

1 Fullertubes Inhibit Mycobacterial Viability and Prevent Biofilm Formation by Disrupting the Cell
2 Wall

3 Shenoy, V^{1,2}., Gunda, R¹., Noble, C²., Haraguchi, A¹., Stevenson, S²., and Daniel, J^{1*}

4 ¹Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN 46805,
5 United States of America

6 ²Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, IN
7 46805, United States of America

8 *Address for correspondence:

9 Jaiyanth Daniel, Ph.D.

10 Associate Professor,

11 Department of Biological Sciences

12 Purdue University Fort Wayne

13 SB 380, 2101 E Coliseum Blvd.,

14 Fort Wayne, IN 46805

15 Phone: 260-481-5703

16 Email: danielj@pfw.edu

17 Fax: 260-481-6087

18

19 Short title: Fullertube disruption of mycobacterial cell wall

20 **Abstract**

21 *Mycobacterium tuberculosis* and nontuberculous mycobacteria such as *Mycobacterium*
22 *abscessus* cause diseases that are becoming increasingly difficult to treat due to emerging
23 antibiotic resistance. The development of new antimicrobial molecules is vital for combating
24 these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles
25 with promising antimicrobial effects. Fullertubes (C_{90}) are novel carbon allotropes with a
26 structure unique among CNMs. The effects of fullertubes on any living cell have not been
27 studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial
28 effects on *Mycobacterium smegmatis* and *M. abscessus*. Using scanning electron microscopy,
29 light microscopy and molecular probes, we investigated the effects of these CNMs on
30 mycobacterial cell viability, cellular integrity and biofilm formation. C_{90} fullertubes at 1 μM
31 inhibited mycobacterial viability by 97 %. Scanning electron microscopy revealed that the cell
32 wall structure of *M. smegmatis* and *M. abscessus* was severely damaged within 24 h of
33 exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast
34 staining property of *M. smegmatis*. Using SYTO-9 and propidium iodide, we show that exposure
35 to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that
36 the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from
37 our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C_{90}
38 fullertubes at 0.37 μM and C_{60} fullerenes at 0.56 μM inhibited pellicle biofilm formation by 70%
39 and 90%, respectively. This is the first report on the anti-mycobacterial activities of fullertubes
40 and fullerenes.

41

42

43

44 **Keywords:** Fullertubes; fullerenes; mycobacteria; cell wall; biofilm

45

46 **SIGNIFICANCE STATEMENT**

47 The recently isolated fullertubes (C_{90}) are carbon nanoparticles with tubular molecular
48 structures and hemispherical end caps and their effects on any living cell have not been
49 investigated. We show that the novel fullertubes inhibit mycobacterial cell growth and cause
50 physical damage to the cell envelope in *Mycobacterium smegmatis* and in *Mycobacterium*
51 ***abscessus***, an infectious organism of clinical importance. We also show that fullertubes and
52 fullerenes inhibit biofilm formation which is a key phenotype of mycobacterial pathogenesis.

53

54 **1. Introduction**

55 The genus *Mycobacterium* contains many notable pathogenic species, including
56 *Mycobacterium tuberculosis* (Mtb) and *Mycobacterium abscessus* (Mab). Mtb is the causative
57 agent of tuberculosis, a disease that is particularly difficult to treat due to its ability to develop
58 antibiotic tolerance (1). Mab is emerging as a public health threat since it has been causing
59 increasing numbers of infections in the United States and globally and is highly antibiotic-
60 resistant (2). Research and development of novel antimicrobial agents against these organisms
61 is greatly needed.

62 Carbon nanomaterials (CNMs), as a class of molecules, contain diverse compounds,
63 including carbon nanotubes, graphene oxide particles, fullerene, and fullertubes. Many of these
64 compounds have been shown to possess antibacterial effects (3). The antibacterial effects of
65 CNMs with different dimensionalities have been attributed, among several possibilities, to
66 physical damage of the bacterial cell wall, ROS-dependent and ROS-independent oxidative
67 stress and the ability of CNMs to penetrate into and extract the phospholipids from the bacterial
68 lipid membranes (4). Buckminster fullerenes (C₆₀) are a well-investigated class of carbon
69 allotropes with a characteristic spherical shape. The antibacterial effects of fullerenes against
70 Gram-positive and Gram-negative bacteria have been investigated (5). CNMs are reported to be
71 environmentally benign and useful as antibacterial food packaging materials (6). A recent report
72 described the antibacterial activity of water-soluble fullerene against Gram-positive and Gram-
73 negative bacteria. This report also showed that fullerenes penetrate eukaryotic cells by
74 endocytosis but that the toxicity was limited (7).

75 Fullertubes (C₉₀) are a class of recently isolated compounds with a hybrid structure of
76 fullerenes and carbon nanotubes (8). Fullertubes contain the hexagonal-patterned body of a
77 carbon nanotube with end caps that resemble one half of a fullerene. As a result of their hybrid
78 structure, they possess unique chemical properties (9). The effects of fullertubes on any living
79 cell have not been investigated. In this study, we use well-agitated fullertube and fullerene
80 dispersions in a 1:3 (v/v) mixture of oleic acid:dimethyl sulfoxide (DMSO), a novel preparation
81 medium utilized to maintain the retention of fullertubes and fullerenes in the dispersion and
82 minimize preparation loss of the fullertubes that are not available commercially. Earlier studies
83 have primarily used fullerenes (C₆₀) in different preparations or functionalized forms (10). C₇₀, a
84 compound with a structure similar to C₆₀, has also been studied to a lesser extent (11).
85 However, there are no reports on the effects of fullertubes and fullerenes in mycobacteria.

86 In this study, we exposed *Mycobacterium smegmatis* (Msm) and *M. abscessus* (Mab) cells
87 to fullertubes (C₉₀) and fullerenes (C₆₀) to investigate their effects. We found that fullertubes and
88 fullerenes decrease cellular viability in Msm and Mab. We additionally demonstrate, using
89 scanning electron microscopy (SEM) and acid-fast staining microscopy, that fullertubes and
90 fullerenes damage the mycobacterial cellular envelope. Furthermore, using multiple molecular
91 probes, we show that fullertubes and fullerenes permeabilize the mycobacterial cell wall and
92 damage the cell envelope. We also demonstrate that fullertubes and fullerenes inhibit biofilm
93 formation **in *M. smegmatis***.

94 **2. Materials and Methods**

95 **2.1 Mycobacterial growth conditions**

96 *Mycobacterium smegmatis mc²155* and *Mycobacterium abscessus* ATCC 19977 (ATCC,
97 Manassas, VA) were maintained as glycerol stocks at - 80 °C. The bacteria were grown in
98 Middlebrook 7H9 medium (with 0.05 % Tween 80) + 10 % (v/v) Middlebrook oleic acid albumin
99 dextrose catalase (OADC) enrichment with shaking at 37 °C till the cultures reached mid-log
100 phase (optical density at 600 nm [OD₆₀₀] ~ 0.6) and used in assays as described below.

101 **2.2 Preparation and characterization of fullerene and fullertube dispersions**

102 Fullertubes (C₉₀-D_{5h}) were purified as described earlier (8). Fullerenes (C₆₀-I_h) were obtained
103 from MER Corp., Tucson, AZ. Dispersions of fullertubes and fullerenes were prepared as
104 follows: 1 mg of the respective fullertube or fullerene was first dissolved in 10 mL of chloroform.
105 Oleic acid (0.25 mL) was then added and mixed thoroughly. After evaporation of the chloroform
106 in a water bath at 50 °C under a stream of nitrogen, the suspension was transferred to a glass
107 tube and sterilized by autoclaving (121 °C, 20 min). After cooling, 0.75 mL of dimethyl sulfoxide
108 (DMSO, 0.2 µm filter-sterilized) was added aseptically. All assays were performed using these 1
109 mg/mL stock dispersions of the respective fullertube or fullerene in oleic acid:DMSO (1:3, v/v).
110 The particle size distributions for the C₆₀ dispersion were determined by dynamic light scattering
111 (DLS) analysis of a 10 µg/mL C₆₀ dispersion made in oleic acid:DMSO (1:3, v/v) at a pH of
112 6.72. Measurements were performed on a Zetasizer-Nano ZS90 (Malvern Panalytical, Malvern,
113 UK) in disposable DTS001 polystyrene cuvettes (Malvern Panalytical, Malvern, UK), at 25 °C.
114 The standard Zetasizer protocol for fullerene nanoparticles was followed, with the dispersant
115 refractive index and viscosity set to 1.474 and 2.0 cP, respectively, to reflect the approximate
116 values for the oleic acid:DMSO (1:3, v/v) dispersant.

117 **2.3 Antimicrobial activity determination**

118 *M. smegmatis* and *M. abscessus* cells grown to mid log-phase were diluted to approximately
119 5 x 10⁴ CFUs/mL and were then exposed to dispersions of C₆₀ at final concentrations of 0.1
120 µg/mL, 0.2 µg/mL, 0.5 µg/mL, and 1.0 µg/mL or C₉₀ at final concentrations of 0.2 µg/mL and 1.0
121 µg/mL. Appropriate dilutions of the fullertube/ fullerene dispersions were added. Negative
122 (dispersant) control cells were exposed to the same respective volumes of the 1:3 (v/v) oleic
123 acid:DMSO dispersant. The maximum final concentration of oleic acid was limited to 0.1 % (v/v).

124 The bacteria were then incubated with shaking at 37 °C for nearly 40 h (*M. smegmatis*) or for
125 about 205 h (*M. abscessus*) until the cells exposed to the dispersant control reached an OD₆₀₀
126 of 0.7-0.8. **The cell cultures were then serially-diluted with thorough vortexing and sonication for**
127 **1 min for each dilution step in a Branson 2510 water bath sonicator (100 W output; Branson**
128 **Ultrasonics Corporation, Danbury, CT) to disperse clumps of cells.** The colony-forming units
129 (CFUs) were determined after appropriate serial dilution and agar plating. The colonies on the
130 agar plates were counted after 3 days (*M. smegmatis*) or 4 days (*M. abscessus*).

131 2.4 Scanning electron microscopy preparation and imaging

132 *M. smegmatis* and *M. abscessus* cells at mid log-phase were diluted to 10⁴ CFUs/mL and
133 exposed to the fullertube or fullerene dispersions at final concentrations of 0.2 µg/mL or the
134 oleic acid:DMSO control (0.1 % v/v final concentration) with shaking at 37 °C. *M. smegmatis*
135 cells were collected after 2 h and 24 h incubation with the CNMs and *M. abscessus* cells were
136 collected after 24 h of incubation. The bacterial samples were then prepared for scanning
137 electron microscopy imaging following a slightly modified version of a protocol described earlier
138 (12). Briefly, the cells were retained on a 0.22-micron polycarbonate filter and were fixed in a
139 solution of 4 % (v/v) formaldehyde in 0.1 M phosphate buffer, pH 7.4 for 2.5 h, dehydrated
140 through a graded ethanol series consisting of dehydration by 30 %, 50 %, 70 %, and 100 %
141 ethanol in water solutions, with the 100 % ethanol dehydration step being performed twice (12,
142 13). The filters were then removed from their housings and then further dried using the t-butanol
143 drying procedure as described earlier (14). The samples were immersed in t-butanol and cooled
144 at 4 °C until frozen. The t-butanol was then sublimated at a pressure range of approximately 50
145 mTor for 2 h, in a vacuum desiccator connected to a rotary pump. The samples were then
146 sputter-coated with gold at a thickness of 2 nm using a Quorum Q150T sample coater (Quorum
147 Technologies, East Sussex, UK). The samples were then imaged at a voltage of 3.00 kV and a
148 magnification of 15,000X using a Hitachi S3400N (Hitachi High Technologies, Tokyo, Japan)
149 scanning electron microscope.

