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Abstract domains. One crucial aspect involves identifying communi-

ties within the network where individuals or vertices share 
Maintaining a dynamic �-core decomposition is an impor-

strong connections, as well as understanding the level of con-
tant problem that identifes dense subgraphs in dynamically 

nectivity of each individual to their respective community. 
changing graphs. Recent work by Liu et al. [SPAA 2022] 

The notion of a �-core, or more generally, �-core decom-
presents a parallel batch-dynamic algorithm for maintaining 

position, efectively captures the well-connectedness of a
an approximate �-core decomposition. In their solution, both 

vertex or group of vertices. Consequently, this problem and 
reads and updates need to be batched, and therefore each 

its variations have received extensive attention across ma-
type of operation can incur high latency waiting for the other 

chine learning [8, 33, 40], database [17, 21, 32, 54, 63], social 
type to fnish. To tackle most real-world workloads, which 

network analysis, graph analytics [25, 26, 49, 50], computa-
are dominated by reads, this paper presents a novel hybrid 

tional biology [22, 51, 59, 61], and other relevant communi-
concurrent-parallel dynamic �-core data structure where 

ties [39, 50, 60, 67].
asynchronous reads can proceed concurrently with batches 

Given an undirected graph � with � vertices and � edges, 
of updates, leading to signifcantly lower read latencies. Our 

the �-core of the graph represents the largest subgraph � ⊆
approach is based on tracking causal dependencies between 

� in which every vertex in � has a degree of at least � . The
updates, so that causally related groups of updates appear 

�-core decomposition of the graph refers to a partition of 
atomic to concurrent readers. Our data structure guaran-

the graph into layers, where a vertex � is placed in layer � if
tees linearizability and liveness for both reads and updates, 

it belongs to a �-core but not a (� + 1)-core. This layering 
and maintains the same approximation guarantees as prior 

process assigns a coreness value to each vertex based on
work. Our experimental evaluation on a 30-core machine 

the largest �-core that it belongs to, leading to a natural
shows that our approach reduces read latency by orders of 

hierarchical clustering. 
magnitude compared to the batch-dynamic algorithm, up to� � 

Traditional algorithms that give exact solutions to �-core 
a 4.05 · 105 

-factor. Compared to an unsynchronized (non-
decomposition inherently follow a sequential approach [62].

linearizable) baseline, our read latency overhead is only up to 
In fact, �-core decomposition is known to be a P-complete 

a 3.21-factor greater, while improving accuracy of coreness 
problem [11], so efcient parallel algorithms that solve it ex-

estimates by up to a factor of 52.7. 
actly are unlikely to exist. To overcome this limit, we focus 

CCS Concepts: • Theory of computation → Concurrent on achieving a close approximate decomposition, which pro-
algorithms; Dynamic graph algorithms; • Computing vides utility in areas where existing methods focus mostly on 
methodologies → Parallel algorithms. approximations, such as epidemiology [22, 51, 59, 61], com-

munity detection and network centrality measures [30, 34, 42, 
Keywords: parallelism, concurrency, �-core decomposition 64, 72, 76], network visualization and modeling [8, 19, 75, 77], 

protein interactions [7, 13], and clustering [41, 53]. 
Current emphasis has also been on addressing the dy-1 Introduction namic nature of large networks. Networks undergo frequent 

The discovery of underlying structure in large-scale net- updates which require real-time �-core computations for 
works poses a fundamental challenge in various computing various applications. Signifcant progress has been made on 

dynamic �-core algorithms in both sequential [55, 56, 68, 
70, 74, 78] and parallel settings [12, 46, 48] to achieve fast, 
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challenge arises: querying the system state has high latency, 
as reads cannot safely proceed concurrently with update 
batches. Unsynchronized reads, concurrent with updates, 
may not only lead to hard-to-interpret non-linearizable re-
sults, but can also break the approximation bounds of the 
�-core algorithm (in fact, the error could be unbounded, as 
we show later). Thus, reads in current parallel batch-dynamic 
algorithms must either wait for updates to fnish, or be per-
formed synchronously as part of the batch, both adding 
latency. This is problematic for applications that require low 
read latency. Examples include social networks and search 
engines: these need to be very responsive on the dominant 
user-facing read path [18, 20], while prioritizing throughput 
on the update path. 
In this paper, we address this gap by proposing a novel 

�-core algorithm in which reading a vertex’s coreness can 
proceed asynchronously and concurrently with (batches of) 
updates and with other reads. We achieve this by tracking 
causal dependencies between updates and reads. We show 
that such dependencies can be tracked efciently, without 
locking, and without sacrifcing the performance of updates. 
Our algorithm, similar to previous work, relies on the 

Level Data Structure (LDS) approach. The core idea behind 
the LDS approach is that the �-core decomposition of a graph 
can be represented as a sequence of levels. These levels are 
organized into groups, where vertices within each group 
share the same coreness (within the approximation factor). 
The LDS serves as a data structure that maintains the lev-
els of all vertices, gets updated when the graph undergoes 
edge insertions or removals, and facilitates queries regarding 
vertex coreness. 

The main challenge in designing our algorithm is achiev-
ing atomic reads that can proceed concurrently with batches 
of updates while incurring low overhead. In brief, this chal-
lenge arises because reads might need to be atomic with 
respect with, and thus synchronize with, a potentially large 
number of concurrent updates. This might seem at frst 
counter-intuitive. 
At frst glance, it may seem as though a read of vertex � 

only needs to be synchronize with updates to edges incident 
to � . However, the situation is more intricate: an update, say 
an insertion of edge � , may not only cause changes in the 
levels of vertices incident to � , but can also trigger a chain 
efect of vertices moving levels inside the LDS. All of these 
level changes are causally dependent on the initial update 
and therefore must appear to reads to take place atomically. 
Furthermore, it is possible for vertex level changes to collec-
tively result from multiple edge updates, necessitating that 
all of these updates appear atomic to reads. 

We aim for lock-free reads. Lock-freedom has the beneft 
of guaranteeing that the system always makes progress, even 
if some processes are slow, but it comes with the challenge 
of precluding simple solutions based on locking. We also 
aim for our updates to complete in a fnite number of steps. 

