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Abstract

This article aims to understand the behavior of the curvature operator of the second
kind under the Ricci flow in dimension three. First, we express the eigenvalues of
the curvature operator of the second kind explicitly in terms of that of the curvature
operator (of the first kind). Second, we prove that a-positive/a-nonnegative curvature
operator of the second kind is preserved by the Ricci flow in dimension three for all
a € [1,5].
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1 Introduction

The Riemann curvature tensor R;ji; on an n-dimensional Riemannian manifold
(M", g) naturally induces two self-adjoint curvature operators: R acts on the space of
two-forms A%(T, M) via

. 1 <
R(w)ij = 5 > Rijuow,
k,l=1
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and R acts on the space of symmetric two-tensors S2(TpM ) via

n

R(p)ij = Z Rikij k-
k,l=1

In the literature, R is known as the curvature operator and there are many remarkable
results under various positivity conditions on R; see Meyer [32], Gallot and Meyer
[18], Tachibana [48], Hamilton [19, 20], Bchm and Wilking [12], Brendle and Schoen
[9, 10], Andrews and Nguyen [ 1], Ni and Wilking [40], Petersen and Wink [45—47], etc.
In particular, the celebrated differentiable sphere theorem states that closed manifolds
with two-positive curvature operator are diffeomorphic to spherical space forms. This
is proved using the Ricci flow by Hamilton [19] for n = 3, Hamilton [20] and Chen
[14] for n = 4, and Bohm and Wilking [12] for n > 5. Here, Ris two-positive if the
sum of the smallest two eigenvalues of Ris positive, and (M", g) is said to have two-
positive curvature operator if R p is two-positive at every p € M. The corresponding
classification of closed manifolds with two-nonnegative curvature operator is due to
Hamilton [20] for n = 3, Hamilton [20] and Chen [14] for n = 4, and Ni and Wu [39]
for n > 5. We refer the reader to the wonderful surveys [49], [11], and [35] for more
information.

The curvature operator of the second kind, denoted by R throughout this article,
refers to the restriction of R to Sg (Tp M), the space of traceless symmetric two-tensors.

Nishikawa [36] interpreted R as the symmetric bilinear form
R:S3(T,M) x S3(T,M) — R

obtained by restricting R to S(z) (TpM).He called R the curvature operator of the second

kind, to distinguish it from the curvature operator R, which he called the curvature
operator of the first kind. It was pointed out in [37] that the curvature operator of the
second kind can also be interpreted as the self-adjoint operator

R=moR:SHT,M) — S5(T,M),

where 7 : SZ(T,,M ) — Sg(TpM ) is the projection map. The algebraic reason to
restrict to S(z)(T,,M ), as pointed out by Bourguignon and Karcher [4], is that Sz(TpM )
is not irreducible under the action of the orthogonal group O (T, M). Indeed, it splits
into O (T, M)-irreducible subspaces as

SX(T,M) = S3(T,M) ® Rg.

Geometrically, R=mwoR=id sz on the standard sphere S” with constant sectional

curvature 1, while the operator R is not even positive: the eigenvalues of R on S” are
given by —(n — 1) with multiplicity one and 1 with multiplicity % (see [4]).
Recently, the curvature operator of the second kind R received attention due to

the resolution of Nishikawa’s 1986 conjecture, which states that a closed Riemannian
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manifold with positive (respectively, nonnegative) curvature operator of the second
kind is diffeomorphic to a spherical space form (respectively, Riemannian locally
symmetric space). The positive part was resolved by Cao, Gursky, and Tran [13].
Their key observation is that two-positivity of R implies the strict PIC1 condition
introduced by Brendle [6], i.e., M x R has positive isotropic curvature. The positive
part of Nishikawa’s conjecture then follows from Brendle’s convergence result [6]
stating that the normalized Ricci flow evolves an initial metric that is strictly PICI
into a limit metric with constant positive sectional curvature. Shortly after, the second
named author [28] noticed that strictly PIC1 is implied by three-positivity of R, thus
getting an improvement of the result of Cao, Gursky, and Tran. He also settled the
nonnegative part of Nishikawa’s conjecture by reducing it to the locally irreducible
case and appealing to the classification of closed locally irreducible manifolds with
weakly PICI in [7].