150 2.5 Acid-fast staining and microscopy

151 *M. smegmatis* and *M. abscessus* cells were grown to mid log-phase, diluted to 10⁴ CFUs/mL
152 and exposed to either the C₉₀ or C₆₀ dispersions at a concentration of 0.2 µg/mL or the oleic
153 acid:DMSO control (0.1 % v/v final concentration). The cells were then incubated at 37 °C for 24
154 hours with shaking. Cells were then collected by centrifugation and resuspended in 1 mL sterile

155 culture medium. The cells were then pelleted once again and resuspended in 50 μ L of sterile
156 medium. The resuspended cells were spread on glass slides, air dried and heat-fixed. Samples
157 were stained with the traditional procedure for the Ziehl-Neelsen staining and imaged under
158 bright-field illumination using an Olympus CX22LED microscope and a Leica DFC295 camera.
159 A total of 15 fields for each group across three independent experiments were captured.

160 2.6 SYTO-9/ Propidium Iodide staining for cell envelope integrity

161 We adapted the procedure detailed in an earlier study to probe the envelope integrity of *M.*
162 *smegmatis* (15). Planktonic, log-phase *M. smegmatis* cells were exposed to dispersions of C₉₀
163 or C₆₀ at final concentrations of 0.2 μ g/mL or the oleic acid:DMSO control (0.02 % v/v final
164 concentration) for 2 hours. The cells were washed with 0.85 % NaCl in ultrapure water and
165 exposed to the 2X SYTO-9/propidium iodide solution (LIVE/DEAD BacLight Bacterial Viability
166 Kit, Molecular Probes, Invitrogen, CA, USA) and incubated at room temperature in the dark for
167 15 min, after which the green fluorescence (Ex. 485 nm/ Em. 528 nm) and red fluorescence (Ex.
168 530 nm/ Em. 590 nm) were measured using an Agilent BioTek Synergy LX Multimode Reader
169 (Santa Clara, CA). The measured fluorescence ratio was normalized using viable cell counts
170 (CFUs) determined by agar plating. The relative green/ red fluorescence ratios were calculated
171 against the Msm + oleic acid:DMSO control.

172 2.7 Ethidium bromide transport assay

173 We followed a modified version of previously described protocols to monitor the
174 accumulation and efflux of ethidium bromide (EtBr) (16, 17). *M. smegmatis* (log phase) culture
175 was washed and resuspended in sodium phosphate buffer pH 7.4 with 0.05 % (v/v) Tween 80
176 (PBST) to an OD₆₀₀ of 0.4. Then, 1 mL of the bacterial suspension was centrifuged (16,000 x g,
177 5 min) and the cell pellets obtained were resuspended in PBST containing 0.4 μ g/mL C₆₀ or C₉₀
178 to assess the impact of fullertubes and fullerenes on the transport of EtBr into and out of the
179 mycobacterial cell. Aliquots of 200 μ L were transferred in triplicates to 96-well plates and EtBr
180 was added to a final concentration of 1 μ g/mL. The accumulation of EtBr was measured at room
181 temperature by recording the red fluorescence values (Ex. 530 nm, Em. 590 nm) in a microplate
182 reader Agilent BioTek Synergy LX Multimode Reader (Santa Clara, CA) over 60 min. To
183 examine the efflux of EtBr, the cells (OD₆₀₀ = 0.4) were incubated with 150 μ g/mL verapamil
184 (0.5X MIC) for 15 min at room temperature. Then, EtBr was added to a final concentration of 3
185 μ g/mL and incubated for 1 h at 25 °C to promote maximum accumulation of EtBr. After

186 incubation, 1 mL bacterial cultures were centrifuged, washed, and cell pellets were placed on
187 ice immediately. The cell pellets were resuspended in PBST containing 0.4 μ g/mL fullertubes or
188 fullerenes and incubated on ice for 1 h. Aliquots of 200 μ L were transferred to a 96-well plate
189 and red fluorescence was measured as described above, every 5 min for 60 min at 37 °C. In
190 this assay, log phase cells were utilized to allow the effective detection of fluorescence signals.

191 2.8 Dichlorofluorescein assay of cellular reductive state

192 Planktonic log-phase *M. smegmatis* cells were exposed to dispersions of C₉₀ or C₆₀ at a final
193 concentration of 0.2 μ g/mL and the oleic acid:DMSO control (0.02 % v/v final concentration) for
194 2 h. The cells were then pelleted, washed with 0.85 % NaCl in ultrapure water and inoculated
195 with dichlorodihydrofluorescein diacetate, after which the green fluorescence (Ex. 485 nm/ Em.
196 528 nm) was measured. The measured fluorescence intensity was normalized using viable cell
197 counts (CFUs) determined by agar plating.

198 2.9 FOX II lipid peroxidation assay

199 Lipid peroxides were determined using the Ferrous Xylenol Orange (FOX II) assay as
200 previously described with some modifications (18, 19). The FOX II reagent contains 90 %
201 methanol, butylated hydroxytoluene (4.4 mM), 25 mM H₂SO₄, 250 mM ferrous ammonium
202 sulphate, and 100 mM xylene orange. Briefly, *M. smegmatis* cells (log-phase) grown in
203 Middlebrook 7H9 broth supplemented with 10 % (v/v) Middlebrook ADC enrichment were
204 washed and diluted to 10⁶ CFUs/mL in phosphate buffered saline containing 0.05 % Tween 80
205 (PBST). Then, 1 mL of the bacterial suspension was centrifuged (16,000 x g, 5 min) and the cell
206 pellet obtained was suspended in PBST containing 0.2 and 0.4 μ g/mL C₉₀ or C₆₀. The samples
207 were then incubated at 37 °C with shaking for 4 h. Following the treatment, the cells were
208 centrifuged at 16,000 x g for 5 min and washed using PBST. The resultant cell pellet was
209 suspended in a mixture of chloroform and methanol (1:2, v/v) and incubated for 40 min. To this,
210 800 μ L of FOX II reagent was added and left to incubate in the dark for 30 min. 200 μ L of the
211 sample was then measured spectrophotometrically at 560 nm. The recorded absorbance values
212 for each condition were normalized against **cells treated only with the oleic acid:DMSO**
213 **dispersant, which served as the control.**

214 2.10 Fullerene/ fullertube effects on *M. smegmatis* pellicle biofilm formation

215 We adapted a previously described assay to measure *M. smegmatis* biofilm formation in
216 borosilicate glass tubes (20). Pellicle formation was monitored by growing 1:100 dilution of log-
217 phase cultures of mycobacteria without shaking in Middlebrook 7H9 medium supplemented with
218 2 % (v/v) Middlebrook ADC enrichment and 0.5 % glucose and lacking Tween 80 at 37 °C for 72
219 h. Briefly, 5 mL cultures were exposed to varying concentrations (0.2 µg/mL and 0.4 µg/mL) of
220 fullertubes or fullerenes with oleic acid:DMSO (1:3, v/v) serving as the dispersant control.
221 Following the incubation period to allow pellicle (floating) biofilm formation, the tubes were
222 vortexed and the floating biofilm was collected from the glass tube by filtration on a fine-mesh
223 nylon filter. The cells adhered together in the biofilm were separated from the planktonic cells by
224 gently washing the biofilms retained on the fine-mesh nylon filter three times with distilled water.
225 The biofilms were stained on the nylon filters by exposing them to 0.5 mL of 1 % (w/v) Crystal
226 Violet solution and incubating at room temperature for 15 min. Subsequently, the Crystal Violet
227 solution was removed and the stained biofilm on the nylon filter was washed three times with
228 distilled water. The bound Crystal Violet was eluted from the biofilm cells using 2 mL of 95 %
229 (v/v) ethanol. The absorbance was measured at 600 nm using a microplate reader. For the
230 samples whose absorbance values were greater than 1.0, the eluate was diluted with 95 % (v/v)
231 ethanol and measured again.

232 2.11 CNM-Isoniazid synergism and Most Probable Number assays

233 Planktonic log-phase *M. smegmatis* cells grown to an OD₆₀₀ of approximately 0.7 in Middlebrook
234 7H9 broth with Tween 80 and 10 % OADC were exposed to dispersions of C₉₀ or C₆₀ at final
235 concentrations of 0.2 µg/mL or oleic acid:DMSO (0.1 % v/v final concentration) and untreated
236 cell controls were incubated for 2 h at 37 °C with shaking. In order to determine potential
237 synergistic activities of CNMs with isoniazid, we selected two sub-MIC concentrations of INH
238 that would result in countable CFUs on agar plates. These sub-MIC concentrations were
239 selected based on previously reported MIC values for INH against *M. smegmatis* mc²155 (21).
240 Following CNM exposure, the samples were exposed to isoniazid at a final concentration of 2
241 µg/mL or 10 µg/mL at 37 °C for an additional 24 hours. Cells exposed only to oleic acid:DMSO
242 with isoniazid at the respective concentrations were used as controls. The cells were then
243 serially diluted 10-fold by mixing 100 µL of each cell suspension in 900 µL of Middlebrook 7H9
244 containing 10 % OADC. Appropriate dilutions were spread-plated onto Middlebrook 7H10 agar
245 plates containing 10 % OADC. The plates were incubated at 37 °C for 3 days and CFUs were
246 determined. The serially-diluted cultures were also subjected to the Most Probable Number

247 (MPN) assay following a modification of procedures described earlier for *M. tuberculosis* (22,
248 23). Briefly, 200 μ L of each dilution (from 10^{-2} to 10^{-9}) in triplicate for all samples were placed in
249 96-well plates and incubated for 3 days at 37 °C after which cell viability was assessed by
250 adding 25 μ L of 0.02 % (w/v) resazurin and further incubation for 24 h at 37 °C. Color change
251 from blue to pink was taken as indication of positive growth. The MPN/ mL values were
252 determined from a standard MPN index for combinations of positive tubes in a 3-tube dilution
253 series with appropriate adjustments for the volumes and dilutions used in our assay (24, 25).

254

255 **3. Results**

256 **3.1 Fullertube and Fullerene dispersions decrease the viability of mycobacteria**

257 We characterized the effects of the novel C₉₀ fullertubes on the viability of *M. smegmatis* and
258 *M. abscessus* cells and compared their activities with those of the C₆₀ fullerenes. *M. smegmatis*
259 was used as the primary organism in this study since it is a well-studied model organism for
260 tuberculosis (26). We also examined the effects of the CNMs on *M. abscessus* viability since it
261 is a nontuberculous mycobacterial pathogen. Fullertubes and fullerenes significantly decreased
262 the measured colony forming units for both organisms. The decrease in the colony forming units
263 showed a dependence on the concentration of the fullertubes and fullerenes (Table 1, Fig. 1 A,
264 C). At 0.2 µg/mL, *M. smegmatis* exposed to the fullertube and fullerene dispersions showed
265 average percent survivals of 63 % and 83 %, respectively at the indicated time-points of
266 incubation with the CNMs, compared to the control cells exposed to oleic acid:DMSO alone. *M.*
267 *smegmatis* exposed to C₉₀ and C₆₀ at concentrations of 1.0 µg/mL displayed a significant
268 decrease in cell viability, with only 3 – 8 % of the cells surviving exposure to the CNMs at this
269 concentration (Fig. 1 B). *M. abscessus* exposed to C₉₀ or C₆₀ also significantly reduced cell
270 viability. Only 3 % of the *M. abscessus* cells survived exposure to C₉₀ at 1.0 µg/mL while 14 %
271 survived exposure to C₆₀ at 1.0 µg/mL (Fig. 1 D). We observed that the dispersant in which the
272 CNMs were suspended (1:3 [v/v] oleic acid:DMSO) did affect cellular viability. At the
273 concentrations of 0.1 % (v/v) and 0.02 % (v/v), which correspond with the concentrations of
274 CNMs used, the dispersant decreased the survival of the mycobacterial cells to 58.9 % and 87.8
275 % respectively (on average) compared to the untreated cells. Therefore, we used the
276 dispersant-treated cells as the baseline control to compare the CNM-treated cells and the
277 percent survival data in Fig. 1 are depicted relative to this control. We also investigated whether
278 the water bath sonication procedure we followed to disperse clumps of mycobacteria prior to
279 agar plating for CFUs affected cell viability and determined that sonication of cells did not affect
280 cell viability (4.6 ± 0.2 CFUs/mL for unsonicated cells versus 5.4 ± 0.2 CFUs/mL for sonicated
281 cells).

