
Computer Physics Communications 299 (2024) 109125

Available online 12 February 2024
0010-4655/© 2024 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Physics Communications
journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Optimized parallelization of boundary integral Poisson-Boltzmann solvers!

Xin Yang, Elyssa Sliheet, Reece Iriye, Daniel Reynolds, Weihua Geng ∗

Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA

A R T I C L E I N F O A B S T R A C T
Keywords:
Poisson-Boltzmann
Boundary integral
Treecode
MPI
GPU
COVID-19

The Poisson-Boltzmann (PB) model governs the electrostatics of solvated biomolecules, i.e., potential, field,
energy, and force. These quantities can provide useful information about protein properties, functions, and
dynamics. By considering the advantages of current algorithms and computer hardware, we focus on the
parallelization of the treecode-accelerated boundary integral (TABI) PB solver using the Message Passing
Interface (MPI) on CPUs and the direct-sum boundary integral (DSBI) PB solver using KOKKOS on GPUs. We
provide optimization guidance for users when the DSBI solver on GPU or the TABI solver with MPI on CPU should
be used depending on the size of the problem. Specifically, when the number of unknowns is smaller than a
predetermined threshold, the GPU-accelerated DSBI solver converges rapidly thus has the potential to perform PB
model-based molecular dynamics or Monte Carlo simulation. As practical applications, our parallelized boundary
integral PB solvers are used to solve electrostatics on selected proteins that play significant roles in the spread,
treatment, and prevention of COVID-19 virus diseases. For each selected protein, the simulation produces the
electrostatic solvation energy as a global measurement and electrostatic surface potential for local details.

1. Introduction

Since the invention of X-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy, the structures of biomolecules such as
proteins and nucleic acids has become largely available to computa-
tional bioscientists. For example, as of October 13, 2023, there are
210,554 structures stored in the protein data bank (PDB) [1]. These
available structures make the computational simulation of biomolecules
possible, which tremendously promotes the advancement of structural
biology research. At the molecular level, where length is normally
measured in angstroms (Å), the structures, properties, functions, and
dynamics of proteins are critically determined by the electrostatic in-
teractions between proteins, ligands, and their solvent environment.
The fundamental physical theory characterizing these electrostatics in-
teractions is Gauss’s law, the differential form of which leads to the
Poisson-Boltzmann (PB) model that incorporates quantities such as me-
dia permittivity, protein charge distribution, electrolytes distribution
in solvent, temperature, etc. With the assistance of numerical algo-
rithms and computational tools, the PB model has broad applications
in biomolecular simulations, including protein structure [12], protein-
protein interaction [14,26], chromatin packing [3], protein pKa values,

! The review of this paper was arranged by Prof. W. Jong.
* Corresponding author.
E-mail addresses: xiny@smu.edu (X. Yang), esliheet@smu.edu (E. Sliheet), ririye@smu.edu (R. Iriye), reynolds@smu.edu (D. Reynolds), wgeng@smu.edu

(W. Geng).

protein-membrane interactions, [7,48], binding energy [34,45], solva-
tion free energy [39,43], ion channel profiling [40], etc.

Solving the PB model accurately and efficiently is challenging due
to a variety of factors, such as the large problem dimension, the com-
plex geometry of the protein, the jump of dielectric constants across
media interface, and the singular charge representation. In the past
15 years, we have been working on developing fast and accurate PB
solvers as useful tools for theoretical and computational bio-scientists
[11,17,19–22]. Among the many attempted approaches, our favorite
choices are the boundary integral PB solvers [19,20], which potentially
have the best combination of efficiency, accuracy, memory usage, and
parallelization. This manuscript will focus on the parallelization devel-
opment of boundary integral PB solvers.

Boundary integral PB solvers are amenable to parallel computing
because solving the boundary integral PB model is essentially similar
to computing the pairwise interactions between the charges or induced
charges located at the boundary elements, which is in fact an !-body
problem. The parallelization of these pairwise interactions with "(!2)
computational cost is straight-forward. When fast algorithms, such as
treecode [30] or fast multipole method (FMM) [23] are involved, ex-
tra work is needed to ensure the parallel efficiency [9,47]. This article

https://doi.org/10.1016/j.cpc.2024.109125
Received 16 December 2023; Received in revised form 3 February 2024; Accepted 6 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:xiny@smu.edu
mailto:esliheet@smu.edu
mailto:ririye@smu.edu
mailto:reynolds@smu.edu
mailto:wgeng@smu.edu
https://doi.org/10.1016/j.cpc.2024.109125
https://doi.org/10.1016/j.cpc.2024.109125
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109125&domain=pdf

Computer Physics Communications 299 (2024) 109125

2

X. Yang, E. Sliheet, R. Iriye et al.

emphasizes the comparison for parallelization between treecode and
direct-sum when different computing hardware are available. With MPI
implementation using multicore CPUs, for moderate numbers of parti-
cles we can build the tree on every CPU/task thus all particle-tree inter-
actions can be concurrently done with high parallel efficiency [9,20].
When the number of particles are huge thus replicating the tree on
each task is not possible, domain decomposition approach can be used
instead [9,37].

In recent years, Graphic Processing Units (GPUs) have revolution-
ized computation-intensive tasks, including high performance comput-
ing, call center, autopilot, artificial intelligence, etc. One GPU card
can consist of hundreds to thousands of cores and can rapidly im-
plement large quantities of tasks, particularly single instruction multiple
data (SIMD) tasks that benefit from large-scale concurrency. The !-body
problem in which all particles concurrently interact with all other par-
ticles is thus very suitable for GPU computation. Calculation of !-body
interactions using direct-sum on GPUs can be traced back to the first
decade of the 21st century [16,35]. Later, when fast algorithms, such as
treecode, were designed for the !-body problem, their GPU implemen-
tation is also possible [4,6,24]. However, these complex algorithms are
challenging to implement on GPUs, thereby reducing the achievable
level of parallel speedup. For example, as shown in [5], when more
than 100k particles are involved in an !-body interaction, an NVIDIA
GeForce 8800GTX GPU outperforms an Intel Xeon CPU running at 3.4
GHz by a factor of about 100 using direct summation as opposed to a
factor of about 10 using Barnes-Hut treecode [2].

Our argument is that when a fast algorithm is available to replace
the direct method e.g. treecode vs. direct summation, there is a break-
even number !# such that the fast algorithm should only be applied
when the problem size exceeds this threshold. For example, for an !-
body problem, consider the $1! log! treecode algorithm against the $2!2
direct sum, where $1 and $2 are some constants calculated from the al-
gorithms, the break-even number !# is the ! that satisfies the equation
$1! log! = $2!2. Due to the algorithmic simplicity of direct summation,
the break-even number !# becomes considerately larger on GPUs in
comparison to CPUs. Thus when the efficiency of the implementation is
of critical importance, such as when these are used repeatedly within
molecular dynamics or Monte Carlo simulations, we should use direct
summation on GPU when the problem size is smaller than !#. As we will
show in the section of numerical results, !# for the current GPU/CPU
hardware conditions used for this project is about 250,000. In practice,
molecular surface with 250,000 triangular elements can readily rep-
resent a large group of proteins with less than 2000-3000 atoms. For
larger problems, we can use the MPI-based parallel treecode [9] or use
the domain decomposition approach [37]. In short, every method has
its own advantageous size of problems. We also note that the previous
studies that have utilized a mix of hardware and methods, including the
elegant work using MPI and GPUs [42]. We additionally point out the
study by Wilson et al. [46] wherein an Orthogonal Recursive Bisection
(ORB) tree based domain decomposition [37] is applied to allow each
MPI task to only contain a local essential tree. The majority of the com-
putation is then transferred to the GPU available on the node. This work
is efficient for large problems but requires additional hardware support
such that each node should have compatible multiple CPUs and a GPU
card.

In this work we focus on two approaches for the parallelization of
boundary integral PB solvers. One is the parallelization of the treecode-
accelerated boundary integral (TABI) solver using MPI which builds
an identical tree on each task/CPU. Its parallelization occurs at four
stages of the TABI solver: source term computation, treecode for matrix-
vector product, preconditioning, and energy computation. Among these
stages, we apply the schemes developed for !-body parallelization [9]
to a more complicated boundary integral PB problem, and develop
MPI-based parallelization for the preconditioning scheme designed for
boundary integral solvers [8]. Our second parallelization approach fo-
cuses on GPU-based parallelization of the direct-sum boundary integral

(DSBI) solver, which concurrently computes the source term, matrix-
vector product, and energy computation. We note that we did not use
the preconditioning scheme in this approach since its GPU implementa-
tion is complicated and inefficient. As we will explain in the section of
theories and algorithms and show in the section of numerical results, for
some proteins whose surface triangulations contain a few poor-quality
triangles, without using the preconditioning schemes will take longer
time for the GMRES [36] iterative solver to converge, which is a limi-
tation we are still working to improve.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the theories and algorithms involving the PB model, the boundary
integral method, the treecode algorithm, the GMRES preconditioning
scheme, the GPU and MPI parallelization, and biological information
on the COVID-19 related proteins. Following that, we provide numer-
ical results and related discussion in Section 3. This paper ends with
short sections on software dissemination and concluding remarks.

