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Abstract

By integrating atomistic simulations with theoretical calculations, we investigate

the prevalence of {112} deformation twins in bcc materials and their sensitivity to the

loading direction as well as temperature. Our atomistic simulations reveal the copi-

ous occurrence of {112} twins involving either hcp or fcc intermediate phases. The

hcp and fcc cases occur in bcc titanium alloy during [100] compression and tension,

respectively. Similarly, they can also manifest in bcc iron under different temperature

conditions. Furthermore, by calculating the correspondence matrix, we identify the fcc

and hcp cases as the normal deformation twin mode and the 1/2 atoms-shuffle mode,

respectively. The twinning modes have a significant influence on twin-twin interactions

and the final microstructure. Our theoretical calculation confirms that the selection of

specific twin modes and twin variants is governed by the correlation between their

deformation path and mechanical loading. The results underscore the crucial role of

mechanical loading and temperature in activating the specific twin modes, thereby pro-

viding a novel avenue for engineering twin microstructures through carefully designed

thermomechanical processing techniques.
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1. Introduction

Plastic deformation of body-centered cubic (bcc) metals at room temperature and

moderate strain rates is limited by the slip of screw dislocations [1, 2, 3, 4, 5, 6]. These

dislocations have low mobility due to their non-planar dislocation core and high lat-

tice resistance, limiting the ductility of bcc metals [2, 7, 8]. One effective approach

to enhancing ductility is by activating additional deformation mechanisms alongside

dislocation slip. For instance, in recently developed metastable titanium (Ti) alloys,

the high ductility is attributed to transformation-induced and twinning-induced plas-

ticity, the latter of which is achieved through the {332} twin mode in addition to the

conventional {112} twin mode [9, 10]. Recent studies have demonstrated twinning

as an additional deformation mechanism in bcc metals through in-situ transmission

electron microscopy investigations of nanoscale deformation [11, 12, 13]. Notably,

Wang et al. [14] conducted in-situ nanomechanical testing and observed the superior

plastic deformation in bcc niobium (Nb) nanowires. The remarkable superplastic-

ity is attributed to the simultaneous activation of three distinct mechanisms—stress-

induced phase transformation, deformation twinning, and slip-induced crystal rota-

tion. In another study of bcc tungsten, most deformation twins exhibited instabil-

ity and underwent detwinning upon unloading [15], contrary to the notion that twin-

ning represents a permanent plastic deformation [16]. The instability of bcc twins

was found to be proportional to the fraction of inclined twin boundaries that devi-

ate from the {112} habit plane. These studies affirm the significant potential for in-

ducing deformation twinning in bcc materials. Though still in the early stages, fur-

ther research is required to gain a deeper understanding of twinning mechanisms in

bcc materials [11]. Some recent studies emphasized the correlation between twin-

ning and phase transformation, and proposed transformation-assisted twinning mech-

anisms [11, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Notably, Li et al. [27] proposed

three types of phase transformation mediated twinning pathways, rooted in the ex-

perimental observation of metastable interfacial phases (omega or orthorhombic) at

the twin boundaries in bcc metals or alloys [27, 28, 29, 30, 31, 32]. On the other

hand, Gao et al. [20] conducted a theoretical investigation into the relationship be-
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tween symmetry breaking during phase transformation and deformation twinning in

bcc structures. They proposed that along the deformation path of bcc twins there ex-

ist intermediate high symmetry states, including face-centered cubic (fcc), hexagonal

close-packed (hcp), omega, and orthorhombic states. Importantly, they proposed that

different twinning modes correspond to the topological defects arising from the sym-

metry breaking in different intermediate high symmetry states. In another study by

Yang et al. [33], molecular dynamic (MD) simulations were employed to investigate

the phase transformations and twinning behavior in nanoscale iron (Fe) with different

carbon contents. Their findings demonstrated that when the fcc structure was stretched

along the [100] direction, it underwent the fcc-bcc phase transformation, concurrently

resulting in the formation of {112} twins between neighboring bcc grains.

Unlike dislocation slip, twinning shear exclusively occurs in a unidirectional man-

ner, and merely reversing the shear direction does not lead to the same twin relation.