282

283

284

285 **Table 1.** Viability of *Mycobacterium smegmatis* exposed to C₆₀ at different concentrations.

C ₆₀ Concentration (µg/mL)	Percent Cell Viability Avg (± SD) ^c	P-value ^d
0.1 ^a	81.0 (±7.1)	0.379
0.2 ^b	83.2 (±23.9)	0.376
0.5 ^b	5.0 (±4.0)	< 0.01
1.0 ^b	7.8 (±7.4)	< 0.01
2.0 ^b	6.6 (±8.3)	< 0.01
10.0 ^b	6.0 (±10.3)	< 0.01

286 ^an = 2, ^bn=3. ^cAverage percent survival calculated against a representative 1:3 oleic acid:DMSO
287 controls. ^d One-way ANOVA.

288 3.2 *Mycobacteria* show damaged cellular morphology after exposure to fullertubes and
289 fullerenes.

290 To determine the morphological effects of the prepared fullertube and fullerene dispersions,
291 we prepared scanning electron micrographs of treated *M. smegmatis* and *M. abscessus* cells at
292 various time points (Fig. 2). We observed that the membrane morphology of untreated *M.*
293 *smegmatis* and *M. abscessus* and cells treated with the oleic acid:DMSO control showed
294 smooth and intact cellular envelopes, consistent with the expected wild-type phenotype (2, 27-
295 29). In contrast, the fullertube- and fullerene-treated cells showed various damaged phenotypes
296 of varying severity. *M. smegmatis* cells exposed to fullertubes or fullerenes displayed slight
297 signs of damage at the 2 h time point, presenting rougher membrane morphologies
298 characterized by bumps, inclusions, and breakdowns in the cellular envelope compared to the
299 controls (Fig. 2, top row). At the 24 h timepoint, we observed a more dramatic change in
300 phenotype. Our observations of several microscopic fields shows that *M. smegmatis* and *M.*
301 *abscessus* cells exposed to fullertubes or fullerenes for 24 h had broken cell envelopes or
302 appeared as shriveled cells (Fig. 2, middle and bottom rows). Some of these cells also showed
303 bumps, inclusions, and breakdowns in the cellular envelope. Additionally, fields at the 24 h
304 timepoint contained signs of cellular debris, covering the holes in the background filter paper.
305 While we did observe a few fields with cells containing undamaged cell envelopes in the CNM-
306 treated samples, we did not observe any damaged phenotypes in the untreated cells or in the
307 control cells exposed to the oleic acid:DMSO dispersant. The effects of fullertubes and
308 fullerenes on the morphology of *M. smegmatis* were also observed in the acid-fast staining of
309 these cells (Figure 3). Untreated cells and cells exposed to the oleic acid:DMSO control
310 revealed smooth envelope morphologies consistently stained deep purple, as expected.

311 However, cells treated with fullertubes or fullerenes displayed a rough, damaged envelope
312 morphology and a markedly lower retention of the Carbolfuchsin stain resulting in very light,
313 purple-stained cells.

314 3.3 Fullertubes and fullerenes decrease the integrity and increase the permeability of the cell
315 envelope of *Mycobacterium smegmatis*

316 We used fluorescent molecular probes to further characterize the molecular effects of
317 fullertubes and fullerenes. We used the SYTO-9/ Propidium Iodide (PI) fluorescent probes to
318 assess the cell envelope integrity of *M. smegmatis* cells exposed to fullertubes or fullerenes
319 (Figure 4 A). SYTO-9 is a membrane-permeable DNA-binding fluorescent probe that enters all
320 cells to intercalate with cellular DNA and fluoresces green (15). PI preferentially enters cells with
321 damaged membranes or show increased permeability to polar compounds. When PI enters the
322 cell, it can also intercalate with intracellular DNA and fluoresce red. When used simultaneously,
323 the red fluorescence of PI quenches the green fluorescence of SYTO-9 (15). We used the
324 relative green/ red fluorescence intensity ratios as a proxy measure to assess the integrity of the
325 mycobacterial cell envelope. We observed that cells exposed to C₆₀ or C₉₀ had significantly
326 decreased relative green/red fluorescence ratios with values of 0.634 and 0.608, respectively,
327 when compared to control cells exposed only to the oleic acid:DMSO dispersant, suggesting a
328 significant drop in the integrity of the cell envelope upon exposure to the CNMs.

329 We used ethidium bromide (EtBr) as a molecular probe to assess the effects of the CNMs
330 on the transport processes across the mycobacterial cell wall. EtBr emits strong red
331 fluorescence inside cells and weak fluorescence outside the cellular environment, making it a
332 good tracer for studying accumulation and efflux processes in bacterial cells (30). We observed
333 that fullertubes and fullerenes caused an increase in the accumulation of EtBr (Fig. 4 B-D).
334 Specifically, C₆₀ caused a 20 % increase, while C₉₀ led to an increase of around 30 % in the
335 measured endpoint EtBr fluorescence compared to the control (Fig. 4D). Additionally, we
336 observed that the fullertubes and fullerenes did not significantly affect the efflux activity of *M.*
337 *smegmatis* (Fig. 4F, Fig. 2S).

338 We used the molecular probe dichlorofluorescein (DCF) to investigate the molecular
339 environment of *M. smegmatis* exposed to fullertubes and fullerenes. DCF is introduced into the
340 cellular environment as dichlorofluorescein diacetate (DCFDA), which can cross the cellular
341 membrane (31). Inside the cell, DCFDA is cleaved by intracellular esterases to

342 dichlorodihydrofluorescein (DCFH₂), which can then be oxidized to DCF by intracellular reactive
343 oxygen species (ROS) and fluoresce green (31). We found that cells exposed to C₆₀ and C₉₀
344 had significantly decreased relative green fluorescence with (arbitrary) values of 0.519 and
345 0.484, respectively, compared to 1.0 for control cells (Fig. 4 E). Decreases in the relative green
346 fluorescence of cells could indicate either a change in the redox state of the cell or a change in
347 the integrity of the cell membrane. Taking the sum of all our data together, we interpret these
348 decreases in the relative green fluorescence of cells exposed to C₉₀ and C₆₀ as primarily
349 indicative of a loss in the integrity of the mycobacterial cell membrane.

350 3.4 Fullertubes and fullerenes disrupt biofilm formation in *Mycobacterium smegmatis*.

351 As fullertubes and fullerenes showed antimicrobial activity against *M. smegmatis* in our
352 assays described above, we examined whether they could inhibit biofilm formation. We
353 measured the effects of the fullertubes and fullerenes on floating (pellicle) biofilm formation at
354 72 h after exposure to fullerenes or fullertubes. In comparison to the Msm cells, the biofilm was
355 inhibited by 20% in presence of 0.08% v/v solution of oleic acid:DMSO solvent control. This
356 control group was established as the baseline at 100%, and the biofilm formation was calculated
357 for 0.4 ug/mL C₆₀ and C₉₀. At a concentration of 0.4 μ g/mL, fullertubes inhibited biofilm formation
358 by about 70% and fullerenes inhibited biofilm formation by 90%. At 0.2 μ g/mL, fullertube and
359 fullerenes treatment resulted in no appreciable inhibition of biofilm formation (Fig. 5A, Fig 5B).
360 These findings suggest that fullertubes and fullerenes exhibit a concentration-dependent ability
361 to inhibit the formation of mycobacterial biofilms.

362 3.5 Fullertubes and fullerenes do not show synergistic activity with isoniazid or cause
363 *Mycobacterium smegmatis* to enter a dormant state.

364 We investigated the consequences of exposure to fullertubes or fullerenes on the activity of
365 isoniazid which is known to interfere with mycobacterial cell wall synthesis (32). *M. smegmatis*
366 cells were treated with fullertubes or fullerenes in combination with isoniazid for 24 h, alongside
367 respective controls. The cultures were spread-plated on Middlebrook 7H10 agar plates and
368 CFUs were determined. The CNMs significantly decreased cell viability on their own (Fig. 6).
369 The addition of C₉₀ or C₆₀ along with isoniazid at 2 μ g/mL or 10 μ g/mL did not significantly affect
370 the viability of the cell population when compared to the respective control containing only oleic
371 acid:DMSO along with isoniazid. Thus, the CNMs did not show a synergistic effect with isoniazid
372 at the two concentrations tested.

373 In order to investigate whether the CNMs induced *M. smegmatis* to enter a dormant state
374 and therefore caused a decrease in CFU counts on agar plates, the serially-diluted cultures
375 were also subjected to the MPN assay in parallel. As shown in Fig. 6, the MPN estimate for the
376 controls exposed to oleic acid:DMSO were about 4-fold higher than the respective CFUs. The
377 MPN estimate for cells exposed to C₆₀ were about 3-fold higher than the CFUs and the MPN
378 value for C₉₀-treated cells were nearly the same as the CFUs obtained. The viable cell count for
379 the C₆₀-treated cells was 18% of the oleic acid:DMSO control by the CFU assay and 15% of this
380 control by the MPN assay. For C₉₀-treated cells, the viable counts compared to the oleic
381 acid:DMSO control were 18% by CFUs and 3% by MPN values. Since the viable cell counts in
382 the CNM-treated samples by the MPN assay were similar or lower than the respective CFUs,
383 we conclude that the exposure of the log-phase *M. smegmatis* cells to the CNMs led to loss of
384 cell viability and did not cause the cells to enter dormancy.

385

386 **4. Discussion**

387 The antimicrobial activities of the recently isolated fullertubes have not been evaluated. Prior
388 to this study, the effects of fullertubes and fullerenes had not been tested on *M. smegmatis* or
389 *M. abscessus*. The antibacterial activity of C₆₀ against both Gram-positive and Gram-negative
390 strains of bacteria has been demonstrated earlier (10). C₇₀, a compound with a structure similar
391 to C₆₀, has also been studied to a lesser extent. The study by Zhang et al. investigated the
392 effects of functionalized C₇₀ in the form of C₇₀-(ethylenediamine) on *E. coli* and *S. aureus*. They
393 found that it can suppress the growth of drug-resistant strains of these organisms (11). The
394 closest related compounds tested against mycobacteria are graphene oxide-linezolid
395 nanoparticles, which possess anti-mycobacterial properties (33). However, the novel fullertubes
396 have not been investigated for antimicrobial activities.