2. Theories and algorithms

In this section, we will first briefly describe the PB model. Then
we present a brief introduction to the treecode-accelerated boundary
integral (TABI) PB solver. After that, we move to the parallelization
schemes, which include a MPI based TABI solver and a GPU-accelerated
direct-sum boundary integral (DSBI) Solver. This section ends with the
introduction of the proteins that are involved in COVID-19 diseases, and
are the target for our simulations.

2.1. The PB model

The PB model is illustrated in Fig. 1(a). Consider a domain Ω in ℝ3

divided by the molecule surface Γ into the molecule domain Ω− with di-
electric constant %− and the solvent domain Ω+ with dielectric constant
%+, i.e., Ω = Ω−⋃Ω+. Note that the surface Γ here is a 2-d illustra-
tion of a 3-d molecular surface of the protein 6yi3 whose triangulated
molecular surface is given in Fig. 1(b). This triangulated surface pro-
vides the discretized space for the boundary integral method that we
adopt. Note that all the proteins used in this article are from the Protein
Data Bank (PDB) [1]. We refer to the proteins using their 4-digit PDB
ID numbers, and detailed information on each can be found on the PDB
website. Protein 6yi3 is one of the COVID-19 proteins of interest in this
study, which will be described in the following sections.

Charges in Ω− illustrated as circled “+” and “-” signs are partial
charges assigned to the centers of atoms by using the force field, while
charges in Ω+ illustrated as “+” and “-” signs are mobile ions described
by the Boltzmann distribution. Assuming equal amounts of positively
and negatively charged electrolytes, then according to Gauss’s law the
charge distribution for ! ∈Ω+

−∇ ⋅ (%(!)∇&(!)) + (̄2(!) sinh (&(!)) =)(!), (1)
subject to interface continuity for the potential & and flux density %&",

[&]Γ = 0 and [%&*]Γ = 0. (2)
Here * = (!+, !,, !-) is the outward normal direction of the interface
Γ, &* =

.&

.* is the directional derivative in *, and the notation [/]Γ =
/+ − /− is the difference of the function / cross the interface Γ.

In Eqs. (1) and (2), % is a piecewise function for the dielectric con-
stants in Ω− and Ω+. Here (is the inverse Debye screening length,
which measures ionic strength and its modified version (̄ is given as
(̄2 = %+(2. The value of (is nonzero in Ω+ only. In our numerical im-
plementation, the unit of length is Å and the potential & has units 0$∕Å.
To compute the free energy in kcal/mol/0$, after computing & it must
be multiplied by a factor of 332.0716. For further details regarding the
definitions of variables, coefficients, and units in the PB model we refer
the reader to [18,25].

Computer Physics Communications 299 (2024) 109125

3

X. Yang, E. Sliheet, R. Iriye et al.

Fig. 1. (a) The PB model with molecular domain Ω− and solvent domain Ω+ separated by the molecular surface Γ, (b) The triangulation surface of protein 6yi3,
whose 2-d illustration is used in (a) as the molecular surface Γ.

The source term) in Eq. (1) is the summation of the charge distri-
bution in Ω− using delta functions for 1$ partial charges located at !2,
i.e.,)(!) = 434

1$∑
2=1

526(!−!2), where 4 is a constant to balance the units.
Due to the singular partial charges in the source)(!), the electrostatic
potential &(!) goes to infinity as ! → !2.

From the description of the PB model above, it is clear that nu-
merical solutions to the PB model face many challenges, including the
complex geometry as illustrated in Fig. 1(b), interface conditions as in
Eq. (2), the singular charges in), the infinite computational domain
in ℝ3, etc. These numerical difficulties are challenging for grid-based
methods, but can be conveniently addressed with the boundary integral
method as described next.

2.2. Boundary integral PB solvers

In this subsection we describe the boundary integral method for
computing the electrostatic surface potential and solvation free en-
ergy [17,20]. We present the boundary integral form of the PB implicit
solvent model, the discretization of the boundary integral equations, the
treecode algorithm for accelerating the matrix-vector product, and the
preconditioning scheme to alleviate the rising condition number when
the triangulation quality deteriorates due to complex geometry. Note
these algorithms were described in previous work [8,20,30] and this
paper emphasizes the parallelization of them using multicore CPUs and
GPUs. Following the tradition of the boundary integral method, we use
and $ to represent the spatial position as opposed to the previously
used !. We also denote Ω1 =Ω−, Ω2 =Ω+, %1 = %−, and %2 = %+.

2.2.1. Boundary integral form of PB model
This section summarizes the well-conditioned boundary integral

form of the PB implicit solvent model we employ [20,28]. Apply-
ing Green’s second identity and properties of fundamental solutions to
Eq. (1) yields the electrostatic potential in each domain,

&(#) =∫
Γ

[
70(#,$)

.&($)
.*

−
.70(#,$)

.*$
&($)

]
d8$

+
1$∑
9=1

5970(#,$9), # ∈Ω1, (3a)

&(#) =∫
Γ

[
−7((#,$)

.&($)
.*

+
.7((#,$)

.*$
&($)

]
d8$, # ∈Ω2, (3b)

where 70(#, $) and 7((#, $) are the Coulomb and screened Coulomb
potentials, respectively

70(#,$) =
1

43|# − $| and 7((#,$) =
0−(|#−$|
43|# − $| . (4)

Then applying the interface conditions in Eq. (2) with the differenti-
ation of electrostatic potential in each domain yields a set of bound-
ary integral equations relating the surface potential &1 and its normal
derivative .&1∕.* on Γ,

1
2 (1 + :)&1(#) = ∫

Γ

[
;1(#,$)

.&1($)
.*

+;2(#,$)&1($)
]
d8$

+81(#), # ∈ Γ, (5a)
1
2

(
1 + 1

:

) .&1(#)
.*

= ∫
Γ

[
;3(#,$)

.&1($)
.*

+;4(#,$)&1($)
]
d8$

+82(#), # ∈ Γ, (5b)
where : = :2∕:1. As given in Eqs. (6a)-(6b) and (10), the kernels ;1,2,3,4
and source terms 81,2 are linear combinations of 70, 79, and their first
and second order normal derivatives [20,28],

;1(#,$) =70(#,$)−7((#,$),

;2(#,$) =:
.7((#,$)

.*$
−

.70(#,$)
.*$

, (6a)

;3(#,$) =
.70(#,$)

.*#
− 1

:
.7((#,$)

.*#
,

;4(#,$) =
.27((#,$)
.*#.*$

−
.270(#,$)
.*#.*$

, (6b)

where the normal derivative with respect to # is given by

.7(#,$)
.*#

= −*(#) ⋅∇#7(#,$) = −
3∑

<=1
*<(#).+<7(#,$), (7)

the normal derivative with respect to $ is given by

.7(#,$)
.*$

= *($) ⋅∇$7(#,$) =
3∑

!=1
*!($).,!7(#,$), (8)

the second normal derivative with respect to # and $ is given by

.7(#,$)
.*$.*#

= −
3∑

<=1

3∑
!=1

<(#)!($).+<.,!7(#,$), (9)

and the source terms 81,2 are

81(#) =
1
:1

1$∑
9=1

5970(#,$9) and 82(#) =
1
:1

1$∑
9=1

59
.70(#,$9)

.*#
. (10)

Computer Physics Communications 299 (2024) 109125

4

X. Yang, E. Sliheet, R. Iriye et al.

Fig. 2. Details of treecode. (a) tree structure of particle clusters. (b) particle-cluster interaction between particle #2 and cluster $ = {#=}. #$: cluster center; >:
particle-cluster distance; and ?$: cluster radius.

Once the potential and its normal derivative are solved from
Eqs. (5a)-(5b), the potential at any point inside the molecule can be
computed via Eq. (3a), or a numerically more accurate formulation
may be used from [28]:

&1(#) = ∫
Γ

[
;1(#,$)

.&1($)
.*

+;2(#,$)&1($)
]
d8$ +81(#), # ∈Ω1.