After that, further investigations toward understanding R have been carried out in
[24-27,37, 38], and [50]. The second named author [24] proved that closed manifolds
with 4——posmve R have positive isotropic curvature and positive Ricci curvature,
thus being homeomorphic to spherical space forms because of the work of Micallef
and Moore [33]. This improves a result of Cao, Gursky, and Tran [13, Theorem 1.6]
assuming 4-positivity of R. Using the Bochner technique, Nienhaus, Petersen, and
Wink [37] proved vanishing results on the Betti numbers b, under C(p, n)-positivity
of R, where C(p,n) is an explicit constant. In particular, it follows that a closed
Riemannian n-manifold with #-nonnegative R is either flat or a rational homology
sphere. Together with Wylie [38], they observed that a Riemannian n-manifold with
n-nonnegative or n-nonpositive R has restricted homology SO (n) unless it is flat.
Subsequently, the second named author obtained a sharper result in his investigation
of R on product manifolds [25]. In addition, R was investigated on Kéhler manifold
in [27, 28, 38], and [26]. It is proved in [26] that a Kéhler manifold of complex
dimension m with a-nonnegative R must be flat if & < —(m — 1). This is sharp as

CP™ with the Fubini-Study metric has z(m — 1)-nonnegative R. Another result in

[26] asserts that a closed Kéhler manifold of complex dimension m with (3’”32’++2)-

positive R has positive orthogonal bisectional curvature, thus being biholomorphic
to CP™. In another direction, Zhao and Zhu [50] proved that a steady gradient Ricci
soliton of dimension n > 4 must be isometric to the Bryant soliton up to scaling if it is
asymptotically cylindrical and satisfies R > —% id S2(T, M) where S denotes the scalar
curvature. This improves a result of Brendle [8] assuming the stronger assumption of
positive sectional curvature.

In this article, we investigate the curvature operator of the second kind in dimension
three. Our first result finds explicit expressions for the eigenvalues of R in terms of
that of R in this dimension.

Theorem 1.1 LetR € S% (A’R3) be an algebraic curvature operator on R? and denote

by a < b < c the eigenvalues of the curvature operator R. Then the eigenvalues of
the curvature operator of the second kind R are given by

A <a<b<c<hiy,
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where

b 2
At ::%i“/—_\/3(a2+b2+c2)—(a+b+c)2. (1.1)

It is well-known that both kinds of curvature operators are stronger than sectional
curvature, in the sense that R > k or R > « for some k € R implies that the sectional
curvatures are bounded from below by « (see for example [36]). In dimension three,
R>0is equivalent to nonnegative sectional curvature, and two-nonnegativity of R
is equivalent to nonnegative Ricci curvature. In all dimensions, two nonnegativity of
R implies nonnegative sectional curvature (see [28]) and (n + 2 ) -nonnegativity of

R implies nonnegative Ricci curvature (see [24]). Here Ris sald to be a-nonnegative

for some @ € [1, dim(S(%(TpM))] if the eigenvalues A1 < Ay < -+ < A@w-nwr2 of R

satisfies ’
M+t A+ (@ — [aDAe)j+1 =0,

where | x| denotes the floor function defined by
x| :=max{k € Z : k < x}.

When « = k is an integer, this agrees with the usual definition meaning that the sum of
the smallest k elgenvalues of R is nonnegative. The a-positivity of R is defined simi-
larly. Moreover, we say R is a-nonpositive (resp, e-negative) if — R is e-nonnegative
(resp, a-positive). We always omit ¢ when o = 1.

Clearly, a-positive R implies B-positive Rifa < B. Therefore, a-positive R for
a e[l %] provides a family of curvature conditions interpolating between
positive curvature operator of the second kind (corresponding to o« = 1) and positive
scalar curvature (corresponding to o« = W)‘ In seeking optimal «-positivity of
R that characterizes the spherical space form, the second named author [24] conjec-
tured that a closed Riemannian manifold with (n + "n;z)-positive curvature operator
of the second kind is diffeomorphic to a spherical space form, after verifying it in
dimensions three and four. The number n + % comes from the standard cylinder
S"—! x S!, which has a-positive Rifa > n+ "n;z

With the aid of Theorem 1.1, we get some new and optimal results in dimension
three. We summarize (noting that parts (1), (3), and (5) have been proved by the second
named author in [24, 28]) that

Proposition 1.2 Let R € Slzg (A’R3) be an algebraic curvature operator and denote
by R and R the curvature operator of the first and the second kind of R respectively.
Then the following statements hold.

(D Ris two-nonnegative = R has nonnegative sectional curvature.

(2) R has nonnegative sectional curvature —> Ris 3%—n0nnegative.

3) Ris 3%-n0nnegative = R has nonnegative Ricci curvature

(4) R has nonnegative Ricci curvature —> R l;S four-nonnegative

(5) R has nonnegative scalar curvature <> R is five-nonnegative.

