
Simple and Effective Augmentation Methods for CSI Based
Indoor Localization

Omer Gokalp Serbetci, Ju-Hyung Lee, Daoud Burghal, and Andreas F. Molisch
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, USA

serbetci@usc.edu, juhyung.lee@usc.edu, burghal@usc.edu, molisch@usc.edu

Abstract—Indoor localization is a challenging task. Compared
to outdoor environments where GPS is dominant, there is no
robust and almost-universal approach. Recently, machine learning
(ML) has emerged as the most promising approach for achieving
accurate indoor localization. Nevertheless, its main challenge is
requiring large datasets to train the neural networks. The data
collection procedure is costly and laborious, requiring extensive
measurements and labeling processes for different indoor envi-
ronments. The situation can be improved by Data Augmentation
(DA), a general framework to enlarge the datasets for ML, making
ML systems more robust and increasing their generalization
capabilities. This paper proposes two simple yet surprisingly
effective DA algorithms for channel state information (CSI) based
indoor localization motivated by physical considerations. We show
that the number of measurements for a given accuracy require-
ment may be decreased by an order of magnitude. Specifically,
we demonstrate the algorithms’ effectiveness by experiments
conducted with a measured indoor WiFi measurement dataset:
As little as 10% of the original dataset size is enough to get the
same performance as the original dataset. We also showed that
if we further augment the dataset with the proposed techniques,
test accuracy is improved more than three-fold.

I. INTRODUCTION

Localization is one of the critical components of wireless
systems, either for location-based services (e.g., guiding users
to a store) or to improve the efficiency of wireless communi-
cations (e.g., as a basis for beam tracking in MIMO systems)
[1]. While outdoor localization can usually perform trilateration
using GNSS (global navigation satellite systems) signals, e.g.,
GPS, they are ineffective in indoor environments. As a matter
of fact, despite significant theoretical research and test-bed
development, existing methods, such as fingerprinting, trilatera-
tion, and proximity-based localization, have all their challenges,
often related to the highly complex environmental structure of
indoor spaces and the associated propagation characteristics. In
light of the general suitability of Machine Learning (ML) for
solving complex tasks, the past 15 years have seen significant
interest in using ML for indoor localization, and many papers
have been published, see [2] and references therein. These
methods provide robust data-driven solutions and have shown
excellent performance with versatile setups.

The first ML-based indoor localization systems used only
the received signal strength indication (RSSI) to train straight-
forward neural networks. Since then, numerous enhancements
have been introduced both in terms of the signal characteristics
that are employed (use of full Channel State Information CSI,

use of multi-antenna signals) and the neural network structures,
where a larger number of layers (deep learning), as well as
more advanced structures such as LSTM (long short term
memory), have been shown to provide superior results.

Although ML-based indoor localization is a promising ap-
proach, there are several challenges to realizing it in practical
systems. Chief among them is the availability of data required
to train and update such algorithms, which is still perceived as
an Achilles’ heel. ML solutions inherently require significant
data [3]. However, the data acquisition process from each
indoor environment is labor- and time-consuming, requiring
specialized equipment that can provide both the data and the
ground-truth locations and careful labeling and supervision.

The challenge of data limitation is widespread in ML. While
some fields, such as natural language processing or image
recognition, have benefited from an abundance of labeled data,
this is not true in many other areas, of which indoor localization
is one example. One approach to address this issue is data
augmentation techniques, which exploit the invariances found
in the dataset. They have been used successfully in various
areas of ML. For instance, in image classification, rotating,
clipping, or flipping images are widely used augmentation
techniques [4]. However, augmentation techniques must be
tailored to the specific problem to be effective. In this paper,
we utilize domain knowledge to develop data augmentation
techniques for localization problems. In particular, we propose
two methods based on phase shift and amplitude fluctuations
based on the physics of wireless transceivers and wireless
propagation channels, respectively.

The first algorithm utilizes the unavoidable phase drifts in
wireless transceivers. Since transmitters (Tx) and receivers (Rx)
have independent clocks and imperfect synchronization, time-
variant phase offsets are unavoidable. As a second method,
we exploit the fact that there are fluctuations in the amplifiers
during CSI measurements. In this method, we randomly add a
certain amplitude to the measurements made from a particu-
lar measurement device. The proposed augmentation method
provides more data for training and makes the localization
system more robust to the inherent nonidealities of transceiver
hardware.