(11)
With the potential and its normal derivative on Γ, the electrostatic free
energy can be obtained by

@free = 1
2

1$∑
9=1

59&1($9)

= 1
2

1$∑
9=1

59
⎛
⎜
⎜⎝∫Γ

[
;1($9,$)

.&1($)
.*

+;2($9,$)&1($)
]
d8$ +81($9)

⎞
⎟
⎟⎠
.

(12)
The electrostatic solvation free energy can also be obtained by

@sol = 1
2

1$∑
9=1

59&reac($9)

= 1
2

1$∑
9=1

59 ∫
Γ

[
;1($9,$)

.&1($)
.*

+;2($9,$)&1($)
]
d8$, (13)

where &reac(#) = &(#) − 81(#) is the reaction field potential [20,28].
In our numerical results in Section 3, we focus on solution of the PB
equation and calculation of the electrostatic solvation free energy.

2.2.2. Discretization of boundary integral equations
The integrals in Eqs. (5a)-(5b) can be discretized by centroid collo-

cation, which is popular due to its simplicity [20]. Alternatively, it can
be discretized using more complicated approaches such as node collo-
cation [33,44], curved triangles [17], or Galerkin’s method [11], with
each resulting in a trade-off between accuracy and efficiency. Here we
employ the centroid collocation approach.

Letting #2, 2 = 1, … , 1 denote the triangle centroids of the 1 trian-
gular elements, the discretized Eqs. (5a)-(5b) have the following form
for 2 = 1, … , 1 ,

1
2 (1 + :)&1(#2) =

1∑
==1
=≠2

[
;1(#2,#=)

.&1(#=)
.*

+;2(#2,#=)&1(#=)
]
ΔA=

+81(#2), (14a)
1
2

(
1 + 1

:

) .&1(#2)
.*

=
1∑
==1
=≠2

[
;3(#2,#=)

.&1(#=)
.*

+;4(#2,#=)&1(#=)
]
ΔA=

+82(#2), (14b)

where ΔA= is the area of the =th boundary element, and the term = = 2
is omitted from the summation to avoid the kernel singularity. Equa-
tions (14a)-(14b) represent a linear system B+ = #, where + contains the
surface potentials &1(#2) and normal derivatives .&1(#2).* , weighted by the
element area ΔA2, and % contains the source terms 81(#2) and 82(#2). We
solve this system using the generalized minimal residual (GMRES) iter-
ative method, which requires a matrix-vector product in each step [36].
Since the matrix is dense, computing the product by direct summation
requires "(!2) operations, which is prohibitively expensive when ! is
large. These difficulties can be overcome by fast algorithms for !-body
computations, such as treecode [20,46] and Fast Multipole Methods
[11,32]. In the next section, we describe how the treecode algorithm is
used to accelerate the matrix-vector product calculation.

2.2.3. Treecode
We summarize the treecode algorithm and refer to previous work

for more details [2,15,30,31]. The matrix-vector product B+ for
Eqs. (14a)-(14b) has the form of !-body potentials,

C2 =
1∑
==1
=≠2

5=7(#2,#=), 2 = 1,… ,1 , (15)

where 7 is a kernel, #2, #= are centroids (also called particle locations in
this context), and 5= is a charge associated with #= . To this end, the 5= in
Eq. (15) is equivalent to the ΔA=&1(#=) or ΔA=

.&1(#=)
.* in Eqs. (14a)-(14b)

and 7 is one of the kernels ;1−4. To evaluate the potentials C2 rapidly,
the particles #2 are divided into a hierarchy of clusters having a tree
structure in a 2-D illustration as in Fig. 2(a). The root cluster is a cube
containing all the particles and subsequent levels are obtained by di-
viding a parent cluster into children [2]. The process continues until a
cluster has fewer than 10 particles (10 is a user-specified parameter
representing the maximum number of particles per leaf, e.g. 10 = 3 in
Fig. 2(a)). Then C2 is evaluated as a sum of particle-particle interactions
and particle-cluster interactions (depicted in Fig. 2(b)),

C2 ≈
∑
$∈12

∑
#=∈$

5=7(#2,#=) +
∑
$∈D2

E∑
‖&‖=0

F&(#2,#$)<&
$, (16)

where $ denotes a cluster, and 12, D2 denote the near-field and far-
field clusters of particle #2. The first term on the right is a direct sum
for particles #= near #2, and the second term is a Eth order Cartesian
Taylor approximation about the cluster center #$ for clusters that are
well-separated from #2 [30]. Cartesian multi-index notation is used with
& = (91, 92, 93), 92∈ℕ and ‖&‖ = 91 +92 +93. A particle #2 and a cluster
$ are defined to be well-separated if the multipole acceptance criterion
(MAC) is satisfied, ?$∕> ≤ G, where ?$ is the cluster radius, > = |#2−#$|
is the particle-cluster distance and G is a user-specified parameter [2].

The accuracy and efficiency of the treecode is controlled by the com-
bination of parameters including the order E, MAC parameter G, and
maximum particles per leaf 10. Using the treecode, the operation count

Computer Physics Communications 299 (2024) 109125

5

X. Yang, E. Sliheet, R. Iriye et al.

Fig. 3. Pipeline for parallelized TABI solver. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

for the matrix-vector product is "(1 log1), where 1 is the number of
particles #2, and the factor log1 is the number of levels in the tree.

2.2.4. Preconditioning
In order to precondition Krylov subspace methods in solving B+ = #,

we design a scheme using left-preconditioning. Given a preconditioning
matrix H , we consider the modified linear system H−1B+ = H−1#.
The solve then proceeds in two steps: (a) set $ =H−1#, and (b) solve
(H−1B)+ = $ using GMRES. We therefore seek a preconditioner, H ,
such that two conditions are satisfied:

(1) H is similar to B such that H−1B has improved condition com-
pared to B and requires fewer GMRES iterations;

(2) H−1- = , can be efficiently computed, which is equivalent to solv-
ing , from H, = -.

Conditions (1) and (2) cannot be improved concurrently, thus a trade-
off must be made.

We design our preconditioner based on the observation that in the
electrostatic interactions, which is also the interactions between bound-
ary elements in solving integral equations, the short range interactions
are smaller in number of interactions, but more significant in strength
than the long range interactions, which are large in number of interac-
tions and computationally more expensive. Due to their large number
of interactions, the long interactions are calculated by multipole ex-
pansions. This offers the idea that for a preconditioner of B, we may
construct H to contain only short range interactions and to ignore long
range interactions. To this end, we select short range interactions be-
tween elements on the same leaf only. This choice of H has great
advantages in efficiency and accuracy for solving H, = -. As seen with
details in [8], by using a permutation operation, the H matrix is a block
diagonal matrix with ! blocks such that H = diag{H1, H2, ⋯ , H!}
thus H, = - can be solved using direct method e.g., LU factorization
by solving each individual H2,2 = -2 for 2 = 1, ⋯ , !. Here each H2 is
a square nonsingular matrix, which represents the interaction between
particles/elements on the 2th leaf of the tree. It is worthy to note that
the efficiency is not affected even when H2 has a large condition num-
ber since a direct solver is used for solving H, = -. Meanwhile, the
computational cost for solving H, = - is "(1!20) with !0 the treecode parameter, maximum number of particles per leaf, as detailed in [8].

2.3. MPI-based parallelization of the TABI solver

As illustrated by the red circled items in Fig. 3, our parallelization of
the TABI solver focuses on the four stages of the pipeline: the "(11$)
source term, "(!21 log1) matrix-vector product using treecode, the
"(!21!20) preconditioner, and the "(1$1) solvation energy. Here, 1
is the number of surface triangles, !0 is the maximum number of parti-
cles per leaf, 1$ is number of partial charges, and !2 is the number of
GMRES iterations. Among these stages, the most time consuming and
challenging component is the matrix-vector product using treecode. To

Fig. 4. Methods for assigning target particles to tasks: sequential order (top) vs
cyclic order (bottom).

this end, we investigate two possible strategies for computing !-body
problems as in [10], which are also briefly described below. In this
work, we migrate these strategies to solving the boundary integral PB
model. The numerical results in Section 3 show high parallel efficiency
from the optimized approach.

The initial and intuitive method to assign target particles to tasks is
to use sequential ordering, in which the 1st task handles the first 1∕!E
particles in a consecutive segment, the 2nd task handles the next 1∕!E
particles, etc. The illustration of this job assignment is shown in the
top of Fig. 4. However, when examining the resulting CPU time on each
task, we noticed starkly different times on each task, indicating a severe
load imbalance. This may be understood by the fact that for particles
at different locations, the types of interactions with the other particles
through the tree can vary. For example, a particle with only a few close
neighbors uses more particle-cluster interactions than particle-particle
interactions, thus requiring less CPU time than a particle with many
close neighbors. We also notice that for particles that are nearby one an-
other, their interactions with other particles, either by particle-particle
interaction or particle-cluster interaction, are quite similar, so some
consecutive segments ended up computing many more particle-particle
interactions than others that were instead dominated by particle-cluster
interactions. Based on these observations, we designed a cyclic order-
ing scheme to improve load balancing, as illustrated on the bottom of
Fig. 4. In this scheme, particles nearby one another are uniformly dis-
tributed to different tasks. For example, for a group of particles close to
each other, the first particle is handled by the first task, the second par-
ticle is handled by the second task, etc. The cycle repeats starting from
the (!E + 1)-th particle. The numerical results that follow demonstrate
the significantly improved load balance from this simple scheme.