Therefore, the loading directions have the potential to impact twin formation in vari-

ous crystal structures [34]. In hcp materials, it is well-known that deformation twinning

exhibits a tension-compression asymmetry. When the c-axis of the hcp structure is sub-

jected to compression, {101̄1} and {112̄2} twins are activated, whereas under tension,

{101̄2} and {112̄1} twins come into play [35, 36, 37, 17]. Though twinning modes

asymmetry has not been explored in bcc structure, numerous bcc metals demonstrate

a twinning-antitwinning asymmetry in terms of slip resistance. Shearing the crystal in

the twinning direction leads to the easier glide of dislocations and the initiation of twin

embryos. Conversely, when shearing the crystal in the opposite (antitwinning) direc-

tion, significantly greater resistance is encountered. [38, 39, 1, 38, 40, 41, 42]. The

direct observation of twinning in the antitwinning direction was not available until a

very recent study. Wang et al. [41] employed in-situ transmission electron microscopy

to investigate the deformation of nanoscale bcc tungsten. This study revealed that the

nucleation and growth of antitwinning require ultrahigh stresses, a condition made fea-

sible by the nanoscale deformation.

Temperature is another crucial parameter that can profoundly influence the activa-

tion of various twinning modes. For instance, in hcp zirconium, it was found that the

{101̄1} contraction twin occurred at lower temperatures, the {112̄2} contraction twin
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was favored at higher temperatures, while the {101̄2} tension twin was formed consis-

tently across a wide range of temperatures [43, 44]. Similarly, during the compression

of polycrystalline titanium, {112̄2} twins were present from room temperature up to

673 K, while the {101̄1} twin predominated at temperatures above 673 K [45]. In

bcc materials, the temperature effect was mostly focused on the twinning-dislocation

transition. Although the influence of temperature on the activation of different twinning

modes in bcc structures remains relatively unexplored, it is reasonable to expect similar

temperature-dependent variations.

In this study, we aim to investigate the influence of mechanical loading and temper-

ature on twinning behavior in bcc materials. As such, we focused on two representative

bcc materials: pure Fe and a bcc Ti-Nb alloy. Fe is a widely used structural metal that

exists in the bcc structure at ambient conditions. When exposed to elevated temperature

or high-pressure conditions, it undergoes transformations into fcc or hcp structures, re-

spectively [46]. Metastable bcc Ti alloys have wide applications in various industries

such as biomedical, automotive, and aerospace, due to their excellent biocompatibility,

corrosion resistance, and fatigue strength. While pure Ti has an hcp structure at room

temperature, the addition of Nb stabilizes Ti-Nb alloys into the bcc structure [47].

When subjected to tension and compression along various directions, these bcc struc-

tures consistently form {112} twins, albeit through distinct mechanisms that involve

either hcp or fcc intermediate phases. In order to investigate the mechanisms under-

lying twin formation, we conduct extensive analysis and theoretical calculations. This

comprehensive examination illuminates the pivotal factors influencing twinning behav-

ior within bcc structures. This paper is organized as follows. Section 2 describes the

methods for the MD simulations. Section 3 shows the MD simulations in single-crystal

Ti-Nb and polycrystal Fe, followed by the theoretical calculation of variant selection

and twinning modes for different {112} twins. Finally, conclusions are presented in

Section 4.
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2. Methods

The MD simulations are performed using the LAMMPS package [48], with a time-

step size of 1 fs. To avoid any artificial free surface effects, periodic boundary condi-

tions are applied in all three dimensions. Initially, the atoms are initialized with random

velocities drawn from a Gaussian distribution, corresponding to an average temperature

of 10 K. Subsequently, a relaxation of 100 ps is carried out at 10 K and 0 Pa utilizing

the Nosé-Hoover thermostat [49] and the Parrinello-Rahman barostat [50] and within

the isothermal-isobaric ensemble. To ensure a clear visualization of the microstructure

evolution [17, 51] and minimize thermal fluctuations, the deformation is simulated at

a low temperature of 10 K. The crystalline structures are identified using the common

neighbor analysis [52, 53] in OVITO [54], where the bcc, hcp, fcc, and amorphous

phases are denoted by the colors red, blue, green, and yellow, respectively. Extensive

simulations are conducted across a range of strain rates, from 108 to 1010 s�1. It is

observed that the key twinning behavior remains consistent regardless of the applied

strain rate.