Moreover, the same results hold if “nonnegative” is replaced by “positive”, “nega-
tive”, or “non-positive”.
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Our second result states that a-positivity (and e-nonnegativity) of Ris preserved by
three-dimensional compact Ricci flows for every o € [1, 5]. Recall that a Riemannian
manifold (M", g) is said to have a-positive curvature operator of the second kind if
R p is a-positive for each p € M.

Theorem 1.3 Ler (M?, g(®)), t € [0, T), be a three-dimensional compact Ricci flow.
Leta € [1, 5]. If g(0) has a-positive (respectively, a-nonnegative) curvature operator
of the second kind, then g(t) has a-positive (respectively, a-nonnegative) curvature
operator of the second kind fort € (0, T).

It remains an interesting question whether the Ricci flow preserves a-positive/o-
nonnegative curvature operator of the second kind for some o € [1, N] in higher
dimensions.

Since 3%—n0nnegativity of R implies nonnegative Ricci curvature, one gets
classification results for complete three-manifolds with 3%—nonnegative R via the
classification results under nonnegative Ricci curvature in [19, 20] in the compact
case and [29] in the complete noncompact case. Here, we get a refined version.

Theorem 1.4 Let (M3, g) be an oriented complete three-dimensional Riemannian
manifold with o-nonnegative curvature operator of the second kind.

() Ifa €1, 3%), then M is either flat or diffeomorphic to a spherical space form.

Q) Ifa = 3% and M is closed, then M is diffeomorphic to a quotient of one of the
spaces S® or S* x R or R3 by a group of fixed point free isometries in the standard
metrics.

Q) Ifa = 3% and M is noncompact, then either M is diffeomorphic to R? or the
universal cover of M is isometric to a Riemann product N> x R where N? is a
complete two-manifold with nonnegative sectional curvature.

4) Ifa € (3%, S]and M is closed, then M is either flat or diffeomorphic to a connected
sum of spherical space forms and copies of S* x S!.

Note that parts (2) and (3) have been proved by the second name author in [24].
Part (4) is a direct consequence of the celebrated work of Perelman [42—44]. Here
we prove part (1) using Proposition 4.5 and the recent resolution of a conjecture of
Hamilton in dimension three by [16, 17, 30], and [31].

Before concluding this section, we would like to mention that the action of the
Riemann curvature tensor on symmetric two-tensors indeed has a long history. It
perhaps first appeared for Kidhler manifolds in the study of the deformation of complex
analytic structures by Calabi and Vesentini [15]. They introduced the self-adjoint
operator £, — R’fx ﬁc’épg from S2(T1}’0M ) to itself and computed the eigenvalues of
this operator on Hermitian symmetric spaces of classical type, with the exceptional
ones handled shortly after by Borel [5]. In the Riemannian setting, the action arises
naturally in the context of deformations of Einstein structure in Berger and Ebin [2]
(see also [22, 23] and [3]). In addition, it appears in the Bochner-Weitzenbock formulas
for symmetric two-tensors (see for example [34]), for differential forms in [41], and
for Riemannian curvature tensors in [21]. In another direction, curvature pinching
estimates for R were studied by Bourguignon and Karcher [4], and they calculated the
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eigenvalues of R on the complex projective space with the Fubini-Study metric and
the quatermomc projective space with its canonical metric. Nevertheless, the operators
R and R are significantly less investigated than R and it is our goal to gain a better
understanding of them.

This paper is organized as follows. In Sect. 2, we fix some notations and conventions.
In Sect. 3, we provide a strategy to diagonalize the curvature operator of the second kind
of an algebraic curvature operator with vanishing Weyl tensor. In Section 4, we prove
Theorem 1.1, Proposition 1.2 and Theorem 1.4. In Sect. 5, we prove Theorem 1.3.

2 Notations and Conventions

Throughout this article, (V, g) is a real Euclidean vector space of dimension n > 2
and {e;}'_, is an orthonormal basis of V' for the metric g. We always identify V with
its dual space V* via g.

S%(V) and A%V denote the space of symmetric two-tensors and two-forms on V,
respectively. Note that S2(V) splits into O (V)-irreducible subspaces as

S2(V) = S3(V) ® Rg,

where S2(V) is the space of traceless symmetric two-tensors.
52 (/\8 V), the space of symmetric two-tensors on AV, has the orthogonal decom-
position
S2(A2V) = S2(APV) @ AV,

where S2 (A2V) consists of all tensors R € SZ(A2V) that also satisfy the first Bianchi
identity. The space 52 (A%V) is called the space of algebraic curvature operators on
V.