The pseudocode for our MPI-based parallel TABI solver using repli-
cated data algorithm is given in Table 1. The identical trees are built on
each task as in line 6. The four-stage MPI-based parallelization of the
source term, matrix-vector product with treecode, preconditioning, and
solvation energy occur in lines 7, 10, 12, and 17, respectively, followed
by MPI communications.

2.4. The GPU-accelerated DSBI solver

The pseudocode for the DSBI-PB solver using GPUs is given in Ta-
ble 2. In this pseudocode, we divide all the operations into those on
host performed by the CPUs and those on device performed by the
GPUs. The three compute-intensive stages are computation of the source
term, matrix-vector product, and solvation energy; each are computed
on GPUs as shown in lines 6, 11, and 20, followed by a copy of the
data from device to host. The host CPU takes care of all complicated
and non-concurrent work. We note that lines 13 and 14 are still un-
der investigation due to the considerations of parallel efficiency, and
we disable these two lines in our current numerical implementation.

Computer Physics Communications 299 (2024) 109125

6

X. Yang, E. Sliheet, R. Iriye et al.

Table 1
Pseudocode for MPI-based parallel TABI solver using replicated data algorithm.

1 on main processor
2 read protein data
3 call MSMS to generate triangulation
4 copy protein data and triangulation to all other processors
5 on each processor
6 build local copy of tree
7 compute assigned segment of source terms by direct sum
8 copy result to all other processors
9 set initial guess for GMRES iteration
10 compute assigned segment of matrix-vector product B+ by treecode
11 copy result to all other processors
12 compute assigned segment of solving H+ = , for + by LU factorization.
13 copy result to all other processors
14 test for GMRES convergence
15 if no, go to step 10 for next iteration
16 if yes, go to step 15
17 compute assigned segment of electrostatic solvation free energy by direct sum
18 copy result to main processor
19 on main processor
20 add segments of electrostatic solvation free energy and output result

Table 2
Pseudocode for DSBI-PB solver using GPU.

1 On host (CPU)
2 read biomolecule data (charge and structure)
3 call MSMS to generate triangulation
4 copy biomolecule data and triangulation to device
5 On device (GPU)
6 each thread concurrently computes and stores source terms for assigned triangles
7 copy source terms on device to host
8 On host
9 set initial guess #0 for GMRES iteration and copy it to device
10 On device
11 each thread concurrently computes assigned segment of matrix-vector product $ ='#
12 copy the computed matrix-vector $ to host memory
13* each thread concurrently solves its assigned portion of (# = $
14* copy the solution # to host memory
15 On host
16 test for GMRES convergence
17 if no, generate new # and copy it to device, go to step 10 for the next iteration
18 if yes, generate and copy the final solution to device and go to step 19
19 On device
20 compute assigned segment of electrostatic solvation free energy
21 copy computed electrostatic solvation free energy contributions to host
22 On host
23 add segments of electrostatic solvation free energy and output result
* currently disabled

One challenge is that the variance in sizes of the block matrices H2 for
2 = 1, … , ! that compose the preconditioner H lead to significant load
imbalance on the GPU. The other is that the LU factorization used for
solving the H2,2 = -2 is very inefficient on GPUs for our current im-
plementation. However, disabling the preconditioner within the GPU
based parallelization could significantly increase computing time when
B is ill-conditioned.

2.5. COVID-19 proteins

Coronaviruses are a persistent threat to global health. Viruses such
as SARS in 2003, MERS in 2013, and the new SARS-CoV-2 in 2019
emerge from animal populations and then infect humans. Coronaviruses
contain a large genome which directs the synthesis of several dozen vi-
ral proteins. Structures of these proteins are used to better understand

Computer Physics Communications 299 (2024) 109125

7

X. Yang, E. Sliheet, R. Iriye et al.

Fig. 5. COVID-19 related proteins used in our numerical simulations. (a) 6wji: The C-terminal Dimerization Domain of Nucleocapsid Phosphoprotein from SARS-
CoV-2; (b) 7act: SARS-CoV-2 Nucleocapsid Phosphoprotein N-Terminal Domain in Complex with 10mer ssRNA; (c) 6yi3: The N-terminal RNA-Binding Domain of
the SARS-CoV-2 Nucleocapsid Phosphoprotein; (d) 7cr5: Human Monoclonal Antibody with SARS-CoV-2 Nucleocapsid Protein NTD; (e)7n3c: Human Fab S24-202
in the Complex with the N-Terminal Domain of Nucleocapsid Protein from SARS-CoV-2; (f) 7sts: Human Fab S24-1379 in the Complex with the N-terminal Domain
of Nucleocapsid Protein from SARS-CoV-2.

the diseases, and to develop new drugs and vaccines to fight coron-
aviruses. In this work, we focus on proteins involved in the spreading
and prevention of the COVID-19 virus. The virus genome in the form
of an mRNA encodes proteins including replication/transcription com-
plexes that make more RNA, structural proteins that construct new
virions, and proteases (e.g. 61u7) that cut polyproteins into all of these
functional pieces. The virus docks to target cells by binding the spike
protein (e.g. proteins 6crz, 6vxx, 6vsp, 6vsb) on the viral surface to its
receptor, angiotensin-converting enzyme 2 (ACE2, e.g. protein 6m17)
on the target cell membrane. In addition, to test the infection of COVID-
19 virus, we often identify its nucleocapsid proteins (e.g. proteins 7act,
6yi3) by using antibodies (e.g. proteins 7cr5, 7n3c, 7sts) that particu-
larly bind to these nucleocapsids [1].

In this work, we select a few COVID-19 related proteins and use
our parallel PB solvers to calculate their electrostatic properties such as
global solvation energy or local surface potential. These protein elec-
trostatics can assist researchers in understanding a protein’s overall
structure and function, their binding affinity to certain ligands, as well
as their folding and enzyme catalysis characteristics.

In Fig. 5, we provide the cartoon structure of six COVID-19 related
proteins. Protein 6wji [41] in (a) is a dimerization domain, which is
used to bring two nucleocapsids together. The connection of nucleocap-
sid dimers into bigger groups makes the viral structure that encases the
RNA in the limited area within virus particles. The SARS-CoV-2 nucleo-
capsid contains separate proteins which all perform different functions.
A portion of the structure folds into an RNA-binding domain (protein
7act) [13] as shown in (b), featuring a groove that securely holds a
brief segment of the viral genomic RNA. In contrast, the protein alone
without the RNA-bound structure (protein 6yi3) is shown in (c) [13]. In
COVID-19 prevention, home test kits for detecting SARS-CoV-2 infec-
tion rely on antibody proteins that specifically recognize nucleocapsids
within a complex set of biomolecules in nasal samples. The antibodies

they recognize differ based on the test-kit brand, which recognize dif-
ferent portions of the nucleocapsid, and we list a few here with protein
7cr5[29] in (d), protein 7n3c in (e), and protein 7sts in (f). For these
listed proteins, the PB model is solved using our parallel boundary in-
tegral PB solvers and numerical results are presented in the following
section.

3. Numerical results

Our numerical results are generated on supercomputers sponsored
by Southern Methodist University’s Center for Research Computing
(CRC). The MPI-based results are generated on M3 (https://www .smu .
edu /oit /services /m3) and GPU-based results are generated on Super-
POD (https://www .smu .edu /oit /services /superpod).