This study investigates two systems: a single-crystal Ti-10 at.%Nb and a poly-

crystalline Fe. Metastable Ti alloys exhibit diverse twinning modes ({112}, {332},

{5 8 11}, {10 9 3} twins) in room-temperature experiments [55, 56]. Therefore, we

selected the Ti-Nb alloy to investigate and demonstrate tension-compression asym-

metry in the twinning process. Strain rates in MD simulations are much higher than

those used in experiments, so loading has a predominant effect on deformation com-

pared to temperature, which is a secondary factor in most scenarios of MD simulations.

This does not pose a challenge to observe temperature asymmetry in Fe because it has

a well-known high-temperature fcc phase and a high-pressure low-temperature hcp

phase. Additionally, the intentional choice of polycrystalline Fe over a single crystal

aligns more closely with realistic structures used in experiments and real-world appli-

cations. Considering all the factors discussed above, our research utilizes Ti-Nb as the

model system to illustrate loading asymmetry and Fe as the model system to explore

temperature asymmetry. The Ti-Nb single-crystal consists of one million atoms and

has dimensions of 29.5⇥ 25.5⇥ 24 nm
3 along the [100], [011], and [01̄1] directions.
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Within the matrix of Ti atoms, the Nb atoms are randomly distributed in substitutional

positions. To model the interactions between Nb and Ti atoms, the modified embedded-

atom method potential developed by Huang et al. [57] is employed. This potential has

been specifically designed to accurately predict phase transformations and mechanical

properties in TaHfNbTiZr high entropy alloys, thus making it suitable for the Ti-Nb

system.

The polycrystalline Fe has dimensions of 27.5⇥ 27.5⇥ 23.7 nm
3 and consists of

one million Fe atoms. The creation of the Fe polycrystal involves utilizing a template

from our previous study [34]. Subsequently, the polycrystal undergoes a full relaxation

using the modified embedded-atom method potential developed by Etesami et al. [58].

The relaxation is carried out at 10 K and 0 Pa within the isothermal-isobaric ensemble,

employing the Nosé-Hoover thermostat [49] and the Parrinello-Rahman barostat [50]

for a duration of 100 ps. The deformation is subsequently applied at strain rates of 109

and 1010 s�1, and under temperatures of 10 K and 800 K.

3. Results

This section presents the effects of the loading direction and temperature on the

twinning behavior in both single-crystal and polycrystalline bcc structures. In the

single-crystal bcc Ti-Nb alloy, MD simulations are performed to study the influence

of loading direction on twin formation. The choice of a single crystal facilitates a more

straightforward theoretical analysis, enabling a comprehensive examination of variant

selection, twinning modes, and twin-twin interactions. In the polycrystalline bcc Fe,

MD simulations are conducted to investigate the temperature effect on twinning behav-

ior.

3.1. The effect of loading direction

3.1.1. Tension-compression asymmetry

To investigate the deformation of Ti-Nb single crystal, we conduct MD simulations

under six different loading conditions, including uniaxial tension and compression

along the x ([100]), y ([011]), or z ([01̄1]) axes. As shown in Fig. 1, tension-compression
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asymmetry is observed in simulations across all the strain rates (108 to 1010 s�1) and

for various loading conditions. For instance, when subjected to [100] loading, the sin-

gle crystal demonstrates a yield strength of 13 GPa at approximately 13% strain during

compression, whereas it yields at 8 GPa with an 8% strain level during tension (Fig. 1a).

This yielding disparity is attributed to the significantly higher resistance in the antitwin-

ning direction compared to the twinning direction [35, 38, 39, 41, 40]. Specifically, the

applied tension along [100] produces a shear stress in the twinning sense, whereas

the compression induces a shear in the antitwinning sense. Due to Poisson’s effect,

tension-compression asymmetry exhibits an opposite trend under [011] loading when

compared to [100] loading. As depicted in Fig. 1b, the crystal yields earlier in com-

pression than in tension. Furthermore, this tension-compression asymmetry remains

consistent when loading along [011] or [01̄1] axes, as these directions belong to the

same crystallographic family.