The tensor product is defined as (e; ® e;)(ex, e;) = ;i ;, where §,, denotes the
Kronecker delta defined as

5 I, ifp=g
ba— 0, otherwise.

The symmetric product © and wedge product A are defined as

UOV=uQRQvV+vQQu

and
UANV=uUQRQV—vQu,
respectively.
The inner product on S?(V) is given by (A, B) = tr(A” B) and the inner product
on A2V is given by (A, B) = §tr(ATB). If {¢;}"_, is an orthonormal basis of V,
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then {\/Liei Oejhi<i<j<n U {%ei O €;}1<i<n 1S an orthonormal basis of S2(V) and

{ei A ej}1<i<j<n is an orthonormal basis of A2V
Given A, B € S*(V), their Kulkarni-Nomizu product gives rise to A ® B €
S2(A2V) via

(AQ B)iju = AixBji + AjiBix — AjkBij — AjiBj.

It is well known that R € S% (A2V) can be written as A ® id for some A € S2(V)
if and only if the Weyl tensor of R vanishes. In particular, any R € S%; (A’R?) can be
written as A @ id for some A € S?(V).

3 Diagonalization

The main result of this section is the following theorem, which expresses the eigenval-
ues of the curvature operator of the second kind of A @® id in terms of the eigenvalues
of A.

Theorem 3.1 Let A € S*(V) and denote by iy, - - - , i the distinct eigenvalues of A
with corresponding multiplicities ny, - - - , ni. Then the eigenvalues of the curvature
operator of the second kind of A @Y id are given by

(1) wi + wj with multiplicity ninj, for 1 <i < j <k;
(2) 2u; with multiplicity n; — 1, for 1 <i <k;

(3) the k — 1 nonzero solutions of the equation Zl | 2’;',”, - lle X M L £ 0, and

the k —2 nonzero solutions of Y_*_, G Sl = 5 together with 0 ik Z’ =0.In
both cases, there is exactly one elgenvalue in Qui, 2niy1) foreachl <i <k—1.

To prove Theorem 3.1, we first observe that if A; and A; are eigenvalues of A, then
Ai + A is an eigenvalue of the curvature operator of the second kind of A @ id.

Lemma3.2 Let A € S*(V) and {e, | be an orthonormal basis of V such that
Ae;) = Miej for 1 <i <n. Then we have

(AQ id)(e, ©ey) = (hp + 1g)(ep O ey)

forl <p+#q<n.

Proof Note that
(ep O eq)lej, ex) = 8jpdkq + Skpdjq-
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The conclusion follows from a straightforward calculation as follows:

((A ® id)(ep © eq))il
= (AQ id)ijulep O eg)jk
= (Aixdj1 + Ajidik — Ai1djk — AjkSi1) (8 jpdkg + 8j46kp)
= (Xidikbj1 + Aj6j18ix — Aidirdjk — A j8jkdi1)(8pdig + 8qdkp)
= (XiigSp1 + Apdpidig — AibiiSpg — Apbpgdir)
+Ai8ipSqr + Agq18ip — Xidi18pg — AgSpgbil)
= (Ap + Ag)(Bigbpi + 8ipdyl)
= Ap +Ag)lep O ey,

where j and k are summed from 1 to n. O

Since the orthogonal complement of span{e, ©¢e; : 1 < p # g <n}in Sg(V) is

n n
E = Zc,,e,,@ep : Zcp =0¢,
p=1 p=1

the eigentensors associated with the remaining eigenvalues are in E. Note that
dim(E) = n — 1, as E is isomorphic to the vector space of n x n diagonal matrices
with zero trace. This reduces the problem of finding the remaining n — 1 eigenvalues
to solving some algebraic equations.

Lemma3.3 Let A € S2(V) and {e; "_| be an orthonormal basis of V such that
Ale;) = Ariej for 1 < i < n. Suppose that c1, - - - , ¢y, not all zeros, and A are real

numbers satisfying
n

Y ep=0, (3.1)
p=1
and
2 n
2A - = Ao = A 1<p<n. 3.2
pCp n;cqq cpforl < p=<n (3.2)

Then A is an eigenvalue of the curvature operator of the second kind of A @O id with
eigentensor Z'Il,zl cpep O ep.