397 A major hindrance in utilizing pristine carbon nanomaterials in biological systems is their
398 hydrophobic nature. **The toxicity of fullerenes towards mammalian cells have been investigated**
399 **in several studies over 25 years (34).** Although fullerenes localized to cell membranes and
400 caused oxidative damage to DNA, they did not show acute or sub-acute toxicity in rodents.
401 Surprisingly, aqueous C₆₀ suspension protected liver from ROS-mediated toxicity in rats and
402 oral administration of fullerenes dissolved in olive oil doubled the life-span of rats (34). Some
403 previous studies modified fullerenes using functional groups to make them more polar or by
404 enveloping the fullerenes in aqueous suspensions of liposomes by heavy sonication or stirring
405 (7). Other studies have prepared suspensions of fullerenes in water (8). Pristine nC₆₀, in
406 fullerene water suspensions (FWS) have been shown to have antimicrobial activity against
407 many gram-negative and gram-positive microorganisms, such as *E. coli* and *B. subtilis* (3, 10).
408 CNMs, such as graphene oxide nanoparticles, have been shown to decrease the cell viability of
409 *M. tuberculosis* (33, 35). We prepared dispersions of pristine fullertubes (nC₉₀) and fullerenes
410 (nC₆₀) in an oleic acid:DMSO dispersant, which allowed the use of much smaller quantities of
411 the fullertubes in our preparations. These dispersions showed anti-mycobacterial activities in the
412 concentration range of 0.2 – 1.0 µg/mL against both *M. smegmatis* and *M. abscessus*
413 suggesting a similar mode of action against mycobacteria (Fig. 1). C₉₀ showed significant
414 (p<0.05) anti-mycobacterial activity at the 0.2 µg/mL concentration. Our observed range of
415 activity for both fullertubes and fullerenes falls in the general range of antimicrobial activity of
416 previously reported C₆₀ FWS (3, 10).

417 Previous studies of FWS have demonstrated that the particle size distribution of fullerene
418 nanoparticle suspensions is related to their antibiotic activity (10). We characterized the particle
419 size distributions for our C₆₀ dispersion by dynamic light scattering. We found that our C₆₀
420 dispersion showed only one major peak, with an average particle diameter of 416.5 ± 140.2 nm
421 (Average± SD; Fig. S1). This suggested that our C₆₀ dispersion was primarily monodispersed.
422 Compared to studies of FWS, our C₆₀ dispersion had a generally larger size. We attempted to
423 control the particle size distribution of the C₆₀ dispersion by sequentially filtering it through 0.45-
424 micron and 0.2-micron nylon filters. We also attempted to measure the particle size distributions
425 of the prepared C₉₀ dispersion; however, we were unable to accurately determine a mean
426 particle size as we suspect the dispersed particles were below the theoretical detection limit of
427 0.3 nm on the Zetasizer Nano ZS90. Furthermore, the C₉₀ dispersion did not sediment over
428 several months suggesting that the C₉₀ was completely dissolved in the dispersant. Given that
429 the particle sizes of the fullertube and fullerene dispersions are likely different, we are unable to
430 make direct comparisons between the two.

431 Mycobacteria contain complex, multi-layered, lipid-rich cell walls that play a crucial role in
432 mycobacterial pathogenesis, conferring key traits such as tolerance to antibiotics and the ability
433 to form biofilms (2, 36-38). The interactions of fullerenes with biological membranes have been
434 well-studied in other organisms. These findings suggest that fullerenes can aggregate in
435 hydrophobic membranes, causing damage (3, 39, 40). This aggregation has primarily been
436 attributed to the π-π stacking resulting from the highly conjugated electronic systems on the
437 surface of fullerenes (39). The hydrophobic nature of the mycobacterial cell wall possibly
438 predisposes it to fullertube and fullerene insertion and damage. Our scanning electron
439 micrographs of *M. smegmatis* and *M. abscessus* exposed to fullertubes and fullerenes reveal
440 that the bacilli were damaged after 24 h exposure (Fig. 2). Cellular debris was observed in many
441 of the micrographic fields of the treated cells, suggesting that the fullertube and fullerene
442 interactions with the mycobacterial cell wall resulted in physical damage and leakage of the
443 cellular contents. Our observation of the loss of acid-fast staining property by *M. smegmatis*
444 cells exposed to the fullertubes and fullerenes is suggestive of perturbation of the mycobacterial
445 membrane and the mycolic acid layer in particular (Fig. 3).

446 We used fluorescent dyes as molecular probes in four different assays to quantitatively
447 assess the damage to the mycobacterial cell wall and the resulting loss of integrity of the cells.
448 The SYTO-9/ Propidium Iodide, membrane integrity assay has previously been used to describe
449 the effects of various nanoparticles on bacterial membranes (15, 41). SYTO-9 can permeate all

450 cells, bind to DNA and fluoresce green whereas cells with damaged membranes favor the entry
451 of PI (15, 41). The concurrent binding of SYTO-9 and PI results in the quenching of the SYTO-9
452 signal and a decrease in the green/red fluorescence ratio (Fig. S4-A) (15). We have used the
453 green/red fluorescence ratio as a proxy for the integrity of the mycobacterial cellular envelope
454 (Fig. 4 A). The significant decrease in the green/red fluorescence ratio of cells treated with C₉₀
455 and C₆₀ suggests an increased permeabilization of the mycobacterial cell envelope after
456 exposure to these CNMs. In the EtBr transport assay, *M. smegmatis* cells treated with
457 fullertubes and fullerenes showed increased EtBr accumulation compared to the dispersant
458 control. However, the efflux of EtBr was not significantly affected (Fig. 4. B-D, F, Fig. S2). These
459 observations suggest that the increased accumulation of EtBr could be due to the membrane
460 damage caused by fullertubes and fullerenes rather than by the inhibition of efflux pumps (Fig.
461 S4-B).

462 The third molecular probe that we used was dichlorofluorescein (DCF), which functions with
463 a distinct mechanism from the other molecular probes used in this study. The
464 dichlorofluorescein diacetate used in this assay is thought to permeate the cell envelope and is
465 modified to dichlorofluorescein dihydride which is subsequently oxidized within the cell to form
466 the green fluorescing dichlorofluorescein (Fig S4-B). This molecular probe traditionally
467 measures reactive oxygen species (ROS), such as various intracellular peroxides and
468 hydroxides. The use of this probe with fullerenes and other oxidizing nanoparticles has come
469 under some controversy primarily due to how it has been observed to be oxidized directly by
470 fullerenes, ultimately leading to a larger raw-fluorescence intensity. Additionally, previous
471 studies have shown that the dichlorofluorescein assay is sensitive to the leakage of DCF and
472 DCFH₂ out of the cell (31). A previous study reported higher green fluorescence due to
473 interference by fullerene water suspensions (42). In order to avoid the direct extracellular
474 oxidation of dichlorofluorescein dihydride (DCFH₂) by fullertubes and fullerenes, we added a
475 wash step where the growth medium containing the fullertubes and fullerenes was removed
476 before exposure of the washed cells to the molecular probe. When the wash step was included,
477 we observed that cells treated with C₆₀ or C₉₀ displayed a significantly decreased normalized
478 green fluorescence intensity compared to the oleic acid:DMSO control (Fig. 4F). This
479 observation suggests that C₆₀ and C₉₀ are either increasing the efflux of DCF or increasing the
480 permeability of the mycobacterial cell envelope to polar compounds such as DCF and DCFH₂,
481 or are acting as scavengers of intracellular ROS (31, 43). In light of our findings that suggest

482 that fullertubes and fullerenes do not affect the efflux activities of *M. smegmatis* (Fig. 4F, Fig.
483 S2), the latter two explanations are more likely.

484 The FOX II lipid peroxidation assay (Fig. S3) functions under the principle that the Xylenol
485 Orange and Ferrous components of the assay are selectively oxidized by lipid peroxides (44).
486 To address the previously noted interference that fullertubes and fullerenes have in the efficacy
487 of the FOX II assay, we included a similar wash step to the one used in the DCF assay (42).
488 Our observations revealed that fullertubes and fullerenes did not induce increased production of
489 ROS nor did we observe any lipid peroxidation. However, the positive control using 50 mM H₂O₂
490 validated the FOX assay by demonstrating lipid peroxidation. These findings suggest that ROS
491 may not be directly responsible for the antibacterial activity of fullerenes and fullertube prepared
492 as dispersions in oleic acid:DMSO in this study. These findings are consistent with studies of
493 the effects of fullerene water suspensions on lipid peroxidation (42). Taken together, our
494 observations from the assays with the fluorescent dyes suggest that fullertubes and fullerenes
495 cause damage and increase the permeability of the mycobacterial cell wall.

496 There are few reports on the effects of carbon nanomaterials on bacterial biofilm formation
497 (45). The effects of fullertubes on biofilm formation in any microorganism has not been
498 investigated. We observed that fullertubes exhibited a significantly higher (p<0.001) inhibition of
499 biofilm formation at a concentration of 0.4 µg/mL compared to the control. At this concentration,
500 fullertubes and fullerenes reduced biofilm formation by 75 - 90 %. No appreciable loss in biofilm
501 formation was noted at the 0.2 µg/mL concentration (Fig. 5).

502 Antibiotic resistance is another mycobacterial phenotype closely tied to the functionality of
503 the cell envelope (46). The frontline antibiotic isoniazid inhibits mycolic acid synthesis, which is
504 required for cell wall synthesis and is critical for the survival of the multiplying mycobacterial cell
505 (32). Since we observed the deleterious effects of fullertubes and fullerenes on the
506 mycobacterial cell wall and its acid-fast staining property that relies on staining of mycolic acids
507 in the cell wall, we were interested in the potential consequences on isoniazid tolerance by the
508 mycobacteria. **The combination of C₆₀ and isoniazid did not show any synergistic effects (Fig.**
509 **6).** Since mycobacteria that enter a dormant state fail to show colony formation on agar plates
510 but show viability by the MPN assay as described by others earlier (22, 23), we used the MPN
511 assay to investigate whether the CNMs caused a decrease in CFUs on our agar plates by
512 potentially inducing *M. smegmatis* to enter a dormant state. As expected, the MPN/mL
513 estimates were higher than the actual CFUs/mL for *M. smegmatis* controls exposed to oleic

514 acid:DMSO. However, the MPN estimates indicated that only 3 % and 15 % of the cells
515 remained viable after exposure to C₉₀ and C₆₀ respectively. These values were similar or lower
516 than the respective cell viabilities determined by the CFU method. These results indicate that
517 the CNMs indeed killed the *M. smegmatis* cells instead of merely inducing them to enter a
518 dormant state. Since the C₉₀ fullertubes are not commercially available, we were unable to test
519 the effects of fullertubes at higher concentrations or investigate their toxicity on mammalian
520 cells. In summary, we show that fullertubes and fullerenes inhibit mycobacterial cell growth by
521 damaging the cell wall and prevent biofilm formation in *M. smegmatis*.

522 **ACKNOWLEDGEMENTS**

523 The authors acknowledge Ryan Koenig for initiating this project. We also are grateful for help
524 received from Dr. Dong Chen, Director of The Argast Family Imaging and Analysis Laboratories,
525 Purdue University Fort Wayne, Dr. Benjamin Dattilo, Department of Biological Sciences and Dr.
526 Liliya Frolova, Department of Chemistry, Purdue University Fort Wayne in the preparation of SEM
527 samples. We express our gratitude to Mr. Jonathan Hall for the technical help received for
528 acquiring the scanning electron microscopy (SEM) images. The support of the Department of
529 Biological Sciences, Purdue University Fort Wayne in providing the infrastructure for the research
530 is gratefully acknowledged.

