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Summary

During sexual reproduction, the parental chromosomes align along their length and exchange
genetic information. These processes depend on a chromosomal interface called the
synaptonemal complex. The structure of the synaptonemal complex is conserved across
eukaryotes, but, surprisingly, the components that make it up are dramatically different in
different organisms. Here we find that a protein well known for its role in regulating protein
degradation has been moonlighting as a structural component of the synaptonemal complex in
the nematode Pristionchus pacificus, and that it has likely carried out both of these functions for

more than 100 million years.
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Abstract

The synaptonemal complex (SC) is a meiotic interface that assembles between parental
chromosomes and is essential for the formation of gametes. While the dimensions and
ultrastructure of the SC are conserved across eukaryotes, its protein components are highly
divergent. Recently, an unexpected component of the SC has been described in the nematode
C. elegans: the Skp1-related proteins SKR-1/2, which are components of the Skp1, Cullin,
F-box (SCF) ubiquitin ligase. Here, we find that the role of SKR-1 in the SC is conserved in
nematodes. The P. pacificus Skp1 ortholog, Ppa-SKR-1, colocalizes with other SC proteins
throughout meiotic prophase, where it occupies the middle of the SC. Like in C. elegans, the
dimerization interface of Ppa-SKR-1 is required for its SC function. A dimerization mutant, Ppa-
skr-1719%  fails to assemble SC and is almost completely sterile. Interestingly, the evolutionary
trajectory of SKR-1 contrasts with other SC proteins. Unlike most SC proteins, SKR-1 is highly
conserved in nematodes. Our results suggest that the structural role of SKR-1 in the SC has
been conserved since the common ancestor of C. elegans and P. pacificus, and that rapidly
evolving SC proteins have maintained the ability to interact with SKR-1 for at least 100 million

years.
Introduction

The synaptonemal complex (SC) is a conserved interface that facilitates chromosome
organization during meiosis. The SC aligns parental chromosomes end-to-end and regulates
genetic exchanges between them, ultimately allowing for the proper segregation of
chromosomes during the meiotic divisions. First identified by electron microscopy over 60 years
ago, the SC is made up of two parallel axes (also called lateral or axial elements) separated by
repeating striations that make up the central region of the SC (throughout, we refer to the
central region of the SC simply as 'the SC' (Page and Hawley 2004; Zickler and Kleckner
2015)).

Despite its essential role in reproduction and its conserved ultrastructure across sexually
reproducing organisms, SC components have diverged beyond recognition in multiple
eukaryotic clades (Kursel, Cope, and Rog 2021; Hemmer and Blumenstiel 2016). Indeed, new
SC components are still being identified, and we likely still lack the full complement of SC
components in most model organisms. Further complicating molecular studies, SC components
exhibit near-complete co-dependence for assembly onto chromosomes, in worms and in other
organisms (Colaiacovo et al. 2003; MacQueen et al. 2002; Smolikov et al. 2007; Smolikov,
Schild-Prifert, and Colaiacovo 2009; Collins et al. 2014; Page et al. 2008; Schramm et al.
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2011). Recently, co-expression of SC components allowed their purification from bacteria
(Blundon et al. 2024). This suggests that SC subunits intimately associate with one another to
form the repeating building blocks of an assembled SC. However, only a few intra-SC
interaction interfaces have been defined (Dunce et al. 2018; Dunne and Davies 2019; Sanchez-
Saez et al. 2020; Dunce, Salmon, and Davies 2021; Kursel, Martinez, and Rog 2023), and, due
to sequence divergence, it is unclear whether any of them constitute a conserved feature of the
SC.

Recently, two unexpected SC proteins were identified in C. elegans: the Skp1-related
proteins SKR-1 and SKR-2 (due to their functional redundancy we refer to them throughout as
SKR-1/2; (Blundon et al. 2024)). SKR-1/2 are essential members of the Skp1, Cullin, F-box
(SCF) ubiquitin ligase complex, which plays a part in virtually all eukaryotic cellular processes
including germline designation (DeRenzo, Reese, and Seydoux 2003), sex determination
(Clifford et al. 2000), transcriptional regulation (Ouni, Flick, and Kaiser 2010), circadian
oscillation (Han et al. 2004) and hormone signaling in plants (Gray et al. 1999), to name a few
(Willems, Schwab, and Tyers 2004). Within the SCF complex, Skp1 acts as an adapter by
binding the N-terminus of Cul1 and the F-box motif in the F-box protein, linking the core scaffold
to the substrate of the ubiquitin ligase machinery. SKR-1/2 co-purify with all other C. elegans SC
proteins, localize to the SC, and are required for SC assembly in vivo. Notably, the SCF Cullin
subunit CUL-1 does not localize to the SC and is not required for SC assembly. These data
support the conclusion that SKR-1/2 are bona fide SC proteins in C. elegans (Blundon et al.
2024).

