an et al. 
2023 ). We tried fitting the haloes to a regular NFW profile, where 
α = 1 and β = 3, but we obtained notably better agreement with the 
generalized form abo v e. 
A3 Total mass profile 
We use the parameters we derived from fitting the abo v e analytic 
density/mass profiles in their respective potentials in GALPY . In 
GALPY , we specifically use the spherically symmetric ‘TwoPow- 
erSphericalPotential’ for the DM halo, and axisymmetric ‘Double- 
ExponentialdiscPotential’ for the inner and outer discs, and we input 
all three to define the total potential of a given host, to use to integrate 
the orbits of its satellites. Table A1 lists the fit parameters. 

Fig. A1 shows the ratio of the halo + disc analytic model using the 
parameters in Table A1 to the enclosed masses in the simulations; a 
1:1 ratio is presented as the dotted horizontal line. At all distances we 
show, we model the median enclosed mass to within 3–4 per cent, and 
the 68th percentile range is within 5 per cent beyond 10 kpc . Within 
10 kpc , the 68th and 95th percentiles of the enclosed mass ratios span 
both higher and lower than what we present in the y-axis, but only 
≈5 per cent of surviving satellites orbited at such small distances. 

Individually, we model the two-component disc to within 
≈4 per cent at R = 2 –20 kpc and the halo to within ≈10–20 per cent. 
Although we double counts the star particles and cold gas between 
10 and 20 kpc , the median mass ratio in Fig. A1 is ! 2 per cent within 
this distance and produces a good fit to the data. One galaxy, m12c, 
experienced a significant merger ( ≈3:1 mass ratio) ≈ 9 Gyr ago, thus 
modelling this host with symmetric analytic models does not capture 
the complexity in its mass distribution. Thus, the total enclosed mass 
in m12c is fit to within ≈15 per cent. 
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Table B1. Similar to Table A1 , but now comparing our fiducial model for the host disc to models in which (1) we rotate 
the disc by 90 ◦ or (2) use a simple point mass. We show only the fractional differences for each property X via ( X disc, rot 
− X disc )/ X disc for the rotated disc model (middle columns), and ( X point − X disc )/ X disc for the point mass model (right 
columns). Column list: property name, variable, median offset, 1 σ scatter. We do not show the minimum pericentre 
properties given that the orbits in the models are periodic. Values with an asterisk at the end represent cases where we 
present the mean offset or standard deviation, instead of median and 1 σ scatter, because they are discrete quantities or 
have medians of 0. The overall bias in any orbit property for both alternative models is less than 1 per cent, and the 
1 σ uncertainties only reach as large as ≈7 per cent for the number of pericentric passages. Thus, the orientation and 
geometry of the central disc are not important factors in orbit modelling uncertainties . 

Rotated disc Point mass 
Property Variable Median offset 1 σ scatter Median offset 1 σ scatter 
Recent pericentre distance d peri, rec 2 × 10 −5 2 × 10 −3 5 × 10 −3 7 × 10 −3 
Timing of recent pericentre t peri, rec 1 × 10 −9 1 × 10 −3 3 × 10 −3 7 × 10 −3 
Number of pericentric passages N peri 2 × 10 −3 ∗ 5 × 10 −2 ∗ −6 × 10 −3 ∗ 4 × 10 −2 ∗
Pericentric passages post-infall at R 200m, 0 N peri, fixed 2 × 10 −3 ∗ 5 × 10 −2 ∗ −8 × 10 −3 ∗ 7 × 10 −2 ∗
Velocity at recent pericentre v peri, rec −3 × 10 −5 2 × 10 −3 −5 × 10 −3 7 × 10 −3 
Recent apocentre distance d apo, rec 4 × 10 −7 4 × 10 −4 1 × 10 −3 4 × 10 −3 
Lookback time of infall t inf −2 × 10 −3 ∗ 1.5 × 10 −3 3 × 10 −3 5 × 10 −3 
Lookback time of infall at R 200m, 0 t inf, fixed −1 × 10 −7 2.5 × 10 −3 −2 × 10 −8 3 × 10 −3 
Recent orbit eccentricity e rec −4 × 10 −5 2 × 10 −3 −1 × 10 −3 5 × 10 −3 
Recent orbit period T rec 3 × 10 −8 2 × 10 −3 7 × 10 −3 1 × 10 −2 
Max strength of tidal force | da / dr | 1 × 10 −3 ∗ 3 × 10 −2 ∗ −2 × 10 −3 2 × 10 −2 

APPEN D IX  B:  A LT E R NAT I V E  M O D E L S  F O R  
T H E  H O S T  G A L A X Y  POTENTIAL:  ROTATED  
DISC  A N D  P O I N T  MASS  
Here, we investigate the results of using different potential models for 
the central galaxy, including (1) a disc that is rotated by 90 ◦ and (2) a 
point mass. We compare these models with the fiducial disc model in 
T able A1 . W e numerically inte grate the satellites in these alternativ e 
models and calculate the same orbit properties in Table 2 . For each 
property X , we present only the fractional differences between the 
models, ( X disc, rot − X disc )/ X disc and ( X point − X disc )/ X disc , where X disc, rot 
refers to the fiducial disc model rotated by 90 ◦, X point refers to the 
point mass model, and X disc is our fiducial model. Table B1 shows the 
median offset and width of the 68th percentile. For cases in which 
the median is zero, we instead show the mean offset and standard 
deviation. 

For the rotated disc model, the median fractional difference across 
all orbit properties is ≈10 −3 or smaller, and the 1 σ scatters are less 
than 5 per cent. We also calculate the median fractional difference 
only for satellites that orbit closest to the disc, with pericentres < 
50 kpc , and the offsets are still ! 10 −3 per cent. Thus, we conclude 
that the orientation of the host galaxy isk is not important for orbit 
modelling. 