531

532 **FUNDING**

533 VS received research funds from the Purdue University Fort Wayne Honors Research Grant.
534 RG was supported by a Teaching Assistantship from the Department of Biological Sciences,
535 Purdue University Fort Wayne. S.S. thanks the National Science Foundation for RUI Grant CHE-
536 1856461 for financial support. SS and JD received funding from the Collaborative Research
537 Grant, Purdue Fort Wayne Office of Sponsored Programs.

538 **References**

539 1. Stephanie F, Saragih M, Tambunan USF. Recent Progress and Challenges for Drug-
540 Resistant Tuberculosis Treatment. *Pharmaceutics*. 2021;13(5).

541 2. Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of
542 *Mycobacterium abscessus*. *Nat Rev Microbiol*. 2020;18(7):392-407.

543 3. Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB. Bacterial cell association and
544 antimicrobial activity of a C60 water suspension. *Environ Toxicol Chem*. 2005;24(11):2757-62.

545 4. Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, et al. Antibacterial Carbon-Based
546 Nanomaterials. *Adv Mater*. 2019;31(45):e1804838.

547 5. Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV. Review on the Antimicrobial Properties
548 of Carbon Nanostructures. *Materials (Basel)*. 2017;10(9).

549 6. Raul PK, Thakuria A, Das B, Devi RR, Tiwari G, Yellappa C, et al. Carbon
550 Nanostructures As Antibacterials and Active Food-Packaging Materials: A Review. *ACS*
551 *Omega*. 2022;7(14):11555-9.

552 7. Bolshakova O, Lebedev V, Mikhailova E, Zherebyateva O, Aznabaeva L, Burdakov V, et
553 al. Fullerenes on a Nanodiamond Platform Demonstrate Antibacterial Activity with Low
554 Cytotoxicity. *Pharmaceutics*. 2023;15(7).

555 8. Koenig RM, Tian HR, Seeler TL, Tepper KR, Franklin HM, Chen ZC, et al. Fullertubes:
556 Cylindrical Carbon with Half-Fullerene End-Caps and Tubular Graphene Belts, Their Chemical
557 Enrichment, Crystallography of Pristine C(90)-D(5h)(1) and C(100)-D(5d)(1) Fullertubes, and
558 Isolation of C(108), C(120), C(132), and C(156) Cages of Unknown Structures. *J Am Chem
559 Soc*. 2020;142(36):15614-23.

560 9. Stevenson S, Liu X, Sublett DM, Jr., Koenig RM, Seeler TL, Tepper KR, et al.
561 Semiconducting and Metallic [5,5] Fullertube Nanowires: Characterization of Pristine D(5h)(1)-
562 C(90) and D(5d)(1)-C(100). *J Am Chem Soc*. 2021;143(12):4593-9.

563 10. Lyon DY, Adams LK, Falkner JC, Alvarez PJ. Antibacterial activity of fullerene water
564 suspensions: effects of preparation method and particle size. *Environ Sci Technol*.
565 2006;40(14):4360-6.

566 11. Zhang J, Xu J, Ma H, Bai H, Liu L, Shu C, et al. Designing an Amino-Fullerene
567 Derivative C(70)-(EDA)(8) to Fight Superbacteria. *ACS Appl Mater Interfaces*.
568 2019;11(16):14597-607.

569 12. Vijay S, Mukkayyan N, Ajitkumar P. Highly Deviated Asymmetric Division in Very Low
570 Proportion of Mycobacterial Mid-log Phase Cells. *Open Microbiol J*. 2014;8:40-50.

571 13. Shehadat SA, Gorduysus MO, Hamid SSA, Abdullah NA, Samsudin AR, Ahmad A.
572 Optimization of scanning electron microscope technique for amniotic membrane investigation: A
573 preliminary study. *Eur J Dent*. 2018;12(4):574-8.

574 14. Inoue T, Osatake H. A new drying method of biological specimens for scanning electron
575 microscopy: the t-butyl alcohol freeze-drying method. *Arch Histol Cytol*. 1988;51(1):53-9.

576 15. Horst AM, Vukanti R, Priester JH, Holden PA. An assessment of fluorescence- and
577 absorbance-based assays to study metal-oxide nanoparticle ROS production and effects on
578 bacterial membranes. *Small*. 2013;9(9-10):1753-64.

579 16. Paixao L, Rodrigues L, Couto I, Martins M, Fernandes P, de Carvalho CC, et al.
580 Fluorometric determination of ethidium bromide efflux kinetics in *Escherichia coli*. *J Biol Eng*.
581 2009;3:18.

582 17. Vianna JS, Machado D, Ramis IB, Silva FP, Bierhals DV, Abril MA, et al. The
583 Contribution of Efflux Pumps in *Mycobacterium abscessus* Complex Resistance to
584 Clarithromycin. *Antibiotics (Basel)*. 2019;8(3):153.

585 18. Thakur N, Sharma AN, Hade MD, Chhaya A, Kumar A, Jolly RS, et al. New Insights Into
586 the Function of Flavohemoglobin in *Mycobacterium tuberculosis*: Role as a NADPH-Dependent
587 Disulfide Reductase and D-Lactate-Dependent Mycothione Reductase. *Front Cell Infect
588 Microbiol*. 2021;11:796727.

589 19. Patel YS, Mistry N, Mehra S. Repurposing artemisinin as an anti-mycobacterial agent in
590 synergy with rifampicin. *Tuberculosis (Edinb)*. 2019;115:146-53.

591 20. Recht J, Martinez A, Torello S, Kolter R. Genetic analysis of sliding motility in
592 *Mycobacterium smegmatis*. *J Bacteriol*. 2000;182(15):4348-51.

593 21. Billman-Jacobe H, Sloan J, Coppel RL. Analysis of isoniazid-resistant transposon
594 mutants of *Mycobacterium smegmatis*. *FEMS Microbiol Lett*. 1996;144(1):47-52.

595 22. Mukamolova GV, Turapov O, Malkin J, Woltmann G, Barer MR. Resuscitation-promoting
596 factors reveal an occult population of tubercle Bacilli in Sputum. *Am J Respir Crit Care Med*.
597 2010;181(2):174-80.

598 23. Salina EG, Grigorov AS, Bychenko OS, Skvortsova YV, Mamedov IZ, Azhikina TL, et al.
599 Resuscitation of Dormant "Non-culturable" *Mycobacterium tuberculosis* Is Characterized by
600 Immediate Transcriptional Burst. *Front Cell Infect Microbiol*. 2019;9:272.

601 24. Blodgett R. Most Probable Number Determination from Serial Dilutions. *FDA
602 Bacteriological Analytical Manual Online*, Appendix 2. 2006.

603 25. Blodgett RJ, Moruzzi G. The expanded application of most probable number to the
604 quantitative evaluation of extremely low microbial count. *PDA J Pharm Sci Technol*.
605 2006;60(6):335-6.

606 26. Lelovic N, Mitachi K, Yang J, Lemieux MR, Ji Y, Kurosu M. Application of
607 *Mycobacterium smegmatis* as a surrogate to evaluate drug leads against *Mycobacterium*
608 *tuberculosis*. *J Antibiot (Tokyo)*. 2020;73(11):780-9.

609 27. Sundarsingh T, Ranjitha J, Rajan A, Shankar V. Features of the biochemistry of
610 *Mycobacterium smegmatis*, as a possible model for *Mycobacterium tuberculosis*. *J Infect Public
611 Health*. 2020;13(9):1255-64.

612 28. Clary G, Sasindran SJ, Nesbitt N, Mason L, Cole S, Azad A, et al. *Mycobacterium
613 abscessus* Smooth and Rough Morphotypes Form Antimicrobial-Tolerant Biofilm Phenotypes
614 but Are Killed by Acetic Acid. *Antimicrob Agents Chemother*. 2018;62(3).

615 29. Yang S, Zhang F, Kang J, Zhang W, Deng G, Xin Y, et al. *Mycobacterium tuberculosis*
616 Rv1096 protein: gene cloning, protein expression, and peptidoglycan deacetylase activity. *BMC
617 Microbiol*. 2014;14:174.

618 30. Rodrigues L, Ramos J, Couto I, Amaral L, Viveiros M. Ethidium bromide transport across
619 *Mycobacterium smegmatis* cell-wall: correlation with antibiotic resistance. *BMC Microbiol*.
620 2011;11:35.

621 31. Jakubowski W, Bartosz G. Estimation of oxidative stress in *Saccharomyces cerevisiae*
622 with fluorescent probes. *Int J Biochem Cell Biol*. 1997;29(11):1297-301.

623 32. Timmins GS, Deretic V. Mechanisms of action of isoniazid. *Mol Microbiol*.
624 2006;62(5):1220-7.

625 33. De Maio F, Palmieri V, Santarelli G, Perini G, Salustri A, Palucci I, et al. Graphene
626 Oxide-Linezolid Combination as Potential New Anti-Tuberculosis Treatment. *Nanomaterials
627 (Basel)*. 2020;10(8).

628 34. Goodarzi G, Da Ros T, Conde J, Sefat F, Mozafari M. Fullerene: biomedical engineers
629 get to revisit an old friend. *Materials Today*. 2017;20(8):460-80.

630 35. De Maio F, Palmieri V, De Spirito M, Delogu G, Papi M. Carbon nanomaterials: a new
631 way against tuberculosis. *Expert Rev Med Devices*. 2019;16(10):863-75.

632 36. Chen H, Nyantakyi SA, Li M, Gopal P, Aziz DB, Yang T, et al. The Mycobacterial
633 Membrane: A Novel Target Space for Anti-tubercular Drugs. *Front Microbiol*. 2018;9:1627.

634 37. Daffé M, Quémard A, Marrakchi H. Mycolic Acids: From Chemistry to Biology. In: Geiger
635 O, editor. *Biogenesis of Fatty Acids, Lipids and Membranes*. Cham: Springer International
636 Publishing; 2017. p. 1-36.

637 38. Esteban J, Garcia-Coca M. *Mycobacterium* Biofilms. *Front Microbiol*. 2017;8:2651.

638 39. Ren L, Jing Z, Xia F, Zhang JZ, Li Y. Toxic Effect of Fullerene and Its Derivatives upon
639 the Transmembrane beta(2)-Adrenergic Receptors. *Molecules*. 2022;27(14).

640 40. Santos SM, Dinis AM, Peixoto F, Ferreira L, Jurado AS, Videira RA. Interaction of
641 fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on
642 mitochondrial bioenergetics. *Toxicol Sci.* 2014;138(1):117-29.

643 41. Lyon DY, Alvarez PJJ. Fullerene Water Suspension (nC60) Exerts Antibacterial Effects
644 via ROS-Independent Protein Oxidation. *Environmental Science & Technology.*
645 2008;42(21):8127-32.

646 42. Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJ. Antibacterial activity of
647 fullerene water suspensions (nC60) is not due to ROS-mediated damage. *Nano Lett.*
648 2008;8(5):1539-43.

649 43. Ma H, Zhao J, Meng H, Hu D, Zhou Y, Zhang X, et al. Carnosine-Modified Fullerene as
650 a Highly Enhanced ROS Scavenger for Mitigating Acute Oxidative Stress. *ACS Applied*
651 *Materials & Interfaces.* 2020;12(14):16104-13.

652 44. Pinto Mdel C, Tejeda A, Duque AL, Macias P. Determination of lipoxygenase activity in
653 plant extracts using a modified ferrous oxidation-xylenol orange assay. *J Agric Food Chem.*
654 2007;55(15):5956-9.