Due to technical reasons which we explain in Section 2, our 
updates cannot be said to be lock-free, and so we use the 
term live instead. 
To overcome these challenges, we propose a solution 

that involves tracking causal dependencies through Directed 
Acyclic Graphs (DAGs) of operation descriptors. In essence, 
this works as follows. During each update batch, each vertex 
� that needs to change levels in the LDS is associated with 
an operation descriptor containing information about which 
vertices that moved earlier in the batch caused � to also have 
to move. This creates a DAG of operation descriptors. Read-
ers that encounter a vertex � with an active descriptor need 
to frst establish whether � , and the transitive closure of � ’s 
causal dependencies (as tracked by the DAG), are still in the 
process of being updated. If they are, the read must return 
the old level of � , since the new, fnal level might not be 
known yet. Otherwise, if the update process is complete, the 
read operation can safely return the new level. 

We call our data structure the concurrent parallel level 
data structure (CPLDS). We implement our data structure 
in C++ using the GBBS [27] and ParlayLib [16] libraries and 
conduct an experimental evaluation of our algorithm on a 
30-core machine. Our evaluation shows that, compared to 
the batch-dynamic algorithm of Liu et al. [57], adding asyn-
chronous reads only increases the update time by a factor of 
at most 1.48, while decreasing the read latency by a factor 
of up to 4.05 · 105. We also compare to an unsynchronized 
(non-linearizable) baseline, and show that our read latency is 
only up to 3.21x slower, while returning coreness estimates 
that are up to 52.7x more accurate. 

2 Preliminaries 
We study undirected and unweighted graphs in this paper, 
and use � to denote the number of vertices and � to denote 
the number of edges in a graph. We assume each vertex is 
represented by a unique integer in [0, . . . , � − 1]. We study 
the �-core decomposition problem, which is defned below. 

Defnition 2.1 (�-Core). For a graph � and positive inte-
ger � , the �-core of � is the maximal subgraph of � with 
minimum induced degree � . 

Defnition 2.2 (�-Core Decomposition). A �-core decom-
position is a partition of vertices into layers such that a 
vertex � is in layer � if it belongs to a �-core but not to a 
(� + 1)-core. � (�) denotes the layer that vertex � is in, and is 
called the coreness of � . 

Defnition 2.2 defnes an exact �-core decomposition. A 
�-approximate �-core decomposition is defned as follows. 

Defnition 2.3 (�-Approximate �-Core Decomposition). A 
�-approximate �-core decomposition is a partition of ver-

′
tices into layers such that a vertex � is in layer � only if 
� (�) ′ ≤ � ≤ �� (�), where � (�) is the coreness of � .
� 
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In the parallel batch-dynamic setting, algorithms process 
operations in batches, with each batch consisting of exactly 
one type of operation—reads, edge insertions, or edge dele-
tions.

1 
In this paper, we study a hybrid setting, where reads 

are asynchronous and can execute at any time, while up-
dates are batched and executed together periodically. This 
solves the latency issue for read operations, which are the 
dominant type of operation in most workloads, e.g., in social 
networks [18, 20]. 
In theory, it would be desirable to make updates asy-

chronous as well, but it is much more challenging to do 
so while guaranteeing linearizability. We leave this to future 
work. Below, we introduce our model more formally. 

We consider a set of � processes that communicate through 
standard shared-memory primitives. The processes coordi-
nate to maintain the graph � and � ’s associated CPLDS data 
structure by serving incoming operations. Operations on 
the CPLDS can be either reads or updates. A read operation 
takes an input node and returns its coreness estimate in the 
CPLDS. An update operation can be either an edge inser-
tion or an edge deletion. It adds or removes an input edge � 
to/from � and updates the (levels of vertices in the) CPLDS 
accordingly. 
The set of processes can be partitioned into a set of up-

date processes, which only perform updates, and a set of 
read processes, which only perform reads. Updates are per-
formed in batches by the update processes. We assume in 
this paper that each batch consists either of only insertions 
or only deletions (in practice, batches contain a mix of inser-
tions and deletions, which are separated into insertion and 
deletion sub-batches during pre-processing). The updates 
in each batch are executed collectively and in parallel by 
the updating processes. The steps required to execute all 
updates in a batch are pooled together for efcient parallel 
execution. In other words, it is not the case that each update 
is executed by a single process; instead, all update processes 
collectively execute each batch. Reads are performed by the 
read processes asynchronously and concurrently to batches 
of updates. In contrast to updates, reads are not executed in 
batches, but individually. Each read is performed by a single 
process from beginning to end. Such process separation may 
be employed by applications with diferent fows for reads 
and updates, e.g., in which reads access data directly, while 
updates modify several internal data structures. 
Our timing assumptions are as follows: (1) update pro-

cesses are synchronous, meaning that their computation and 
communication delays are bounded by a known constant, 
and (2) read processes are asynchronous, meaning that they 
can be arbitrarily delayed, without any upper bound on the 
delay. We do not consider process failures in this work. 
1
We focus on edge updates for simplicity, but most batch-dynamic solutions 
can be modifed to support vertex updates as well. 

In terms of safety, our algorithms satisfy linearizability 
(also called atomicity). Essentially, linearizability requires 
that each operation (read or update) appears to take efect 
instantaneously at a moment in time that falls between that 
operation’s invocation and response. 

In terms of liveness, our algorithms guarantee that reads 
are lock-free: if reads are invoked infnitely often, then some 
operation in the system terminates in a fnite number of steps, 
infnitely often [44]. Furthermore, our algorithms guaran-
tee that each update terminates in a fnite number of steps. 
However, since our updates are executed on synchronous 
processes that do not fail, they cannot be said to be lock-free, 
so we instead say that updates are live. 

3 Background 
This section presents background information on the sequen-
tial and parallel level data structures that our approach is 
based on. 

3.1 Level Data Structure (LDS) 

The sequential level data structure of Bhattacharya et al. [15] 
and Henzinger et al. [43] combined with the proof given by 
Liu et al. [57] maintains a (2 +�)-approximate coreness value 
for each vertex in the graph for any constant � > 0. 
The LDS partitions the vertices of � into � = O(log2 �)

levels, 0, . . . , � − 1. The levels are partitioned into equal-sized 
groups of contiguous levels. There are O(log �) groups and 
each group �� has O(log �) levels. We denote the level of a 
vertex � by ℓ (�). 

Whenever an edge is inserted into or removed from the 
graph, one or more vertices may change their level, and 
thus the LDS must also be updated. This proceeds as follows. 
After each edge update, vertices update their levels based 
on whether or not they satisfy two invariants (these invari-
ants are explained below). If a vertex � violates one of the 
invariants, it must move up or down one level in the LDS, 
and then re-check the invariants; we repeat this process for 
every vertex � until all vertices satisfy both invariants. 
It is important to note that each time a vertex changes 

levels, this may cause other vertices to violate one of the 
invariants and thus have to move as well. Thus, every vertex 
level change may potentially trigger a cascading efect of 
other vertices changing levels. 