It is found that the stress-strain curves and the underlying microstructure evolution

are consistent for all strain rates. Therefore, we will present our detailed analysis for

the case with a strain rate of 1010 s�1. This choice is further motivated by the preva-

lence of deformation twins and the intriguing presence of intermediate phases under

a higher strain rate. Figure 2 shows the microstructure evolution under uniaxial com-

pression along the [100] direction. The top row presents the projection along [011]

direction, while the bottom row shows the projection along [01̄1] direction. As de-

picted in Fig. 2b, a significant number of local bcc-hcp phase transformations occur

when the strain reaches 13.72%. When the strain is further increased to 14.60%, a few

hcp regions undergo a transformation back to a new bcc phase that exhibits a different

orientation from the parent bcc phase (Fig. 2c). At a strain of 18.00%, the majority of

hcp regions have transformed back into the bcc phase (Fig. 2d). Notably, the newly

formed bcc phase exhibits a misorientation angle of 70.53� degrees around the [011]

axis with respect to the parent bcc phase, resulting in a {112} twin relationship.

The final microstructure exhibits the activation of multiple twin variants. In Fig. 2h,

two co-zone twin variants (bcc1 and bcc2) can be observed in the projection along

[01̄1]. Similarly, two other co-zone twin variants (bcc3 and bcc4) are identified in

the projection along [011] (Fig. 2d). Due to different common zone axes, variants
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Figure 1: Stress-strain curves of single-crystal Ti-Nb under tensile (red) and com-

pressive (blue) loading, obtained from the MD simulations at 10 K and strain rates of

108 ⇠ 1010 s�1. (a) Along [100] loading, compression exhibits a higher yield strength

than tension. Conversely, when loading along (b) [011] or (c) [01̄1] directions, tension

demonstrates a higher yield strength compared to compression.
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Figure 2: Microstructure evolution in a Ti-Nb single crystal under [100]-compression

at the strain rate of 1010 s�1 and the temperature of 10 K. The top row presents the

microstructure projected along [011] direction, while the bottom row shows the projec-

tion along [01̄1] direction. (a) The initial state features of the bcc single-crystal. (b)

Nucleation of the hcp phase occurs in various regions at a strain of 13.27%. (c) A few

{112} twins form after the reverse hcp-bcc phase transformation. (d) Most hcp regions

are eliminated as a result of the reverse phase transformation at a strain of 18.00%.

(f-h) The microstructure evolution in the projection along the [01̄1] direction exhibits

a similar pattern. (e) A schematic depicting the four twin variants. The bcc, hcp, fcc,

and amorphous phases are depicted in colors red, blue, green, and yellow, respectively.
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bcc1 and bcc2 are non-co-zone with variants bcc3 and bcc4. In Fig. 2e, we provide a

schematic representation of the four twin variants observed in the MD simulation of

[100]-compression.

The loading of [011] or [01̄1]-tension also results in a shear stress in the antitwin-

ning direction. We observe a consistent microstructure evolution, and therefore, only

present the case of [011]-tension for illustration. Similar to the case of [100]-compression,

the formation of the intermediate hcp phase and {112} twins are observed in the pro-

jection along [01̄1] (bottom row in Fig. 3). Interestingly, no twinning is observed in

the projection along [011] this time (top row in Fig. 3). As schematically illustrated in

Fig. 3e, two co-zone twin variants (bcc1 and bcc2) are formed, both of which possess

a common zone axis along [01̄1].

In contrast, the microstructure evolution under [100]-tension exhibits a distinct pat-

tern compared to that formed under compressive loading. Notably, a fcc intermedi-

ate phase is formed under tension (Fig. 4b), in contrast to the hcp intermediate phase

formed under compression (Fig. 2b). Specifically, numerous slender and elongated

{112} nuclei are observed at a strain of 10.00%, (Fig. 4f). Thin layers of fcc atoms are

present within the twin nuclei and two equivalent twin variants appear simultaneously.

Upon reaching a strain of 12.00%, the fcc layers within the {112} twin nuclei trans-

form into twin bcc phases, completing the twin nucleation process (Fig. 4g). As de-

formation progresses, the twin boundaries propagate significantly and the {112} twins

continue to grow, leading to significant coherent twin boundaries. Finally, at a strain of

22.00%, the merging of the two {112} twin variants can be observed at numerous im-

pinging twin tips (Fig. 4h). Meanwhile, two additional {112} twin variants are initially

observed in the projection along [011] direction (Fig. 4b and c), which subsequently

undergo detwinning in some regions(Fig. 4d). As illustrated in Fig. 4e, four variants

(bcc1, bcc2, bcc3, bcc4) are observed in the case of [100]-axis tension. However, bcc3

and bcc4 grow less compared to bcc1 and bcc2.