3.1. Parallel efficiency of MPI-based computing

We first check the parallel efficiency of our MPI-based algorithm
with both sequential and cyclic schemes by computing the solvation en-
ergy on protein 7n3c at MSMS density of 12, which generates 529,911
boundary elements. We use up to 256 MPI tasks and Table 3 shows
the results. Column 1 shows the increasing numbers of MPI tasks. Col-
umn 2 reports the total CPU time when the direct sum (DS)BI scheme
is used to compute the electrostatic solvation free energy. Due to its
"(12) computational cost, the CPU time for the DSBI solver is overly
long, even when 256 tasks are used. Columns 4 and 5 display the total
CPU time and parallel efficiency for the TABI solver using the sequen-
tial and cyclic schemes, both of which are much faster compared to
DSBI. Columns 8 and 9 focus more closely on the time required for a
single matrix-vector product B+, IB+, which we take as the average of
the iteration’s maximum CPU time among all tasks,

https://www.smu.edu/oit/services/m3
https://www.smu.edu/oit/services/m3
https://www.smu.edu/oit/services/superpod

Computer Physics Communications 299 (2024) 109125

8

X. Yang, E. Sliheet, R. Iriye et al.

Table 3
CPU time and parallel efficiency (P.E.) for parallelized direct sum, sequentially parallelized treecode (seq.) and
cyclically parallelized treecode (cyc.) for computing electrostatic solvation energy (-6020.52 kcal/mol from
TABI solver and -6013.68 kcal/mol from DSBI solver) for protein 7n3c with 529,955 boundary elements. The
treecode parameters are G = 0.8, 10 = 100, and E = 3; The number of tasks !E ranges over 1, … , 256. The time
for one B+ (IB+) is the average iteration’s maximum CPU time over all tasks.
!E DSBI Solver TABI solver

Total Time Total Time Time for one B+ (IB+,)

CPU (s) P.E. (%) CPU (s) P.E. (%) CPU (s) P.E. (%)

seq. cyc. seq. cyc. seq. cyc. seq. cyc.

1 106063.17 100.00 1874.88 1873.60 100.00 100.00 89.75 89.60 100.00 100.00
2 53132.86 99.81 971.25 967.12 96.52 96.87 45.49 45.22 98.63 99.07
4 26549.87 99.87 561.25 502.60 83.51 93.20 25.69 22.57 87.34 99.26
8 13291.47 99.75 321.42 285.25 72.91 82.10 13.94 12.02 80.46 93.22
16 6710.06 98.79 171.41 158.04 68.36 74.09 6.43 5.77 87.30 97.08
32 3928.71 84.37 128.13 114.73 45.73 51.03 3.99 3.26 70.22 85.84
64 2022.84 81.93 99.75 90.81 29.37 32.24 2.14 1.66 65.55 84.24
128 1042.49 79.48 79.82 76.83 18.35 19.05 1.08 0.85 64.65 82.77
256 554.50 74.72 71.70 71.16 10.21 10.28 0.56 0.45 62.27 78.61

Fig. 6. MPI-based parallelization with sequential and cyclic schemes: left: 128 tasks, right: 256 tasks. The CPU time reported is IB+, the averages GMRES iteration’s
maximum CPU times among all tasks.

IB+ =
1
!2

!2∑
9=1

max
=

I=,9B+ (17)

where I=,9B+ is the CPU time to compute B+ from the =th task in the 9th
GMRES iteration.

Parallel efficiencies are displayed in Columns 3, 6, 7, 10 and 11. The
parallelization of the DSBI solver shows high efficiency as seen in col-
umn 3. This is due to the simplicity of the algorithm. Other than the
four stages identified in Fig. 3, there is very little serial computation or
communication required. However, the parallel efficiency of the TABI
solver is not as good as the DSBI solver, as shown in Columns 6 and
7. This is primarily due to the use of treecode, which has some serial
time for building the tree and computing the moments. The serial time
is relatively short when !E is small but becomes increasingly significant
as !E grows and the time spent within parallelized stages decreases. If
we focus specifically on the parallelization of the treecode in computing
B+, Columns 10 and 11 show a high degree of parallel efficiency. We
can also observe that the cyclic scheme significantly improves the paral-
lel efficiency in comparison with the sequential scheme. However, due
to the very small fraction of runtime spent in computing matrix-vector
products as !E increases, the overall parallel efficiencies from Columns
6 and 7 do not show a significant difference between the sequential

and cyclic schemes. To more carefully examine the performance differ-
ences between the sequential and cyclic schemes, in Fig. 6 we plot IB+
from Eq. (17) when 128 and 256 MPI tasks are used. It is evident that
the cyclic scheme has reduced variance compared with the sequential
scheme owing to its advantage in load balance.

3.2. MPI-based TABI solver vs GPU-accelerated DSBI solver

Next, we compute the solvation energy for the six COVID-19 pro-
teins introduced previously using MSMS with density equal to 12 to
provide sufficient detail of the molecular surface. We use both the
MPI-based TABI solver and the GPU-accelerated DSBI solver. For a rea-
sonable computing power comparison, we use 64 CPU cores for the
MPI-related computing and 1 GPU card for the GPU-related comput-
ing. Table 4 shows the simulation results. Column 1 is the PDB ID for
proteins in ascending sequence of their size followed by the number of
atoms in column 2, number of boundary elements in column 3, and the
areas of the solvent excluded surface in column 4. Columns 5 and 6
are the number of GMRES iterations, from which we can see that the
TABI solver has much improved condition number in comparison with
the DSBI solver thanks to the TABI preconditioner from Section 2.2.4.
The solvation energies are reported in columns 7 and 8, which are suffi-

Computer Physics Communications 299 (2024) 109125

9

X. Yang, E. Sliheet, R. Iriye et al.

Table 4
Computing electrostatic solvation energies in (kcal/mol) for the involved proteins: ionic strength =
0.15M; %1 = 1, %2 = 80; MSMS [38] density=12; 1$ is the number of atoms/charges, 1 is the number of
boundary elements, !2 is the number of GMRES iterations, 8ses is the solvent excluded surface area in the
units of Å2, and @sol is the electrostatic solvation energy; For the MPI-based TABI solver, the treecode
parameters are G = 0.8, 10 = 100, and E = 3.
PDB 1$ 1 8SES !MPI2 !GPU2 @MPI

sol @GPU
sol IMPI (s) IGPU (s)

6yi3 2083 169,955 7516.44 10 10 -1941.81 -1945.18 14.76 8.96
7act 2352 188,027 8286.70 14 14 -1893.88 -1934.49 21.35 17.39
7cr5 8133 513,139 22524.23 16 100+ -5713.52 -5786.69 89.52 695.17
7n3c 8459 529,955 23244.85 19 17 -6020.52 -6013.68 99.13 132.20
6wji 10182 641,155 28116.88 13 14 -14009.55 -14016.02 112.82 152.71
7sts 15797 993,461 43457.63 26 100+ -11622.63 -11583.26 422.67 2544.70

Table 5
Computing electrostatic solvation energies in (kcal/mol) for the protein 6yi3 at different
MSMS densities: ionic strength = 0.15M; %1 = 1, %2 = 80; J is the MSMS density, 1 is the
number of boundary elements, !2 is the number of GMRES iterations, @sol is the electro-
static solvation energy. Results are generated using KOKKOS and MPI on ManeFrame III;
MPI results are from using 64 tasks; GPU results are from using one A100 GPU; For the
MPI-based TABI solver, the treecode parameters are G = 0.8, 10 = 100, and E = 3.
J 1 @MPI

sol @GPU
sol !CPU2 !GPU2 ICPU (s) IMPI (s) IGPU (s)

2 28,767 -2057.61 -2056.26 10 10 29.34 2.76 0.83
4 56,127 -1999.01 -1997.03 10 10 66.40 4.46 1.52
6 84,903 -1968.00 -1966.87 10 16 108.52 7.05 4.98
8 110,307 -1954.62 -1952.23 10 10 145.13 9.35 4.32
12 169,955 -1945.18 -1941.81 10 10 240.54 14.76 8.91
16 229,901 -1940.96 -1936.87 10 11 340.82 19.86 17.66
18 257,236 -1938.27 -1933.67 10 11 385.96 21.69 23.73
20 287,202 -1937.18 -1931.77 10 12 438.86 24.54 28.73
24 343,806 -1933.63 -1928.65 10 11 534.31 35.13 38.62
28 407,196 -1933.04 -1927.56 10 12 653.06 41.84 55.18
32.5 471,307 -1931.76 -1926.04 10 12 760.12 51.23 77.83
64 946,335 -1928.51 -1921.81 10 13 1701.06 145.65 311.07

ciently close. The differences are caused by the treecode approximation,
the preconditioning scheme, and the error tolerance achieved when the
iteration is stopped. Note for calculating protein electrostatic solvation
energy, we don’t have an exact value to compare. If the DSBI solver
converges before reaching the maximum number of allowed GMRES it-
erations, its result should be more accurate than that from TABI solver
since treecode could add extra approximations. For example, the @GPU

solresults from proteins 6yi3, 7act, 7n3c, 6wji should be more accurate
than the @MPI

sol results for these proteins. However, if the GMRES al-
lowed maximum number of iteration has been reached for examples
for proteins 7cr5 and 7sts, on which the DSBI solver stopped when
100 iterations are reached while the accuracy did not meet the 10−4
threshold, we can not say for sure whether @GPU

sol result or @MPI
sol result

is more accurate. The computation times are shown in columns 9 and
10, which demonstrates that the computing power between 64 CPUs
and 1 GPU are comparable. However, the algorithms (with precondi-
tioning vs without preconditioning, direct sum vs treecode) can make
a substantial difference for ill-conditioned or larger systems. For exam-
ple, for protein 7sts, with nearly one million boundary elements, the
MPI-based TABI solver is significantly faster than the GPU-based DSBI
because of the ill-conditioned system, the large size of the problem, and
the use of treecode or not.