LDS Invariants. The frst invariant upper bounds the in-
duced degree of a vertex � in the subgraph of all vertices at 
� ’s level or above. If a vertex � violates the frst invariant, 
� must move up (at least) one level. The second invariant 
lower bounds the induced degree of a vertex � in the sub-
graph consisting of the level below � , the level of � , and all 
levels above � . If a vertex � violates the second invariant, it 
must move down (at least) one level. It is important to note 
that inserting more edges into the graph may only cause 
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vertices to violate the frst invariant, but not the second; sim-

ilarly, deleting edges from the graph may only cause vertices 
to violate the second invariant, but not the frst. 
We now give the invariants in more technical detail. For 

each level ℓ = 0, . . . , � − 1, let �ℓ be the set of vertices cur-
rently in level ℓ . Let �� be the set of vertices in levels greater 
or equal to ℓ . Let � > 0 and � > 0 be two constants. Let 
�0, ..., �⌈log(1+� ) � ⌉ be the groups into which the � levels are 
partitioned. 

Invariant 1 (Degree Upper Bound). If vertex � ∈ �ℓ , level 
ℓ < � , and ℓ ∈ �� , then � has at most (2+3/�) (1+�)� neighbors 
in �ℓ . 

Invariant 2 (Degree Lower Bound). If vertex � ∈ �ℓ , level 
ℓ > 0, and ℓ − 1 ∈ �� , then � has at least (1 + �)� neighbors in 
�ℓ −1. 

3.2 Parallel LDS (PLDS) 
The Parallel LDS (PLDS) algorithm of Liu et al. [57] is a 
parallel batch-dynamic LDS algorithm. It improves upon the 
original LDS algorithm by observing that (1) in many cases, 
vertices can be updated in parallel (instead of sequentially) 
and (2) if the vertices are updated in a carefully chosen order, 
the number of times a given vertex needs to be processed 
can be signifcantly reduced. 

In the PLDS algorithm, updates arrive in batches. During 
the execution of a batch, updates are partitioned into inser-
tions and deletions; thus each batch has an insertion phase 
and a deletion phase. 

During the insertion phase, levels are visited in increasing 
order (starting with level 0). The vertices in each level are 
checked in parallel against Invariant 1 and moved up one 
level if necessary. The algorithm ensures that each level 
needs to be visited at most once during the insertion phase: 
after vertices move up from level ℓ , no future step in the 
current batch moves a vertex up from level ℓ . Note that a 
vertex can move up many levels, one level at a time. 

During the deletion phase, each vertex that violates In-
variant 2 computes its desire level, which is the highest level 
below its current level where it satisfes Invariant 2. Levels 
are visited in increasing order, and when processing level ℓ , 
all vertices with a desire level of ℓ move there. Their neigh-
bors at higher levels will then recompute their desire levels. 
The algorithm ensures that a vertex will never need to move 
again once it is moved to its desire level, and that no vertices 
will want to move to a level ≤ ℓ after processing level ℓ . 
Coreness Approximation. The (2 + �)-approximate core-
ness �ˆ (�) of a vertex � is computed as in Defnition 3.1. 

Defnition 3.1 (Coreness Estimate). The coreness estimate 
ˆ� (�) of vertex � is (1 + �)max ( ⌊ (ℓ (�)+1)/4⌈log

1+� � ⌉ ⌋−1,0) 
, where 

each group has 4⌈log(1+� ) �⌉ levels. 

The following lemma by Liu et al. [57] proves the (2 + �)-
approximation for coreness values. 

Lemma 3.2. Let �ˆ (�) be the coreness estimate and � (�) be 
the coreness of � , respectively. If � (�) > (2 + 3/�) (1 + �)� ′ , 

(1+� )� ′ 
then �ˆ (�) ≥ (1 + �)� ′ . Otherwise, if � (�) < (2+3/�) (1+� ) , then 
ˆ� (�) < (1 + �)� ′ . 

4 Algorithm Overview 
To ensure linearizability, a basic challenge that our algorithm 
needs to solve is to avoid returning intermediate values: a 
read of some vertex � ’s level, that is concurrent with an 
update to the level of � , should either return � ’s pre-update 
level (its old level), or � ’s post-update level (its new level), but 
not any intermediate level between the old and new levels. 
A frst and naive version of our algorithm that addresses 

this challenge is as follows: we use operation descriptors to 
synchronize between updates and reads.2 

If a vertex � has an 
active operation descriptor, this signals to concurrent reads 
that � is in the process of changing levels in the CPLDS. 
Essentially, if a read of � fnds that � is marked with an active 
descriptor, the read must return the old level of � , before � 
started changing levels in the current batch. This is because 
the fnal level of � might not yet be known, and returning an 
intermediate level for � (in between its old and new levels) 
would violate linearizability. Thus, � ’s operation descriptor 
records the old level of � . 

However, this frst algorithm does not solve another chal-
lenge required by linearizability: avoiding new-old inver-
sions among causally dependent vertices. Consider two ver-
tices � and � , such that �’s level change (which is triggered 
by an update) causes � to now violate one of the LDS in-
variants and to also have to change levels. In any sequential 
execution, the update that moves � also moves � , so no read 
can observe the old level of � after some read has already 
observed the new level of �, or vice-versa. However, our frst 
algorithm allows such new-old inversions in concurrent exe-
cutions: if � is marked but � is not yet (or no longer) marked, 
then a pair of reads might return the new level of � (since � 
is not marked) and then the old level of � (since � is marked). 

Therefore, it is not sufcient for a read of � to synchronize 
with level changes of � alone. Such a read must also synchro-
nize with level changes of � ’s causally dependent vertices. In 
fact, it must synchronize with the entire transitive closure 
of vertices that may have caused � to move or which � may 
have caused to move. As in the LDS and PLDS algorithms, 
in our algorithm it is possible for updates to create depen-
dency chains among vertices: an update causes a node � to 
change levels, which causes one or more of � ’s neighbors 
to violate the invariants and have to change levels, which 
may cause their neighbors in turn to change levels, and so 
on. We represent these causal dependencies as a Directed 
Acyclic Graph (DAG): in such a DAG, there is an edge � → � 
2
Note that updates do not synchronize with each other through the opera-
tion descriptors; instead, they are synchronized as part of the batch-dynamic 
parallel execution. 