Proof For fixed 1 < p < n, we calculate that

(A id)(ep, O ep)),
= (AQ id)jjrlep O©ep)jk
= 2(Aixdj1 + Ajidik — Aitdjk — AjkSit)8jpSip
=2i6ikbj1 + AjSj1dik — Aiditdjk — X jdjk8i1)djpdkp
=2i8ipSp1 + Apdpi8ip — Aibdit — Apdir)
=2kp(ep ©ep)it — 20p8i1 — 216,
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where j and k are summed from 1 to n. Namely, we have proven that
n
(A@ id) (e, @ep) =2hpe, O ey —2hp8 — > hie; Qei,
i=1

for 1 < p < n. Next, we compute that

A@id) | Y cpe, e,

p=1

n n n n
=22kpcpep®ep—2 Zcpkp g—Z(cp )»,-e,-@el)
i=1

p=1 p=1 p=1

n n
:22Apcpep®ep—2 ZCP)‘P g,
p=1 p=1

where we have used (3.1) in the last step. We further calculate, with 7 : S2(V) —
Sg(V) being the projection map, that

(o (A id) | Y cpe, Oep

p=1

n 2 n
= 2) — -
Z pCp " Zcq)‘q ep Oep,
p=1 g=1

n
=A Zc,,ep Qep,
p=1

where we have used (3.2) in the last step. This finishes the proof. O

We are ready to prove Theorem 3.1.

Proofof Theorem 3.1 Let u| < pp < --- < i be the distinct eigenvalues of A
with corresponding multiplicities ny, - - - , ny. Lemma 3.2 implies that p; + u; is an
eigenvalue of the curvature operator of the second kind of A ® id with multiplicity
nin j+

By Lemma 3.3, we need to solve (3.1) and (3.2) to find the remaining n — 1
eigenvalues. We first observe that for each n; > 1, A = 2y, is an eigenvalue of the
curvature operator of the second kind of A (® id with multiplicity n; — 1 and the
associated eigenspace is given by

nj_1+n; nj—1+n;
span E apep O ep E ap, =0

p=ni—1+1 p=ni—1+1
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Here and in the rest of the proof, we use the convention ng = 0 for simplicity of
notations. In this way, we can find (n; — 1) 4+ - - - + (nx — 1) = n — k eigenvalues.

To find the remaining k — 1 eigenvalues, we observe that if A is a solution to the
equation

Y= (33)
= 2ui — A 2] '

then A and ¢y, - - - , ¢, defined by

Cpi_j+1 =" = Cpj_j4n; = forl <i <k

2ui —

satisfy (3.2). Note that (3.1) is also satisfied if either A % O or A = 0 and Zl |t M =0.
By Lemma 3.3, nonzero solutions to (3.3) are eigenvalues of the curvature operator
of the second kind of A ® id. Also, A = 0 is an eigenvalue if Zl 1 Z’ =

If £ = 0 for some 1 < p < k, we claim that (3.3) has exactly one solution in
(2ui, 2pi41) foreach 1 <i < k — 1. To see this, we consider the function f defined

by

k
nj i n
1) = - =
) ; =72
Clearly, limy .o f(A) = —"—” < 0. Moreover, if u; > 0, then

lim f(A) =ocoand lim f(k)
A=>2u; A—2 [,Ll

and if u; < 0, then

lim f(A) =—-ococand lim f(A)=
A—>2;1,I

By the intermediate value theorem, the continuity of f on R\{2uy,---,2ux}, and
the asymptotics of f near the 2;’s, one sees that foreach 1 <i <k —1, f(A) =0
must have at least one solution in the interval (2u;, 2/4;+1). Since each solution of
f (&) = 0is also a root of the degree k — 1 polynomial

fo I @u-»,

I<i<k.i#p

one concludes that f(A) = 0 has exactly one solution on (2u;,2u;+1) for each
1 <i <k — 1. Therefore, (3.3) has k — 1 distinct nonzero solutions.

Next, we consider the case u; # 0 forall 1 < i < k. In this case, f has the
same asymptotics at the 2;’s as before, but f(0) = 0. On an interval of the form
(2ui, 214i+1) not containing 0, the intermediate value theorem implies that (1) =0
has at least one solution in it. If 0 € (2u;, 2ui+1), then f(A) = 0 has at least one
solution in (2u;, 0) if f'(0) > 0 and at least one solution in (0, 2u;41) if f/(0) < 0.
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When f7/(0) = i Zl 1 M— = 0, zero is a solution of f(X) = 0 with multiplicity at
least two, as f(A) is analytic near 0 with £(0) = f/(0) = 0. In this case, 0 is an
eigenvalue of the curvature operator of the second of A® id,asA =0andcy,--- , ¢y

defined by

Cni1+1 = " = Cnj_4n; = m forl <i <k,
i

satisfies both (3.1) and (3.2). Noticing that each solution of f(A) = 0 is also a root of
the degree k polynomial