Here we address two outstanding questions regarding the role of SKR-1 in the SC. 1) Is
the structural role of SKR-1 in the SC conserved in other nematodes? And 2) Does SKR-1 share
a similar evolutionary signature to other SC proteins? We identify a single SKR-1 ortholog in the
distantly related nematode Pristionchus pacificus, Ppa-SKR-1, and find that it localizes to the
middle of the SC. Like in C. elegans, the predicted dimerization interface in Ppa-SKR-1 is
necessary for SC assembly. Our results indicate that Ppa-SKR-1 is a structural component of
the SC in P, pacificus, suggesting that its role in the SC originated at least 100 million years ago,
in the common ancestor of Pristionchus and Caenorhabditis nematodes. Interestingly, we find
that the primary sequence of SKR-1 is conserved, setting it apart from other SC proteins and

shedding light on the evolutionary pressures that shape the SC.
Results

Identifying P. pacificus SKR-1
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92 C. elegans and P. pacificus are a useful species pair for comparative studies. Like C.

93 elegans, P. pacificus is a free-living, hermaphroditic nematode that has six pairs of

94  chromosomes. Previous studies of meiosis in P. pacificus identified two SC proteins; Ppa-SYP-1
95  (Kursel, Cope, and Rog 2021) and Ppa-SYP-4 (Rillo-Bohn et al. 2021). Consistent with the rapid
96 divergence of SC proteins, Ppa-SYP-4 and Ppa-SYP-1 exhibit little to no sequence homology,
97  respectively, with their C. elegans counterparts. Given the recent identification of SKR-1/2 as a
98  structural component of the SC in C. elegans (Blundon et al. 2024), we wondered whether

99 SKR-1 plays a similar SC role in P. pacificus.

100 We used C. elegans SKR-1 as a BLASTp query against P. pacificus El Paco V3

101 predicted proteins. We identified a single strong hit which we refer to as Ppa-SKR-1. Ppa-SKR-1
102  clusters with C. elegans SKR-1/2 on a strongly supported branch to the exclusion of all other
103  Skp1-related proteins in P. pacificus (Figure S1). While the C. elegans genome contains a

104  recent duplication of SKR-1 called SKR-2 (Blundon et al. 2024), our phylogenetic analysis

105 reveals that P. pacificus contains only one copy of SKR-1. We similarly queried seven additional
106  Pristionchus proteomes and found that most species have a single SKR-1 ortholog (Figure S2)).
107  We note that P. pacificus, like C. elegans, encodes many predicted Skp1-related proteins: 32 in
108 P pacificus and 21 in C. elegans (Figure S1; (Nayak et al. 2002)). While the expansion of the
109  Skp1 family in nematodes complicates comprehensive tracing of their evolutionary history,

110 SKR-1 orthologs appear to be the most conserved among Skp1-related proteins, and cluster

111  together in a well-supported clade (Figure S2).
112 Ppa-SKR-1 localizes to the center of the SC

113 We used CRISPR/Cas9 to insert an OLLAS tag on the N-terminus of Ppa-SKR-1 and
114  examined its localization during meiosis (Figure 1). OLLAS::Ppa-SKR-1 appears as threads on
115 meiotic chromosomes from the time of SC assembly at meiotic entry, throughout pachytene (the
116  stage when the SC is completely assembled on all chromosomes), and to diplotene (the

117  extended stage of SC disassembly; Figure 1A). This pattern matches that of other SC proteins
118 (Rillo-Bohn et al. 2021; Kursel, Cope, and Rog 2021). The axis component HOP-1 (Rillo-Bohn
119  etal. 2021) localizes to meiotic chromosomes slightly before OLLAS::Ppa-SKR-1 as faint lines
120 indicative of unpaired chromosomes (Figure 1B). As OLLAS::Ppa-SKR-1 signal begins to

121 overlap with HOP-1, the lines of HOP-1 are brighter, reflecting paired, synapsed chromosomes.
122 During diplotene, OLLAS::Ppa-SKR-1 remains on the bright-staining regions of HOP-1 until the
123 SC fully disassembles.
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124 SC proteins occupy stereotypical positions in the ~150nm space separating the two

125  parental chromosomes. Ppa-SYP-1, like its C. elegans counterpart, spans the 100nm width of
126  the SC in a head-to-head manner (N-terminus in, C-terminus out) such that staining with a C-
127  terminal epitope produces two parallel lines and N-terminal staining produces a single thread in
128 the middle of the SC (Kdhler et al. 2020; Kursel, Cope, and Rog 2021; Schild-Prifert et al.

129  2011). Using STED super-resolution microscopy, we found that the axis protein HOP-1 formed
130 parallel tracks that are 153nm wide on average (Figure 1C, D) and that Ppa-SKR-1 localized to
131 the central region of the SC, midway between the parallel HOP-1 tracks. These cytological data
132  indicate that, like in C. elegans, Ppa-SKR-1 occupies the middle of the SC ladder, where the N-
133  terminus of SYP-1 is located (Figure 1E, (Blundon et al. 2024)).