A compressive load in the [011] or [01̄1] directions also induces shear stress in

the twinning direction. In Fig. 5, we only present the microstructure evolution for

the [011]-compression case, as both loading scenarios exhibit a consistent evolution

pattern. Similar to the [100]-tension case, the formation of the intermediate fcc phase
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Figure 3: Microstructure evolution in the Ti-Nb single crystal under [011]-tension at

the strain rate of 1010 s�1 and the temperature of 10 K. The top row presents the mi-

crostructure projected along [011] direction, while the bottom row shows the projection

along [01̄1] direction. (a) The initial state features of the bcc single-crystal. (b)-(d) No

twinning happens in the projection along [011]. (f) Nucleation of the hcp phase and

formation of tiny {112} twins occurs in various regions at a strain of 22.80%. (g)

More {112} twins form after the reverse hcp-bcc phase transformation at the strain of

24.00%. (h) Most hcp regions are eliminated as a result of the reverse phase transfor-

mation at a strain of 26.00%. (e) A schematic depicting the two twin variants. The bcc,

hcp, fcc, and amorphous phases are depicted in red, blue, green, and yellow colors,

respectively.
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Figure 4: Microstructure evolution in Ti-Nb single crystal under [100]-tension at a

strain rate of 1010 s�1 and a temperature of 10 K. The top row presents the microstruc-

ture projected along [011] direction, while the bottom row shows the projection along

[01̄1] direction. (a) The initial structure is a bcc single crystal. (f) {112} twin nuclei

begin to form, accompanied by the presence of fcc atomic layers within. (g) Twins are

formed completely when the fcc atoms inside the twin nuclei transform back to the bcc

phase. (h) The rapid propagation and growth of two {112} twin variants. (b-c) Similar

microstructure evolution is initially observed in the projection along [011] direction,

with some local detwinning occurring at a strain of 22.00% in (d). (e) A schematic

depicting the two twin variants. The red, blue, green, and yellow colors represent the

bcc, hcp, fcc, and amorphous phases, respectively.
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and {112} twins are observed in the projection along [01̄1] (Fig. 5h). However, no

twinning is observed in the projection along [011] this time (Fig. 5d). As schematically

illustrated in Fig. 5e, two co-zone twin variants (bcc1 and bcc2) are formed, both of

which possess a common zone axis along [01̄1].

It should be noted that Poisson’s effect induces different trends of tension-compression

asymmetry depending on the loading axis. Nevertheless, the presence of intermediate

phases is characteristic of a given deformation and offers an efficient way to differ-

entiate between different simulations. For example, for [100] loading, we will use the

terms "fcc case" or "hcp case" as shorthand to refer to [100]-tension or compression, re-

spectively. Similarly, for [011] or [01̄1] loading, "fcc case" or "hcp case" are shorthand

to denote compression or tension, respectively.

It is crucial to note that the deformation twinning observed in our simulations fol-

lows a two-step process: a bcc-to-intermediate phase transition followed by an inter-

mediate-to-twin bcc phase transition. Such transformation-assisted twinning processes

have been reported for both pure bcc metals and metastable Ti alloys [11, 23, 24, 25, 26,

27]. Notably, twin nucleation commences from multiple locations without any preced-

ing defects, such as dislocations or free surfaces. Therefore, we assert that this process

is homogeneous twin nucleation, largely due to the elevated strain rate inherent in MD

simulations and the single crystal used in our work.

The nucleation, growth, and twin-twin interactions significantly influence the over-

all stress-strain response, which is thoroughly demonstrated in Fig. S1 of the supple-

mentary materials. The yield point aligns with the initial activation of multiple local

bcc-hcp or bcc-fcc phase transformations, i.e., the first step of the observed twinning

process. Substantial stress drops are notable as the phase transformation progresses,

ceasing upon the reverse transformation back to the twin bcc phase and the complete

nucleation of twins. This behavior occurs in both twinning and antitwinning loading

directions.