We will show that these methods are simple to implement
yet surprisingly effective. In particular, we evaluate the perfor-
mance of these algorithms using a real-life WiFi CSI dataset



and demonstrate that with only 10% of the data, we get similar
performances to the original dataset. Moreover, if we use the
same amount of original data, the augmentation improves the
test accuracy of the localization up to three-fold.

Related Works. Several papers in the literature use full
CSI, and not just RSSI, as the basis for their ML indoor
localization [5]–[8]. These papers use CSI in various ways, e.g.,
channel amplitude only, phase information only, or complex
CSI, and employ different ML techniques such as convolu-
tional neural networks (CNN) and residual neural networks.
Moreover, [9], [10] use WiFi as their data source, whereas [11]
uses cellular data for localization. For a comprehensive survey,
please refer to [2].

Only a few papers deal with data augmentation for local-
ization, and those are, to the best of our knowledge, mostly
restricted to RSSI-based systems. Ref. [12] proposes noise
injection, density estimation, random masking, and Variational
Autoencoders (VAE) as an augmentation method in an RSSI-
based indoor localization system. Another ML approach [10]
uses generative adversarial networks, with a tensor completion
algorithm as the generator that produces new RSSI fingerprints.
Ref. [13] uses an RSSI based system, randomly picking beacon
frames and adding the average of the picked signals to the RSSI
of the selected beacons to augment the dataset. In a recent
work, Ref. [14] uses noise injection to the channel frequency
responses as an augmentation technique.

Main Contributions. Unlike the papers mentioned above,
our work proposes augmentation algorithms for localization
with full CSI (compared to the RSSI in the previous work)
based on domain knowledge that goes beyond noise injec-
tion. The proposed algorithms are simple yet efficient data
augmentation techniques that can be implemented as simple
preprocessing steps that are easy to implement. Thus the
contribution of this paper can be summarized as follows:

• We provide one algorithm based on phase rotation that
emulates the realistic behavior of wireless transceivers
(introducing independent random phase shifts at different
transceivers) to the CSI measurements. This can be seen
as a pure augmentation method that always leads to
performance improvement.

• We provide a second algorithm that mimics the fluctua-
tions in the amplifiers in the CSI measurements. This is
another realistic behavior that can occur in any wireless
system. This method requires judicious selection of the
fluctuation statistics since too large or too little amplitude
fluctuation either hurts or leads to no significant perfor-
mance increase, respectively.

• The performance of the proposed algorithms is demon-
strated based on a measured dataset. The numerical eval-
uation is shown in various scenarios, including high-low
data regimes and testing generalization capabilities. We
emphasize that while the simulation results are based on
a particular neural network implementation, the augmen-
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Figure 1: Illustration of data augmentation process.

tation methods can be applied to any network structure.

II. BACKGROUND

A. Data Augmentation

Data augmentation is a technique widely used in ML to
enhance the generalization capabilities of models by artificially
expanding the training dataset. In a data-driven ML approach,
such as supervised learning, a dataset D = {(xi,yi)}Ni=1 is
utilized, where x ∈ X represents the input feature and y ∈ Y
denotes the label. For data point i, (xi,yi) signifies the input
feature-label tuple and N corresponds to the total number of
data points.

The objective of the augmentation is to identify a transfor-
mation operator T : X → X that remains invariant with respect
to the dataset D. Formally, for a given mapping f : X → Y ,
the condition f(x) = f(T (x)) must hold. This implies that
when the augmentation operator is applied to an input feature
x, the corresponding mapping in the label space y is preserved.
Common examples in image classification include operations
such as rotation and translation of images. In the context of
indoor localization problems, our goal is to discover suitable
transformation operators T and their corresponding effects on
the dataset.

Fig. (1) shows the data augmentation procedure and how
it is connected to the neural network training. Note that
data augmentation deals with only training data. Throughout
the experiments, we separate the training and test set at the
beginning and apply augmentation techniques solely to the
training set.

B. Indoor Localization

We first briefly summarize the methods, features used in the
methods, and available ML solutions to the indoor localization
problem. The ML-based methods considered in this paper use
direct coordinates as their labels and use different type input
features, such as RSSI or CSI, to find an appropriate matching.