134  The Ppa-SKR-1 dimerization interface is required for SC assembly

135 The essential functions of Skp1 make it challenging to study its role in the SC. C.

136  elegans worms lacking both SKR-1 and -2 fail to hatch, reflecting the essential roles of SCF in
137  embryogenesis and cell proliferation (Nayak et al. 2002; Blundon et al. 2024). Given that P,
138  pacificus harbors a single Skp1 ortholog, we predicted that gene deletion would result in

139  embryonic lethality. We therefore wished to generate a separation-of-function allele of

140  Ppa-skr-1.

141 Previous studies found that Skp1 dimerizes via a conserved hydrophobic interface that is
142 not essential for F-box binding (Kim et al. 2020; Henzl, Thalmann, and Thalmann 1998). In C.
143  elegans, mutations that disrupt SKR-1/2’s ability to dimerize (skr-17""°F) cause a complete failure
144  of SC assembly and prevent SKR-1/2 localization to an already formed SC. Importantly, these
145  mutations do not abolish SCF activity, suggesting that SKR-1/2 dimerization is necessary

146  specifically for SC function (Blundon et al. 2024).

147 We used structural homology to predict the dimerization interface in Ppa-SKR-1 (Figure
148  2A). We found that a residue critical for dimerization in Dictyostelium Skp1, F97 (Kim et al.

149  2020), aligns closely with F105 in Ppa-SKR-1 (Figure 2A). To test the function of the putative
150  dimerization interface, we used CRISPR/Cas9 to make ollas::Ppa-skr-17'%°€, Gratifyingly, we
151  easily obtained ollas::Ppa-skr-17"° homozygous animals. Out of 46 F2s singled from

152  heterozygous ollas::Ppa-skr-17"°€ F1 parents, 12 were homozygous wildtype, 22 were

153  heterozygous and 12 were homozygous for ollas::Ppa-skr-17"€

, matching expected Mendelian
154  ratios. This suggests that the F105E mutation does not disrupt SCF functions during

155  development.
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156 To evaluate successful completion of meiosis, we counted total progeny in wild-type,
157  ollas::Ppa-skr-1 and ollas::Ppa-skr-17"¢ worms. Total progeny produced by ollas::Ppa-skr-1
158 worms were comparable to that of the wild-type P. pacificus, indicating that the OLLAS insertion
159  did not interfere with meiosis. In contrast, ollas::Ppa-skr-17°° worms were almost sterile,

160  mimicking other SC null mutants (Figure 2B). Notably, several homozygous hermaphrodites
161  produced one to two progeny, further indicating that OLLAS::Ppa-SKR-17'%E can carry out the
162  non-meiotic functions of Skp1 proteins. Together, this analysis indicated that Ppa-SKR-1

163  dimerization is necessary for reproduction.

164 To examine meiotic dysfunction in more detail, we monitored successful formation of

165 crossovers in meiotic prophase. Chromosomes that form a crossover are joined at metaphase
166 of Meiosis |, forming so-called "bivalents" that can be visualized by staining DNA with DAPI.

167  Since P. pacificus has six chromosome pairs, successful generation of a crossover on each pair
168 yields six DAPI-staining bodies. We found no significant difference in DAPI body counts

169  between wild-type and ollas::Ppa-skr-1 worms. They averaged 5.6 and 5.7 DAPI bodies,

170  respectively (Figure 2C). However, ollas::Ppa-skr-17"%% worms had a significantly elevated DAPI
171  body count (mean = 10.5) suggesting that failure of chromosome pairing or crossover formation

1F105E

172 underlies the reduced progeny count in ollas::Ppa-skr- worms (Figure 2D).

173 Cytological examination established that Ppa-skr-17"F worms lack an SC. Meiotic nuclei
174  in the mutant spent an extended duration in the transition zone - the region of the gonad where
175 the SC assembles, marked by crescent-shaped nuclei (Figure 3, compare to Figure 1A, B). An
176  increase in transition zone length is seen in other SC mutants (MacQueen et al. 2002;

177  Colaiacovo et al. 2003; Smolikov et al. 2007; Smolikov, Schild-Prtifert, and Colaiacovo 2009)
178 and is thought to reflect a synapsis checkpoint (Harper et al. 2011). HOP-1 appeared as thin

1F19% \wworms, indicative of chromosomes that were

179  tracks throughout the gonad in Ppa-skr-
180 unable to assemble an SC (Figure 3B). Furthermore, Ppa-SYP-1 staining revealed complete
181 lack of SC assembly (Figure 3C). In C. elegans and other species, SC components seem to be
182  required for each other’s stability (Colaiacovo et al. 2003; Hurlock et al. 2020; Smolikov et al.
183  2007; Smolikov, Schild-Prufert, and Colaiacovo 2009; Blundon et al. 2024; Z. Zhang et al.