Following twin nucleation, the fcc case exhibits notable twin merging and fast twin

growth, leading to a substantial additional stress drop. The twin growth is mediated by

the nucleation and propagation of twinning dislocations along the coherent twin bound-

ary. Eventually, the entire single crystal becomes nearly fully twinned, which is evident
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Figure 5: Microstructure evolution in Ti-Nb single crystal under [011]-compression at

a strain rate of 1010 s�1 and a temperature of 10 K. The top row presents the microstruc-

ture projected along [011] direction, while the bottom row shows the projection along

[01̄1] direction. (a) The initial structure is a bcc single crystal. (f) {112} twin nuclei

begin to form at the strain of 11.20%, accompanied by the presence of fcc atomic lay-

ers within. (g) Twins are formed completely when the fcc atoms inside the twin nuclei

transform back to the bcc phase at the strain of 12.00%. (h) The rapid propagation and

growth of two {112} twin variants at the strain of 18.00%. (b-d) No twinning is ob-

served in the projection along [011]. (e) A schematic depicting the four twin variants.

The red, blue, green, and yellow colors represent the bcc, hcp, fcc, and amorphous

phases, respectively.
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in the stress-strain curve, displaying an exceptionally low flow stress. Conversely, the

hcp case exhibits significantly higher flow stress due to limited twin growth.

Again, we emphasize that the twinning process observed in our simulations shares

fundamental similarities with the transformation-assisted twinning processes reported

in the literature [23, 24, 25, 26, 30]. It is crucial to recognize the significant influence

of the material system on the phase stability of the metastable intermediate phases.

This variation in phase stability can result in twinning following distinct deformation

paths, exemplified by the bcc-hcp-bcc twinning path in our work, as opposed to the

bcc-omega-bcc twinning path in [27, 30].

3.1.2. Variant selection

Interestingly, four twin variants are observed in loading along [100], while only two

variants are observed in loading along [011] or [01̄1]. We will conduct theoretical cal-

culations to quantitatively investigate the twin variant selection. The correspondence

matrix Ci j is used to characterize the twinning deformation in the parent bcc lattice

basis relative to the twin bcc lattice basis [35, 59]. This matrix can be obtained from

the components of a tensor C, in standard basis. It departs from the actual distortion by

a rotation (change of basis), where the distortion is the deformation gradient of the lat-

tice’s displacive transformation. Generally, the distortion does not involve a significant

rigid-body rotation, allowing it to be approximated by a stretch tensor through its polar

decomposition. In this case, such stretch tensor coincides with the symmetric posi-

tive definite right stretch tensor U =
p

C> ·C, obtained from the polar decomposition

of C. The stretch tensor U is crucial for determining the favored twin variants under

an applied load, and later on for solving the twinning equation to obtain the complete

twinning components.

By denoting Gi and gi as the parent and twin lattice bases, respectively, we can

express C= gi⌦Gi, where Gi represents the reciprocal parent basis satisfying Gi ·G j =

d j

i
. These bases can be identified directly from the MD simulations. We will begin with

the hcp case, where the twin variants remain stable and detwinning is not observed.

From the MD simulations in Fig. 2, three orthogonal directions are tracked during

the entire twinning process, as shown in Fig. 6. This monitoring yields one set of
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orientation relations, expressed as follows:

[100]bcc $ 1
3
[1̄1̄20]hcp $ 1

2
[11̄1̄]bcc1

[011]bcc $ [11̄00]hcp $ 1
2
[311]bcc1

[01̄1]bcc $ [0001]hcp $ [01̄1]bcc1 .

(1)

Based on this lattice correspondence, we define the parent basis as G1 = a0 e1, G2 =

a0 (e2 +e3) and G3 = a0 (�e2 +e3), while the twin basis as g1 = (a0/2)(e1 �e2 �e3),

g2 = (a0/2)(3e1 + e2 + e3) and g3 = a0 (�e2 + e3). The correspondence matrix Ci j

calculated from these bases is

Ci j|bcc�hcp�bcc1 =

2

6664

0.5 0.75 0.75

�0.5 0.75 �0.25

�0.5 �0.25 0.75

3

7775
. (2)

Besides the variant bcc1 associated with the pathway in Eq. (2), its co-zone variant

bcc2 has the correspondence matrix of

Ci j|bcc�hcp�bcc2 =

2

6664

0.5 �0.75 �0.75

0.5 0.75 �0.25

0.5 �0.25 0.75

3

7775
. (3)

For the twin variants bcc3 and bcc4, correspondence matrices read

Ci j|bcc�hcp�bcc3 =

2

6664

0.5 �0.75 0.75

0.5 0.75 0.25

�0.5 0.25 0.75

3

7775
,

Ci j|bcc�hcp�bcc4 =

2

6664

0.5 0.75 �0.75

�0.5 0.75 0.25

0.5 0.25 0.75

3

7775
.