k
folew -,

i=1

we see that f(A) = 0 has at most k solutions (counting multiplicities). If Z;‘:l % # 0,
then f (A) = Ohasexactly one nonzero solutionin (2u;, 2pui41) foreach1 <i < k—1.
It Z i=1 3 AL = (), then f (1) = 0 has exactly one solution in each interval of the form
Qui, Z/LH_ 1) not containing zero and there exist a unique 1 < p < k — 1 such that
0 € 2up,2mps1) and 0 is a solution of f(A) = 0 of multiplicity exactly two.
Overall, the remaining k — 1 eigenvalues of the curvature operator of the second
kind of A ® id are given by the kK — 1 nonzero solutions of (3.3) if Z{‘ 13 AL ;é 0, and

by the k — 2 nonzero solutions of (3.3) together with 0 if Zl 1 "’_ =0.In both cases,
there is exactly one eigenvalue in (2u;, 2p4;+1) foreach 1 <i < k- 1.
The proof is complete. O

It is clear from the proof of Theorem 3.1 that

Corollary 3.4 If all the eigenvalues of A € S*(V) lie in the interval [a, b], then all the
eigenvalues of the curvature operator of the second kind of A @ id lie in [2a, 2b].

4 Proof of Theorem 1.1
We apply Theorem 3.1 to dimension three and prove Theorem 1.1.

Proof of Theorem 1.1 Note that R € S%(A*R?) can be written as

R=AQPg,

where A := Ric —% g is the Schouten tensor. If a < b < ¢ are the eigenvalues of I§,
then the eigenvalues of Ric are a + b < a + ¢ < b + ¢ and the scalar curvature is
S = 2(a + b + ¢). Thus, the eigenvalues of A are given by

1 1 1
E(a—l—b—c)gE(a—l—c—b)fz(b—i—c—a).
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Let’s first deal with the case a < b < c. By Theorem 3.1, the eigenvalues of R are
a < b < c, and the two solutions of the equation

a+b—c at+c—b>b b+c—a

:3,
a+b—c—k+a+c—b—k+b+c—a—k

which are given by

b 2
L= “+3—+C + g\/S(a2+b2+cz) —(a+b+o2
Next, one verifies that the expressions of eigenvalues of R in Theorem 1.1 remain
valid for the casesa = b < ¢,a < b = ¢, and a = b = c. Finally, the inequalities
A_ < aand Ay > c follow from simple algebraic manipulations. O

Next, we prove Proposition 1.2.

Proof Parts (1), (3), and (5) have been proved in [24, 28], so we only prove parts (2)
and (4) here. .
Let R € Sé(/\zﬂ@) and let a < b < ¢ be the eigenvalues of R. Then R has

nonnegative sectiona} curvature (or R > (0)ifand onlyifa > 0, and R has nonnegative
Ricci curvature (or R is two-nonnegative) if and only if @ + b > 0. By Theorem 1.1,
the eigenvalues of R are given by

A <a=<b=<c<hky,

where A are defined in (1.1).
Note that R is 3%-n0nnegative ifandonly if A\_ +a + b + % > 0, which is, after
some algebraic manipulations, equivalent to 2a + 2b 4+ ¢ > 0 and

12a% + 12b* + 36ab + 20ac + 20bc > 0.

Both inequalities hold if a > 0. So, we have proved part (2).
To prove part (4), we observe that the inequality A— + a + b + ¢ > 0 is equivalent
toa+b+c>0and

(a+ b)* + (2 + ab) + 3(a + b)c > 0,

which holds provided thata+b > 0.Results with “nonnegative” replaced by “positive”
follows similarly.

To prove the statement for nonpositivity in (2), we note that R has nonpositive
sectional curvature <= —R has nonnegative sectional curvature —> —Ris
3%—nonnegative — Ris 3% is nonpositive. Other results concerning negativity or
nonpositivity can be deduced similarly. O

Below we construct some examples to show the sharpness of Proposition 1.2. In
the following, a < b < c are the eigenvalues of R and € is a small positive number.

@ Springer



The Curvature Operator of the Second Kind in 3D Page 130f19 187

Example4.1 Leta = —e and b = ¢ = 1. Then A_ = —e and A, = *1€. This

provides an example of R € S123 (A2R?) such that Ris (2 + 2¢)-nonnegative but R
does not have nonnegative sectional curvature.

Example4.2 1eta =b =0andc = 1. Then A_ = —% and A4 = 1. This provides
an example of R € S%(/\z]l@) with nonnegative sectional curvature but R is not a-

nonnegative for any o < 3 % This example is the curvature tensor of S? x R with the
product metric.

Example4.3 leta = —€,b =0,andc = 1 + €. Then Ay = ziz 1+ 3€2 + 3e.