Input features of the methods mentioned could be RSSI, CSI,
CSI amplitude, CSI phase, or the pre-processed features such
as Angle of Arrival(AoA) images created from CSI data to



feed CNN-based localization algorithms. These inputs can be
acquired via wireless technologies such as Bluetooth, WiFi,
LTE, etc. [15]. These data structures are used with deep
learning structures such as CNN and ResNets as supervised
learning solutions [2]. There are also unsupervised and semi-
supervised learning solutions that are out of the scope of this
paper. Further and more detailed information can be found in
the survey paper [2].

III. CSI-BASED INDOOR LOCALIZATION

In this section, we provide the system model for CSI-
based indoor localization, which is the main application of our
proposed data augmentation method.

A. System Model

Assume there are NAP wireless access points (APs), and
each AP has NRX antennas. The system employs orthogonal
frequency-division multiplexing (OFDM) with M subcarriers.
Without loss of generality, here, the localization operates
based on uplink transmission. Let rk,j be the received signal
at the kth AP’s jth antenna, where k ∈ {1, 2, . . . NAP},
j ∈ {1, 2, . . . NRX}. Further, let the transmitted signal from
position i at subcarrier frequency fm be si(fm), where i ∈
{1, 2, . . . N}, and m ∈ {1, 2, . . . ,M}, and hk,j(fm) be the
channel frequency response at the mth subcarrier with respect
to kth anchor points’ jth antenna. Then,

rk,j(fm; i) = hk,j(fm; i)si(fm) + wk,j (1)

where wk,j ∼ CN (0, σ2
m,j). The noise samples are i.i.d.

zero-mean circularly symmetric complex Gaussian samples
with variance σ2

k,j . Moreover, the channel response for an
environment with L multi-path components (MPC) is:

hk,j(fm) ≜
L∑

l=1

αlak,j(ϕl, θl, fm)e−j2πfmτl (2)

where ak,j(ϕl, θl, fm) is the antenna pattern of jth element
with respect to azimuth angle ϕl, elevation angle θl, and
the MPC has a complex amplitude gain αl. The complex
exponential e−j2πfmτl is the characterization of the delay τl
in frequency domain.

B. DL-based Indoor Localization

We use feedforward neural networks for supervised learning
as follows. Let D = {(xi,yi)}Ni=1 be the dataset consisting of
N measurements (input features). For each measurement xi,
corresponding label data yi consist of the information regarding
the location of UE, e.g., the coordinate of the UE location and
the corresponding fingerprint. The input feature xi ∈ Rd is
a real vector, which consists of the CSI of the measurement,
in which the dimension d depends on several factors, such as
the number of anchor points, the number of receiver antennas,
the number of subcarriers, etc. Note that the complex-valued

CSI data can be split into real and complex parts and then
concatenated for real-value tensors in a neural network.

In more involved localization algorithms, the input feature
xi could be 2-D data, including, e.g., angle-of-arrival (AOA)
information. Then, depending on being a fingerprinting or
direct coordinate application, the label yi ∈ Rn could be a
scalar value for fingerprint index or 2-D coordinate. Lastly,
the neural network could be trained to handle the localization
as a classification or regression problem respectively; in our
examples, we will use fully connected feedforward neural
networks to solve a regression problem.

We are now ready to formulate the problem of data augmen-
tation for an ML solution to the indoor localization problem.
Let F be the hypothesis class and A be the algorithm, namely
deep learning training procedure when it is fed through the
dataset D. Then, let f : X → Y be the model that is the output
of the algorithmA, where f ∈ F . We assume that the input fea-
tures are channel response tensors as x ∈ X ⊆ CM×NRX×NAP .
The label y ∈ Y ⊆ R2 is the coordinates of the UEs.

The problem this paper considers is finding an augmentation
operator T : X → X such that R(f⋆) ≤ R(f), where f⋆ is
the output of the algorithm A, which is fed by dataset D⋆, and
R(f) is the true risk of the model f . Dataset D⋆ is produced
after operator T is applied on dataset D.

IV. DATA AUGMENTATION METHODS FOR CSI-BASED
INDOOR LOCALIZATION

This section introduces the data augmentation algorithms for
the indoor localization dataset D consisting of N samples.