We then further investigate under what conditions we should choose
between using the GPU-accelerated DSBI solver or MPI-based TABI
solver. The following example, whose result is shown in Table 5, gives
some important guidance. In this example, we compute the solvation
energy for protein 6yi3 for increasing values of the MSMS density (J),

giving rise to increased problem sizes, as shown in columns 1 and 2.
Columns 3 and 4 show the similar solvation energy computed with these
two approaches. Columns 5 and 6 report the number of GMRES itera-
tions. From these close results, we see that the discretized system for
this protein is well conditioned thus the preconditioning scheme has
limited effect. We solve the problem using 1 CPU core and report the
time in column 7 for reference. Then we report the time for solving
the problem using 64 MPI tasks and one A100 GPU card in columns
8 and 9. The result indicates that for a protein whose discretized sys-
tem is well-conditioned, when the number of boundary elements is less
than 250,000, we should use the GPU-accelerated DSBI solver, since the
smaller the system the better the GPU-accelerated DSBI solver compares
against the MPI-based TABI solver. Note: this “250,000” break-even
value is suggested for the current hardware conditions (e.g. the 64 AMD
EPYC 7763 CPU cores vs one A100 Nvidia GPU card) and algorithm con-
figuration (e.g. treecode parameters are G = 0.8, 10 = 100, and E = 3).
Changes in computational hardware or treecode parameters will affect
this precise break-even value, although the overall trend will remain
unchanged. In addition, if the conditioning of B shows a pressing need
for preconditioning, the threshold number will be smaller for the GPU-
accelerated DSBI solver. The rapid GPU performance at least gives us
the hope to perform molecular dynamics or Monte Carlo simulation
for small and middle-sized proteins using GPUs. For example, if 50,000
boundary elements can reasonably describe the given protein, a single
PB equation solution only takes about one second using one GPU card,
in comparison with 4 seconds on a 64-core cluster.

Computer Physics Communications 299 (2024) 109125

10

X. Yang, E. Sliheet, R. Iriye et al.

Fig. 7. Color coded electrostatic surface potential in kcal/mol/0$ on the molecular surface of proteins 6yi3 (left), 7act (middle), and 7n3c (right); plot is drawn with
VMD [27].

We note that the solution to the boundary integral PB equation gives
both the electrostatic potential and its normal derivative on the molec-
ular surface. We can plot the potential on the surface elements. The
color-coded potential can provide guidance on the docking site for the
ligand, or offer other insights pertaining to protein-protein interactions.
Some examples of this kind of visualization are shown in Fig. 7.

4. Software dissemination

The source code for all solvers and examples used in this project
are available on GitHub. The MPI code can be found on https://
github .com /elyssasliheet /tabi _mpi _code maintained by SMU graduate
student Elyssa Sliheet. The GPU code can be found on https://github .
com /yangxinsharon /bimpb -parallelization maintained by SMU gradu-
ate student Xin Yang.

5. Concluding remarks

In this project, we investigate the practical application of the PB
model on selected proteins which play significant roles in the spread,
treatment, and prevention of COVID-19 virus diseases. To this end, we
solved the boundary integral form of the PB equation on the molec-
ular surfaces of these proteins. These calculations produce both the
electrostatic solvation free energy as a global measurement and the elec-
trostatic surface potential for local details of the selected proteins. We
investigated the parallel performance of two competing solvers for the
boundary integral PB equations on these selected proteins. By consid-
ering the advantages of current algorithms and computer hardware, we
focused on the parallelization of the TABI solver using MPI on CPUs
and the DSBI solver using KOKKOS on GPUs. Our numerical simu-
lations show that the DSBI solver on one A-100 GPU is faster than
the TABI solver with MPI on 64 CPUs when the number of elements
is smaller than 250,000. When both GPU and MPI are available and
the triangulation quality is good enough so that the TABI precondi-
tioner is not needed for GMRES convergence, we recommend that the
GPU-accelerated DSBI PS solver be used when the number of bound-
ary elements is below 250,000. Otherwise, the MPI-based TABI should
be used since the TABI and DSBI algorithms require "(1 log1) and
"(12) operations, respectively. If the number of elements becomes so
large such that the memory on a CPU task cannot hold an entire tree,
we recommend consideration of a domain-decomposition MPI scheme
[9,37,42,46]. We note that the memory usage for TABI scales linearly
with problem size. When one million boundary elements are used, the
memory usage is a little bit over 1 GB. Thus for popular tasks on clus-
ters with at least 64G memory per MPI rank, we can handle problems
as large as approximately 64 million boundary elements, which is suffi-
cient for simulating middle-large proteins with up to tens of thousands
atoms. For even larger biomolecules, e.g. the viral capsids of Zika or

H1N1 virus with up to tens of millions atoms [44], domain decomposi-
tion approach can be considered [46].

CRediT authorship contribution statement

Xin Yang: Visualization, Software, Data curation. Elyssa Sliheet:
Writing – review & editing, Visualization, Software, Data curation.
Reece Iriye: Visualization, Data curation. Daniel Reynolds: Writing
– review & editing, Supervision, Resources. Weihua Geng: Writing
– review & editing, Writing – original draft, Project administration,
Methodology, Funding acquisition, Data curation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Weihua Geng reports financial support was provided by National Sci-
ence Foundation grants DMS-2110922 and DMS-2110869. Elyssa Sli-
heet reports financial support was provided by National Science Foun-
dation grants RTG-1840260 and DMS-2110869. Xin Yang reports fi-
nancial support was provided by National Science Foundation grants
DMS-2110922. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work of XY, ES, and WG was supported in part by the National
Science Foundation (NSF) grants DMS-2110922 and DMS-2110869. ES
was also partially supported by the NSF RTG-1840260 grant. RI was
also supported in part by SMU’s Hamilton Scholar and Undergraduate
Research Assistantships (URA) programs.

We thank the SMU Mathematics Department for providing the par-
allel computing class MATH 6370, which systematically trains gradu-
ate students on parallelization strategies, schemes, and experience. We
also thank the SMU Center for Research Computing (CRC) for proving
computing hardware. These resources combined to make this project
possible.

References

[1] http://www .rcsb .org /pdb /home /home .do.
[2] J. Barnes, P. Hut, A hierarchical O(NlogN) force-calculation algorithm, Nature 324

(1986) 446–449, https://doi .org /10 .1038 /324446a0.

https://github.com/elyssasliheet/tabi_mpi_code
https://github.com/elyssasliheet/tabi_mpi_code
https://github.com/yangxinsharon/bimpb-parallelization
https://github.com/yangxinsharon/bimpb-parallelization
http://www.rcsb.org/pdb/home/home.do
https://doi.org/10.1038/324446a0

Computer Physics Communications 299 (2024) 109125

11

X. Yang, E. Sliheet, R. Iriye et al.

[3] D.A. Beard, T. Schlick, Modeling salt-mediated electrostatics of macromolecules:
the discrete surface charge optimization algorithm and its application to the nucle-
osome, Biopolymers 58 (2001) 106–115.

[4] J. Bédorf, E. Gaburov, S. Portegies Zwart, A sparse octree gravitational N-body
code that runs entirely on the GPU processor, J. Comput. Phys. 231 (7) (2012)
2825–2839.

[5] R.G. Belleman, J. Bédorf, S.F. Portegies Zwart, High performance direct gravitational
N-body simulations on graphics processing units II: an implementation in CUDA,
New Astron. 13 (2) (2008) 103–112.

[6] M. Burtscher, K. Pingali, An Efficient CUDA Implementation of the Tree-Based
Barnes-Hut N-Body Algorithm, Elsevier Inc., 2011, pp. 75–92.

[7] K.M. Callenberg, O.P. Choudhary, G.L. de Forest, D.W. Gohara, N.A. Baker,
M. Grabe, Apbsmem: a graphical interface for electrostatic calculations at the
membrane, PLoS ONE 5 (9) (2010) 1–12, https://doi .org /10 .1371 /journal .pone .
0012722.

[8] J. Chen, W. Geng, On preconditioning the treecode-accelerated boundary integral
(TABI) Poisson-Boltzmann solver, J. Comput. Phys. 373 (2018) 750–762.

