

Parallel �-Core Decomposition with Batched Updates
and Asynchronous Reads

Quanquan C. Liu Julian Shun Igor Zablotchi
Yale University MIT CSAIL Mysten Labs

USA USA Switzerland
quanquan.liu@yale.edu jshun@mit.edu igor@mystenlabs.com

Abstract domains. One crucial aspect involves identifying communi-

ties within the network where individuals or vertices share
Maintaining a dynamic �-core decomposition is an impor-

strong connections, as well as understanding the level of con-
tant problem that identifes dense subgraphs in dynamically

nectivity of each individual to their respective community.
changing graphs. Recent work by Liu et al. [SPAA 2022]

The notion of a �-core, or more generally, �-core decom-
presents a parallel batch-dynamic algorithm for maintaining

position, efectively captures the well-connectedness of a
an approximate �-core decomposition. In their solution, both

vertex or group of vertices. Consequently, this problem and
reads and updates need to be batched, and therefore each

its variations have received extensive attention across ma-
type of operation can incur high latency waiting for the other

chine learning [8, 33, 40], database [17, 21, 32, 54, 63], social
type to fnish. To tackle most real-world workloads, which

network analysis, graph analytics [25, 26, 49, 50], computa-
are dominated by reads, this paper presents a novel hybrid

tional biology [22, 51, 59, 61], and other relevant communi-
concurrent-parallel dynamic �-core data structure where

ties [39, 50, 60, 67].
asynchronous reads can proceed concurrently with batches

Given an undirected graph � with � vertices and � edges,
of updates, leading to signifcantly lower read latencies. Our

the �-core of the graph represents the largest subgraph � ⊆
approach is based on tracking causal dependencies between

� in which every vertex in � has a degree of at least � . The
updates, so that causally related groups of updates appear

�-core decomposition of the graph refers to a partition of
atomic to concurrent readers. Our data structure guaran-

the graph into layers, where a vertex � is placed in layer � if
tees linearizability and liveness for both reads and updates,

it belongs to a �-core but not a (� + 1)-core. This layering
and maintains the same approximation guarantees as prior

process assigns a coreness value to each vertex based on
work. Our experimental evaluation on a 30-core machine

the largest �-core that it belongs to, leading to a natural
shows that our approach reduces read latency by orders of

hierarchical clustering.
magnitude compared to the batch-dynamic algorithm, up to� �

Traditional algorithms that give exact solutions to �-core
a 4.05 · 105

-factor. Compared to an unsynchronized (non-
decomposition inherently follow a sequential approach [62].

linearizable) baseline, our read latency overhead is only up to
In fact, �-core decomposition is known to be a P-complete

a 3.21-factor greater, while improving accuracy of coreness
problem [11], so efcient parallel algorithms that solve it ex-

estimates by up to a factor of 52.7.
actly are unlikely to exist. To overcome this limit, we focus

CCS Concepts: • Theory of computation → Concurrent on achieving a close approximate decomposition, which pro-
algorithms; Dynamic graph algorithms; • Computing vides utility in areas where existing methods focus mostly on
methodologies → Parallel algorithms. approximations, such as epidemiology [22, 51, 59, 61], com-

munity detection and network centrality measures [30, 34, 42,
Keywords: parallelism, concurrency, �-core decomposition 64, 72, 76], network visualization and modeling [8, 19, 75, 77],

protein interactions [7, 13], and clustering [41, 53].
Current emphasis has also been on addressing the dy-1 Introduction namic nature of large networks. Networks undergo frequent

The discovery of underlying structure in large-scale net- updates which require real-time �-core computations for
works poses a fundamental challenge in various computing various applications. Signifcant progress has been made on

dynamic �-core algorithms in both sequential [55, 56, 68,
70, 74, 78] and parallel settings [12, 46, 48] to achieve fast,

This work is licensed under a Creative Commons Attribution-
practical solutions.

NonCommercial-ShareAlike International 4.0 License.
Recent work by Liu et al. has studied �-core decomposition

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom
in the parallel batch-dynamic setting, where operations pro-

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0435-2/24/03. ceed in batches and there is global synchronization between
https://doi.org/10.1145/3627535.3638508 diferent batches [57]. Each batch consists of exactly one type

of operation—reads, insertions, or deletions. However, a key

286

https://doi.org/10.1145/3627535.3638508
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627535.3638508&domain=pdf&date_stamp=2024-02-20
mailto:igor@mystenlabs.com
mailto:jshun@mit.edu
mailto:quanquan.liu@yale.edu

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Qanquan C. Liu, Julian Shun, and Igor Zablotchi

challenge arises: querying the system state has high latency,
as reads cannot safely proceed concurrently with update
batches. Unsynchronized reads, concurrent with updates,
may not only lead to hard-to-interpret non-linearizable re-
sults, but can also break the approximation bounds of the
�-core algorithm (in fact, the error could be unbounded, as
we show later). Thus, reads in current parallel batch-dynamic
algorithms must either wait for updates to fnish, or be per-
formed synchronously as part of the batch, both adding
latency. This is problematic for applications that require low
read latency. Examples include social networks and search
engines: these need to be very responsive on the dominant
user-facing read path [18, 20], while prioritizing throughput
on the update path.
In this paper, we address this gap by proposing a novel

�-core algorithm in which reading a vertex’s coreness can
proceed asynchronously and concurrently with (batches of)
updates and with other reads. We achieve this by tracking
causal dependencies between updates and reads. We show
that such dependencies can be tracked efciently, without
locking, and without sacrifcing the performance of updates.
Our algorithm, similar to previous work, relies on the

Level Data Structure (LDS) approach. The core idea behind
the LDS approach is that the �-core decomposition of a graph
can be represented as a sequence of levels. These levels are
organized into groups, where vertices within each group
share the same coreness (within the approximation factor).
The LDS serves as a data structure that maintains the lev-
els of all vertices, gets updated when the graph undergoes
edge insertions or removals, and facilitates queries regarding
vertex coreness.

The main challenge in designing our algorithm is achiev-
ing atomic reads that can proceed concurrently with batches
of updates while incurring low overhead. In brief, this chal-
lenge arises because reads might need to be atomic with
respect with, and thus synchronize with, a potentially large
number of concurrent updates. This might seem at frst
counter-intuitive.
At frst glance, it may seem as though a read of vertex �

only needs to be synchronize with updates to edges incident
to � . However, the situation is more intricate: an update, say
an insertion of edge � , may not only cause changes in the
levels of vertices incident to � , but can also trigger a chain
efect of vertices moving levels inside the LDS. All of these
level changes are causally dependent on the initial update
and therefore must appear to reads to take place atomically.
Furthermore, it is possible for vertex level changes to collec-
tively result from multiple edge updates, necessitating that
all of these updates appear atomic to reads.

We aim for lock-free reads. Lock-freedom has the beneft
of guaranteeing that the system always makes progress, even
if some processes are slow, but it comes with the challenge
of precluding simple solutions based on locking. We also
aim for our updates to complete in a fnite number of steps.

Due to technical reasons which we explain in Section 2, our
updates cannot be said to be lock-free, and so we use the
term live instead.
To overcome these challenges, we propose a solution

that involves tracking causal dependencies through Directed
Acyclic Graphs (DAGs) of operation descriptors. In essence,
this works as follows. During each update batch, each vertex
� that needs to change levels in the LDS is associated with
an operation descriptor containing information about which
vertices that moved earlier in the batch caused � to also have
to move. This creates a DAG of operation descriptors. Read-
ers that encounter a vertex � with an active descriptor need
to frst establish whether � , and the transitive closure of � ’s
causal dependencies (as tracked by the DAG), are still in the
process of being updated. If they are, the read must return
the old level of � , since the new, fnal level might not be
known yet. Otherwise, if the update process is complete, the
read operation can safely return the new level.

We call our data structure the concurrent parallel level
data structure (CPLDS). We implement our data structure
in C++ using the GBBS [27] and ParlayLib [16] libraries and
conduct an experimental evaluation of our algorithm on a
30-core machine. Our evaluation shows that, compared to
the batch-dynamic algorithm of Liu et al. [57], adding asyn-
chronous reads only increases the update time by a factor of
at most 1.48, while decreasing the read latency by a factor
of up to 4.05 · 105. We also compare to an unsynchronized
(non-linearizable) baseline, and show that our read latency is
only up to 3.21x slower, while returning coreness estimates
that are up to 52.7x more accurate.

2 Preliminaries
We study undirected and unweighted graphs in this paper,
and use � to denote the number of vertices and � to denote
the number of edges in a graph. We assume each vertex is
represented by a unique integer in [0, . . . , � − 1]. We study
the �-core decomposition problem, which is defned below.

Defnition 2.1 (�-Core). For a graph � and positive inte-
ger � , the �-core of � is the maximal subgraph of � with
minimum induced degree � .

Defnition 2.2 (�-Core Decomposition). A �-core decom-
position is a partition of vertices into layers such that a
vertex � is in layer � if it belongs to a �-core but not to a
(� + 1)-core. � (�) denotes the layer that vertex � is in, and is
called the coreness of � .

Defnition 2.2 defnes an exact �-core decomposition. A
�-approximate �-core decomposition is defned as follows.