289 



Parallel �-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

	𝑢

	𝑣 	𝑤
	𝑢

1
2
3
4 	𝑣 	𝑤

	𝑢

Figure 1. A PLDS and a dependency DAG in which � ’s and

� ’s level changes are indirectly caused by the level change

of �. In any sequential execution, the operation that causes

the level of � to change also changes the levels of � and � .

Thus, it is impossible in any sequential execution for a read to

return the old level of�, � , or� after another read has already

returned the new level of one of these vertices. To ensure

linearizability, our algorithm must therefore guarantee that

level changes to vertices in the same DAG appear to take

efect atomically to concurrent readers.

if �’s level change caused � to also have to change level. If �

has no such outgoing edge, we call � a root (this occurs if �
moves only as a direct result of an edge update, as opposed

to moving as a result of one of its neighbors in � moving).

The set of vertices that move during a batch can thus

be partitioned into dependency DAGs. To avoid new-old

inversions, our algorithm must ensure that the level changes

of all vertices within a DAG appear to concurrent readers to

take efect atomically; we call this the DAG atomicity rule.
An example is shown in Fig. 1.

We enforce the DAG atomicity rule by maintaining the

invariant that each DAG has a single root, and rely on an

atomic operation on this single root to linearize the level

changes of all vertices in the DAG. To ensure that each DAG

has a single root, we do the following: whenever a DAG has

more than one root, we deterministically pick one of them

as the sole root, and make the others point to the sole root.

Even though the dependency graph is a DAG, in our al-

gorithm we do not need to materialize the entire DAG (i.e.,

store all of the dependencies). In fact, we only require that

we can reach the root of a DAG from any vertex in the DAG.

Thus, it is sufcient to store a single parent for each vertex

in the DAG. Whenever we create an operation descriptor

for some vertex � (we say that � becomes marked), we in-
clude in the descriptor a pointer to � ’s parent in the DAG. By

traversing these parent pointers we will reach the root from

any vertex in a fnite number of steps. Therefore, we only

materialize a subtree of each DAG. However, we continue

using the DAG terminology in this paper.

We now describe the high-level changes our CPLDS data

structure introduces with respect to PLDS:

1. When a vertex � becomes marked during a batch of up-

dates, we create an operation descriptor for � and populate

it with � ’s old (pre-update) level and parent.

2. At the end of each batch, we unmark all marked nodes

by deleting all operation descriptors. We frst unmark the

root of each DAG, and then unmark all non-root vertices.

Algorithm 1. Data structures and global variables

1 struct Descriptor:
2 // a pointer to this node’s parent in the dependency DAG
3 int parent
4 // this node’s level before the current batch of updates
5 int old_level

7 // global variables
8 Descriptor desc_array[num_vertices]
9 int batch_number = 0 // incremented at the start of every batch

3. A read of vertex � examines � ’s operation descriptor (if

any): if � is marked and its root is also marked, the read re-

turns the coreness estimate using � ’s old level (as recorded

in � ’s descriptor); otherwise, the read returns the coreness

estimate using � ’s current level, which we call its live
level.
In the next section, we describe our algorithm in more

technical detail.

5 Detailed Algorithm
5.1 Data Structures and Global State

Algorithm 1 shows the Descriptor data structure; it may

be in one of two states at any given time. If the Descriptor
has the special value UNMARKED, then we say that � and its

descriptor are unmarked, which means that � is not currently

in the process of changing levels in the CPLDS. Otherwise,

we say that � and its descriptor are marked, and thus � is in

the process of changing its level. A marked descriptor has

two felds: parent and old_level. The parent feld contains
the index of � ’s parent node, or the special value I_AM_ROOT
if � has no parent because � is the root of its DAG.

We maintain a global array desc_array of Descriptors,
one per vertex in the graph, for the lifetime of the program.

As part of our global state, we also maintain a variable

batch_number, which is incremented at the start of each

batch.

5.2 Updates

Our update algorithm executes each batch B as follows; we

show an example in Fig. 2. First, we insert into, or delete

from, � all of the edges in B. Then, we traverse the CPLDS

level by level and update the levels of the vertices impacted

by the edge updates of B. Whenever we detect that a ver-

tex violates one of the invariants, we mark it as described

below, and move it up or down one or more levels in the

CPLDS. This is done in parallel for all vertices on a given

level in the CPLDS. After we have done this for every level in

the CPLDS, we fnalize the batch by unmarking all marked

vertices (described below).

Marking. Whenever a node � becomes marked, we call the

mark function (shown in Algorithm 2) and pass in � ’s index in

desc_array, as well as an array containing the indices of � ’s

triggers. A vertex� is a trigger for � if� may have contributed

to � becomingmarked during the current batch. In the case of

insertions, the set of triggers contains all marked neighbors
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Figure 2. The insertion batch is shown in red. The batch causes the yellow, green, blue, and purple vertices to move up one 
level with the created dependency DAG shown below. Then, the green, blue and purple vertices continue moving up the levels. 
Finally, the green, blue, and purple vertices cause the gray vertex to move up a level. Since the green, blue, and purple vertices 
are all in the same dependency DAG, the gray vertex points to the root (the blue vertex). 
Algorithm 2. Update algorithm: marking and unmarking 
1 mark(int v, int triggers[]): 
2 desc = new Descriptor 
3 desc.old_level = LDS.get_level(v) 
4 marked_batch_neighbors = [w for (v,w) in the batch B and w 

↩→ is marked] 
5 for w in (marked_batch_neighbors + triggers): 
6 union(v,w) 
7 desc_array[v] = desc 

9 // this is called at end of batch 
10 unmark_all(): 
11 // unmark all roots 
12 parfor all nodes v such that desc_array[v] != UNMARKED 

and desc_array[v].root == I_AM_ROOT : 
13 desc_array[v] = UNMARKED 
14 // unmark all other marked nodes 
15 parfor all nodes v such that desc_array[v] != UNMARKED : 
16 desc_array[v] = UNMARKED 

of � at the same level or higher level as � in the CPLDS. (A 
vertex which was at a lower level than � earlier in the batch 
but moved higher than � could become a trigger later.) In 
the case of deletions, the set of triggers contains all marked 
neighbors of � at any level lower than ℓ (�) − 1’s level. 
In the mark function, we frst create a new descriptor for 

� and populate its old_level feld with � ’s current level, be-
fore � moves (Lines 2–3). We then determine the set of DAGs 
into which � will be merged. These are: (1) the set of DAGs 
of � ’s triggers and (2) the set of DAGs of � ’s marked batch 
neighbors (Line 4). A vertex � is a marked batch neighbor 
of � if the edge (�, �) is updated during B and � is already 
marked when we mark � . We merge � into its marked batch 
neighbors’ DAGs to ensure that no updated edge has its end-
points in diferent DAGs—this is necessary for correctness 
(see Section 6). 