655 45. Cui F, Li T, Wang D, Yi S, Li J, Li X. Recent advances in carbon-based nanomaterials
656 for combating bacterial biofilm-associated infections. *J Hazard Mater.* 2022;431:128597.

657 46. Jarlier V, Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to
658 antibiotics. *FEMS Microbiol Lett.* 1994;123(1-2):11-8.

659

660 FIGURE LEGENDS

661 **Figure 1. Dispersions of fullerenes (C₆₀) and fullertubes (C₉₀) show antimicrobial activity**
662 **against *M. smegmatis* and *M. abscessus*.** *M. smegmatis* cells in log-phase (10⁴ CFUs/mL)
663 were exposed for 40 h with shaking at 37 °C to C₆₀ or C₉₀ as dispersions in oleic acid:dimethyl
664 sulfoxide (DMSO; 1:3, v/v) at final concentrations of 0.2 µg/mL or 1 µg/mL in culture medium. **A**,
665 Colony forming units (CFUs/mL) from duplicates of a representative experiment are shown as
666 average ± SD. **B**, Viability of *M. smegmatis* cells exposed to C₆₀ or C₉₀ is shown as a percent of
667 control cells exposed to oleic acid:DMSO. Percent survival values (average ± SD) from three
668 independent experiments. **C**, CFUs/mL of *M. abscessus* cells exposed for 205 h to C₆₀ or C₉₀ at
669 a concentration of 1 µg/mL. **D**, Percent survival of *M. abscessus* compared to oleic acid:DMSO
670 control. One-way ANOVA and Tukey's HSD post hoc test were performed to determine
671 significance. *p<0.05; ****p<0.0001.

672 **Figure 2. Exposure of *M. smegmatis* and *M. abscessus* to C₆₀ or C₉₀ induces changes in**
673 **cell morphology.** Scanning electron micrographs of untreated cells, cells exposed to 1:3 oleic
674 acid:DMSO (0.1 %, v/v) and cells exposed to dispersions of C₆₀ and C₉₀ at 0.2 µg/mL. *M.*
675 *smegmatis* cells were observed after 2 h and 24 h and *M. abscessus* cells were observed after
676 24 h of exposure. The cells were collected over a 0.22-micron polycarbonate filter, dried, and
677 sputter coated with a gold coating at a thickness of 2 nm. The cells were imaged at a voltage of
678 3.00 kV and a magnification of 15,000X. Representative fields are shown for each treatment.

679 **Figure 3. Exposure of *M. smegmatis* to C₆₀ or C₉₀ induces changes in acid-fast staining**
680 **morphology.** *M. smegmatis* cells in log-phase (10⁴ CFUs/mL) were exposed for 40 h with
681 shaking at 37 °C to C₆₀ or C₉₀ as dispersions in oleic acid:dimethyl sulfoxide (DMSO; 1:3, v/v) at
682 final concentrations of 0.2 µg/mL in culture. The cells were collected and stained with
683 carbolfuchsin for acid-fast staining. The cells were viewed and photographed under brightfield at
684 1000X. Representative fields for each group across three independent experiments are
685 depicted.

686 **Figure 4. *M. smegmatis* cell envelope integrity is compromised, and permeability is**
687 **increased by exposure to C₆₀ or C₉₀.** **A**, The relative green (Ex. 485 nm/ Em. 528 nm)/ red
688 (Ex. 530 nm/ Em. 590 nm) fluorescence ratios of *M. smegmatis* cells treated with C₆₀ or C₉₀ or
689 control cells exposed only to oleic acid:DMSO (1:3, v/v). Cells were washed after exposure to
690 CNMs and then stained with a 2X SYTO-9/ propidium iodide solution. Treated cells were
691 exposed to C₆₀ or C₉₀ (0.2 µg/mL) for 2 hours. The ratios were calculated against the *M.*
692 *smegmatis* + oleic acid:DMSO control and normalized using CFUs obtained from agar plating.

693 The kinetics of EtBr accumulation in the presence of 0.4 μ g/mL C₆₀ (**B**) and C₉₀ (**C**) compared to
694 verapamil (VP, 75 μ g/mL) and oleic acid:DMSO controls are shown. A representative
695 experiment from three independent repeats is depicted. **D**, The normalized fluorescence at the
696 60 min endpoint after EtBr accumulation in the presence of 0.4 μ g/mL C₆₀ or C₉₀. **E**, The relative
697 green fluorescence (Ex. 485 nm/ Em. 528 nm) of *M. smegmatis* cells treated with C₆₀ or C₉₀ (0.2
698 μ g/mL) for 2 hours and exposed to dichlorodihydrofluorescein diacetate. The relative green
699 fluorescence ratios are calculated against the *M. smegmatis* + oleic acid:DMSO control and
700 normalized using CFUs obtained from agar plating. Average \pm SD over three independently
701 performed experiments are depicted. **F**, The normalized fluorescence at the 60 min endpoint
702 after EtBr efflux in the presence of 0.4 μ g/mL C₆₀ or C₉₀. Statistical significance calculated by
703 one-way ANOVA with a post-hoc Tukey test. *p<0.05, **p < 0.01, ***p < 0.001.

704 **Figure 5. Fullerenes and fullertubes inhibit pellicle biofilm formation in *M. smegmatis*.**
705 Cells exposed to fullertubes and fullerenes were allowed to form biofilms under static conditions
706 at 37 °C for 72 h in glass tubes. Biofilm formation was then quantified by staining with Crystal
707 Violet and measuring absorbance at 600 nm. **A**, Floating biofilm formation after three days in
708 the presence of 0.2 and 0.4 μ g/mL of C₆₀ and C₉₀ concentrations. **B**, Quantitation of biofilm
709 formation in the presence of fullertubes and fullerenes compared to controls exposed to oleic
710 acid:DMSO. Average \pm SD from three independent experiments are depicted. Statistical
711 significance was determined by one-way ANOVA with Tukey's post hoc test. *p<0.05;
712 ***p<0.0001.

713 **Figure 6. Fullertubes and fullerenes do not induce dormancy in *M. smegmatis* or show**
714 **synergistic action with isoniazid.** *M. smegmatis* (Msm) cells were exposed to C₉₀ or C₆₀ (0.2
715 μ g/mL) for 2 h at 37 °C, and then exposed to isoniazid at a final concentration of 2 μ g/mL or 10
716 μ g/mL for an additional 24 h at 37 °C. Appropriate serial dilutions were spread-plated onto
717 Middlebrook 7H10 agar plates or assayed for Most Probable Numbers (MPN). Three
718 independent repeats performed. Data shown as average \pm SD for CFUs/mL. MPN index values
719 per mL from a representative experiment shown. The 95% confidence limits (lower, upper) were
720 as follows: Msm + Oleic:DMSO, (3.7, 42); Msm + C₆₀, (0.46, 9.4); Msm + C₉₀, (0.09, 1.8).
721 Statistical significance was determined by one-way ANOVA with Tukey's post hoc test. ***,
722 p<0.001.

723

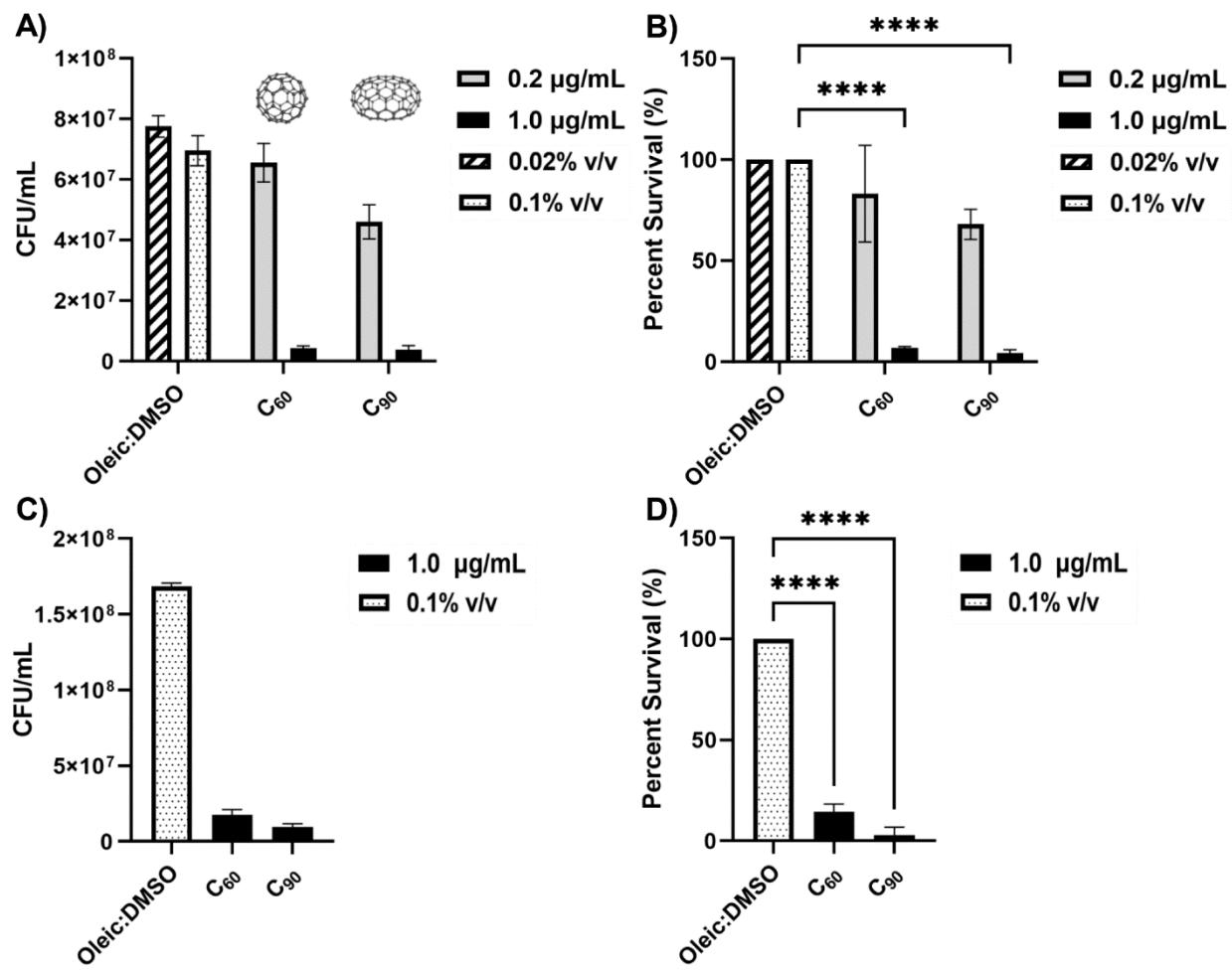
724 SUPPLEMENTARY FIGURE LEGENDS

725 **Figure S1. Particle sizes in the C₆₀ stock dispersion.** The prepared 1 mg/mL C₆₀ dispersion
726 was diluted 1:100 in 1:3 oleic acid:DMSO. The particle size distributions were measured by
727 dynamic light scattering (DLS) in a Zetasizer Nano. Particle size percent intensities within the
728 range of 1-1000 nm shown. The average particle diameter was determined across three
729 independent measurements.

730 **Figure S2. Fullertubes and fullerenes do not affect the efflux activity of EtBr in *M. smegmatis*.**
731 *M. smegmatis* cells were loaded with EtBr at 3 µg/mL in the presence of VP at half
732 its MIC and the assay was carried out at 37°C. Efflux of EtBr is inhibited by Verapamil (VP) but
733 not by C₆₀ (A) or by 0.4 µg/mL C₉₀ (B).