To implement a point mass potential, we use GALPY ’s ‘KeplerPo- 
tential’, which takes only the mass as the parameter. We integrate the 
enclosed galaxy mass profile in equation ( A2 ) out to 30 kpc and input 
this into the point mass potential. Table B1 shows that, even for this 
simplest-possible model for the central galaxy mass distribution, the 
median offsets and percentile widths are ! 7 per cent. This r einfor ces 
that the details of the mass distribution of the central galaxy are not 
important; what matters only is modelling the total baryonic mass of 
the central galaxy. 

We also tried ‘shrinking’ our fiducial disc model, by reducing the 
scale radii and scale height to 90, 50, 10, and 1 per cent of their 
best-fitting values in Table A1 , which showed results intermediate 
between the rotated disc and point mass models. 

These results are consistent with the tests of Garrison-Kimmel 
et al. ( 2017 ), who compared the surviving subhalo populations 
in two of the FIRE-2 MW-mass hosts against DMO simulations 

with an embedded disc potential. They showed that the number 
of surviving subhaloes in the simulations with an embedded disc 
potential agrees well with those in the baryonic FIRE-2 simulations, 
both of which are much smaller than in a DMO simulation without 
an embedded disc. They additionally tested various embedded disc 
potentials by doubling the scale length, fixing the scale height to 
1 pc, doubling the total disc mass, including the gas mass to the disc, 
and implementing a Hernquist sphere instead of their Miyamoto- 
Nagai disc potential. Most of these alternate disc potentials led 
to similar results, reinforcing that the details of the shape of the 
central galaxy potential are less important than simply its o v erall 
mass. 
APPENDI X  C :  C O M PA R I N G  DI SCRETE  
PERI CENTRES  
To understand better how well orbit modelling and cosmological 
simulation agree at each orbit , Fig. C1 compares the timing and 
distance of each pericentric event. We select all satellites at a given 
‘lookback pericentre event’, where 1 is the most recent pericentre, 2 
is the second-most recent, and so forth. We plot the fractional and 
raw differences in the pericentre distance and timing. 

In our sample, 86 per cent of satellites experienced at least one 
pericentre, ≈47 per cent experienced two or more, and ≈30 per cent 
experienced three or more. The most pericentres experienced is 10, 
but we cut the figure at 6 pericentres given that only 3.4 per cent 
experienced more than this. 

Focusing on trends with distance, the median fractional differ- 
ence in the most recent pericentre is only −2.5 per cent, similar 
to Fig. 9 (top row). As we compare pericentres further back in 
time, the median decreases to −18 per cent for satellites at their 
sixth most recent pericentre. Ho we ver, this is not to say that the 
model never overpredicts the pericentre distances. For the most 
recent pericentric passage, the model underpredicts the distance in 
≈60 per cent of the sample, and o v erpredicts the distance in the other 
40 per cent. 

Likewise, the 1 σ scatter generally increases with increasing look- 
back pericentre events, where it reaches a max value of ≈48 per cent 
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at the 5th-most recent pericentre. Thus, the median difference 
between the model and simulation increases with each orbit as we 
look back in time, but also the uncertainties associated with these 
pericentre distances increases. 

Similar to trends in distance, Fig. C1 (bottom) shows that the 
median difference in the timing of each pericentre decreases from 
−30 Myr at the most recent pericentre to −1 . 2 Gyr for the 6th 
most recent. Orbit modelling continuously underpredicts pericentre 
events, presumably because the host mass is unchanging as the 
satellites orbit. For a given satellite, the more massive host with 
a deeper gravitational potential will result in a more bound orbit 
compared to the same satellite in the same MW-mass host with 
less mass at earlier times. More bound satellites thus orbit deeper 
in the potential with shorter orbit timescales. Regarding the most 
recent pericentric passage, the model underpredicts the timing in 
≈66 per cent of satellites and o v erpredicts the timing in 30 per cent; 
the remaining 4 per cent of satellites have nearly identical values. The 
1 σ scatter spans " 0 . 5 Gyr for the second-most recent pericentre and 
beyond. 

These results highlight another aspect of how far back in time 
orbit modelling reliably works. If one is only interested in deriving 
the most recent pericentre distance or time, the model reco v ers 
the median trends of satellites to within a few per cent, but the 
uncertainties are non-ne gligible. F or the satellites that orbited more 
than once, the most recent pericentre is not al w ays the smallest 
(see Santiste v an et al. 2023 ), therefore if one is interested in 
how close satellites orbited to their host, then the uncertainty in 
deriving these distances will be " 35 per cent, and " 0 . 5 Gyr in the 
timing. 

Figure C1. Comparing the timing and distance of each pericentric passage 
between orbit modelling and simulations, which we measure at each ‘pericen- 
tre event’, where 1 is the most recent pericentre, 2 is the second most recent, 
and so forth. We select all satellites that experienced (at least) a given number 
of pericentres, and we show the median and 1 σ scatter across all satellites. 
Top: The median fractional difference in pericentre distance decreases from 
−2.5 to −18 per cent going back 6 pericentres while the 1 σ scatter increases 
from 18 to 48 per cent. Less than 3 per cent of satellites experienced more than 
7 pericentres, in both the simulations and orbit models. Bottom: The median 
difference in the timing of the pericentric events decreases with lookback 
pericentre events from −30 Myr for the most recent pericentre to −1 . 2 Gyr . 
The 1 σ scatter ranges from ≈ 0 . 2 to 0 . 85 Gyr , so not only does orbit modelling 
increasingly systematically underpredict the timing of a pericentre, but also, 
orbit modelling becomes more uncertain, o v er longer lookback times. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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