Next, we merge the DAGs determined in the previous 
steps and add � to the merged DAG (Lines 5–6). Care must 
be taken here regarding synchronization, as multiple threads 
that are marking vertices in parallel might merge overlap-
ping sets of DAGs at the same time. In fact, this step is very 
similar to the union operation in concurrent union-fnd im-

plementations [6, 28, 45, 47]. For conciseness, we reuse the 
union implementation described in [47] and implemented 
in [28], and denote it as union (Line 6). 

Unmarking. Unmarking, shown in Algorithm 2, is done 
by overwriting the contents of a vertex � ’s descriptor with 

the special UNMARKED value. We frst unmark all DAG roots 
(Lines 12–13), and then unmark all other nodes (Lines 15–16). 

By unmarking root descriptors frst, we maintain the fol-
lowing invariant: for each DAG, the root descriptor is marked 
before non-root descriptors in the same DAG are marked, 
and is unmarked before non-root descriptors in the same 
DAG are unmarked. 

Optimization: Path Compression. In our algorithm, we 
do not need to materialize DAGs fully; instead, each vertex � 
points directly to the root of its DAG as it was at the moment 
when � was added to the DAG. However, due to our DAG 
merging mechanism in Algorithm 2, it is possible for the 
path from � to the true root of � ’s DAG to become more than 
one hop long. This is both unnecessary and inefcient, as 
traversing several hops to reach the root may impact per-
formance. Therefore, as an optimization, when doing reads 
or updates, we perform path compression when traversing 
the path from a vertex to its root: if this path is longer than 
one hop, at the end of the traversal, we overwrite � ’s parent 
feld, as well as the parent feld of all of � ’s ancestors that 
we traversed, to point to the root. This optimization is a 
standard optimization in union-fnd algorithms and is done 
in the union-fnd implementation that we use [28]. 

5.3 Reads 

We start with Algorithm 3, which contains the helper func-
tion check_DAG. This function takes a vertex � ’s descriptor 
� and determines whether � is part of a marked DAG. The 
basic logic of check_DAG is as follows: we traverse �’s DAG 
until we reach the root: if the root is marked, return MARKED; 
otherwise return UNMARKED. We also perform path compres-

sion for reads, and thus this is the same logic as the fnd 
operation in union-fnd algorithms (not shown in the pseu-
docode). However, instead of traversing to the root every 
time, we implement the following optimization which en-
ables us to return early from check_DAG in some cases. If we 
encounter any unmarked descriptor along the way, includ-
ing � itself, we can return UNMARKED immediately, without 
continuing to the root. This is due to the invariant described 
above: if any non-root descriptor in a DAG is unmarked, it 
must be the case that the DAG’s root has also been unmarked. 
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Algorithm 3. check_DAG helper function 
1 // returns whether the DAG that includes desc is marked or 

2 
3 
4 
5 

↩→ unmarked 
check_DAG(Descriptor desc): 

// if v’s descriptor is marked we can return directl
if (desc == UNMARKED): 

return UNMARKED 

y 

7 // otherwise, traverse to the root of v’s DAG 
8 while (desc.parent != I_AM_ROOT): 
9 desc = desc.parent 
10 // if we encounter an unmarked descriptor on the path to 

11 
12 

↩→ the root, we can return directly 
if (desc == UNMARKED): 

return UNMARKED 

14 
15 
16 
17 

// return whether the root is MARKED or UNMARKED 
if (desc == UNMARKED): 

return UNMARKED 
return MARKED 

Algorithm 4. Read algorithm 
1 // returns the level of the vertex with index v 
2 read(int v): 
3 retry: 
4 b1 = batch_number 
5 l1 = LDS.get_level(v) 
6 desc = desc_array[v] 
7 status = check_DAG(desc) 
8 l2 = LDS.get_level(v) 
9 b2 = batch_number 
10 if (b1 != b2): 
11 goto retry 
12 else if status == MARKED: 
13 return coreness estimate using desc.old_level 
14 else: // status was UNMARKED 
15 if (l1 == l2): 
16 return coreness estimate using l1 
17 else: 
18 goto retry 

Path compression is done on the path up to the unmarked 
node that we fnd. 
We now describe the main read algorithm, whose pseu-

docode is in Algorithm 4. Essentially, the logic of a read of 
vertex � is as follows: (1) read � ’s live level and descriptor 
(Lines 5–6); (2) determine if � ’s root is marked (Line 7); (3) if it 
is, then return � ’s old level from its descriptor (Line 13); oth-
erwise, return � ’s live level from step (1) (Line 16). However, 
we require additional logic to ensure linearizability. 

First, we “sandwich” steps (1) and (2) above between two 
reads of the batch number (Lines 4 and 9). We repeat steps (1) 
and (2) until the two batch numbers match, meaning that the 
steps occurred within the same batch. Otherwise, the read 
logic might observe a mix of states from diferent batches 
and thus return non-linearizable results. 

Furthermore, we sandwich step (2) in between two reads 
of the � ’s live level (Lines 5 and 8); in case � is unmarked 
(and thus the read returns the live level), these two reads 
must match. If we only performed one such read of the live 
level, this would enable a scenario in which the read returns 
an intermediate level of � , in between � ’s old and new levels, 
which would not be linearizable. 

6 Correctness 
We prove the linearizability and liveness of our algorithm in 
the full version of our paper [58]. In short, we prove 

Theorem 6.1. Our algorithm is linearizable, and live: updates 
terminate in a fnite number of steps and reads are lock-free. 