A. Independent Phase Shift-based Data Augmentation

The first algorithm is based on the observation that in
wireless systems, the clocks of different APs suffer from
phase noise and drift that is independent between APs, and
independent of the phase of the UE.1 The fact of such in-
dependent phase shift inspires us to generate augmented CSI
data by having each AP add an independent phase shift to each
recorded measurement signal from the UE. Note, however, that
this phase shift is the same over the different subcarriers on
one AP since it arises from the same physical source, namely
the local oscillator. For example, when looking at only the kth

AP, we generate a random phase θ ∼ U [0, 2π] which then
is added to all signals measured by this AP of interest, which
corresponds to M×NRX different complex channel responses,
by multiplying ejθ with each channel response hk,j(fm). As
a result, a total of NAP random phases are generated at each
augmentation step, and these phases are entered, as complex
exponentials, in the associated channel responses.

Algorithm 1 presents the augmentation procedure based on
the independent phase shift we discussed above. The operator
⊗ below corresponds to the tensor product described earlier.

1Note that further different phase variation/drift could arise from small
scale variation in the environment or variation of the capturing devices, though
such changes as observed at the different APs might be correlated.



Algorithm 1: Independent Phase Shift-based Data Aug-
mentation
Input: D = {(xi,yi}Ni=1, N⋆, N,NAP, NRX,M
Output: D⋆ = {(xi,yi)}N

⋆

i=1

1 i← 1
2 j ← 1
3 D⋆ ← D
4 while j +N ≤ N⋆ do
5 θ ← U [0, 2π]NAP

6 x⋆
i ← xi ⊗ ejθ

7 D⋆ ← D⋆ ∪ (x⋆
i ,yi)

8 j ← j + 1
9 i← i+ 1

10 if N ≤ i then
11 i← 1
12 end
13 end

Each element of the random phase vector’s ejθ is multiplied by
the corresponding AP’s channel response, which is a M×NRX

matrix.

B. Data Augmentation with Random Amplitude

In the first algorithm we introduced, we tried to mimic
the potential phase drift appearing in most wireless systems.
We next propose an augmentation algorithm that emulates
the potential amplifier fluctuations, which can result, e.g.,
from the temperature drift of the amplifiers. To leverage this
phenomenon, we uniformly generate an amplitude from the
interval [−P ⋆, P ⋆] dB for each anchor point, where P ⋆ is a
user-defined parameter (alternative statistics of the fluctuations,
possibly based on measurements of typical devices, can be used
instead). Then, this amplitude is added (on a dB scale) to all
measured signals by that anchor point, similar to the procedure
in Algorithm 1. Note that by adding these random fluctuations,
we do not mimic the fading but the actual fluctuations caused
by the measurement device. Furthermore, this fluctuation is
also fundamentally different from random noise injection.
Algorithm 2 provides a detailed description of the procedure.

V. NUMERICAL EVALUATION

This section shows the impact of our proposed two data
augmentation methods (Algorithms 1 and 2) for indoor local-
ization. For the experiments, a measured WiFi CSI dataset,
Wireless Indoor Localization Dataset (WILD) [16], is used as
the original dataset; the details are elaborated in the following.

Evaluation. For the main performance metric of the DNN-
based indoor localization, mean square error (MSE) is con-
sidered, which evaluates the level of misestimation (e.g., the
accuracy of localization) in the entire dataset. The lower the

Algorithm 2: Random Amplitude-based Data Augmen-
tation
Input: D = {(xi,yi}Ni=1, N⋆, N,NAP, NRX,M
Output: D⋆ = {(xi,yi)}N

⋆

i=1

1 i← 1
2 j ← 1
3 D⋆ ← D
4 while j +N ≤ N⋆ do
5 P ← U [0, 2π]NAP

6 x⋆
i ← xi ⊗ P

7 D⋆ ← D⋆ ∪ (x⋆
i ,yi)

8 j ← j + 1
9 i← i+ 1

10 if N ≤ i then
11 i← 1
12 end
13 end

values of MSE, the better. The MSE is computed from the
predicted f̂(xi) and the ground-truth y:

MSE({xi,yi}Ni=1) =
1

N

N∑
i=1

∥f̂(xi)− yi∥22 (3)

where f̂ is the trained neural network model.
WILD Dataset. The WILD dataset contains measurements

from two different environments separately. The first one is
an NLOS environment over 1500 sq. ft. with NAP = 4 APs,
and the second one is a 500 sq. ft. LOS environment with
NAP = 3 APs, where each AP has NRX = 4 RX antennas. The
dataset is based on a WiFi system with M = 234 subcarriers.
Moreover, N = 51613 data points for the NLOS environment
and N = 56395 for the LOS environment are collected. The
dataset presents the measurements as a complex 4-D tensor, i.e.,
N×M×NRX×NAP. The corresponding UE coordinates labels
are (x, y) ∈ R2. Each measurement in the dataset represents
the CSI data derived from Wi-Fi signal emitted by APs in
the environment, which a UE (i.e., MapFind) collects. The
measurement setup is summarized in Table I.