184  2020). Indeed, Ppa-SYP-1 staining was almost completely absent in ollas::Ppa-skr-17"°€

185  worms. Moreover, when SC components are present but cannot load onto chromosomes, SC
186  material forms large aggregates called polycomplexes (Page and Hawley 2004). Notably,

187  polycomplexes are absent in ollas::Ppa-skr-17"%€ worms (Figure 3) and in C. elegans skr-17""%¢

188  worms (Blundon et al. 2024), suggesting other SC component are not able to assemble in the
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189  dimerization mutant. These data indicate that, like in C. elegans, SC formation in P. pacificus
190 depends on Ppa-SKR-1 dimerization. Taken together with Ppa-SKR-1 localization (Figure 1),

191 our data indicate that Ppa-SKR-1 is a structural component of the P. pacificus SC.
192  Unlike other SC components, SKR-1 sequence is conserved in nematodes

193 We previously found that SC proteins in nematodes, Drosophila and mammals have a
194  unique evolutionary signature; diverged protein sequence but conserved length and position of
195  coiled-coil domains and conserved overall protein length (Kursel, Cope, and Rog 2021). We
196 hypothesized that this evolutionary signature could be explained by the SC mode of assembly,
197  which likely relies on weak multi-valent interactions mediated by coiled-coil domains. Since the
198 sequence requirements for coiled-coil domains are flexible (typically defined as a heptad repeat
199  where the first and fourth residues are hydrophobic and the fifth and seventh are charged or
200 polar), selection to maintain coiled-coil domains could allow for significant sequence divergence.
201  Atthe time of our analysis, SKR-1 had not been identified as an SC protein. Therefore, we

202  wished to compare the evolutionary signature of SKR-1 to the other SC proteins.

203 Unlike the other SC proteins in Caenorhabditis and Pristionchus, the sequence of SKR-1
204  is conserved in both clades, ranking in the bottom one percentile for amino acid substitutions
205  per site (Figure 4A). Unsurprisingly, residues involved in CUL-1 binding, F-box protein binding,
206  and the dimerization interface are highly conserved, even between C. elegans, P. pacificus and
207  H. sapiens (Figure 4B). We also found that SKR-1 does not contain conserved coiled-coll

208 domains (Figure 4C, S3A). Pristionchus SKR-1 does have a low-scoring predicted coiled-coil
209  domain from amino acids 20 — 47 (Figure S3A). However, AlphaFold does not predict a coiled-
210 coil formed by Ppa-SKR-1 and this coiled-coil signature is not conserved in Caenorhabditis

211  (Figure S3A) or in Dictyostelium, where the corresponding residues are mostly disordered in the
212 NMR structure (Kim et al. 2020). Together, this argues against the functional importance of

213 coiled-coil domains in SKR-1 (Figure S3B). Lastly, the length of SKR-1 is conserved, like other
214  SC proteins (Figure 4D). Taken together, our analysis indicates that the evolutionary trajectory
215  of SKR-1 is distinct from other SC proteins in Caenorhabditis and Pristionchus and suggests

216 thatits interaction with other SC proteins is mediated by domains other than coiled-coils.
217 Discussion

218 We found that SKR-1 is a structural member of the SC in P. pacificus. Ppa-SKR-1
219  dynamically localizes to meiotic chromosomes in a manner that is indistinguishable from that of

220  other SC proteins. Like other SC proteins, Ppa-SKR-1 exhibits stereotypic localization relative to
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221  the axes: it localizes to the middle of the SC, placing it near the N-terminus of Ppa-SYP-1

222 (Figure 1E). Finally, like in C. elegans, the dimerization interface of Ppa-SKR-1 is necessary for
223  SC assembly but not for other essential functions. Taken together, our cytological, functional
224  and phylogenetic data suggest that the function of SKR-1 as a structural component of the SC
225  has been conserved since the common ancestor of C. elegans and P. pacificus, at least 100

226  million years ago.

227 Our work on the conservation of an SC role for SKR-1 in nematodes raises the

228  possibility that it extends to Skp1 proteins in other clades. Unsurprisingly, proteasome-mediated
229  degradation regulates multiple key steps in meiosis (Ahuja et al. 2017; Rao et al. 2017; Guan et
230 al. 2022) and the proteasome itself localizes to the SC in C. elegans and mice (Rao et al. 2017;
231  Ahuja et al. 2017). Skp1 also localizes to the SC in male and female mice (Guan et al. 2020),
232 and in Arabidopsis plants where it is called ASK1 (Wang et al. 2004). In both cases, its

233  disruption leads to meiotic defects (Yang et al. 2006). However, the essential functions of the
234  proteosome and Skp1, and the consequent far-ranging effects of their disruption, has made it

235  difficult to parse their role in the protein degradation from any potential structural role in the SC.

236 C. elegans has proved to be an especially valuable system for studying the role of Skp1
237 in the SC because it contains two partially redundant paralogs, SKR-1 and SKR-2. Having two
238 SKR-1 paralogs allowed Blundon and Cesar et al. to identify the separation-of-function

239  dimerization mutant. We similarly found that a mutation predicted to disrupt Ppa-SKR-1

240 dimerization results in separation of function; worms are viable and have no obvious growth
241  defects indicating SCF functions are intact, but they are sterile due to failure of SC assembly. It
242  will be interesting to explore whether the corresponding Skp1 dimerization interface - which is
243 conserved at the protein sequence level in mammals and plants - would help to generate

244  separation-of-function alleles in other model organisms.