6.1 Approximation Guarantees 
The level that a reader uses to compute the coreness esti-
mate will correspond to the level of the vertex during some 
point in time in between update batches. This is because 
when a reader returns a coreness estimate, it never sees an 
intermediate level of the vertex (it uses the level either at 
the beginning of a batch or at the end of it). Therefore, when 
compared to the true coreness value of the vertex at a point 
in time between two consecutive update batches, we main-

tain the (2 + �)-approximation guarantee as in the algorithm 
by Liu et al. [57]. 
Note that using unsynchronized reads can return core-

ness values of vertices using intermediate levels within a 
batch, and the error can be unbounded with respect to the 
true coreness values at both the beginning and the end of 
the batch. For example, consider a batch of insertions that 
causes a vertex � to move up from group � to group � + � , for 
� = � (log

1+� �) (there are log
1+� � groups in the level data 

structure). An unsynchronized read can see the vertex � in 
any group in [�, . . . , � + �]. In the worst case, we return the 
coreness estimate of � at group � + �/2. According to Defni-
tion 3.1, this will increase the error by a multiplicative factor√
of (1 +�)�/2 = � ( �) relative to the guarantee in Lemma 3.2, 
no matter whether we compare to the ground truth at the 
beginning or at the end of the batch. 

7 Experimental Evaluation 
In this section, we implement our algorithm and test it 
against various baselines to determine the latency, through-
put, and accuracy of our reads and updates. We implement 
our algorithms on top of the parallel level data structure 
(PLDS) in Liu et al. [57] which uses the Graph Based Bench-
mark Suite (GBBS) [27]. Our results show that our algorithms 
decreases the latency of reads compared to synchronous im-

plementations by up to fve orders of magnitude. 
Evaluated Algorithms. We compare our CPLDS against 
two baseline algorithms that we also implement. First, we 
compare our CPLDS against a synchronous implementation 
(SyncReads) where all reads must wait until all updates are 
performed in the batch before the reads can be performed. We 
also compare against a non-synchronous version (NonSync) 
of our algorithm where reads can be done at any time in the 
batch. This algorithm is not linearizable. We obtain orders-of-
magnitude improvements on the accuracy of our reads against 
the non-linearizable (NonSync) implementation and on the 
latency against the synchronous (SyncReads) algorithm. 
Experimental Setup. We use a c2-standard-60 Google 
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Graph Dataset Num. Vertices Num. Edges Largest value of � 

dblp 317,080 1,049,866 113 
brain 784,262 267,844,669 1200 
wiki 1,094,018 2,787,967 124 
youtube (yt) 1,138,499 2,990,443 51 
stackoverfow (so) 2,584,164 28,183,518 198 
livejournal (lj) 4,846,609 42,851,237 372 
orkut 3,072,441 117,185,083 253 
ctr 14,081,816 16,933,413 3 
usa 23,947,347 28,854,312 3 
twitter 41,652,230 1,202,513,046 2488 

Table 1. Graph sizes and largest values of � for �-core de-
composition. 

Cloud instance (3.1 GHz Intel Xeon Cascade Lake CPUs with 
a total of 30 cores with two-way hyper-threading, and 236 
GiB RAM) and an m1-megamem-96 Google Cloud instance 
(2.0 GHz Intel Xeon Skylake CPUs with a total of 48 cores 
with two-way hyper-threading, and 1433.6 GB RAM). We do 
not use hyper-threading in our experiments as we found it 
not to improve performance. Our programs are written in 
C++, use a work-stealing scheduler [16], and are compiled 
using g++ (version 7.5.0) with the -O3 fag. We terminate 
experiments that take over 2 hours. 

We test our algorithms on batches of insertions and dele-
tions. Unless specifed otherwise, all experiments are con-
ducted on batches of 106 

edges. We run each experiment for 
11 trials, and we compute the mean and maximum results 
for each experiment. 
Datasets. We use datasets from the Stanford Network Anal-
ysis Project (SNAP), the Network Respository, and the DI-
MACS Shortest Paths challenge, specifcally, the datasets 
used by Liu et al. [57] in their evaluation: com-DBLP (dblp), 
com-LiveJournal (lj), com-Orkut (orkut), com-Youtube (yt), 
wiki-talk (wiki), sx-stackoverfow (so), twitter (twitter) [52], 
human-Jung2015-M87113878 (brain), full USA (usa), and cen-
tral USA (ctr). Graph characteristics are given in Table 1. 
Implementation Details. All of our code is publicly avail-
able.

3 
We make use of the optimization feature given in 

the original PLDS code with the -opt fag set to 20. This 
optimization feature speeds up the code but degrades its ap-
proximation error. We set the parameters � = 0.2 and � = 9. 
The theoretical approximation factor using these parameters 
is 2.8 (i.e., � = 0.8). Our experiments demonstrate we never 
exceed the maximum approximation factor obtained by the 
original PLDS implementation for each dataset. We test our 
implementations on combinations of diferent numbers of 
reader and update threads. Each thread is on a separate core 
with no other reader or update threads. We test combina-

tions of 1, 2, 4, 8, and 15 reader and update threads. Latency. 
First, we measured the latency of reads using all three im-

plementations on all of the graphs. For all algorithms, each 
3
https://github.com/qqliu/batch-dynamic-kcore-

decomposition/tree/master/gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS 

read thread continuously generates reads of vertices chosen 
uniformly at random for the duration of the batch. Reads 
for CPLDS are implemented and performed according to 
our algorithms. NonSync performs reads immediately by 
looking at the current level of the vertex. Each read thread 
in SyncReads maintains an array of reads in the order that 
they are generated during each update batch and performs 
the reads, in order, at the end of the batch. 
For each implementation and graph, we obtain the av-

erage, 99-th percentile latency, and 99.99-th percentile la-
tency across all reads and all trials. The results are shown 
in Fig. 3. We see that against SyncReads, our CPLDS algo-
rithm achieves up to fve orders of magnitude smaller latency 
for both insertions and deletions for the average, 99-th per-
centile and 99.99-th percentile latencies. This is because in 
SyncReads, reads that arrive must wait until the end of the 
batch before they can execute. Compared to NonSync, reads 
are at most 3.21x slower in CPLDS, but are linearizable. 
Batch Size vs. Latency. Fig. 4 shows the latency of reads 
across multiple insertion batch sizes for all three implemen-

tations. Specifcally, we show the average, 99-th percentile, 
and 99.99-th percentile latencies for dblp and lj. For yt, the 
average latency is 1.12–1.38 factor larger for CPLDS than 
NonSync but is at least seven orders of magnitude smaller 
than SyncReads. For the 99-th percentile latency on dblp, 
CPLDS and NonSync exhibit the same latency and CPLDS 
exhibits smaller latency than SyncReads by up to seven or-
ders of magnitude. Finally, for the 99.99-th percentile latency 
on dblp, CPLDS exhibits larger latency than NonSync by up 
to a factor of 3.98, but exhibits up to fve orders of magnitude 
smaller latency than SyncReads. 
For dblp, the average latency is 1–1.70 factor larger for 