Defnition 2.3 (�-Approximate �-Core Decomposition). A
�-approximate �-core decomposition is a partition of ver-

′
tices into layers such that a vertex � is in layer � only if
� (�) ′ ≤ � ≤ �� (�), where � (�) is the coreness of � .
�

287

Parallel �-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

In the parallel batch-dynamic setting, algorithms process
operations in batches, with each batch consisting of exactly
one type of operation—reads, edge insertions, or edge dele-
tions.

1
In this paper, we study a hybrid setting, where reads

are asynchronous and can execute at any time, while up-
dates are batched and executed together periodically. This
solves the latency issue for read operations, which are the
dominant type of operation in most workloads, e.g., in social
networks [18, 20].
In theory, it would be desirable to make updates asy-

chronous as well, but it is much more challenging to do
so while guaranteeing linearizability. We leave this to future
work. Below, we introduce our model more formally.

We consider a set of � processes that communicate through
standard shared-memory primitives. The processes coordi-
nate to maintain the graph � and � ’s associated CPLDS data
structure by serving incoming operations. Operations on
the CPLDS can be either reads or updates. A read operation
takes an input node and returns its coreness estimate in the
CPLDS. An update operation can be either an edge inser-
tion or an edge deletion. It adds or removes an input edge �
to/from � and updates the (levels of vertices in the) CPLDS
accordingly.
The set of processes can be partitioned into a set of up-

date processes, which only perform updates, and a set of
read processes, which only perform reads. Updates are per-
formed in batches by the update processes. We assume in
this paper that each batch consists either of only insertions
or only deletions (in practice, batches contain a mix of inser-
tions and deletions, which are separated into insertion and
deletion sub-batches during pre-processing). The updates
in each batch are executed collectively and in parallel by
the updating processes. The steps required to execute all
updates in a batch are pooled together for efcient parallel
execution. In other words, it is not the case that each update
is executed by a single process; instead, all update processes
collectively execute each batch. Reads are performed by the
read processes asynchronously and concurrently to batches
of updates. In contrast to updates, reads are not executed in
batches, but individually. Each read is performed by a single
process from beginning to end. Such process separation may
be employed by applications with diferent fows for reads
and updates, e.g., in which reads access data directly, while
updates modify several internal data structures.
Our timing assumptions are as follows: (1) update pro-

cesses are synchronous, meaning that their computation and
communication delays are bounded by a known constant,
and (2) read processes are asynchronous, meaning that they
can be arbitrarily delayed, without any upper bound on the
delay. We do not consider process failures in this work.
1
We focus on edge updates for simplicity, but most batch-dynamic solutions
can be modifed to support vertex updates as well.

In terms of safety, our algorithms satisfy linearizability
(also called atomicity). Essentially, linearizability requires
that each operation (read or update) appears to take efect
instantaneously at a moment in time that falls between that
operation’s invocation and response.

In terms of liveness, our algorithms guarantee that reads
are lock-free: if reads are invoked infnitely often, then some
operation in the system terminates in a fnite number of steps,
infnitely often [44]. Furthermore, our algorithms guaran-
tee that each update terminates in a fnite number of steps.
However, since our updates are executed on synchronous
processes that do not fail, they cannot be said to be lock-free,
so we instead say that updates are live.

3 Background
This section presents background information on the sequen-
tial and parallel level data structures that our approach is
based on.

3.1 Level Data Structure (LDS)

The sequential level data structure of Bhattacharya et al. [15]
and Henzinger et al. [43] combined with the proof given by
Liu et al. [57] maintains a (2 +�)-approximate coreness value
for each vertex in the graph for any constant � > 0.
The LDS partitions the vertices of � into � = O(log2 �)

levels, 0, . . . , � − 1. The levels are partitioned into equal-sized
groups of contiguous levels. There are O(log �) groups and
each group �� has O(log �) levels. We denote the level of a
vertex � by ℓ (�).

Whenever an edge is inserted into or removed from the
graph, one or more vertices may change their level, and
thus the LDS must also be updated. This proceeds as follows.
After each edge update, vertices update their levels based
on whether or not they satisfy two invariants (these invari-
ants are explained below). If a vertex � violates one of the
invariants, it must move up or down one level in the LDS,
and then re-check the invariants; we repeat this process for
every vertex � until all vertices satisfy both invariants.
It is important to note that each time a vertex changes

levels, this may cause other vertices to violate one of the
invariants and thus have to move as well. Thus, every vertex
level change may potentially trigger a cascading efect of
other vertices changing levels.

LDS Invariants. The frst invariant upper bounds the in-
duced degree of a vertex � in the subgraph of all vertices at
� ’s level or above. If a vertex � violates the frst invariant,
� must move up (at least) one level. The second invariant
lower bounds the induced degree of a vertex � in the sub-
graph consisting of the level below � , the level of � , and all
levels above � . If a vertex � violates the second invariant, it
must move down (at least) one level. It is important to note
that inserting more edges into the graph may only cause

288

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Qanquan C. Liu, Julian Shun, and Igor Zablotchi

vertices to violate the frst invariant, but not the second; sim-

ilarly, deleting edges from the graph may only cause vertices
to violate the second invariant, but not the frst.
We now give the invariants in more technical detail. For

each level ℓ = 0, . . . , � − 1, let �ℓ be the set of vertices cur-
rently in level ℓ . Let �� be the set of vertices in levels greater
or equal to ℓ . Let � > 0 and � > 0 be two constants. Let
�0, ..., �⌈log(1+�) � ⌉ be the groups into which the � levels are
partitioned.

Invariant 1 (Degree Upper Bound). If vertex � ∈ �ℓ , level
ℓ < � , and ℓ ∈ �� , then � has at most (2+3/�) (1+�)� neighbors
in �ℓ .

Invariant 2 (Degree Lower Bound). If vertex � ∈ �ℓ , level
ℓ > 0, and ℓ − 1 ∈ �� , then � has at least (1 + �)� neighbors in
�ℓ −1.

3.2 Parallel LDS (PLDS)
The Parallel LDS (PLDS) algorithm of Liu et al. [57] is a
parallel batch-dynamic LDS algorithm. It improves upon the
original LDS algorithm by observing that (1) in many cases,
vertices can be updated in parallel (instead of sequentially)
and (2) if the vertices are updated in a carefully chosen order,
the number of times a given vertex needs to be processed
can be signifcantly reduced.

In the PLDS algorithm, updates arrive in batches. During
the execution of a batch, updates are partitioned into inser-
tions and deletions; thus each batch has an insertion phase
and a deletion phase.

During the insertion phase, levels are visited in increasing
order (starting with level 0). The vertices in each level are
checked in parallel against Invariant 1 and moved up one
level if necessary. The algorithm ensures that each level
needs to be visited at most once during the insertion phase:
after vertices move up from level ℓ , no future step in the
current batch moves a vertex up from level ℓ . Note that a
vertex can move up many levels, one level at a time.

During the deletion phase, each vertex that violates In-
variant 2 computes its desire level, which is the highest level
below its current level where it satisfes Invariant 2. Levels
are visited in increasing order, and when processing level ℓ ,
all vertices with a desire level of ℓ move there. Their neigh-
bors at higher levels will then recompute their desire levels.
The algorithm ensures that a vertex will never need to move
again once it is moved to its desire level, and that no vertices
will want to move to a level ≤ ℓ after processing level ℓ .
Coreness Approximation. The (2 + �)-approximate core-
ness �ˆ (�) of a vertex � is computed as in Defnition 3.1.

Defnition 3.1 (Coreness Estimate). The coreness estimate
ˆ� (�) of vertex � is (1 + �)max (⌊ (ℓ (�)+1)/4⌈log

1+� � ⌉ ⌋−1,0)
, where

each group has 4⌈log(1+�) �⌉ levels.

The following lemma by Liu et al. [57] proves the (2 + �)-
approximation for coreness values.

Lemma 3.2. Let �ˆ (�) be the coreness estimate and � (�) be
the coreness of � , respectively. If � (�) > (2 + 3/�) (1 + �)� ′ ,

(1+�)� ′
then �ˆ (�) ≥ (1 + �)� ′ . Otherwise, if � (�) < (2+3/�) (1+�) , then
ˆ� (�) < (1 + �)� ′ .

4 Algorithm Overview
To ensure linearizability, a basic challenge that our algorithm
needs to solve is to avoid returning intermediate values: a
read of some vertex � ’s level, that is concurrent with an
update to the level of � , should either return � ’s pre-update
level (its old level), or � ’s post-update level (its new level), but
not any intermediate level between the old and new levels.
A frst and naive version of our algorithm that addresses

this challenge is as follows: we use operation descriptors to
synchronize between updates and reads.2

If a vertex � has an
active operation descriptor, this signals to concurrent reads
that � is in the process of changing levels in the CPLDS.
Essentially, if a read of � fnds that � is marked with an active
descriptor, the read must return the old level of � , before �
started changing levels in the current batch. This is because
the fnal level of � might not yet be known, and returning an
intermediate level for � (in between its old and new levels)
would violate linearizability. Thus, � ’s operation descriptor
records the old level of � .

However, this frst algorithm does not solve another chal-
lenge required by linearizability: avoiding new-old inver-
sions among causally dependent vertices. Consider two ver-
tices � and � , such that �’s level change (which is triggered
by an update) causes � to now violate one of the LDS in-
variants and to also have to change levels. In any sequential
execution, the update that moves � also moves � , so no read
can observe the old level of � after some read has already
observed the new level of �, or vice-versa. However, our frst
algorithm allows such new-old inversions in concurrent exe-
cutions: if � is marked but � is not yet (or no longer) marked,
then a pair of reads might return the new level of � (since �
is not marked) and then the old level of � (since � is marked).