245 The molecular details of SKR-1 interaction with other SC components remain unknown
246  in both C. elegans and P. pacificus. SKR-1 proteins are not merely recruited to the SC like other
247  so-called ‘client' proteins, including the crossover regulator family ZHP-1/2/3/4 (Jantsch et al.
248  2004) and the polo-like kinase PLK-2 (L. Zhang et al. 2018; Harper et al. 2011; Labella et al.
249  2011). For example, the localization pattern of ZHP-1/2/3/4 is distinct from SC proteins and the
250 SC can still assemble in the absence of the ZHPs. In contrast, SKR-1 is essential for SC

251 assembly in both C. elegans and P. pacificus, and it contributes to the stability of SC

252  components in vivo and in vitro. Such intimate co-dependence suggests the existence of

253  underlying protein-protein interactions that provide specificity and stability.
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254 The protein surfaces that mediate interactions between SC proteins must co-evolve to
255  maintain compatibility. In this light, the high conservation of SKR-1 versus the high divergence
256  of other SC components might seem surprising since proteins in complex often have

257  homogenous evolutionary rates (Wong et al. 2008) and genes whose evolutionary rates covary
258 tend to be functionally related (Clark, Alani, and Aquadro 2012). However, a more recent study
259 reported that direct physical interaction is only a weak driver of evolutionary rate covariation
260  (Little, Chikina, and Clark 2024). Moreover, moonlighting proteins that function in multiple

261  complexes can confound such analyses. Taking these factors into account, SKR-1's role in the
262  highly conserved SCF complex might overwhelm any signal of shared evolutionary rates with
263  other SC proteins. In addition, we note that the SC is a condensate (Rog, Kéhler, and Dernburg
264  2017), and that many condensates rely on weak, multivalent interactions to recruit and exclude
265 member and non-member components, respectively (Shin and Brangwynne 2017) . SC proteins
266  might have multiple, redundant interaction interfaces with SKR-1, each too weak to pose a

267  strong constraint on the primary sequence.

268 The recent duplication of SKR-1 in the lineage leading to C. elegans (Blundon et al.

269  2024) could suggest that gene duplication has allowed Skp1 proteins to adopt a novel function -
270  a structural component of the SC. However, our findings suggest that the role of SKR-1 in the
271  SCis more ancient and that a single SKR-1 protein has likely performed both functions in the
272 common ancestor of C. elegans and P. pacificus. An ancestral dual-function protein suggests
273  that SKR-1 has been subjected to evolutionary pressures to maintain both functions for at least
274 100 million years. Interestingly, SKR-1's dual roles in SCF and the SC entail that mutations in
275  skr-1 might have pleiotropic effects in development (SCF) versus reproduction (SC). If so, C.
276  elegans may represent a lineage where such intralocus conflict is resolving by gene duplication
277  and specialization (Castellanos, Wickramasinghe, and Betran 2024). In this scenario, the

278  different structural and functional requirements of the SC versus the SCF complex could be

279  divided between SKR-1 and SKR-2, allowing them to eventually differentiate into an SC-

280 dedicated protein and an SCF-dedicated one. Such specialization has likely taken place

281  throughout the broader Skp1-related gene family, which has massively expanded in nematodes
282  (Nayak et al. 2002). Intralocus conflict and related processes provide a leading framework in the
283  evolution of aging (Adler and Bonduriansky 2014), suggesting that the evolutionary trajectory of

284  SKR-1 in nematodes could shed light on the evolution of aging more broadly.
285  Materials and Methods

286 Worm strains and maintenance
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287 We used Pristionchus pacificus strain PS312 for the wildtype control and for injections to
288  make ollas::Ppa-skr-1. To make ollas::Ppa-skr-17"E, we injected into ollas::Ppa-skr-1. All

289  strains were grown at 20°C on NGM agar with OP50 bacteria. We maintained PS312 and

290  ollas::Ppa-skr-1in a homozygous state but since ollas::Ppa-skr-17"F was sterile, we maintained
291 it as a heterozygous line by singling animals and genotyping each generation. We consistently
292  observed severe SC defects in one-quarter of the progeny from a heterozygous parent and

293  never observed severe defects in progeny from ollas::Ppa-skr-1 or PS312 parents. For DAPI
294  body counts, we identified gonads with SC defects in progeny of ollas::Ppa-skr-1"%€
295 heterozygous animals, and considered those gonads with severe SC defects to be

296  homozygous. To perform progeny counts of ollas::Ppa-skr-17%%

, we singled from a
297  heterozygous parent, counted progeny and genotyped by PCR (see below) after the complete