With the original dataset, we demonstrate the effect of
our proposed augmentation method in three different (size of
original dataset) scenarios: i) Small (4K samples), ii) Medium
(20K samples), and iii) Large (40K samples). Here, a small
data regime refers to a small dataset size compared to the
usual deep learning applications. The medium case aims to
show the transition from low to high data regimes. Finally, we
are interested in how much performance gains in high data
regimes, where we have enough data to perform reasonably.

A. Impacts of Independent Phase Shift-based Data Augmenta-
tion (Algorithm 1)

To evaluate the performance of the independent phase shift
as an augmentation method, we used a feedforward neural



(a) LOS scenario (b) NLOS scenario

Figure 2: Measurement scenario of original dataset (WILD [16]). The authors
in [16] used MapFind, an autonomous robot platform that performs an
autonomous walk through the spaces to map the environment and collect indoor
localization data.

Parameter LOS NLOS

Scale of Environment 500 sq. ft. 1500 sq. ft.
# of AP (NAP) 4 4
# of Antenna (NRX) 3 4
# of Subcarrier (M ) 234 234
# of Data Points (N ) 56395 51613

Table I: Measurement setup for original dataset (WILD [16]).

network with three hidden layers, each consisting of 256
neurons with ReLU activation function and trained for 300
epochs. The augmentation method is applied to NLOS and LOS
datasets separately.2

Each numerical column of Table II, Table III, and Table
IV gives the test set performance with respect to MSE. No
Augmentation refers to training with the original data only,
which in the low-data case, we train with only 4000 samples.
The other columns refer to training with a dataset augmented by
the given multiple compared to the original size. For example,
a low data regime with ×6 means training with 24000 samples,
where 20000 samples are generated with the augmentation
algorithm and 4000 samples are the original data.

In all cases, data augmentation significantly improves per-
formance. First, compare the accuracy improvement for a given
number of measured labeled data; in this case, augmentation
provides up to 3.25 times better MSE. Of particular practical
importance is the reduction of the MSE in the NLOS case in the
low-data case, where augmentation allows to realize reasonable
(1.5 m) accuracy instead of more than 5 without augmentation.
Moreover, we improve the localization performance even when
the measured data set is very large, reducing the MSE from 0.8
to 0.4 in NLOS.

Another practically relevant question is: How much can we
reduce the size of the measured and labeled training set without
losing accuracy? We thus performed an additional experiment
in which we augmented the low data regime to create a set as
large as the high data case, in other words, ×10 of the initial
dataset size. In the NLOS case, we get 0.823344, and in the

2We focus on data augmentation for performance boost instead of using
more sophisticated neural networks.

Table II: Impact of Algorithm 1 for Small original dataset. MSE score
comparison with respect to augmentation size. w/o Aug. and w Aug. represent
the case without and with data augmentation, respectively.

Size of Training Set MSE (LOS Env.) MSE (NLOS Env.)

w/o Aug. (1X) 0.994347 5.204818
w Aug. (2X) 0.599574 3.089172
w Aug. (3X) 0.653126 1.608795
w Aug. (4X) 0.624667 2.067157
w Aug. (5X) 0.340235 1.349240
w Aug. (6X) 0.307535 1.631480

Table III: Impact of Algorithm 1 for Medium sized original dataset. MSE score
comparison with respect to augmentation size.

Size of Training Set MSE (LOS Env.) MSE (NLOS Env.)

w/o Aug. (1X) 0.402769 1.238651
w Aug. (2X) 0.316508 1.067086
w Aug. (3X) 0.183591 0.804732
w Aug. (4X) 0.152524 0.777409
w Aug. (5X) 0.130289 0.613748
w Aug. (6X) 0.123952 0.523407

Table IV: Impact of Algorithm 1 for Large original dataset. MSE score
comparison with respect to augmentation size.