Therefore, it is not sufcient for a read of � to synchronize
with level changes of � alone. Such a read must also synchro-
nize with level changes of � ’s causally dependent vertices. In
fact, it must synchronize with the entire transitive closure
of vertices that may have caused � to move or which � may
have caused to move. As in the LDS and PLDS algorithms,
in our algorithm it is possible for updates to create depen-
dency chains among vertices: an update causes a node � to
change levels, which causes one or more of � ’s neighbors
to violate the invariants and have to change levels, which
may cause their neighbors in turn to change levels, and so
on. We represent these causal dependencies as a Directed
Acyclic Graph (DAG): in such a DAG, there is an edge � → �
2
Note that updates do not synchronize with each other through the opera-
tion descriptors; instead, they are synchronized as part of the batch-dynamic
parallel execution.

289

Parallel �-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

	𝑢

	𝑣 	𝑤
	𝑢

1
2
3
4 	𝑣 	𝑤

	𝑢

Figure 1. A PLDS and a dependency DAG in which � ’s and

� ’s level changes are indirectly caused by the level change

of �. In any sequential execution, the operation that causes

the level of � to change also changes the levels of � and � .

Thus, it is impossible in any sequential execution for a read to

return the old level of�, � , or� after another read has already

returned the new level of one of these vertices. To ensure

linearizability, our algorithm must therefore guarantee that

level changes to vertices in the same DAG appear to take

efect atomically to concurrent readers.

if �’s level change caused � to also have to change level. If �

has no such outgoing edge, we call � a root (this occurs if �
moves only as a direct result of an edge update, as opposed

to moving as a result of one of its neighbors in � moving).

The set of vertices that move during a batch can thus

be partitioned into dependency DAGs. To avoid new-old

inversions, our algorithm must ensure that the level changes

of all vertices within a DAG appear to concurrent readers to

take efect atomically; we call this the DAG atomicity rule.
An example is shown in Fig. 1.

We enforce the DAG atomicity rule by maintaining the

invariant that each DAG has a single root, and rely on an

atomic operation on this single root to linearize the level

changes of all vertices in the DAG. To ensure that each DAG

has a single root, we do the following: whenever a DAG has

more than one root, we deterministically pick one of them

as the sole root, and make the others point to the sole root.

Even though the dependency graph is a DAG, in our al-

gorithm we do not need to materialize the entire DAG (i.e.,

store all of the dependencies). In fact, we only require that

we can reach the root of a DAG from any vertex in the DAG.

Thus, it is sufcient to store a single parent for each vertex

in the DAG. Whenever we create an operation descriptor

for some vertex � (we say that � becomes marked), we in-
clude in the descriptor a pointer to � ’s parent in the DAG. By

traversing these parent pointers we will reach the root from

any vertex in a fnite number of steps. Therefore, we only

materialize a subtree of each DAG. However, we continue

using the DAG terminology in this paper.

We now describe the high-level changes our CPLDS data

structure introduces with respect to PLDS:

1. When a vertex � becomes marked during a batch of up-

dates, we create an operation descriptor for � and populate

it with � ’s old (pre-update) level and parent.

2. At the end of each batch, we unmark all marked nodes

by deleting all operation descriptors. We frst unmark the

root of each DAG, and then unmark all non-root vertices.

Algorithm 1. Data structures and global variables

1 struct Descriptor:
2 // a pointer to this node’s parent in the dependency DAG
3 int parent
4 // this node’s level before the current batch of updates
5 int old_level

7 // global variables
8 Descriptor desc_array[num_vertices]
9 int batch_number = 0 // incremented at the start of every batch

3. A read of vertex � examines � ’s operation descriptor (if

any): if � is marked and its root is also marked, the read re-

turns the coreness estimate using � ’s old level (as recorded

in � ’s descriptor); otherwise, the read returns the coreness

estimate using � ’s current level, which we call its live
level.
In the next section, we describe our algorithm in more

technical detail.

5 Detailed Algorithm
5.1 Data Structures and Global State

Algorithm 1 shows the Descriptor data structure; it may

be in one of two states at any given time. If the Descriptor
has the special value UNMARKED, then we say that � and its

descriptor are unmarked, which means that � is not currently

in the process of changing levels in the CPLDS. Otherwise,

we say that � and its descriptor are marked, and thus � is in

the process of changing its level. A marked descriptor has

two felds: parent and old_level. The parent feld contains
the index of � ’s parent node, or the special value I_AM_ROOT
if � has no parent because � is the root of its DAG.

We maintain a global array desc_array of Descriptors,
one per vertex in the graph, for the lifetime of the program.

As part of our global state, we also maintain a variable

batch_number, which is incremented at the start of each

batch.

5.2 Updates

Our update algorithm executes each batch B as follows; we

show an example in Fig. 2. First, we insert into, or delete

from, � all of the edges in B. Then, we traverse the CPLDS

level by level and update the levels of the vertices impacted

by the edge updates of B. Whenever we detect that a ver-

tex violates one of the invariants, we mark it as described

below, and move it up or down one or more levels in the

CPLDS. This is done in parallel for all vertices on a given

level in the CPLDS. After we have done this for every level in

the CPLDS, we fnalize the batch by unmarking all marked

vertices (described below).

Marking. Whenever a node � becomes marked, we call the

mark function (shown in Algorithm 2) and pass in � ’s index in

desc_array, as well as an array containing the indices of � ’s

triggers. A vertex� is a trigger for � if� may have contributed

to � becomingmarked during the current batch. In the case of

insertions, the set of triggers contains all marked neighbors

290

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Qanquan C. Liu, Julian Shun, and Igor Zablotchi

1
2
3
4
5
6

1
2
3
4
5
6

= edge insertion

1
2
3
4
5
6

1
2
3
4
5
6

Figure 2. The insertion batch is shown in red. The batch causes the yellow, green, blue, and purple vertices to move up one
level with the created dependency DAG shown below. Then, the green, blue and purple vertices continue moving up the levels.
Finally, the green, blue, and purple vertices cause the gray vertex to move up a level. Since the green, blue, and purple vertices
are all in the same dependency DAG, the gray vertex points to the root (the blue vertex).
Algorithm 2. Update algorithm: marking and unmarking
1 mark(int v, int triggers[]):
2 desc = new Descriptor
3 desc.old_level = LDS.get_level(v)
4 marked_batch_neighbors = [w for (v,w) in the batch B and w

↩→ is marked]
5 for w in (marked_batch_neighbors + triggers):
6 union(v,w)
7 desc_array[v] = desc

9 // this is called at end of batch
10 unmark_all():
11 // unmark all roots
12 parfor all nodes v such that desc_array[v] != UNMARKED

and desc_array[v].root == I_AM_ROOT :
13 desc_array[v] = UNMARKED
14 // unmark all other marked nodes
15 parfor all nodes v such that desc_array[v] != UNMARKED :
16 desc_array[v] = UNMARKED

of � at the same level or higher level as � in the CPLDS. (A
vertex which was at a lower level than � earlier in the batch
but moved higher than � could become a trigger later.) In
the case of deletions, the set of triggers contains all marked
neighbors of � at any level lower than ℓ (�) − 1’s level.
In the mark function, we frst create a new descriptor for

� and populate its old_level feld with � ’s current level, be-
fore � moves (Lines 2–3). We then determine the set of DAGs
into which � will be merged. These are: (1) the set of DAGs
of � ’s triggers and (2) the set of DAGs of � ’s marked batch
neighbors (Line 4). A vertex � is a marked batch neighbor
of � if the edge (�, �) is updated during B and � is already
marked when we mark � . We merge � into its marked batch
neighbors’ DAGs to ensure that no updated edge has its end-
points in diferent DAGs—this is necessary for correctness
(see Section 6).

Next, we merge the DAGs determined in the previous
steps and add � to the merged DAG (Lines 5–6). Care must
be taken here regarding synchronization, as multiple threads
that are marking vertices in parallel might merge overlap-
ping sets of DAGs at the same time. In fact, this step is very
similar to the union operation in concurrent union-fnd im-

plementations [6, 28, 45, 47]. For conciseness, we reuse the
union implementation described in [47] and implemented
in [28], and denote it as union (Line 6).

Unmarking. Unmarking, shown in Algorithm 2, is done
by overwriting the contents of a vertex � ’s descriptor with

the special UNMARKED value. We frst unmark all DAG roots
(Lines 12–13), and then unmark all other nodes (Lines 15–16).

By unmarking root descriptors frst, we maintain the fol-
lowing invariant: for each DAG, the root descriptor is marked
before non-root descriptors in the same DAG are marked,
and is unmarked before non-root descriptors in the same
DAG are unmarked.