298  brood was laid.
299  Identification of P. pacificus SKR-1

300 We used C. elegans SKR-1 as a query in a BLASTp search, implemented on

301 pristionchus.org, of the P. pacificus El Paco V3 genome (Dieterich et al. 2007). The top hit was
302 ppa_stranded_DN29817_c0_g1_i2, a 166 amino acid protein. We also performed a tBLASTn
303 search using C. elegans SKR-1 as a query against the El Paco V4 genome

304 (GCA_000180635.4) implemented on ncbi.nim.nih.gov. This identified the coding sequence
305 KAF8362560.1, which encodes a 166 amino acid protein identical to

306 ppa_stranded_DN29817_c0_g1_i2. When we used the 166 amino acid protein as a query in a
307 BLASTYp search of the C. elegans proteome, the top his was C. elegans SKR-1 (F46A9.5).

308 We note that performing the same BLASTp search against the P. pacificus genome on
309 wormbase.org (Sternberg et al. 2024) produces a top hit to PPA23980, a protein with 1443

310 amino acids that contains a predicted ABC transporter transmembrane domain in its N-terminus
311  and homology to SKR-1 in its C-terminus. We suspect that this is due to an annotation error that
312 merges two genes since wormbase.org also hosts the El Paco V4 genome assembly and the
313  start codon of the 166 amino acid version of SKR-1 is preserved in PPA23980.

314 To confirm that ppa_stranded_DN29817_c0_g1_i2 is indeed the SKR-1 ortholog in P.
315 pacificus, we generated a neighbor-joining phylogenetic tree with all hits that resulted from
316 BLASTp search of P. pacificus with C. elegans SKR-1 (File S1, S2, S3). Since P. pacificus
317 ppa_stranded_DN29817_c0_g1_i2 groups closest with C. elegans SKR-1/2 (Figure S1, File
318  S3), it is most likely to be the SKR-1 ortholog. Thus, we refer to

319 ppa_stranded_DN29817_c0_g1_i2 as Ppa-SKR-1.
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320  Sequence collection, alignment and phylogenetic analysis

321 We identified Caenorhabditis SKR-1 orthologs using the EnsEMBL Compara pipeline
322 implemented on wormbase.org (Harris et al. 2010). We only kept sequences from species with
323  asingle predicted ortholog, with the exception of C. elegans, which has an SKR-1 paralog,

324 SKR-2, leaving 16 SKR-1 sequences for analysis. We identified Pristionchus SKR-1 orthologs
325 by performing BLASTp with C. elegans SKR-1 against the eight Pristionchus genomes available
326  on Pristionchus.org (Dieterich et al. 2007). We saved the top hit from each search. We used
327  Clustal Omega for all protein alignments and Geneious Tree Builder (neighbor-joining method,
328 Geneious Prime version 2023.2.1) with 100x bootstrap resampling to generate the phylogenies
329 in supplementary Figures 1 and 2. All protein sequences, alignments and trees are available as
330 supplemental data (File S4 — S9).

331 CRISPR genome editing

332 We aimed to insert an OLLAS tag in the N-terminus of Ppa-SKR-1, immediately

333 following the start methionine. We made an injection mix containing 1ul Cas9 (IDR, Alt-R S.p.
334  Cas9 Nuclease V3, 10ug/ul), 3.5ul repair template (200uM), 3.5ul annealed tracr/crRNA mix and
335  0.5ul duplex buffer (IDT). We injected the gonads of wildtype (PS312) young adult

336 hermaphrodite P. pacificus and singled each injected worm to its own plate. We extracted DNA
337 from ~16 combined F1 worms from each plate and genotyped with primers that span the

338  OLLAS insertion site (LEK1094 GTTTCACAACAACGGCCCTC and LEK1095

339 CTTGATGACGTCACGGGGAA) to identify “jackpot plates” (i.e., plates with high rates of OLLAS
340 insertion). We singled as many F1s as possible from the jackpot plates and genotyped again to

341 identify individual insertion events.

342 To make ollas::Ppa-skr-17"%°€ we followed a similar strategy as above except we injected
343  into ollas::Ppa-skr-1. We screened the pooled F1s by doing PCR with primers LEK1111

344 (GAGAAGGGAACAACGTGGGT) and LEK1112 (CGCGCGTCTCATTCAACAAA) and digesting
345  with Mbol. The predicted Cas9 cut site is near an Mbol site in ollas::skr-1, so CRISPR repair
346  events could destroy the Mbol site. In this scenario, wildtype plates will have bands that are
347 259, 241 and 92 base pairs in length after Mbol digest but plates that contain CRISPR mutants
348  will also have a 351 base pair band. We singled F1s from plates with the 351 base pair band
349 and did a second round of genotyping with LEK1111 and LEK1112, this time followed by digest
350 with Sall. Animals that contain CRISPR repair events from the injected homology template will

351 gain an Sall site. PCR from wildtype animals will remain undigested (592 base pairs) whereas

11
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352 PCR from a mutant animal will get cut (336 and 256 base pair bands). See Table S1 for a list of
353  primers, crRNAs and repair templates used for CRISPR.