CPLDS than NonSync but is at least fve orders of magnitude 
smaller than SyncReads. For the 99-th percentile on dblp, 
CPLDS and NonSync exhibit the same latency and CPLDS 
exhibits smaller latency than SyncReads by up to six orders 
of magnitude. Finally, for the 99.99-th percentile on dblp, 
CPLDS exhibits larger latency than NonSync by up to a fac-
tor of 1.88, but exhibits up to fve orders of magnitude smaller 
latency than SyncReads. Deletions follow a similar trend: 
for dblp, the average, 99-th percentile and 99.99-th percentile 
latencies for CPLDS are up to 1.84, 1.0, and 1.66 factors, re-
spectively, larger than NonSync. Compared to SyncReads, 
CPLDS exhibits up to six orders of magnitude smaller lanten-
cies on dblp and up to seven orders of magnitude smaller 
latencies on yt. For yt, the average, 99-th percentile, and 
99.99-th percentile latencies for CPLDS are up to 1.44, 1.0, 
and 2.33 factors, respectively, larger than NonSync. 

We found that deletions follow a similar trend. 
Update Time. Fig. 5 shows the average and maximum up-
date times throughout all of our trials on all graphs. We 
see that NonSync requires the least amount of update time, 
although our algorithm is at most 1.48x slower for both in-
sertions and deletions. The reason that SyncReads requires 
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Figure 3. Comparison of the average, 99-th percentile, and 99.99-th percentile read latencies of the implementations under 
batches of insertions or deletions. The �-axis is in log-scale. Twitter times out for SyncReads and we do not show their results. 
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Figure 4. Comparison of the latencies over diferent insertion batch sizes using 15 update threads and 15 read threads. The 
�-axis is in log-scale. We tested on yt and dblp. 
more time sometimes (up to 1.85 factor worse) than the other compared to the previous synchronous PLDS implementa-

methods is due to the fact that reads occur synchronously and tion of [57]. 
must factor into the update time (since updates are blocked 
and cannot be performed until all synchronous reads fnish). Approximation Factors. Fig. 6 shows the average and max-

We see that for most graphs, NonSync results in the lowest 
imum approximation factors of our algorithm versus the

update time because the updates methods did not change 
baselines. We see that the maximum approximation factors 
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Figure 5. Comparison of the average and maximum batch up-
date time over all batches and trials using 15 update threads 
and 15 read threads. The �-axis is in log-scale. Twitter times 
out for SyncReads and we do not show their results. 
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Figure 6. Comparison of the average and maximum errors 
over all reads and all trials using 15 update threads and 15 
read threads. The �-axis is in log-scale. The blue line shows 
the theoretical maximum error of 2.8. The deletion errors 
sometimes exceed 2.8 due to the optimizations in our data 
structure. 
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for CPLDS are upper bounded by 2.8, the theoretical max-

imum bound for insertion, and by the maximum approxi-
mation factors returned by SyncReads for deletions. The 
deletion errors for CPLDS and SyncReads exceed 2.8 due 
to the optimizations in our data structure, as described ear-
lier. For CPLDS, because of our theoretical approximation 
guarantees, our reads are guaranteed to be linearizable to 
either the beginning of the batch or the end of the batch. 
Since it is difcult to know whether the read linearized to 
the beginning or the end of the batch, we take the minimum 
of the two errors. 
We see that our average error for CPLDS is sometimes 

slightly larger than the average error for SyncReads, by a 
factor of at most 1.15. Such a small factor is likely due to the 
variance in our selections of reads. For NonSync, we return 
the minimum approximation factor between the beginning 
and the end of the batch. We see that the maximum errors 
for NonSync are up to 52.7x worse than CPLDS because the 
a read can occur while the vertex is in the middle of moving 
levels. Thus, the vertex can be stuck in a “middle” level whose 
core number is far from the approximate coreness estimate 
at the beginning or end of the batch. 
Scalability of Read and Write Throughputs. We test the 
scalability of our read throughputs as we increase the num-

ber of reader threads while maintaining 15 writer threads. 
We also test our write throughput. We record the average 
throughput across all batches and all trials for the dblp and 
lj graphs. For CPLDS and NonSync reads and writes, the 
average throughput is computed as the total number of reads 
or writes divided by the total write time over all batches. 
For SyncReads reads and writes, the duration of time in 
the denominator is the total read plus write time over all 
batches, respectively. For the read scalability of SyncReads, 
we compute the throughput analytically: we divide the total 
number of reads performed by CPLDS by half of the sum of 
the update time and the minimum read time of any thread 
(on average, a read operation will come in the middle of this 
interval). The minimum read time of any thread is computed 
by multiplying the minimum observed latency of reads (per-
formed by NonSync) times the total number of reads divided 
by the number of threads. This analytical computation upper 
bounds the read throughput of SyncReads. For both graphs, 
we test on the number of reader threads from {1, 2, 4, 8, 15}. 

In addition to read throughputs, we also test the scalability 
of our write throughputs as we increase the number of writer 
threads while maintaining 15 reader threads. For dblp, we 
test on the number of writer threads from {1, 2, 4, 8, 15}. For 
lj, due to the high running times on smaller number of writer 
threads, we only test on {8, 15}. 

The results are shown in Fig. 7. We see that NonSync has 
the greatest read throughput for most graphs due to the fact 
that it does not requiring synchronization mechanisms for in-
dividual reads (i.e., the dependency DAG), while CPLDS has 
the worst read throughputs. Because we are upper bounding 

the read throughput of SyncReads, sometimes SyncReads 
has greater throughput than NonSync (by a small margin). 
NonSync has slightly higher read throughput by factors of 
up to 2.21x than CPLDS since reads in NonSync do not have 
to traverse the dependency DAG. On the other hand, either 
SyncReads or NonSync have the greatest writer throughput. 
CPLDS sometimes has the worst write throughput and is 
sometimes between SyncReads and NonSync, specifcally, 
with write throughput within a factor of 7 of the maximum 
throughput of either SyncReads and NonSync. Such an or-
dering of the throughputs is expected as NonSync has the 
smallest total time (consisting only of write time) while Syn-
cReads also has additional time resulting from reads and 
CPLDS requires additional time to maintain the DAGs. 