734 **Figure S3. Fullertubes and fullerenes do not generate lipid peroxides in *M. smegmatis*.**
735 Cells at 10⁶ CFUs/mL in PBST were exposed to varying concentrations (0.2 and 0.4 µg/mL) of
736 C₆₀ and C₉₀ for 4 h at 37°C. **Cells treated only with oleic acid: DMSO (1:3, v/v) served as the**
737 **control for normalization of absorbance readings.** Cells treated with 50 mM H₂O₂ served as the
738 positive control. The data show the average ± standard deviation across three independent
739 experiments. One-way ANOVA and Tukey's post hoc test were performed to determine
740 significance. *p < 0.05, H₂O₂: Hydrogen peroxide.

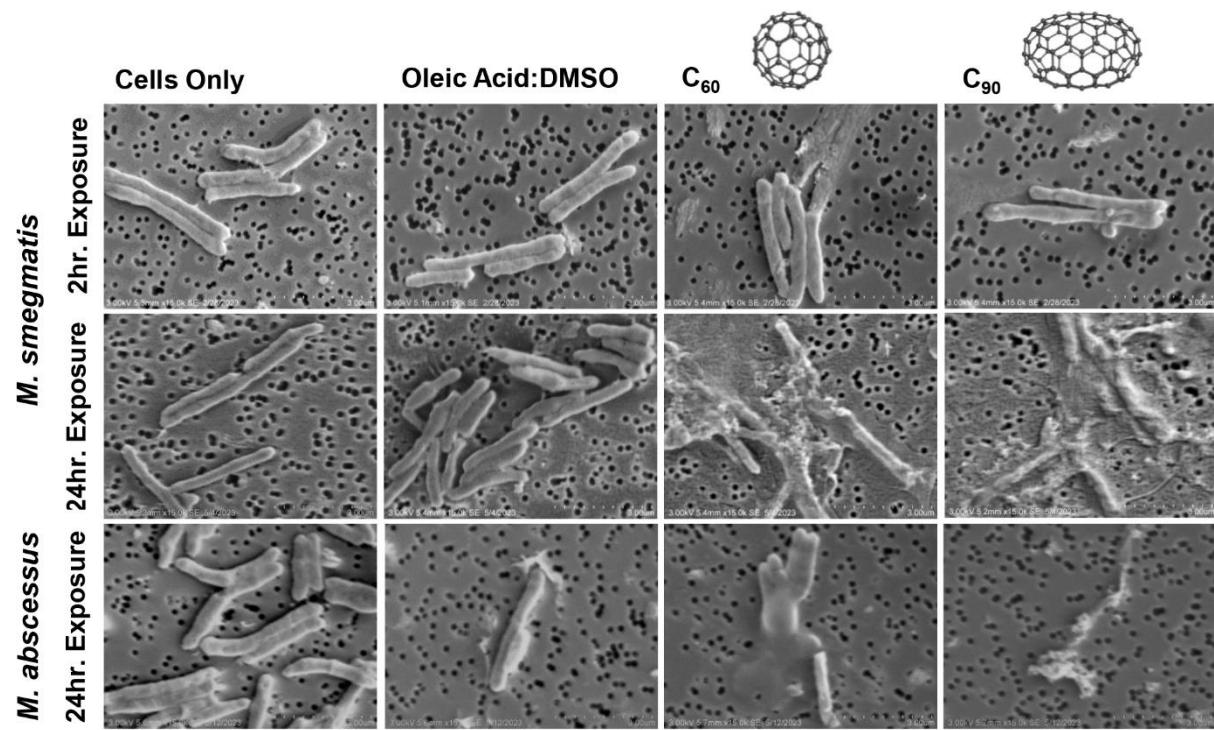
741 **Figure S4. Hypothetical molecular mechanisms for the SYTO-9/Propidium Iodide and**
742 **dichlorofluorescein molecular probes.** **A**, The SYTO-9/Propidium Iodide (PI) molecular
743 probes can evaluate the integrity of the cellular membrane. SYTO-9, permeates all cellular
744 membranes, binds to intracellular DNA and fluoresces green. PI preferentially enters cells with
745 damaged membranes, binds intracellular DNA and fluoresces red. Fluorescence quenching
746 between the two probes skews the green/red fluorescence ratio. A decreased green/red
747 fluorescence ratio indicates compromised membrane integrity (15). **B**, In the Dichlorofluorescein
748 (DCF) redox assay, the cell is exposed to the probe as dichlorofluorescein diacetate (DCFDA),
749 which can cross the cell membrane. DCFDA is then cleaved to dichlorofluorescein dihydride
750 (DCFH₂) by intracellular esterases and then oxidized to the green fluorescing DCF. Under
751 conditions of decreased membrane integrity, these compounds may leak out of the cell,
752 reducing the measured fluorescence (15, 31).


753

754 **Data Availability Statement**

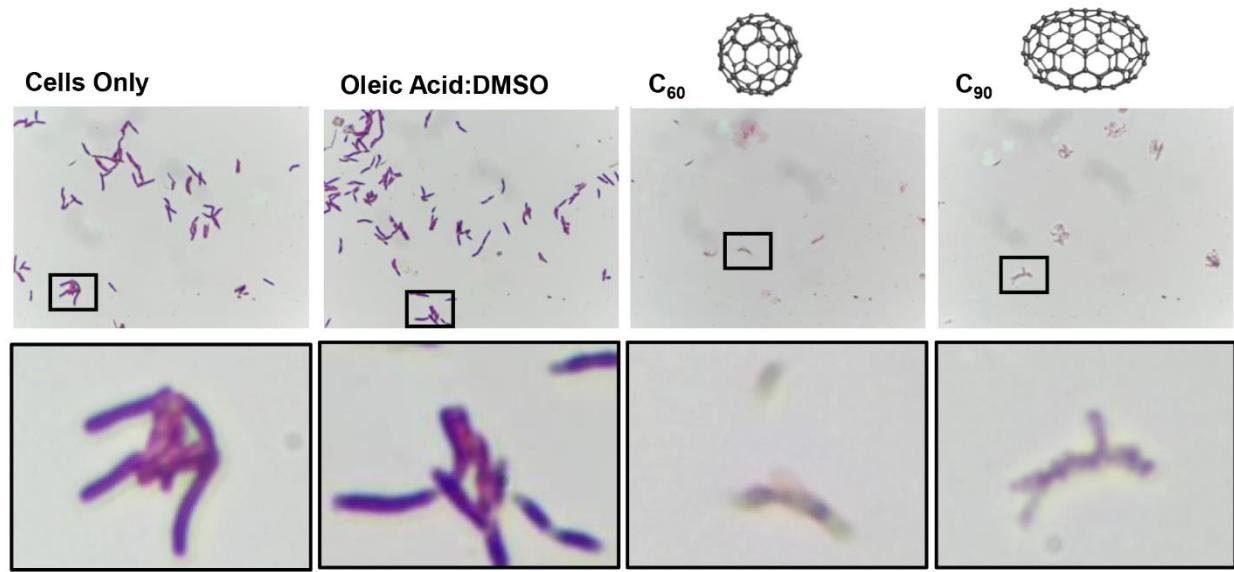
755 All data associated with this manuscript are presented as figures or supplemental figures and
756 are included in this manuscript.