354 Immunofluorescence and confocal microscopy

355 We prepared gonads for immunofluorescence and confocal microscopy as we have

356  done previously (Kursel, Cope, and Rog 2021; Phillips, McDonald, and Dernburg 2009). Briefly,
357 we dissected age-matched adult worms in egg buffer with 0.01% Tween-20 and fixed in a final
358 concentration of 1% formaldehyde. We transferred samples to a HistoBond microscope slide,
359  froze for 1 minute on dry ice and quickly immersed the slide in -20°C methanol for one minute.
360 Slides were washed in PBST and blocked in Roche Block (Cat # 11096176001) for 30 minutes
361 atroom temperature. We incubated the slides in 80 pl of primary antibody overnight at 4°C.

362  Primary antibody concentrations were as follows: Rabbit anti-PPA-SYP-1 1:500 (Kursel, Cope,
363 and Rog 2021), Rat anti-OLLAS 1:200 (Invitrogen Catalog # MA5-16125), Rabbit anti-PPA-

364 HOP-1 1:300 (Rillo-Bohn et al. 2021). The following day, slides were washed for three rounds of
365 10 minutes in PBST, then incubated in secondary antibody. Secondary antibody concentrations
366 were as follows: Donkey anti-rabbit Cy3 1:500 and Donkey anti-rat Alexa488 1:500 (Jackson
367 ImmunoResearch). Finally, we washed slides in PBST and DAPI and mounted them in NPG-
368  Glycerol. Slides were imaged on a Zeiss LSM880 confocal microscope with Airyscan and a 63 x
369 1.4 NAoil objective. Confocal images presented in this manuscript are maximum intensity

370  projections.
371  STED super-resolution microscopy

372 Gonads for STED microscopy were prepared as for confocal microscopy with the

373  following changes: 1) we omitted DAPI staining, 2) we used Goat anti-Rabbit STAR RED 1:200
374  (Abberior # STRED-1002-500UG) and Goat anti-Rat Alexa 594 1:200 (Jackson

375 ImmunoResearch) as secondaries, and 3) we mounted the samples in Abberior Mount Liquid
376  Antifade (Abberior # MM-2009-2X15ML). Samples were imaged on Aberrior STEDYCON

377  mounted on a Nikon Eclipse Ti microscope with a 100 x 1.45 NA oil objective. Line scans were
378 performed in FIJI (Schindelin et al. 2012).

379  Structural modeling and alignment

380 We used AlphaFold (Jumper et al. 2021), implemented in ColabFold (Mirdita et al. 2022),
381 to model the structure of full-length Ppa-SKR-1. We used Pymol ((Schrodinger 2015), version
382  2.5.7) to visualize Ppa-SKR-1 and to align it to the Dictyostelium Skp1A dimer NMR structure
383 ((Kim et al. 2020), PDB structure 6V88).
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384  Progeny counts

385 We singled twelve L4s from each genotype and grew them at 20°C. We moved the
386 parents to a fresh plate every day for four days and counted the progeny after allowing them to

387  mature for up to five days. For the ollas::Ppa-skr-171%%

genotype, we singled 50 F1s from a

388 heterozygous animal. We moved the F1s to fresh plates daily as described. At the end of the
389 fourth day of egg laying, we identified the homozygous animals among the F1s by genotyping
390 the parent with LEK1111/LEK1112 PCR primers followed by Sall digest as described above. We

391 counted progeny from those animals confirmed to be homozygous mutants.
392  Calculating divergence, coiled-coil conservation and length conservation

393 The Caenorhabditis and Pristionchus proteome values (Figure 4A, 4C and 4D) were
394  published previously (Kursel, Cope, and Rog 2021). We calculated divergence values, coiled-
395 coil conservation scores and coefficient of variation of protein length for SKR-1 as we have done
396 previously for SC proteins (Kursel, Cope, and Rog 2021) using SKR-1 orthologs from

397 Caenorhabditis or Pristionchus collected as described above.
398  Statistical analysis

399 We used an ordinary one-way ANOVA with Tukey’s multiple comparisons test to test for
400 differences in total progeny and DAPI body counts between genotypes (Figure 2B and 2C). In

401  Figure 3A, we used an unpaired t test to test for differences in transition zone length.
402  Data availability

403 Worm strains generated in this study are available by request. All sequence alignments
404  and phylogenies are included as supplementary data files. Proteome-wide analysis of
405 divergence, coiled-coil scores and protein length variation in Caenorhabditis and Pristionchus