8 Related Work 

Parallel batch-dynamic graph algorithms. There has 
been work on parallel batch-dynamic �-core decomposition, 
both in the exact [12, 38, 46, 48, 73] and approximate [57] 
settings. The approximate algorithm of Liu et al. [57] has 
been shown to signifcantly outperform the exact algorithms. 
Similar to our paper, these works maintain a �-core decompo-

sition of a graph, or an approximation thereof, under batches 
of edge updates. Unlike our work, they do not propose a way 
to query coreness values concurrently with updates. Parallel 
batch-dynamic algorithms have been designed for a number 
of other graph problems [1, 2, 9, 10, 29, 36, 66, 69, 71]. 
Concurrency on graphs. Fedorov et al. [35] propose a con-
current algorithm for dynamic connectivity, which requires 
maintaining the connected components of a graph under 
dynamic edge insertions and deletions. Their algorithm sup-
ports single-writer multi-reader concurrency, like our algo-
rithm. If fne-grained locking is applied, their algorithm can 
handle writers in disjoint components. Nathan et al. [65] 
propose a non-stop streaming data analysis model, in which 
updates and reads can proceed concurrently. However, the 
results of their algorithms are not necessarily linearizable. 

Dhulipala et al. [24, 27] design compressed fully-functional 
trees that support single-writer multi-reader operations on 
graphs. Unlike our work where the results of reads can refect 
the most recent updates, their work only supports concurrent 
reads on static snapshots of graphs. 
Concurrency from parallel batch-dynamic data struc-
tures. Aksenov et al. [5] propose parallel combining, which 
implements a concurrent data structure from a parallel batch-
dynamic one by synchronizing operations into batches exe-
cuted by a "combiner." Of particular relevance is their read-
optimized version, which performs updates sequentially and 
reads in parallel. They apply their idea to a dynamic connec-
tivity algorithm. Agrawal et al. [4] propose a similar idea, 
where a scheduler implicitly batches concurrent accesses to a 
data structure, executing one batch at a time. Like our paper, 
both works enable concurrency from batch-dynamic data 
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Figure 7. Comparison of the average throughput over all batches and trials using diferent numbers of update threads and 
reader threads on the dblp and lj graphs. The �-axis is in log-scale. For the writer throughput experiments, we fx the number 
of reader threads to 15, and for the reader throughput experiments, we fx the number of writer threads to 15. 
structures but, unlike our paper, they do not allow asynchro-
nous reads concurrent with update batches, and therefore 
cannot guarantee low latency for reads. 

Concurrency techniques. Some of our techniques are sim-

ilar to previous methods in concurrent programming. Op-
eration descriptors, like the ones we use to synchronize 
reads and updates, are a classic technique for lock-free algo-
rithms [14, 31, 37]. Our sandwiched reads are reminiscent 
of the clean double collect method used by Afek et al. [3] in 
their atomic snapshot algorithm. Finally, the epsilon trick 
has been used before to space out linearization points that 
would otherwise (incorrectly) occur at the same time [23]. 

9 Conclusion 
We present a novel approximate �-core decomposition al-
gorithm that supports parallel batch-dynamic updates and 
asynchronous concurrent reads. We ensure linearizability by 
efciently tracking causal dependencies between operations 
using a lightweight dependency DAG design. Our experi-
mental evaluation demonstrates that the high throughput 

of parallel batch-dynamic updates is preserved, while asyn-
chronous reads attain ultra-low latency and accuracy similar 
to that of the previous synchronous algorithm. For future 
work, we are interested in supporting asynchronous updates 
in our data structure. We are also interested in using our 
data structure for other closely related graph problems, such 
as low out-degree orientation, maximal matching, �-clique 
counting, vertex coloring, and densest subgraph. 
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A Artifact Appendix 
A.1 Setup and Experiment Script 
Our experiments use code from the Graph Based Benchmark 
Suite (GBBS) which can be installed from this Github link: 
https://github.com/qqliu/batch-dynamic-kcore-decomposition. 
GBBS is most easily installed and run on Ubuntu 20.04 LTS, 
but can be installed easily on any Ubuntu machine. We have 
provided an instance with pre-installed software on which 
you can run experiments if you provide us with a public key. 

First, run setup.sh within the main 
batch-dynamic-kcore-decomposition/ directory by typ-
ing sh setup.sh into the command line. The following are 
the setup instructions that are run by setup.sh: 

1. If you do not have make, run sudo apt install make. 
2. If you do not have g++, run sudo apt-get update, 

then sudo apt-get install g++. 
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3. Run git submodule update --init --recursive 
to obtain subpackages from inside the GBBS directory. 

4. All scripts for running code is included under the 
/batch-dynamic-kcore-decomposition/gbbs/scripts 
directory. 

5. The relevant scripts are: cplds_approx_kcore_setup.txt, 
cplds_test_approx_kcore.py, and 
cplds_read_approx_kcore_results.py. 

Experiment Machine Setup Our experiments require 
machines with 30 cores. Specifcally, we tested our exper-
iments on machines with the following specifcations. We 
use a c2-standard-60 Google Cloud instance (3.1 GHz Intel 
Xeon Cascade Lake CPUs with a total of 30 cores with two-
way hyper-threading, and 236 GiB RAM) and an m1-megamem-96
Google Cloud instance (2.0 GHz Intel Xeon Skylake CPUs 
with a total of 48 cores with two-way hyper-threading, and 
1433.6 GB RAM). We do not use hyper-threading in our 
experiments. Our programs are written in C++, use a work-
stealing scheduler [16], and are compiled using g++ (version 
7.5.0) with the -O3 fag. We terminate experiments that take 
over 2 hours to fnish. 
Experiment Script We have prepared an experimental 

script for you to run to reproduce the results for all experi-
ments for insertions on three of our tested graphs. We chose 
these experiments in order for our suite of experiments to 
complete within a reasonable time limit. All of our experi-
ments in the script can be completed in a total of 15 minutes. 
The experimental script is included in /batch-dynamic-kcore-

decomposition/gbbs/scripts/cplds_experiments and can be 
run by typing sh run_experiments.sh into the terminal. 
The program outputs into the terminal, the results of all 
experiments with the corresponding labels. 
A.2 Step-by-Step Instructions 
All of our experiments can be performed using our general 
purpose script given in the README fle under the 
gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS di-
rectory. 
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