This provides an example of R € S3(A2R?) such that R is (3 + 8(€))-nonnegative

2«/1+362+35 V143€2+3e—(1—€) 9

but R does not have nonnegative Ricci curvature, where §(€) = §——F——— -

Example 4.4 1eta = —landb =c=1.ThenA_ = —1l and A4 = % This provides

an example of R € S%(AZR?’) such that Ric > 0 but R is not a-nonnegative for any
o <4

In order to prove part (1) of Theorem 1.4, we need a proposition.

Proposition4.5 LetR € Slzg (A2R3) be an algebraic curvature operator. IfI% is (3+9)-
nonnegative for some 6 € [0, %], then

. 1—-368
Ric > ——

312 —96)
Proof As in [28, Sect. 3], we choose an orthonormal basis of S(% (R3) as follows:

1
91 = —=e1 O e,

V2

1
n = —=e1 O e3,
=

1
@3 = Eez O e3,

1
904:7(61931_62@62)7

5 = (e1 el +eryOey —2e30e3),
v 2f

where {ey, e3, e3} is an orthonormal basis of R3. By [28, Lemma 3.1], we have that
R(fm, ¢1) = R(ps, ps) = R1212, R(p2, 2) = Ri313, R(p3, ¢3) = Ro33, and
R(ps, 5) = 2(Ri313 + Ro323) — SR
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Since R is (3% + §)-nonnegative,we get

o
A

< R(p2, 92) + R(p3, 93) + R(ps, ¢s) + SR (o1, ¢1)
5 1
§(R1313 + Ry323) — <§ - 5) Ri212

3 3 2 i
=2 —-0)R33 — <l —8) E
3 2

Thus, we have Ric > 31(2 3§) S. O

Proof of Theorem 1.4 (1). If M has «-nonnegative R for some o € [1, 3%), then it has

(3 + 8)-nonnegative R for § = Oif « € [1,3]and § = 31 — o > Oif o € [3,31). By
Proposition 4.5, we have Ric > 31(2 32 S.

It was conjectured by Hamilton and proved in [16, 17, 30], and [31] that a three-
manifold with Ric > €S§ for some € > 0 is either flat or compact. Therefore, M
is compact and has positive Ricci curvature unless it is flat. The desired conclusion
then follows from Hamilton’s classification of three-manifolds with positive Ricci
curvature [19].

Since 3%—nonnegativity of R implies nonnegative Ricci curvature, parts (2) and (3)
follow from the classification of three-manifolds with nonnegative Ricci obtained by
Hamilton [20] in the closed case and by Liu [29] in the complete noncompact case,
respectively.

For some « € (31 3> 5], a-nonnegativity of R implies nonnegative scalar curvature.
Therefore, part (4) follows from the classification of compact three-manifolds with
nonnegative scalar curvature, which is a consequence of the work of Perelman [42—44].

O

5 Preserving a-Nonnegativity of R

In this section, we show that «-nonnegative/o-positive curvature operator of the second
kind is preserved by compact Ricci flows in dimension three for any o € [1, 5]. In
view of Hamilton’s ODE-PDE maximum principle (see [20]), it suffices to show that

Hamilton’s ODE
dR

= = = R>+ R%. (5.1)

preserves o-nonnegativity/o-positivity of R. )
Given R € S2(/\2R3), leta < b < c denote the eigenvalues of R. By Theorem 1.1,
the eigenvalues of R are given by

A <a<b<=<c<hky,
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where A4 are defined in (1.1). We define

A+ (o — Da, ifa €[1,2),
A_+a+ (x—2)b, ifa €[2,3),

fu(R) = @=2) ! : (5.2)
A+a+b+ (x—3)c, ifa € [3,4),

Mta+b+c+ (@ —4drs, ifael4,5).

Clearly, we have

Proposition 5.1 Ris a-nonnegative (respectively, a-positive) if and only if fo(R) > 0
(respectively, fu(R) > 0).

Let R(t),t € [0, T), be a solution to (5.1). By [19], the eigenvalues of R evolve by
the ODE system

da 2

i be,

ar a” + bc

db

E:bz—i—ac,

e _ 2y (5.3)
— =c¢" +ac, .
dt

and the scalar curvature S(¢) satisfies

d
ES:Z(a2+b2+c2+ab+ac+bc) = |Ric|?. (5.4)

If 1%(0) is a-nonnegative for some « € [1, 5], then S(0) > 0. By (5.4), S(¢) > O for
each r € [0, T). Moreover, we have either S(t) = 0 or S(¢) > O foreacht € [0, T).
Since there is nothing to prove if S(#) = 0, we may assume S(¢) > 0 in the following
discussions.