Optimization: Path Compression. In our algorithm, we
do not need to materialize DAGs fully; instead, each vertex �
points directly to the root of its DAG as it was at the moment
when � was added to the DAG. However, due to our DAG
merging mechanism in Algorithm 2, it is possible for the
path from � to the true root of � ’s DAG to become more than
one hop long. This is both unnecessary and inefcient, as
traversing several hops to reach the root may impact per-
formance. Therefore, as an optimization, when doing reads
or updates, we perform path compression when traversing
the path from a vertex to its root: if this path is longer than
one hop, at the end of the traversal, we overwrite � ’s parent
feld, as well as the parent feld of all of � ’s ancestors that
we traversed, to point to the root. This optimization is a
standard optimization in union-fnd algorithms and is done
in the union-fnd implementation that we use [28].

5.3 Reads

We start with Algorithm 3, which contains the helper func-
tion check_DAG. This function takes a vertex � ’s descriptor
� and determines whether � is part of a marked DAG. The
basic logic of check_DAG is as follows: we traverse �’s DAG
until we reach the root: if the root is marked, return MARKED;
otherwise return UNMARKED. We also perform path compres-

sion for reads, and thus this is the same logic as the fnd
operation in union-fnd algorithms (not shown in the pseu-
docode). However, instead of traversing to the root every
time, we implement the following optimization which en-
ables us to return early from check_DAG in some cases. If we
encounter any unmarked descriptor along the way, includ-
ing � itself, we can return UNMARKED immediately, without
continuing to the root. This is due to the invariant described
above: if any non-root descriptor in a DAG is unmarked, it
must be the case that the DAG’s root has also been unmarked.

291

Parallel �-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

Algorithm 3. check_DAG helper function
1 // returns whether the DAG that includes desc is marked or

2
3
4
5

↩→ unmarked
check_DAG(Descriptor desc):

// if v’s descriptor is marked we can return directl
if (desc == UNMARKED):

return UNMARKED

y

7 // otherwise, traverse to the root of v’s DAG
8 while (desc.parent != I_AM_ROOT):
9 desc = desc.parent
10 // if we encounter an unmarked descriptor on the path to

11
12

↩→ the root, we can return directly
if (desc == UNMARKED):

return UNMARKED

14
15
16
17

// return whether the root is MARKED or UNMARKED
if (desc == UNMARKED):

return UNMARKED
return MARKED

Algorithm 4. Read algorithm
1 // returns the level of the vertex with index v
2 read(int v):
3 retry:
4 b1 = batch_number
5 l1 = LDS.get_level(v)
6 desc = desc_array[v]
7 status = check_DAG(desc)
8 l2 = LDS.get_level(v)
9 b2 = batch_number
10 if (b1 != b2):
11 goto retry
12 else if status == MARKED:
13 return coreness estimate using desc.old_level
14 else: // status was UNMARKED
15 if (l1 == l2):
16 return coreness estimate using l1
17 else:
18 goto retry

Path compression is done on the path up to the unmarked
node that we fnd.
We now describe the main read algorithm, whose pseu-

docode is in Algorithm 4. Essentially, the logic of a read of
vertex � is as follows: (1) read � ’s live level and descriptor
(Lines 5–6); (2) determine if � ’s root is marked (Line 7); (3) if it
is, then return � ’s old level from its descriptor (Line 13); oth-
erwise, return � ’s live level from step (1) (Line 16). However,
we require additional logic to ensure linearizability.

First, we “sandwich” steps (1) and (2) above between two
reads of the batch number (Lines 4 and 9). We repeat steps (1)
and (2) until the two batch numbers match, meaning that the
steps occurred within the same batch. Otherwise, the read
logic might observe a mix of states from diferent batches
and thus return non-linearizable results.

Furthermore, we sandwich step (2) in between two reads
of the � ’s live level (Lines 5 and 8); in case � is unmarked
(and thus the read returns the live level), these two reads
must match. If we only performed one such read of the live
level, this would enable a scenario in which the read returns
an intermediate level of � , in between � ’s old and new levels,
which would not be linearizable.

6 Correctness
We prove the linearizability and liveness of our algorithm in
the full version of our paper [58]. In short, we prove

Theorem 6.1. Our algorithm is linearizable, and live: updates
terminate in a fnite number of steps and reads are lock-free.

6.1 Approximation Guarantees
The level that a reader uses to compute the coreness esti-
mate will correspond to the level of the vertex during some
point in time in between update batches. This is because
when a reader returns a coreness estimate, it never sees an
intermediate level of the vertex (it uses the level either at
the beginning of a batch or at the end of it). Therefore, when
compared to the true coreness value of the vertex at a point
in time between two consecutive update batches, we main-

tain the (2 + �)-approximation guarantee as in the algorithm
by Liu et al. [57].
Note that using unsynchronized reads can return core-

ness values of vertices using intermediate levels within a
batch, and the error can be unbounded with respect to the
true coreness values at both the beginning and the end of
the batch. For example, consider a batch of insertions that
causes a vertex � to move up from group � to group � + � , for
� = � (log

1+� �) (there are log
1+� � groups in the level data

structure). An unsynchronized read can see the vertex � in
any group in [�, . . . , � + �]. In the worst case, we return the
coreness estimate of � at group � + �/2. According to Defni-
tion 3.1, this will increase the error by a multiplicative factor√
of (1 +�)�/2 = � (�) relative to the guarantee in Lemma 3.2,
no matter whether we compare to the ground truth at the
beginning or at the end of the batch.

7 Experimental Evaluation
In this section, we implement our algorithm and test it
against various baselines to determine the latency, through-
put, and accuracy of our reads and updates. We implement
our algorithms on top of the parallel level data structure
(PLDS) in Liu et al. [57] which uses the Graph Based Bench-
mark Suite (GBBS) [27]. Our results show that our algorithms
decreases the latency of reads compared to synchronous im-

plementations by up to fve orders of magnitude.
Evaluated Algorithms. We compare our CPLDS against
two baseline algorithms that we also implement. First, we
compare our CPLDS against a synchronous implementation
(SyncReads) where all reads must wait until all updates are
performed in the batch before the reads can be performed. We
also compare against a non-synchronous version (NonSync)
of our algorithm where reads can be done at any time in the
batch. This algorithm is not linearizable. We obtain orders-of-
magnitude improvements on the accuracy of our reads against
the non-linearizable (NonSync) implementation and on the
latency against the synchronous (SyncReads) algorithm.
Experimental Setup. We use a c2-standard-60 Google

292

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Qanquan C. Liu, Julian Shun, and Igor Zablotchi

Graph Dataset Num. Vertices Num. Edges Largest value of �

dblp 317,080 1,049,866 113
brain 784,262 267,844,669 1200
wiki 1,094,018 2,787,967 124
youtube (yt) 1,138,499 2,990,443 51
stackoverfow (so) 2,584,164 28,183,518 198
livejournal (lj) 4,846,609 42,851,237 372
orkut 3,072,441 117,185,083 253
ctr 14,081,816 16,933,413 3
usa 23,947,347 28,854,312 3
twitter 41,652,230 1,202,513,046 2488

Table 1. Graph sizes and largest values of � for �-core de-
composition.

Cloud instance (3.1 GHz Intel Xeon Cascade Lake CPUs with
a total of 30 cores with two-way hyper-threading, and 236
GiB RAM) and an m1-megamem-96 Google Cloud instance
(2.0 GHz Intel Xeon Skylake CPUs with a total of 48 cores
with two-way hyper-threading, and 1433.6 GB RAM). We do
not use hyper-threading in our experiments as we found it
not to improve performance. Our programs are written in
C++, use a work-stealing scheduler [16], and are compiled
using g++ (version 7.5.0) with the -O3 fag. We terminate
experiments that take over 2 hours.

We test our algorithms on batches of insertions and dele-
tions. Unless specifed otherwise, all experiments are con-
ducted on batches of 106

edges. We run each experiment for
11 trials, and we compute the mean and maximum results
for each experiment.
Datasets. We use datasets from the Stanford Network Anal-
ysis Project (SNAP), the Network Respository, and the DI-
MACS Shortest Paths challenge, specifcally, the datasets
used by Liu et al. [57] in their evaluation: com-DBLP (dblp),
com-LiveJournal (lj), com-Orkut (orkut), com-Youtube (yt),
wiki-talk (wiki), sx-stackoverfow (so), twitter (twitter) [52],
human-Jung2015-M87113878 (brain), full USA (usa), and cen-
tral USA (ctr). Graph characteristics are given in Table 1.
Implementation Details. All of our code is publicly avail-
able.