[9] J. Chen, W. Geng, D. Reynolds, Cyclically paralleled treecode for fast comput-
ing electrostatic interactions on molecular surfaces, Comput. Phys. Commun. 260
(2021) 107742.

[10] J. Chen, W. Geng, G.W. Wei, MLIMC: machine learning-based implicit-solvent Monte
Carlo, Chin. J. Chem. Phys. 34 (6) (2021) 683–694, https://doi .org /10 .1063 /1674 -
0068 /cjcp2109150.

[11] J. Chen, J. Tausch, W. Geng, A Cartesian FMM-accelerated Galerkin boundary inte-
gral Poisson-Boltzmann solver, J. Comput. Phys. 478 (2023) 111981.

[12] V. Cherezov, D.M. Rosenbaum, M.A. Hanson, S.G.F. Rasmussen, F.S. Thian, T.S. Ko-
bilka, H.J. Choi, P. Kuhn, W.I. Weis, B.K. Kobilka, R.C. Stevens, High-resolution crys-
tal structure of an engineered human beta2-adrenergic G protein–coupled receptor,
Science 318 (5854) (2007) 1258–1265, https://doi .org /10 .1126 /science .1150577,
http://science .sciencemag .org /content /318 /5854 /1258.

[13] D.C. Dinesh, D. Chalupska, J. Silhan, E. Koutna, R. Nencka, V. Veverka, E. Boura,
Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphopro-
tein, PLoS Pathog. 16 (12) (2020) 1–16.

[14] F. Dong, M. Vijaykumar, H.X. Zhou, Comparison of calculation and experiment im-
plicates significant electrostatic contributions to the binding stability of barnase and
barstar, Biophys. J. 85 (1) (2003) 49–60, http://www .biophysj .org /cgi /content /
abstract /85 /1 /49.

[15] Z.H. Duan, R. Krasny, An adaptive treecode for computing nonbonded po-
tential energy in classical molecular systems, J. Comput. Chem. 22 (2)
(2001) 184–195, https://doi .org /10 .1002 /1096 -987X(20010130)22 :2<184 ::AID -
JCC6 >3 .0 .CO ;2 -7.

[16] E. Elsen, M. Houston, V. Vishal, E. Darve, P. Hanrahan, V. Pande, N-body simulation
on GPUs, in: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC
’06, Association for Computing Machinery, New York, NY, USA, 2006, pp. 188–es.

[17] W. Geng, Parallel higher-order boundary integral electrostatics computation on
molecular surfaces with curved triangulation, J. Comput. Phys. 241 (2013) 253–265,
https://doi .org /10 .1016 /j .jcp .2013 .01 .029.

[18] W. Geng, A boundary integral Poisson–Boltzmann solvers package for solvated bi-
molecular simulations, Comput. Math. Biophys. 3 (2015) 43–58.

[19] W. Geng, F. Jacob, A GPU-accelerated direct-sum boundary integral Poisson-
Boltzmann solver, Comput. Phys. Commun. 184 (6) (2013) 1490–1496, https://
doi .org /10 .1016 /j .cpc .2013 .01 .017.

[20] W. Geng, R. Krasny, A treecode-accelerated boundary integral Poisson-Boltzmann
solver for electrostatics of solvated biomolecules, J. Comput. Phys. 247 (2013)
62–78, https://doi .org /10 .1016 /j .jcp .2013 .03 .056.

[21] W. Geng, S. Yu, G.W. Wei, Treatment of charge singularities in implicit solvent
models, J. Chem. Phys. 127 (2007) 114106.

[22] W. Geng, S. Zhao, A two-component Matched Interface and Boundary (MIB) regu-
larization for charge singularity in implicit solvation, J. Comput. Phys. 351 (2017)
25–39.

[23] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.
73 (2) (1987) 325–348, https://doi .org /10 .1016 /0021 -9991(87)90140 -9.

[24] T. Hamada, K. Nitadori, K. Benkrid, Y. Ohno, G. Morimoto, T. Masada, Y. Shibata,
K. Oguri, M. Taiji, A novel multiple-walk parallel algorithm for the Barnes–Hut
treecode on GPUs – towards cost effective, high performance N-body simulation,
Comput. Sci. Res. Dev. 24 (1) (2009) 21–31, https://doi .org /10 .1007 /s00450 -009 -
0089 -1.

[25] M.J. Holst, The Poisson-Boltzmann equation: Analysis and multilevel numerical so-
lution, Ph.D. thesis, UIUC, 1994.

[26] N. Huang, Y. Chelliah, Y. Shan, C.A. Taylor, S.H. Yoo, C. Partch, C.B. Green,
H. Zhang, J.S. Takahashi, Crystal structure of the heterodimeric CLOCK:BMAL1

transcriptional activator complex, Science 337 (6091) (2012) 189–194, https://
doi .org /10 .1126 /science .1222804.

[27] W. Humphrey, A. Dalke, K. Schulten, VMD – visual molecular dynamics, J. Mol.
Graph. 14 (1) (1996) 33–38, https://doi .org /10 .1016 /0263 -7855(96)00018 -5.

[28] A. Juffer, E. Botta, B. van Keulen, A. van der Ploeg, H. Berendsen, The electric
potential of a macromolecule in a solvent: a fundamental approach, J. Comput.
Phys. 97 (1991) 144–171.

[29] S. Kang, M. Yang, S. He, Y. Wang, X. Chen, Y.Q. Chen, Z. Hong, J. Liu, G. Jiang, Q.
Chen, Z. Zhou, Z. Zhou, Z. Huang, X. Huang, H. He, W. Zheng, H.X. Liao, F. Xiao,
H. Shan, S. Chen, A SARS-CoV-2 antibody curbs viral nucleocapsid protein-induced
complement hyperactivation, Nat. Commun. 12 (1) (2021) 2697.

[30] P. Li, H. Johnston, R. Krasny, A Cartesian treecode for screened Coulomb interac-
tions, J. Comput. Phys. 228 (2009) 3858–3868, https://doi .org /10 .1016 /j .jcp .2009 .
02 .022.

[31] K. Lindsay, R. Krasny, A particle method and adaptive treecode for vortex sheet mo-
tion in three-dimensional flow, J. Comput. Phys. 172 (2) (2001) 879–907, https://
doi .org /10 .1006 /jcph .2001 .6862.

[32] B. Lu, X. Cheng, J.A. McCammon, A new-version-fast-multipole-method-accelerated
electrostatic calculations in biomolecular systems, J. Comput. Phys. 226 (2) (2007)
1348–1366, https://doi .org /10 .1016 /j .jcp .2007 .05 .026.

[33] B. Lu, J.A. McCammon, Improved boundary element methods for Poisson-Boltzmann
electrostatic potential and force calculations, J. Chem. Theory Comput. 3 (2007)
1134–1142, https://doi .org /10 .1021 /ct700001x, PMID: 26627432.

[34] D.D. Nguyen, B. Wang, G.W. Wei, Accurate, robust, and reliable calculations of
Poisson-Boltzmann binding energies, J. Comput. Chem. 38 (13) (2017) 941–948,
https://doi .org /10 .1002 /jcc .24757.

[35] L. Nyland, M. Harris, J. Prins, Fast N-Body Simulation with CUDA, GPU Gems, vol. 3,
Addison-Wesley, Upper Saddle River, NJ, 2009.

[36] Y. Saad, M. Schultz, GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856–869, https://
doi .org /10 .1137 /0907058.

[37] J.K. Salmon, M.S. Warren, G.S. Winckelmans, Fast parallel tree codes for gravita-
tional and fluid dynamical n-body problems, Int. J. Supercomput. Appl. 8 (1986)
129–142.

[38] M.F. Sanner, A.J. Olson, J.C. Spehner, REDUCED SURFACE: an efficient way to
compute molecular surfaces, Biopolymers 38 (1996) 305–320.

[39] T. Simonson, G. Archontis, M. Karplus, Free energy simulations come of age: protein-
ligand recognition, Acc. Chem. Res. 35 (6) (2002) 430–437, https://doi .org /10 .
1021 /ar010030m, PMID: 12069628.

[40] N. Unwin, Refined structure of the nicotinic acetylcholine receptor at 4Å resolution,
J. Mol. Biol. 346 (4) (2005) 967–989, https://doi .org /10 .1016 /j .jmb .2004 .12 .031.

[41] J.P. Vandervaart, N.L. Inniss, T. Ling-Hu, G. Minasov, G. Wiersum, M. Rosas-
Lemus, L. Shuvalova, C.J. Achenbach, J.F. Hultquist, K.J.F. Satchell, K.E.R. Bachta,
Serodominant SARS-CoV-2 nucleocapsid peptides map to unstructured protein re-
gions, Microbiol. Spectr. 11 (3) (2023) e0032423.