We first prove that

Proposition 5.2 Ler R(t), t € [0, T), be a solution to (5.1) with S(t) > 0. Then the
quantities

a a+b ¢ A_ iy |Ric]?

s s s s T s
are monotone non-decreasing in t.

Proof Using (5.3) and (5.4), we derive that

d sa 2
(%) =a@e-a+lo-a 2o,
d fa+Db

dt S

2, 2
)zﬁ(a (c = b) + b*(c — a)) = 0,

d 2
dt (%) = @b -0 +b@=-0) =<0
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a a+b

.. . . .. c
This implies the desired monotonicity of S 5 and S

Using | Ric |?> = 2(a® + b% + ¢? + ab + ac + bc) and (5.3), we compute that

d
E' Ric|> = 4(a® + b + 3 + 3abc + ab® + @b + ac® + a’c + be? + b*e),

and 5

d |Ric 4

E% =5 (@ -0 +p2a- o +a-nh) <0,
yielding the monotonicity of |RSi—§‘2.

Finally, the monotonicity of %i follows from the identity

= Zliﬁ 3|Ric|2_

1
S 6 3 52

a2
and the monotonicity of %. O

Proposition 5.3 Let R(t),t € [0, T), be a solution to (5.1) with S(t) > 0. Let fo (R)be
the function defined in (5.2). If f(0) > ¢S(0) for some ¢ € R, then fy(t) > cS(t) for
allt € [0, T).

Proof Note that f"% can be written as

5+ @-DE, ifaell,2),

foB®) )5S+ B -0t+@—-2%E, ifacl2,3),

S T 5+t @-a4, ifac3,4),

T+t 4 (5-a)ls, ifo €[4,5].
In other words, £ “§R) is the sum of functions that are non-decreasing along (5.1).
Therefore, f"‘éR) is non-decreasing in ¢. O

Combining Proposition 5.3 and Proposition 5.1, we get that

Proposition 5.4 The ODE (5.1) preserves «-nonnegativity/o-positivity of R for any
a €[1,5]

Next, we prove Theorem 1.3.

Proof of Theorem 1.3 Take @ € [1, 5], ¢ > 0 and set
Ko = {R € S3(A'R®) : fu(R) > &S > 0}.

Clearly, Ky ¢ is closed, O (3)-invariant, and invariant under parallel transport. To see
that K ¢ is convex, we observe that

fa(R) = min{R(@1, @1) + - + R(@la). @la)) + (@ — [ ) R@(a)4+1. 9laj+1)},
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where the minimum is taken over all orthonormal bases {¢; }171 for S%(]R3). Since the
composition of the pointwise minimum with a linear map of functionals is concave,
we conclude that f, (R) is concave. Together with the fact that scalar curvature is a
linear function on S% (A2R3), we conclude that

Koe = (fo(R) — £5)7'([0, 00)) N S71([0, 00))

is a convex set. By combining Proposition 5.4 with Hamilton’s ODE-PDE maximum
principle, we conclude that K, . is preserved by the Ricci flow in dimension three. O

Hamilton [19] proved that (compact) Ricci flows in dimension three preserve posi-
tivity, two-positivity, and three-positivity of R, which correspond to positive sectional
curvature, positive Ricci curvature, and positive scalar curvature, respectively. Here,
we note that a similar argument as in the proof of Theorem 1.3 shows that compact
three-dimensional Ricci flows preserve «-nonnegativity of R for any o € [1, 3].

Proposition 5.5 Let (M3, g(®), t € [0,T), be a compact three-dimensional Ricci
flow. If g(0) has a-nonnegative (respectively, a-positive) curvature operator for some

o € [1, 3], then g(t) has a-nonnegative (respectively, a-positive) curvature operator
foreacht € (0, T).

Proof Denote by a < b < c the eigenvalues of R. Clearly, R is o-nonnegative
(respectively, a-positive) if and only if i, (R) > 0 (respectively, > 0), where

a—+ (o —1)b, ifa €[1,2),
ho(R) = .
a+b+ (x—2)c, ifae]2,3]
Since S(#p) = 0 forces S(¢) = 0, we may assume S(¢) > O for ¢ € [0, T'). Note that

ha(B) _ @ —a)§+(@— DS ifac[l,2),
S i+ @-3)%, ifa €[2,3].

The monotonicity of 4, 4£2

ha(R)

,and § obtained in Proposition 5.2 implies that the function

is monotone non- decreasmg under Hamilton’s ODE (5.1). The rest of the proof
uses Hamilton’s ODE-PDE maximum principle as in the proof of Theorem 1.3. O
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