Size of Training Set MSE (LOS Env.) MSE (NLOS Env.)

w/o Aug. (1X) 0.252251 0.824396
w Aug. (2X) 0.149603 0.635322
w Aug. (3X) 0.130312 0.574232
w Aug. (4X) 0.112951 0.451495
w Aug. (5X) 0.099951 0.427812
w Aug. (6X) 0.093153 0.395018

LOS case, 0.316802 MSE, similar to No Augmentation cases
of high data regimes. These results show that it is possible
to achieve the same performance but with only 10% of the
required measurement/labeling effort (remember that the high
data regime has 40000 samples, whereas we have only 4000
samples in the low data regime!).

B. Impacts of Random Amplitude-based Data Augmentation
(Algorithm 2)

For the experiments with the random-amplitude augmenta-
tion, we have used 75 to 150 epochs, and the neural network
architecture is kept the same as the previous experiment. We
used P ⋆ = 1.5 dB in the small and medium data cases, but
P ⋆ = 0.75 dB in the large-data case (see below for motivation).

We first notice that Algorithm 2 does not provide perfor-
mance improvement for the large data set and can actually
degrade performance due to overfitting in the rich data set. The
problem would be even more pronounced if we used P ⋆ = 1.5
in the large-data case, so we adopted the smaller value of 0.75.

However, Algorithm 2 provides significant performance im-
provements for medium and small datasets. Tables V and VI
demonstrate the significant performance improvements: up to
2 and 1.7 times reduction of the MSE in the NLOS and LOS
in the small dataset case, respectively.



Table V: Impact of Algorithm 2 for Small original dataset. MSE score
comparison with respect to augmentation size.

Size of Training Set MSE (LOS Env.) MSE (NLOS Env.)

w/o Aug. (1X) 1.41290116 5.72591114
w Aug. (2X) 1.35329723 3.97055149
w Aug. (3X) 1.04413772 3.59251714
w Aug. (4X) 0.99395692 3.81182671
w Aug. (5X) 0.87801009 3.08143544
w Aug. (6X) 0.83151478 2.85603070

Table VI: Impact of Algorithm 2 for Medium original dataset. MSE score
comparison with respect to augmentation size.

Size of Training Set MSE (LOS Env.) MSE (NLOS Env.)

w/o Aug. (1X) 0.51810563 1.41850710
w Aug. (2X) 0.40300253 1.57022965
w Aug. (3X) 0.38420656 1.62614357
w Aug. (4X) 0.36034465 1.23139620
w Aug. (5X) 0.41608047 1.52679873
w Aug. (6X) 0.39935032 1.34331584

Table VII: Impact of Algorithm 2 for Large original dataset. MSE score
comparison with respect to augmentation size.

Size of Training Set MSE (LOS Env.) MSE (NLOS Env.)

w/o Aug. (1X) 0.24627791 0.80115551
w Aug. (2X) 0.22379075 1.18527663
w Aug. (3X) 0.21959668 0.81640501
w Aug. (4X) 0.23696624 0.98888855
w Aug. (5X) 0.25395477 1.08478308
w Aug. (6X) 0.25659689 1.02641153

We also implement random noise injection as a baseline,
adding each data point zero mean unit variance circular sym-
metric complex Gaussian random variable realization. How-
ever, the MSE reduction is between 0 and 50%, i.e., signif-
icantly less than the factor-3 reduction our method achieves.
Finally, data augmentation is significantly more helpful in small
dataset regimes than large dataset regimes. Test set performance
can suffer from overfitting when data augmentation is applied
to large datasets already rich enough to perform well. Table VI
and Table VII show this bad effect of data augmentation over
large datasets.

VI. CONCLUSION

In this work, we introduced two novel and simple yet
effective data augmentation techniques for deep-learning-based
indoor localization using CSI. Based on the physical phenom-
ena of the localization transceivers, namely phase drift and
amplifier fluctuations, the augmentation methods reduce the
required amount of measured and labeled data, thus reducing
the cost and labor for establishing suitable training sets. Results
from a real-world WiFi dataset showed that augmentation is
very effective, especially in small and medium-sized datasets.
The random-amplitude approach is effective for small data
sets but might cause overfitting in some scenarios where we

already have many training samples. On the other hand, the
random-phase approach provides performance improvements in
all cases and may thus be the preferable solution.

According to the experiments, our method allows the same
performance by using a data set of only 10% of the original
data. Conversely, MSE can be improved by up to a factor of 3
by augmenting.
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