[42] N. Vaughn, L. Wilson, R. Krasny, A GPU-accelerated barycentric Lagrange treecode,
in: 2020 IEEE International Parallel and Distributed Processing Symposium Work-
shop (IPDPSW), 2020, pp. 701–710.

[43] J.A. Wagoner, N.A. Baker, Assessing implicit models for nonpolar mean solva-
tion forces: the importance of dispersion and volume terms, Proc. Natl. Acad. Sci.
103 (22) (2006) 8331–8336, https://doi .org /10 .1073 /pnas .0600118103.

[44] L. Wilson, W. Geng, R. Krasny, TABI-PB 2.0: an improved version of the treecode-
accelerated boundary integral Poisson-Boltzmann solver, J. Phys. Chem. B 126 (37)
(2022) 7104–7113, https://doi .org /10 .1021 /acs .jpcb .2c04604.

[45] L. Wilson, J. Hu, J. Chen, R. Krasny, W. Geng, Computing electrostatic binding
energy with the TABI Poisson–Boltzmann solver, Commun. Inf. Syst. 22 (2) (2022)
247–273.

[46] L. Wilson, N. Vaughn, R. Krasny, A GPU-accelerated fast multipole method based on
barycentric Lagrange interpolation and dual tree traversal, Comput. Phys. Commun.
265 (2021) 108017.

[47] B. Zhang, B. Peng, J. Huang, N.P. Pitsianis, X. Sun, B. Lu, Parallel AFMPB solver
with automatic surface meshing for calculation of molecular solvation free energy,
Comput. Phys. Commun. 190 (2015) 173–181, https://doi .org /10 .1016 /j .cpc .2014 .
12 .022.

[48] Y.C. Zhou, B. Lu, A.A. Gorfe, Continuum electromechanical modeling of protein-
membrane interactions, Phys. Rev. E 82 (2010) 041923, https://doi .org /10 .1103 /
PhysRevE .82 .041923.

http://refhub.elsevier.com/S0010-4655(24)00048-1/bibDA2A55DCF5054E07A158C98957758F23s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibDA2A55DCF5054E07A158C98957758F23s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibDA2A55DCF5054E07A158C98957758F23s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibDEA93EB7C451431787F18B1DDAD35F3Ds1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibDEA93EB7C451431787F18B1DDAD35F3Ds1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibDEA93EB7C451431787F18B1DDAD35F3Ds1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib746CFE38092DC082A7CD98DBA6E96854s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib746CFE38092DC082A7CD98DBA6E96854s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib746CFE38092DC082A7CD98DBA6E96854s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib55961EC53A3297484A53B4E483DB8BE4s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib55961EC53A3297484A53B4E483DB8BE4s1
https://doi.org/10.1371/journal.pone.0012722
https://doi.org/10.1371/journal.pone.0012722
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibF381DF9AF9001361FAB5625AFD0408F3s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibF381DF9AF9001361FAB5625AFD0408F3s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib84F007A12A330291505F3480D2A54518s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib84F007A12A330291505F3480D2A54518s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib84F007A12A330291505F3480D2A54518s1
https://doi.org/10.1063/1674-0068/cjcp2109150
https://doi.org/10.1063/1674-0068/cjcp2109150
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibD4F9FC3BC15CA46E76155BCBE2D745A0s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibD4F9FC3BC15CA46E76155BCBE2D745A0s1
https://doi.org/10.1126/science.1150577
http://science.sciencemag.org/content/318/5854/1258
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib1AD1FA74A28C328B6CE11702337DA424s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib1AD1FA74A28C328B6CE11702337DA424s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib1AD1FA74A28C328B6CE11702337DA424s1
http://www.biophysj.org/cgi/content/abstract/85/1/49
http://www.biophysj.org/cgi/content/abstract/85/1/49
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibAF08E73D01C34BFD0C114EA0A0692975s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibAF08E73D01C34BFD0C114EA0A0692975s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibAF08E73D01C34BFD0C114EA0A0692975s1
https://doi.org/10.1016/j.jcp.2013.01.029
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib9A204EF9CFD61B5728534DDE1E2BDDB4s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib9A204EF9CFD61B5728534DDE1E2BDDB4s1
https://doi.org/10.1016/j.cpc.2013.01.017
https://doi.org/10.1016/j.cpc.2013.01.017
https://doi.org/10.1016/j.jcp.2013.03.056
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibB3C3EB1B131631FB17BF4DDD50358C6As1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibB3C3EB1B131631FB17BF4DDD50358C6As1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib6C836122659504A4FCCD09E60030C0E0s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib6C836122659504A4FCCD09E60030C0E0s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib6C836122659504A4FCCD09E60030C0E0s1
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1007/s00450-009-0089-1
https://doi.org/10.1007/s00450-009-0089-1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib52CB48E1F3E7B933CE52AFD7FCDFFB68s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib52CB48E1F3E7B933CE52AFD7FCDFFB68s1
https://doi.org/10.1126/science.1222804
https://doi.org/10.1126/science.1222804
https://doi.org/10.1016/0263-7855(96)00018-5
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibCC5EDFF9337636C40D08A831E32EFE1Cs1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibCC5EDFF9337636C40D08A831E32EFE1Cs1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibCC5EDFF9337636C40D08A831E32EFE1Cs1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib45FAED7760DC34111B4BC4EE02A71573s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib45FAED7760DC34111B4BC4EE02A71573s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib45FAED7760DC34111B4BC4EE02A71573s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib45FAED7760DC34111B4BC4EE02A71573s1
https://doi.org/10.1016/j.jcp.2009.02.022
https://doi.org/10.1016/j.jcp.2009.02.022
https://doi.org/10.1006/jcph.2001.6862
https://doi.org/10.1006/jcph.2001.6862
https://doi.org/10.1016/j.jcp.2007.05.026
https://doi.org/10.1021/ct700001x
https://doi.org/10.1002/jcc.24757
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibD5EB136A892B30B88E6CBC04E3BB70B4s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibD5EB136A892B30B88E6CBC04E3BB70B4s1
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib7E75AC56A5EA59B21C12975C49E5007Es1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib7E75AC56A5EA59B21C12975C49E5007Es1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib7E75AC56A5EA59B21C12975C49E5007Es1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib9CFC5AD4AB387CDBA248194D8B2CE208s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib9CFC5AD4AB387CDBA248194D8B2CE208s1
https://doi.org/10.1021/ar010030m
https://doi.org/10.1021/ar010030m
https://doi.org/10.1016/j.jmb.2004.12.031
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib578BEC5E0C017218148A210B036A05B6s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib578BEC5E0C017218148A210B036A05B6s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib578BEC5E0C017218148A210B036A05B6s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib578BEC5E0C017218148A210B036A05B6s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibBEBBA1A667FE6B25F01A5577E301DAD7s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibBEBBA1A667FE6B25F01A5577E301DAD7s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibBEBBA1A667FE6B25F01A5577E301DAD7s1
https://doi.org/10.1073/pnas.0600118103
https://doi.org/10.1021/acs.jpcb.2c04604
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib653FBEEE860B21BA8481D925050F44C8s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib653FBEEE860B21BA8481D925050F44C8s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bib653FBEEE860B21BA8481D925050F44C8s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibF828B057D9F0FCCBD9D8CAAA5312BB88s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibF828B057D9F0FCCBD9D8CAAA5312BB88s1
http://refhub.elsevier.com/S0010-4655(24)00048-1/bibF828B057D9F0FCCBD9D8CAAA5312BB88s1
https://doi.org/10.1016/j.cpc.2014.12.022
https://doi.org/10.1016/j.cpc.2014.12.022
https://doi.org/10.1103/PhysRevE.82.041923
https://doi.org/10.1103/PhysRevE.82.041923

	Optimized parallelization of boundary integral Poisson-Boltzmann solvers
	1 Introduction
	2 Theories and algorithms
	2.1 The PB model
	2.2 Boundary integral PB solvers
	2.2.1 Boundary integral form of PB model
	2.2.2 Discretization of boundary integral equations
	2.2.3 Treecode
	2.2.4 Preconditioning

	2.3 MPI-based parallelization of the TABI solver
	2.4 The GPU-accelerated DSBI solver
	2.5 COVID-19 proteins

	3 Numerical results
	3.1 Parallel efficiency of MPI-based computing
	3.2 MPI-based TABI solver vs GPU-accelerated DSBI solver

	4 Software dissemination
	5 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