406  was published previously (Kursel, Cope, and Rog 2021).
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Figure 1: Ppa-SKR-1 localizes to the middle of the SC. (A) Top panel, confocal image of
whole gonads from ollas::Ppa-skr-1 stained with anti-OLLAS, anti-SYP-1 and DAPI. Bottom
panel, zoom in on pachytene (1) or mid-diplotene (Il) nuclei. (B) Confocal image as in (A)
except with HOP-1 staining. In (A) and (B), the beginning of the meiotic gonad is indicated
with a white arrow and the transition zone is labeled below the DAPI channel in yellow (T.Z.).
(C) Super-resolution STED image of a single pachytene nucleus from ollas::Ppa-skr-1 worms
stained with anti-OLLAS and anti-HOP-1. Zoom-in panels show OLLAS::Ppa-SKR-1 between
parallel HOP-1 tracks. (D) Plot of line scans of pixel intensity for anti-HOP-1 and anti-OLLAS
across parallel axes in ollas::Ppa-skr-1 worms. The average distance between parallel axes is
153nm. (E) Cartoon of the P. pacificus synaptonemal complex with the orientation and
position of Ppa-SYP-1 and Ppa-SKR-1 relative to HOP-1 indicated in the bottom panel. The
relative position of Ppa-SYP-4 is not known (grey arrows and question marks). Adapted from
(Kursel, Aguayo Martinez, and Rog 2023).
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Figure 2: Conserved dimerization interface in SKR-1 is required for P. pacificus
meiosis. (A) Alignment of P. pacificus SKR-1 AlphaFold model (cyan) to Dictyostelium Skp1A
dimer NMR structure (PDB structure 6V88, gray). Conserved phenylalanines required for
dimerization are labeled in zoom. Dot plot depicting total progeny (B) and DAPI body count
(C) for wild-type P. pacificus, ollas::Ppa-skr-1 and ollas::Ppa-skr-17'°€, Asterisks reflect P-
values from Tukey’s multiple comparison test where **** indicates P < 0.0001. (D)
Representative images of DAPI-stained Meiosis | bivalents (DAPI bodies) from the indicated
genotypes.
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Figure 3: Ppa-SKR-17%E fajls to assemble the SC. (A) Dot plot showing transition zone
length as percent of meiosis. Asterisks reflect the P-value from an unpaired T-test where **
indicates P < 0.01. (B) and (C), Confocal images of whole gonads from P. pacificus ollas::skr-
1719 stained with anti-OLLAS, anti-HOP-1 (B) or anti-SYP-1 (C), and DAPI. Lower panels in
(B) and (C) show zoom-in on regions indicated by white, dashed boxes and the transition
zone is labeled below the DAPI channel in yellow (T.Z.).
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Figure 4: SKR-1 has an evolutionary signature distinct from other SC proteins. (A) Dot
plot showing protein divergence for the Caenorhabditis and Pristionchus proteomes. SYP
proteins and SKR-1 are indicated (black and pink, respectively). (B) Alignment of Skp1
orthologs from C. elegans and P. pacificus, and H. sapiens with Cul1 interaction, dimerization
and F-box binding sites labeled (Zheng et al. 2002; Kim et al. 2020). Additionally, three
mutants generated by Blundon and Caesar et al. are indicated by numbered boxes (Blundon
et al. 2024). (C) and (D), dot plots showing coiled-coil conservation and coefficient of
variation of protein length for the Caenorhabditis and Pristionchus proteomes. SYP proteins
and SKR-1 are indicated as in (A).
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Figure S1: Neighbor-joining phylogenetic tree of P. pacificus Skp1-related proteins.
Phylogenetic tree made from a protein alignment of all P. pacificus Skp1-related proteins
identified via BLASTp search. Bootstrap values greater than 50 are displayed. Note: the
branch leading to PPA33498, PPA39551, PPA10084, PPA10085 and PPA43759 was
truncated (diagonal lines) to more easily display the entire phylogeny.
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Pristionchus species SKR-related proteins

Figure S2: Neighbor-joining phylogenetic tree of Pristionchus Skp1-related proteins.
(A) Unrooted phylogenetic tree with 100x bootstrap support made from a protein alignment of
all Skp1-related proteins from C. elegans and eight Pristionchus species. The clade
containing C. elegans SKR-1/2 and P. pacificus SKR-1 has pink branches, all other C.
elegans SKRs have green branches and all other Pristionchus Skp1-related proteins have
black branches. The bootstrap support value for the SKR-1 clade is shown. (B) Phylogenetic
tree with 100x bootstrap support made from an alignment of the proteins in the SKR-1 clade
in (A, pink branches). The tree is rooted on the common ancestor of Caenorhabditis and
Pristionchus.
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Figure S3: SKR-1 does not contain conserved coiled-coil domains. (A) Plot showing
likelihood of coiled-coil domain at every residue in Caenorhabditis and Pristionchus SKR-1.
Individual species are represented by grey lines and the average is shown in a pink to yellow
gradient. Higher scores are more likely to be a coiled-coil domain with an arbitrary cut off for a
coiled-coil shown in a grey dashed line at 0.8. (B) Structural alignment of Dictyostelium Skp1A
dimer NMR structure (PDB structure 6V88, gray) and P. pacificus SKR-1 (teal) with P.
pacificus residues 20 — 47 and corresponding residues in Dictyostelium labeled in blue and
black, respectively.
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