3
We make use of the optimization feature given in

the original PLDS code with the -opt fag set to 20. This
optimization feature speeds up the code but degrades its ap-
proximation error. We set the parameters � = 0.2 and � = 9.
The theoretical approximation factor using these parameters
is 2.8 (i.e., � = 0.8). Our experiments demonstrate we never
exceed the maximum approximation factor obtained by the
original PLDS implementation for each dataset. We test our
implementations on combinations of diferent numbers of
reader and update threads. Each thread is on a separate core
with no other reader or update threads. We test combina-

tions of 1, 2, 4, 8, and 15 reader and update threads. Latency.
First, we measured the latency of reads using all three im-

plementations on all of the graphs. For all algorithms, each
3
https://github.com/qqliu/batch-dynamic-kcore-

decomposition/tree/master/gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS

read thread continuously generates reads of vertices chosen
uniformly at random for the duration of the batch. Reads
for CPLDS are implemented and performed according to
our algorithms. NonSync performs reads immediately by
looking at the current level of the vertex. Each read thread
in SyncReads maintains an array of reads in the order that
they are generated during each update batch and performs
the reads, in order, at the end of the batch.
For each implementation and graph, we obtain the av-

erage, 99-th percentile latency, and 99.99-th percentile la-
tency across all reads and all trials. The results are shown
in Fig. 3. We see that against SyncReads, our CPLDS algo-
rithm achieves up to fve orders of magnitude smaller latency
for both insertions and deletions for the average, 99-th per-
centile and 99.99-th percentile latencies. This is because in
SyncReads, reads that arrive must wait until the end of the
batch before they can execute. Compared to NonSync, reads
are at most 3.21x slower in CPLDS, but are linearizable.
Batch Size vs. Latency. Fig. 4 shows the latency of reads
across multiple insertion batch sizes for all three implemen-

tations. Specifcally, we show the average, 99-th percentile,
and 99.99-th percentile latencies for dblp and lj. For yt, the
average latency is 1.12–1.38 factor larger for CPLDS than
NonSync but is at least seven orders of magnitude smaller
than SyncReads. For the 99-th percentile latency on dblp,
CPLDS and NonSync exhibit the same latency and CPLDS
exhibits smaller latency than SyncReads by up to seven or-
ders of magnitude. Finally, for the 99.99-th percentile latency
on dblp, CPLDS exhibits larger latency than NonSync by up
to a factor of 3.98, but exhibits up to fve orders of magnitude
smaller latency than SyncReads.
For dblp, the average latency is 1–1.70 factor larger for

CPLDS than NonSync but is at least fve orders of magnitude
smaller than SyncReads. For the 99-th percentile on dblp,
CPLDS and NonSync exhibit the same latency and CPLDS
exhibits smaller latency than SyncReads by up to six orders
of magnitude. Finally, for the 99.99-th percentile on dblp,
CPLDS exhibits larger latency than NonSync by up to a fac-
tor of 1.88, but exhibits up to fve orders of magnitude smaller
latency than SyncReads. Deletions follow a similar trend:
for dblp, the average, 99-th percentile and 99.99-th percentile
latencies for CPLDS are up to 1.84, 1.0, and 1.66 factors, re-
spectively, larger than NonSync. Compared to SyncReads,
CPLDS exhibits up to six orders of magnitude smaller lanten-
cies on dblp and up to seven orders of magnitude smaller
latencies on yt. For yt, the average, 99-th percentile, and
99.99-th percentile latencies for CPLDS are up to 1.44, 1.0,
and 2.33 factors, respectively, larger than NonSync.

We found that deletions follow a similar trend.
Update Time. Fig. 5 shows the average and maximum up-
date times throughout all of our trials on all graphs. We
see that NonSync requires the least amount of update time,
although our algorithm is at most 1.48x slower for both in-
sertions and deletions. The reason that SyncReads requires

293

https://github.com/qqliu/batch-dynamic-kcore-decomposition/tree/master/gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS
https://github.com/qqliu/batch-dynamic-kcore-decomposition/tree/master/gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS
https://1.12�1.38

Parallel �-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

10−6
10−4
10−2
100

La
te

nc
y

(s
ec

s) Average Latency
CPLDS SyncReads NonSync

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

10−5
10−3
10−1
101

La
te

nc
y

(s
ec

s) 99-th Percentile Latency
CPLDS SyncReads NonSync

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

10−510−410−310−210−1100101

La
te

nc
y

(s
ec

s) 99.99-th Percentile Latency
CPLDS SyncReads NonSync

(a) Average Insertion Latency (b) 99-th Percentile Insertions Latency (c) 99.99-th Insertions Latency

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−6
10−4
10−2
100

La
te

nc
y

(s
ec

s) Average Latency
CPLDS SyncReads NonSync

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−610−510−410−310−210−1100101

La
te

nc
y

(s
ec

s) 99-th Percentile Latency
CPLDS SyncReads NonSync

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−510−410−310−210−1100101

La
te

nc
y

(s
ec

s) 99.99-th Percentile Latency
CPLDS SyncReads NonSync

(d) Average Deletions Latency (e) 99-th Percentile Deletions Latency (f) 99.99-th Deletions Latency

Figure 3. Comparison of the average, 99-th percentile, and 99.99-th percentile read latencies of the implementations under
batches of insertions or deletions. The �-axis is in log-scale. Twitter times out for SyncReads and we do not show their results.

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−6
10−4
10−2
100

La
te

nc
y

(s
ec

s)

Average Insertions Latency
CPLDS SyncReads NonSync

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−610−510−410−310−210−1100101

La
te

nc
y

(s
ec

s)

99-th Percentile Latency
CPLDS SyncReads NonSync

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−5
10−4
10−3
10−2
10−1
100
101

La
te

nc
y

(s
ec

s)

99.99-th Percentile Latency
CPLDS SyncReads NonSync

(a) YouTube Average Insertions (b) YouTube 99-th Percentile Insertions (c) YouTube 99.99-th Insertions

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−710−610−510−410−310−210−1100

La
te

nc
y

(s
ec

s)

Average Insertions Latency
CPLDS SyncReads NonSync

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−6
10−5
10−4
10−3
10−2
10−1
100

La
te

nc
y

(s
ec

s)

99-th Percentile Latency
CPLDS SyncReads NonSync

1e
2

1e
3

1e
4

1e
5

1e
6

Batch Size

10−5
10−4
10−3
10−2
10−1
100

La
te

nc
y

(s
ec

s)

99.99-th Percentile Latency
CPLDS SyncReads NonSync

(d) DBLP Average Insertions (e) DBLP 99-th Percentile Insertions (f) DBLP 99.99-th Insertions

Figure 4. Comparison of the latencies over diferent insertion batch sizes using 15 update threads and 15 read threads. The
�-axis is in log-scale. We tested on yt and dblp.
more time sometimes (up to 1.85 factor worse) than the other compared to the previous synchronous PLDS implementa-

methods is due to the fact that reads occur synchronously and tion of [57].
must factor into the update time (since updates are blocked
and cannot be performed until all synchronous reads fnish). Approximation Factors. Fig. 6 shows the average and max-

We see that for most graphs, NonSync results in the lowest
imum approximation factors of our algorithm versus the

update time because the updates methods did not change
baselines. We see that the maximum approximation factors

294

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Qanquan C. Liu, Julian Shun, and Igor Zablotchi

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

100

101
Ti

m
e

(s
ec

s)
Average Insertions Time

CPLDS SyncReads NonSync

(a) Average Insertions Batch Update Time

br
ain ct

r
db

lp lj
or

ku
t so

tw
itt

erus
a

wi
ki yt

Graphs

100

101

102

Ti
m

e
(s

ec
s)

Maximum Insertions Time
CPLDS SyncReads NonSync

ctr db
lp lj

ork
utso usawiki yt

Graphs

1.25
1.50
1.75
2.00
2.252.502.75

Er
ro

r (
Fr

ac
tio

n) Average Insertions Read Error
CPLDS SyncReads NonSync

(a) Average Insertions Read Error

ctr db
lp lj

ork
utso usawiki yt

Graphs

10

100

Er
ro

r (
Fr

ac
tio

n) Maximum Insertions Read Error
CPLDS SyncReads NonSync

(b) Maximum Insertions Read Error

(b) Maximum Insertions Batch Update Time

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−1

100

Ti
m

e
(s

ec
s)

Average Deletions Time
CPLDS SyncReads NonSync

(c) Average Deletions Batch Update Time

br
ain ct

r
db

lp lj
or

ku
t so us
a

wi
ki yt

Graphs

10−1

100

Ti
m

e
(s

ec
s)

Maximum Deletions Time
CPLDS SyncReads NonSync

(d) Maximum Deletions Batch Update Time

Figure 5. Comparison of the average and maximum batch up-
date time over all batches and trials using 15 update threads
and 15 read threads. The �-axis is in log-scale. Twitter times
out for SyncReads and we do not show their results.

ctr db
lp lj

ork
ut so usa wiki yt

Graphs

2.0

3.0
4.0
Er

ro
r (

Fr
ac

tio
n) Average Deletions Read Error

CPLDS SyncReads NonSync

(c) Average Deletions Read Error

ctr db
lp lj

ork
utso usawiki yt

Graphs

10

100

Er
ro

r (
Fr

ac
tio

n) Maximum Deletions Read Error
CPLDS SyncReads NonSync

(d) Maximum Deletions Read Error

Figure 6. Comparison of the average and maximum errors
over all reads and all trials using 15 update threads and 15
read threads. The �-axis is in log-scale. The blue line shows
the theoretical maximum error of 2.8. The deletion errors
sometimes exceed 2.8 due to the optimizations in our data
structure.