757


758 FIGURE 1

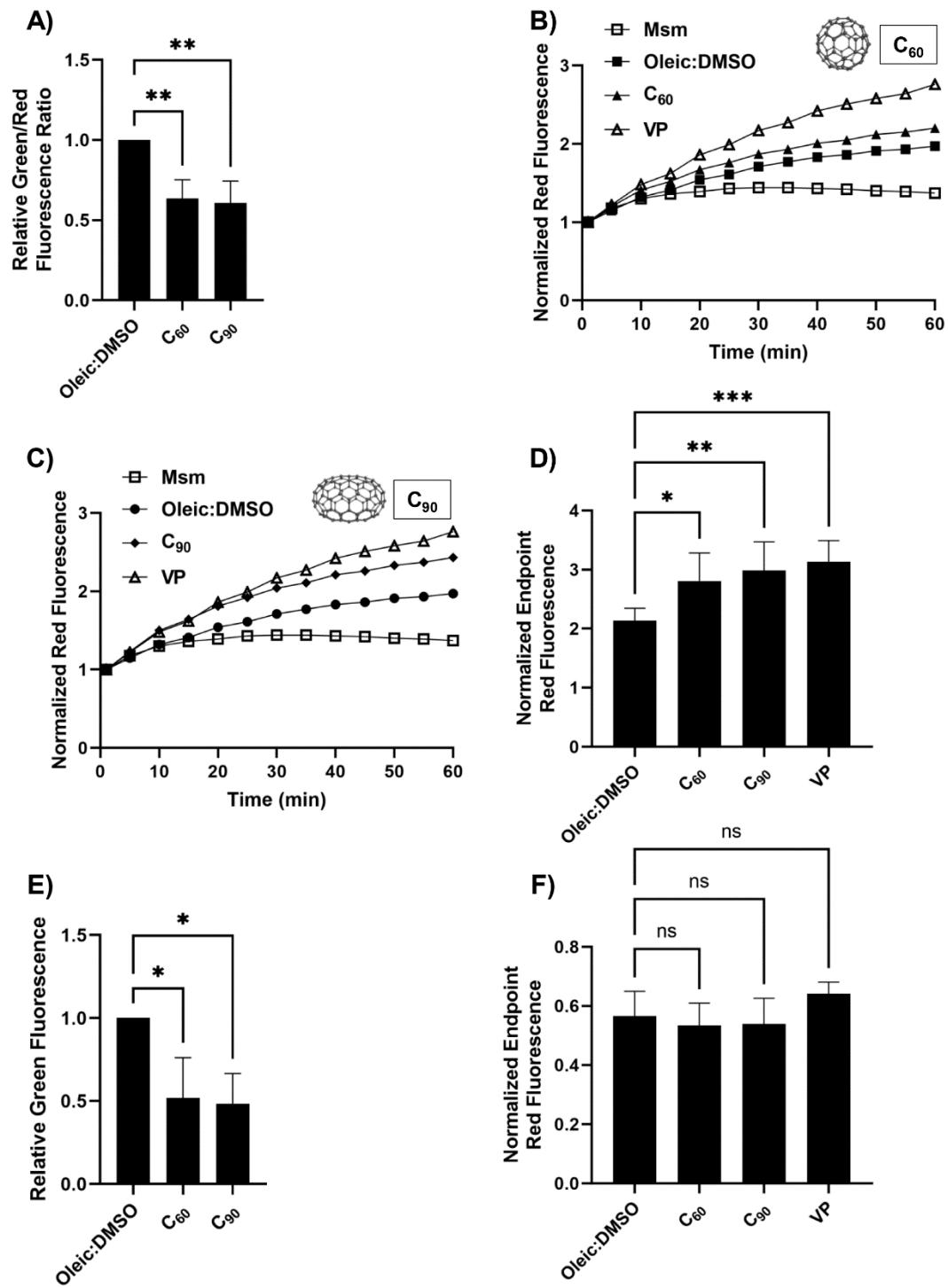
759

760


761 FIGURE 2

762

763


764 FIGURE 3

765

766

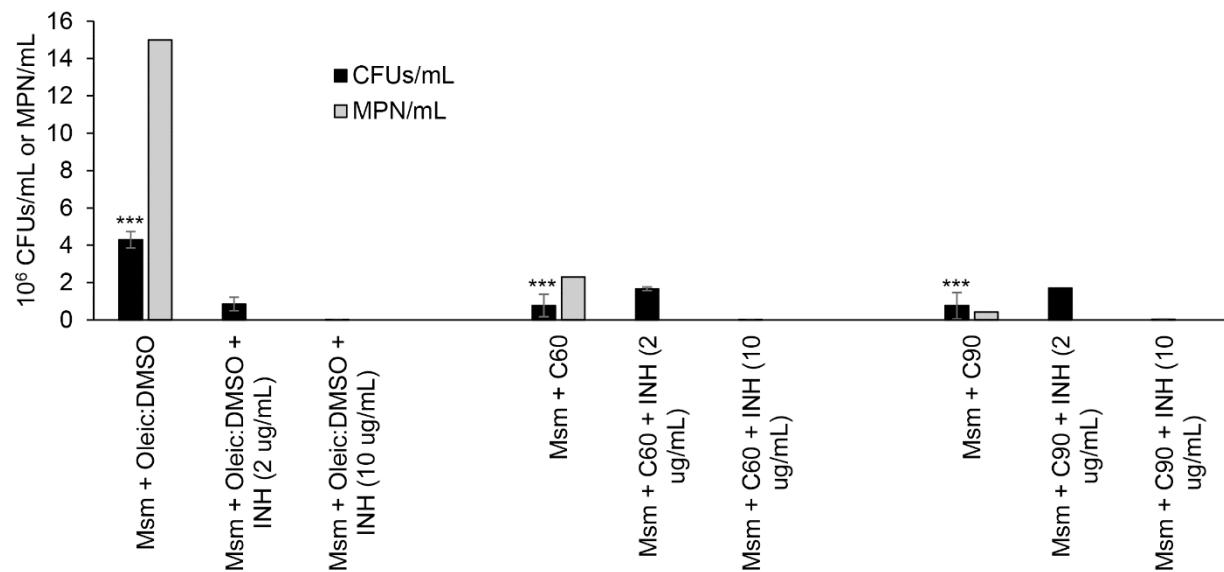
767 FIGURE 4

768

769

770

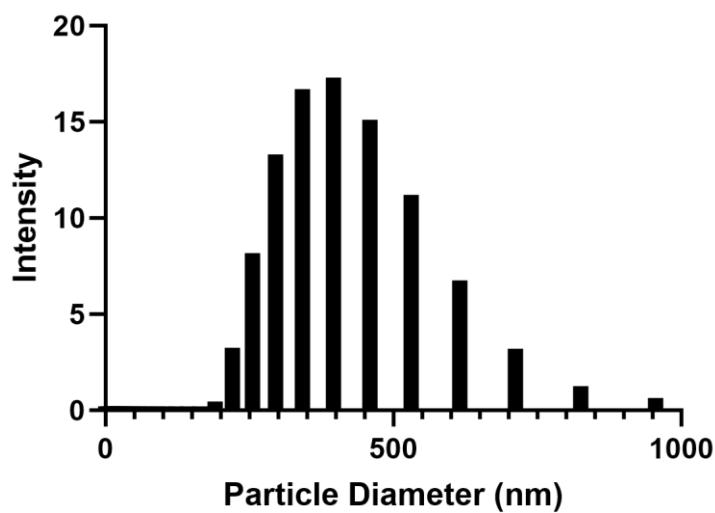
771 FIGURE 5



772

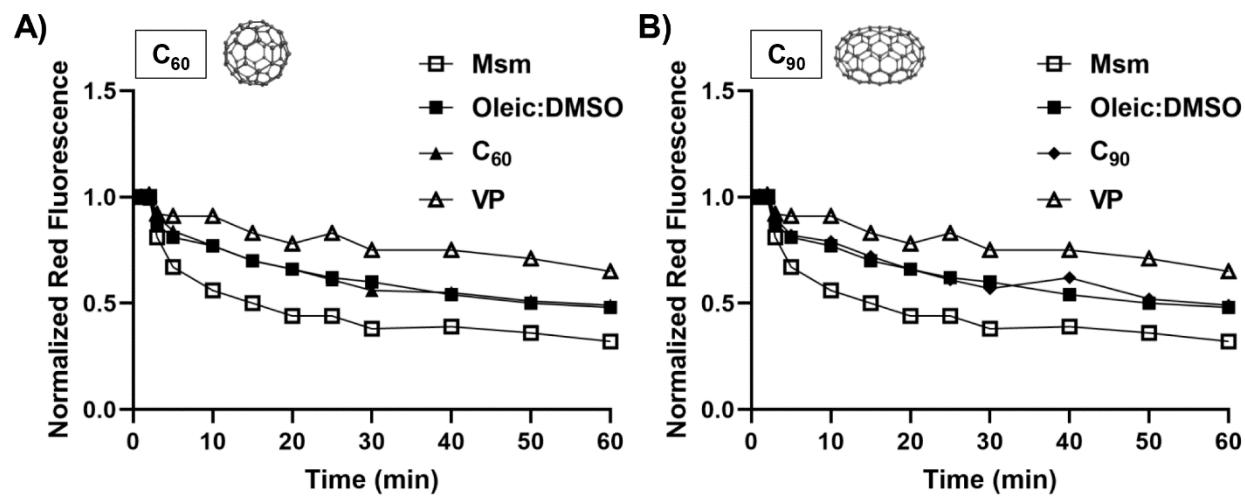
773

774


775 FIGURE 6

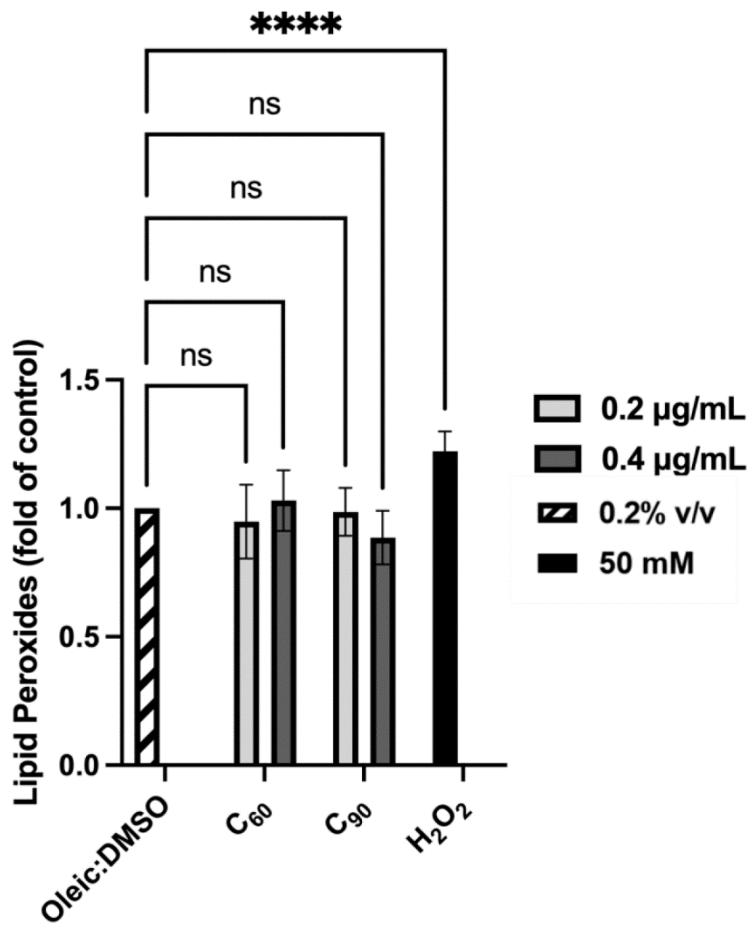
776

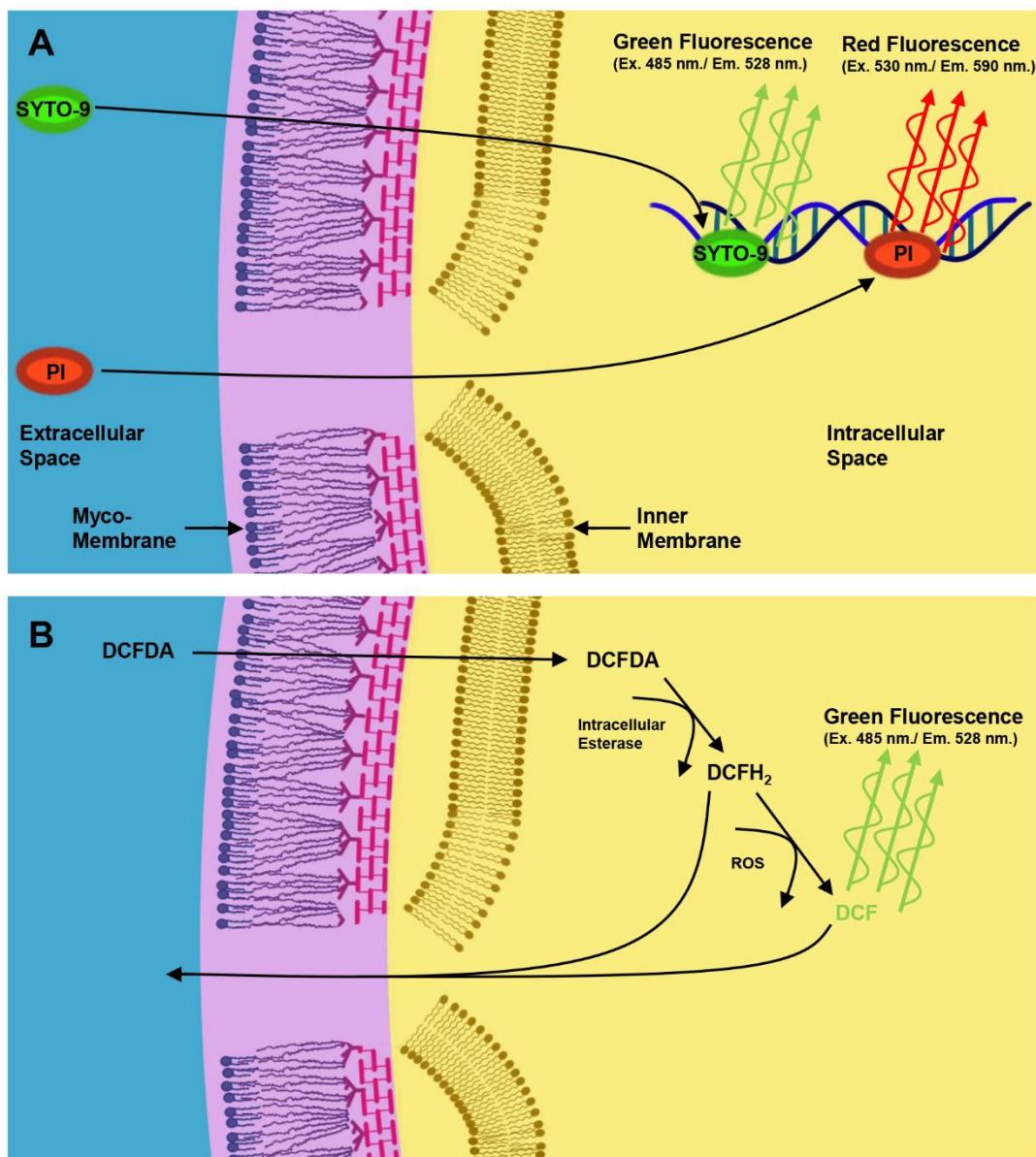
777


778 FIGURE S1

779

780


781 FIGURE S2


782

783

784 FIGURE S3

787 FIGURE S4

788

789