295

Parallel �-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

for CPLDS are upper bounded by 2.8, the theoretical max-

imum bound for insertion, and by the maximum approxi-
mation factors returned by SyncReads for deletions. The
deletion errors for CPLDS and SyncReads exceed 2.8 due
to the optimizations in our data structure, as described ear-
lier. For CPLDS, because of our theoretical approximation
guarantees, our reads are guaranteed to be linearizable to
either the beginning of the batch or the end of the batch.
Since it is difcult to know whether the read linearized to
the beginning or the end of the batch, we take the minimum
of the two errors.
We see that our average error for CPLDS is sometimes

slightly larger than the average error for SyncReads, by a
factor of at most 1.15. Such a small factor is likely due to the
variance in our selections of reads. For NonSync, we return
the minimum approximation factor between the beginning
and the end of the batch. We see that the maximum errors
for NonSync are up to 52.7x worse than CPLDS because the
a read can occur while the vertex is in the middle of moving
levels. Thus, the vertex can be stuck in a “middle” level whose
core number is far from the approximate coreness estimate
at the beginning or end of the batch.
Scalability of Read and Write Throughputs. We test the
scalability of our read throughputs as we increase the num-

ber of reader threads while maintaining 15 writer threads.
We also test our write throughput. We record the average
throughput across all batches and all trials for the dblp and
lj graphs. For CPLDS and NonSync reads and writes, the
average throughput is computed as the total number of reads
or writes divided by the total write time over all batches.
For SyncReads reads and writes, the duration of time in
the denominator is the total read plus write time over all
batches, respectively. For the read scalability of SyncReads,
we compute the throughput analytically: we divide the total
number of reads performed by CPLDS by half of the sum of
the update time and the minimum read time of any thread
(on average, a read operation will come in the middle of this
interval). The minimum read time of any thread is computed
by multiplying the minimum observed latency of reads (per-
formed by NonSync) times the total number of reads divided
by the number of threads. This analytical computation upper
bounds the read throughput of SyncReads. For both graphs,
we test on the number of reader threads from {1, 2, 4, 8, 15}.

In addition to read throughputs, we also test the scalability
of our write throughputs as we increase the number of writer
threads while maintaining 15 reader threads. For dblp, we
test on the number of writer threads from {1, 2, 4, 8, 15}. For
lj, due to the high running times on smaller number of writer
threads, we only test on {8, 15}.

The results are shown in Fig. 7. We see that NonSync has
the greatest read throughput for most graphs due to the fact
that it does not requiring synchronization mechanisms for in-
dividual reads (i.e., the dependency DAG), while CPLDS has
the worst read throughputs. Because we are upper bounding

the read throughput of SyncReads, sometimes SyncReads
has greater throughput than NonSync (by a small margin).
NonSync has slightly higher read throughput by factors of
up to 2.21x than CPLDS since reads in NonSync do not have
to traverse the dependency DAG. On the other hand, either
SyncReads or NonSync have the greatest writer throughput.
CPLDS sometimes has the worst write throughput and is
sometimes between SyncReads and NonSync, specifcally,
with write throughput within a factor of 7 of the maximum
throughput of either SyncReads and NonSync. Such an or-
dering of the throughputs is expected as NonSync has the
smallest total time (consisting only of write time) while Syn-
cReads also has additional time resulting from reads and
CPLDS requires additional time to maintain the DAGs.

8 Related Work

Parallel batch-dynamic graph algorithms. There has
been work on parallel batch-dynamic �-core decomposition,
both in the exact [12, 38, 46, 48, 73] and approximate [57]
settings. The approximate algorithm of Liu et al. [57] has
been shown to signifcantly outperform the exact algorithms.
Similar to our paper, these works maintain a �-core decompo-

sition of a graph, or an approximation thereof, under batches
of edge updates. Unlike our work, they do not propose a way
to query coreness values concurrently with updates. Parallel
batch-dynamic algorithms have been designed for a number
of other graph problems [1, 2, 9, 10, 29, 36, 66, 69, 71].
Concurrency on graphs. Fedorov et al. [35] propose a con-
current algorithm for dynamic connectivity, which requires
maintaining the connected components of a graph under
dynamic edge insertions and deletions. Their algorithm sup-
ports single-writer multi-reader concurrency, like our algo-
rithm. If fne-grained locking is applied, their algorithm can
handle writers in disjoint components. Nathan et al. [65]
propose a non-stop streaming data analysis model, in which
updates and reads can proceed concurrently. However, the
results of their algorithms are not necessarily linearizable.

Dhulipala et al. [24, 27] design compressed fully-functional
trees that support single-writer multi-reader operations on
graphs. Unlike our work where the results of reads can refect
the most recent updates, their work only supports concurrent
reads on static snapshots of graphs.
Concurrency from parallel batch-dynamic data struc-
tures. Aksenov et al. [5] propose parallel combining, which
implements a concurrent data structure from a parallel batch-
dynamic one by synchronizing operations into batches exe-
cuted by a "combiner." Of particular relevance is their read-
optimized version, which performs updates sequentially and
reads in parallel. They apply their idea to a dynamic connec-
tivity algorithm. Agrawal et al. [4] propose a similar idea,
where a scheduler implicitly batches concurrent accesses to a
data structure, executing one batch at a time. Like our paper,
both works enable concurrency from batch-dynamic data

296

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Qanquan C. Liu, Julian Shun, and Igor Zablotchi

2 4 6 8 10 12 14
Thread Counts

106

Th
ro

ug
hp

ut

Writer Scalability
CPLDS
SyncReads
NonSync

2 4 6 8 10 12 14
Thread Counts

106

107

Th
ro

ug
hp

ut

Writer Scalability
CPLDS
SyncReads
NonSync

8 9 10 11 12 13 14 15
Thread Counts

106

8 × 105

9 × 105

Th
ro

ug
hp

ut

Writer Scalability
CPLDS
SyncReads
NonSync

(a) DBLP Writer Throughputs for Insertions (b) DBLP Writer Throughputs for Deletions (c) LJ Writer Throughputs for Insertions

8 9 10 11 12 13 14 15
Thread Counts

106

1.2 × 106

1.4 × 106

1.6 × 106

1.8 × 106

2 × 106

2.2 × 106

2.4 × 106

Th
ro

ug
hp

ut

Writer Scalability
CPLDS
SyncReads
NonSync

2 4 6 8 10 12 14
Thread Counts

107
Th

ro
ug

hp
ut

Reader Scalability
CPLDS
SyncReads
NonSync

2 4 6 8 10 12 14
Thread Counts

107

Th
ro

ug
hp

ut

Reader Scalability
CPLDS
SyncReads
NonSync

(d) LJ Writer Throughputs for Deletions (e) DBLP Reader Throughputs for Insertions (f) DBLP Reader Throughputs for Deletions

2 4 6 8 10 12 14
Thread Counts

107

Th
ro

ug
hp

ut

Reader Scalability
CPLDS
SyncReads
NonSync

2 4 6 8 10 12 14
Thread Counts

107

Th
ro

ug
hp

ut
Reader Scalability

CPLDS
SyncReads
NonSync

(g) LJ Reader Throughputs for Insertions (h) LJ Reader Throughputs for Deletions

Figure 7. Comparison of the average throughput over all batches and trials using diferent numbers of update threads and
reader threads on the dblp and lj graphs. The �-axis is in log-scale. For the writer throughput experiments, we fx the number
of reader threads to 15, and for the reader throughput experiments, we fx the number of writer threads to 15.
structures but, unlike our paper, they do not allow asynchro-
nous reads concurrent with update batches, and therefore
cannot guarantee low latency for reads.

Concurrency techniques. Some of our techniques are sim-

ilar to previous methods in concurrent programming. Op-
eration descriptors, like the ones we use to synchronize
reads and updates, are a classic technique for lock-free algo-
rithms [14, 31, 37]. Our sandwiched reads are reminiscent
of the clean double collect method used by Afek et al. [3] in
their atomic snapshot algorithm. Finally, the epsilon trick
has been used before to space out linearization points that
would otherwise (incorrectly) occur at the same time [23].

9 Conclusion
We present a novel approximate �-core decomposition al-
gorithm that supports parallel batch-dynamic updates and
asynchronous concurrent reads. We ensure linearizability by
efciently tracking causal dependencies between operations
using a lightweight dependency DAG design. Our experi-
mental evaluation demonstrates that the high throughput

of parallel batch-dynamic updates is preserved, while asyn-
chronous reads attain ultra-low latency and accuracy similar
to that of the previous synchronous algorithm. For future
work, we are interested in supporting asynchronous updates
in our data structure. We are also interested in using our
data structure for other closely related graph problems, such
as low out-degree orientation, maximal matching, �-clique
counting, vertex coloring, and densest subgraph.
Acknowledgments
We thank Rachid Guerraoui, Maurice Herlihy, and Siddhartha
Jayanti for helpful discussions. A large portion of this work
was completed while Q.C. Liu was a postdoctoral scholar
at Northwestern Univeristy and an Apple Research Fellow
at the Simons Institute at UC Berkeley. Part of this work
was completed while I. Zablotchi was a postdoctoral fel-
low at MIT CSAIL, where he was supported by SNSF Early
Postdoc.Mobility Fellowship P2ELP2_195126. J. Shun was
supported DOE Early Career Award #DE-SC0018947, NSF
CAREER Award #CCF-1845763, Google Faculty Research
Award, Google Research Scholar Award, cloud computing
credits from Google-MIT, and FinTech@CSAIL Initiative.

297

Parallel �-Core Decomposition with Batched Updates and Asynchronous Reads PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

References

[1] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhuli-
pala. 2019. Parallel Batch-Dynamic Graph Connectivity. In The
31st ACM Symposium on Parallelism in Algorithms and Architectures.
381–392.

[2] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala,
and Sam Westrick. 2020. Parallel Batch-Dynamic Trees via Change
Propagation. In Annual European Symposium on Algorithms, Vol. 173.
2:1–2:23.

[3] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. 1993. Atomic Snapshots of Shared Memory. Journal of
the ACM (JACM) 40, 4 (1993), 873–890.

[4] Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim
Sukha, and Robert Utterback. 2014. Provably Good Scheduling for
Parallel Programs That Use Data Structures through Implicit Batching.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures. 84–95.

[5] Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. 2018. Paral-
lel Combining: Benefts of Explicit Synchronization. In International
Conference on Principles of Distributed Systems (OPODIS), Vol. 125.
11:1–11:16.

[6] Dan Alistarh, Alexander Fedorov, and Nikita Koval. 2019. In Search of
the Fastest Concurrent Union-Find Algorithm. In 23rd International
Conference on Principles of Distributed Systems, Vol. 153. 15:1–15:16.

[7] Md. Altaf-Ul-Amin, Yoko Shinbo, Kenji Mihara, Ken Kurokawa, and
Shigehiko Kanaya. 2006. Development and implementation of an algo-
rithm for detection of protein complexes in large interaction networks.
BMC Bioinform. 7 (2006), 207.

[8] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessan-
dro Vespignani. 2005. Large scale networks fngerprinting and vi-
sualization using the k-core decomposition. In Advances in Neural
Information Processing Systems. 41–50.

[9] Daniel Anderson and Guy E. Blelloch. 2023. Deterministic and
Work-Efcient Parallel Batch-Dynamic Trees in Low Span. CoRR
abs/2306.08786 (2023), 20 pages. htps://doi.org/10.48550/arXiv.2306.
08786

[10] Daniel Anderson, Guy E. Blelloch, Anubhav Baweja, and Umut A.
Acar. 2021. Efcient Parallel Self-Adjusting Computation. In 33rd ACM
Symposium on Parallelism in Algorithms and Architectures. 59–70.

[11] Richard Anderson and Ernst W Mayr. 1984. A P-complete problem and
approximations to it. Technical Report. Stanford University.

[12] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Vele-
grakis. 2016. Distributed k-core decomposition and maintenance in
large dynamic graphs. In ACM International Conference on Distributed
and Event-based Systems (DEBS). 161–168.

[13] Gary D. Bader and Christopher W. V. Hogue. 2003. An automated
method for fnding molecular complexes in large protein interaction
networks. BMC Bioinform. 4 (2003), 2.

[14] Greg Barnes. 1993. A Method for Implementing Lock-Free Shared-
Data Structures. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 261–270.

[15] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and
Charalampos Tsourakakis. 2015. Space- and Time-Efcient Algorithm
for Maintaining Dense Subgraphs on One-Pass Dynamic Streams. In
ACM Symposium on Theory of Computing (STOC). 173–182.

[16] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Brief
Announcement: ParlayLib – A Toolkit for Parallel Algorithms on
Shared-Memory Multicore Machines. In ACM Symp. on Parallel Alg.
(SPAA). 507–509.

[17] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana
Volkovich. 2014. Core decomposition of uncertain graphs. In ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). 1316–1325.

[18] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun
Song, and Venkateshwaran Venkataramani. 2013. TAO: Facebook’s
Distributed Data Store for the Social Graph. In USENIX Annual Tech-
nical Conference (ATC), Andrew Birrell and Emin Gün Sirer (Eds.).
49–60. htps://www.usenix.org/conference/atc13/technical-sessions/
presentation/bronson

[19] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran
Shir. 2007. A model of Internet topology using k-shell decomposition.
Proceedings of the National Academy of Sciences 104, 27 (2007), 11150–
11154.

[20] Audrey Cheng, Xiao Shi, Aaron N. Kabcenell, Shilpa Lawande, Hamza
Qadeer, Jason Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh
Balakrishnan, Nathan Bronson, Natacha Crooks, and Ion Stoica. 2022.
TAOBench: An End-to-End Benchmark for Social Networking Work-

loads. Proceedings of the VLDB Endowment 15, 9 (2022), 1965–1977.
htps://doi.org/10.14778/3538598.3538616

[21] Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang,
Yinglong Xia, and Chenyi Zhang. 2020. Finding the Best k in Core De-
composition: A Time and Space Optimal Solution. In IEEE International
Conference on Data Engineering (ICDE). 685–696.

[22] Martino Ciaperoni, Edoardo Galimberti, Francesco Bonchi, Ciro Cat-
tuto, Francesco Gullo, and Alain Barrat. 2020. Relevance of temporal
cores for epidemic spread in temporal networks. Scientifc Reports 10,
1 (2020), 12529.

[23] Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. 2018. The
Inherent Cost of Remembering Consistently. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 259–269.

[24] Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. 2022. PaC-
trees: supporting parallel and compressed purely-functional collec-
tions. In 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 108–121.

[25] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A
Framework for Parallel Graph Algorithms using Work-efcient Bucket-
ing. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 293–304.

[26] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoreti-
cally Efcient Parallel Graph Algorithms Can Be Fast and Scalable. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
393–404.

[27] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-

latency graph streaming using compressed purely-functional trees.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 918–934.

[28] Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt:
A Framework for Static and Incremental Parallel Graph Connectivity
Algorithms. Proc. VLDB Endow. 14, 4 (Dec 2020), 653–667.

[29] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu.
2021. Parallel Batch-Dynamic �-Clique Counting. In Symposium on
Algorithmic Principles of Computer Systems (APOCS). 129–143.

[30] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2009. Extrac-
tion and classifcation of dense implicit communities in the Web graph.
ACM Trans. Web 3, 2 (2009), 7:1–7:36.

[31] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In ACM Symposium on Princi-
ples of Distributed Computing (PODC). 131–140.

[32] Fatemeh Esfahani, Venkatesh Srinivasan, Alex Thomo, and Kui Wu.
2019. Efcient Computation of Probabilistic Core Decomposition at
Web-Scale. In International Conference on Extending Database Technol-
ogy (EDBT). 325–336.

[33] Hossein Esfandiari, Silvio Lattanzi, and Vahab S. Mirrokni. 2018. Par-
allel and Streaming Algorithms for K-Core Decomposition. In Interna-
tional Conference on Machine Learning (ICML) (Proceedings of Machine

298

https://doi.org/10.48550/arXiv.2306.08786
https://doi.org/10.48550/arXiv.2306.08786
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://doi.org/10.14778/3538598.3538616

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Qanquan C. Liu, Julian Shun, and Igor Zablotchi

Learning Research, Vol. 80). 1396–1405.
[34] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng

Hu. 2017. Efective Community Search over Large Spatial Graphs.
Proceedings of the VLDB Endowment 10, 6 (2017), 709–720.

[35] Alexander Fedorov, Nikita Koval, and Dan Alistarh. 2021. A Scalable
Concurrent Algorithm for Dynamic Connectivity. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). 208–220.

[36] Paolo Ferragina and Fabrizio Luccio. 1994. Batch Dynamic Algorithms
for Two Graph Problems. In International PARLE Conference on Parallel
Architectures and Languages Europe, Vol. 817. 713–724.

[37] Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation. University
of Cambridge, UK.

[38] Kasimir Gabert, Ali Pinar, and Ümit V. Çatalyürek. 2021. Shared-

Memory Scalable k-Core Maintenance on Dynamic Graphs and Hy-
pergraphs. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS) Workshops. 998–1007.

[39] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso
Lanciano. 2020. Core Decomposition in Multilayer Networks: Theory,
Algorithms, and Applications. ACM Trans. Knowl. Discov. Data 14, 1
(2020), 11:1–11:40.

[40] Mohsen Ghafari, Silvio Lattanzi, and Slobodan Mitrovic. 2019. Im-

proved Parallel Algorithms for Density-Based Network Clustering. In
International Conference on Machine Learning (ICML) (Proceedings of
Machine Learning Research, Vol. 97). 2201–2210.

[41] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and
Michalis Vazirgiannis. 2014. CoreCluster: A Degeneracy Based Graph
Clustering Framework. In AAAI Conference on Artifcial Intelligence.
44–50.

[42] John Healy, Jeannette C. M. Janssen, Evangelos E. Milios, and William
Aiello. 2006. Characterization of Graphs Using Degree Cores. In In-
ternational Workshop on Algorithms and Models for the Web-Graph
(WAW), Vol. 4936. 137–148.

[43] Monika Henzinger, Stefan Neumann, and Andreas Wiese. 2020. Ex-
plicit and Implicit Dynamic Coloring of Graphs with Bounded Arboric-
ity. CoRR abs/2002.10142 (2020), 18 pages.

[44] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Pro-
gramming, Revised Reprint (1st ed.). Morgan Kaufmann Publishers
Inc.

[45] Changwan Hong, Laxman Dhulipala, and Julian Shun. 2020. Exploring
the Design Space of Static and Incremental Graph Connectivity Algo-
rithms on GPUs. In Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques. 55–69.

[46] Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipeng
Cai, Xiuzhen Cheng, and Hanhua Chen. 2020. Faster Parallel Core
Maintenance Algorithms in Dynamic Graphs. IEEE Transactions on
Parallel and Distributed Systems 31, 6 (2020), 1287–1300.

[47] Siddhartha V. Jayanti and Robert E. Tarjan. 2021. Concurrent disjoint
set union. Distributed Computing 34, 6 (2021), 413–436.

[48] Hai Jin, Na Wang, Dongxiao Yu, Qiang-Sheng Hua, Xuanhua Shi,
and Xia Xie. 2018. Core Maintenance in Dynamic Graphs: A Paral-
lel Approach Based on Matching. IEEE Transactions on Parallel and
Distributed Systems 29, 11 (2018), 2416–2428.

[49] Humayun Kabir and Kamesh Madduri. 2017. Parallel k-Core Decom-

position on Multicore Platforms. In IEEE International Parallel and
Distributed Processing Symposium Workshops, (IPDPS). 1482–1491.

[50] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015.
K-Core Decomposition of Large Networks on a Single PC. Proceedings
of the VLDB Endowment 9, 1 (2015), 13–23.

[51] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev
Muchnik, H Eugene Stanley, and Hernán A Makse. 2010. Identifcation
of infuential spreaders in complex networks. Nature Physics 6, 11
(2010), 888–893.

[52] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a Social Network or a News Media?. In International

Conference on World Wide Web. 591–600.
[53] Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu C. Aggarwal. 2010. A

Survey of Algorithms for Dense Subgraph Discovery. In Managing and
Mining Graph Data. Advances in Database Systems, Vol. 40. 303–336.

[54] Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and
Xuemin Lin. 2019. Efcient Progressive Minimum k-core Search. Pro-
ceedings of the VLDB Endowment 13, 3 (2019), 362–375.

[55] Rong-Hua Li, Jefrey Xu Yu, and Rui Mao. 2014. Efcient Core Mainte-

nance in Large Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 26, 10
(2014), 2453–2465.

[56] Zhe Lin, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Zhihong Tian.
2021. Hierarchical Core Maintenance on Large Dynamic Graphs.
Proceedings of the VLDB Endowment 14, 5 (2021), 757–770.

[57] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and
Julian Shun. 2022. Parallel Batch-Dynamic Algorithms for �-Core
Decomposition and Related Graph Problems. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 191–204.

[58] Quanquan C. Liu, Julian Shun, and Igor Zablotchi. 2024. Parallel �-
Core Decomposition with Batched Updates and Asynchronous Reads.
arXiv:2401.08015 [cs.DC]

[59] Ying Liu, Ming Tang, Tao Zhou, and Younghae Do. 2015. Core-like
groups result in invalidation of identifying super-spreader by k-shell
decomposition. Scientifc Reports 5, 1 (2015), 9602.

[60] Qi Luo, Dongxiao Yu, Feng Li, Zhenhao Dou, Zhipeng Cai, Jiguo Yu,
and Xiuzhen Cheng. 2019. Distributed Core Decomposition in Proba-
bilistic Graphs. In International Conference on Computational Data and
Social Networks (CSoNet), Vol. 11917. 16–32.

[61] Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazir-
giannis. 2016. Locating infuential nodes in complex networks. Scien-
tifc Reports 6, 1 (2016), 19307.

[62] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering
and clustering and Graph Coloring Algorithms. J. ACM 30, 3 (1983),
417–427.

[63] Sourav Medya, Tianyi Ma, Arlei Silva, and Ambuj K. Singh. 2020. A
Game Theoretic Approach For k-Core Minimization. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS).
1922–1924.

[64] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E.
Tsourakakis, and Shen Chen Xu. 2015. Scalable Large Near-Clique
Detection in Large-Scale Networks via Sampling. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD). 815–824.

[65] Eisha Nathan, E. Jason Riedy, Anita Zakrzewska, and Chunxing Yin.
2017. A New Direction for Streaming Graph Analysis. In IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). 645–646.

[66] Shaunak Pawagi and Owen Kaser. 1993. Optimal parallel algorithms
for multiple updates of minimum spanning trees. Algorithmica 9, 4
(1993), 357–381.

[67] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-
Lung Wu, and Ümit V. Çatalyürek. 2013. Streaming Algorithms for
k-core Decomposition. Proceedings of the VLDB Endowment 6, 6 (2013),
433–444.

[68] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-
Lung Wu, and Ümit V. Çatalyürek. 2016. Incremental k-core decompo-

sition: algorithms and evaluation. Proceedings of the VLDB Endowment
25, 3 (2016), 425–447.

[69] X. Shen and W. Liang. 1993. A parallel algorithm for multiple edge up-
dates of minimum spanning trees. In Proceedings Seventh International
Parallel Processing Symposium. 310–317.

[70] Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic
Approximate k-Core Decomposition in Hypergraphs. ACM Trans.
Knowl. Discov. Data 14, 4 (2020), 39:1–39:21.

[71] Tom Tseng, Laxman Dhulipala, and Julian Shun. 2022. Parallel Batch-
Dynamic Minimum Spanning Forest and the Efciency of Dynamic

299

https://arxiv.org/abs/2401.08015

Parallel �-Core Decomposition with Batched Updates and Asynchronous Reads

Agglomerative Graph Clustering. In Proceedings of the 34th ACM Sym-
posium on Parallelism in Algorithms and Architectures. 233–245.

[72] Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, and Lu Qin. 2018.
Efcient Computing of Radius-Bounded k-Cores. In IEEE International
Conference on Data Engineering (ICDE). 233–244.

[73] Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng
Hua. 2017. Parallel Algorithm for Core Maintenance in Dynamic
Graphs. In IEEE International Conference on Distributed Computing
Systems (ICDCS). 2366–2371.

[74] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jefrey Xu Yu. 2019.
I/O Efcient Core Graph Decomposition: Application to Degeneracy
Ordering. IEEE Trans. Knowl. Data Eng. 31, 1 (2019), 75–90.

[75] Jaewon Yang and Jure Leskovec. 2015. Defning and evaluating net-
work communities based on ground-truth. Knowl. Inf. Syst. 42, 1 (2015),
181–213.

[76] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017.
When Engagement Meets Similarity: Efcient (k, r)-Core Computation
on Social Networks. Proceedings of the VLDB Endowment 10, 10 (2017),
998–1009.

[77] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010.
Using the k-core decomposition to analyze the static structure of large-
scale software systems. J. Supercomput. 53, 2 (2010), 352–369.

[78] Yikai Zhang, Jefrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A Fast
Order-Based Approach for Core Maintenance. In IEEE International
Conference on Data Engineering (ICDE). 337–348.

A Artifact Appendix
A.1 Setup and Experiment Script
Our experiments use code from the Graph Based Benchmark
Suite (GBBS) which can be installed from this Github link:
https://github.com/qqliu/batch-dynamic-kcore-decomposition.
GBBS is most easily installed and run on Ubuntu 20.04 LTS,
but can be installed easily on any Ubuntu machine. We have
provided an instance with pre-installed software on which
you can run experiments if you provide us with a public key.

First, run setup.sh within the main
batch-dynamic-kcore-decomposition/ directory by typ-
ing sh setup.sh into the command line. The following are
the setup instructions that are run by setup.sh:

1. If you do not have make, run sudo apt install make.
2. If you do not have g++, run sudo apt-get update,

then sudo apt-get install g++.

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

3. Run git submodule update --init --recursive
to obtain subpackages from inside the GBBS directory.

4. All scripts for running code is included under the
/batch-dynamic-kcore-decomposition/gbbs/scripts
directory.

5. The relevant scripts are: cplds_approx_kcore_setup.txt,
cplds_test_approx_kcore.py, and
cplds_read_approx_kcore_results.py.

Experiment Machine Setup Our experiments require
machines with 30 cores. Specifcally, we tested our exper-
iments on machines with the following specifcations. We
use a c2-standard-60 Google Cloud instance (3.1 GHz Intel
Xeon Cascade Lake CPUs with a total of 30 cores with two-
way hyper-threading, and 236 GiB RAM) and an m1-megamem-96
Google Cloud instance (2.0 GHz Intel Xeon Skylake CPUs
with a total of 48 cores with two-way hyper-threading, and
1433.6 GB RAM). We do not use hyper-threading in our
experiments. Our programs are written in C++, use a work-
stealing scheduler [16], and are compiled using g++ (version
7.5.0) with the -O3 fag. We terminate experiments that take
over 2 hours to fnish.
Experiment Script We have prepared an experimental

script for you to run to reproduce the results for all experi-
ments for insertions on three of our tested graphs. We chose
these experiments in order for our suite of experiments to
complete within a reasonable time limit. All of our experi-
ments in the script can be completed in a total of 15 minutes.
The experimental script is included in /batch-dynamic-kcore-

decomposition/gbbs/scripts/cplds_experiments and can be
run by typing sh run_experiments.sh into the terminal.
The program outputs into the terminal, the results of all
experiments with the corresponding labels.
A.2 Step-by-Step Instructions
All of our experiments can be performed using our general
purpose script given in the README fle under the
gbbs/benchmarks/EdgeOrientation/ConcurrentPLDS di-
rectory.

300

https://github.com/qqliu/batch-dynamic-kcore-decomposition
https://run_experiments.sh
https://cplds_read_approx_kcore_results.py
https://cplds_test_approx_kcore.py
https://setup.sh
https://setup.sh
https://setup.sh

	Abstract
	1 Introduction
	2 Preliminaries
	3 Background
	3.1 Level Data Structure (LDS)
	3.2 Parallel LDS (PLDS)

	4 Algorithm Overview
	5 Detailed Algorithm
	5.1 Data Structures and Global State
	5.2 Updates
	5.3 Reads

	6 Correctness
	6.1 Approximation Guarantees

	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Setup and Experiment Script
	A.2 Step-by-Step Instructions