(4)

It should be noted that the system can undergo twelve crystallographically equivalent

bcc-hcp-bcc pathways based on the Burgers mechanism [20, 60], in addition to the

16

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Biot strain

Variant [100]-direction [011]-direction [01̄1]-direction

bcc1 -0.1384 +0.3387 0

bcc2 -0.1384 +0.3387 0

bcc3 -0.1384 0 +0.3387

bcc4 -0.1384 0 +0.3387

bcc5 +0.0847 +0.0694 -0.1768

bcc6 +0.0847 -0.1768 +0.0694

bcc7 +0.0847 -0.1768 +0.0694

bcc8 +0.0847 +0.0694 -0.1768

bcc9 +0.0847 +0.0694 -0.1768

bcc10 +0.0847 -0.1768 +0.0694

bcc11 +0.0847 +0.0694 -0.1768

bcc12 +0.0847 -0.1768 +0.0694

Table 1: Biot strain component along three different crystalline directions for each of

the twelve variants formed under the bcc-hcp-bcc path.

identity pathway [20]. However, the presence of a mechanical load introduces asym-

metry to them, causing certain pathways to be favored over others. For an applied

load along a specific direction (d), we determine the favored deformation path based

on the Biot strain component ed = (EBiot ·d) ·d, where the Biot strain tensor is related

to the stretch tensor through EBiot = U� I. If ed is greater than zero, the deformation

path is favored under tension, whereas if ed is smaller than zero, it is favored under

compression.

As shown in Table 1, for [100]-compression, we find a favorable negative Biot

strain ed = (EBiot ·d) ·d = �0.1384 for bcc1, bcc2, bcc3, and bcc4, with deformation

pathways given in Eqs. (2), (3), and (4). On the other hand, the other eight non-identity

pathways present a positive Biot strain and, therefore, are not favored by the compres-

sive load.
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As for [011]-tension, we find a favorable positive Biot strain ed = (EBiot ·d) ·d =

+0.3387 for bcc1 and bcc2 with the deformation pathways represented by Eqs. (2) and

(3). Four other variants also display a positive ed , but the value is significantly smaller

(+0.0694) than that for bcc1 and bcc2. Hence, the microstructure is expected to be

populated by bcc1 and bcc2 under [011]-tension.

As for [01̄1]-tension, we find a favorable positive Biot strain ed = (EBiot ·d) ·d =

+0.3387 for bcc3 and bcc4 with the deformation pathways represented by Eq. (4),

besides four other variants presenting a significantly smaller ed value (+0.0694). Using

the same argument as in the previous case, the microstructure should be populated by

bcc3 and bcc4 under [01̄1]-tension.

Similarly, the Biot strain analysis for the fcc cases also agrees with the variant

selection observed in the MD simulations. As such, our theoretical calculations vali-

date the variant selection in the MD simulations, confirming the number of variants and

the specific variant to activate under the mechanical load. In other words, the twin vari-

ant selection here in single crystal Ti-Nb alloy is found to obey the Schmid law. Sim-

ilarly, Bertrand et al. [61] confirmed that the activated variant has the highest Schmid

factor in bcc Ti alloys. However, Min et al. [62] observed non-Schmid behavior for

some primary and secondary twins in polycrystalline Ti-Mo-Zr alloys, which might be

attributed to local stress variations in the polycrystals.

3.1.3. Twin-twin interactions

Among all the cases, detwinning is only observed in the case of [100]-tension.

Our analysis reveals that the local detwinning is attributed to the unique twin-twin

interactions. As different twin boundaries grow and approach each other, their in-

teractions frequently result in the creation of intricate twin–twin boundaries, which

show habit planes distinct from those of the original twins. For example, the inter-

action of two non-co-zone {101̄2} twin leads to the formation of a {112̄2} twin-twin

boundary [63, 51]. These twin-twin boundaries exist in such large quantities that they

can even contribute to the emergence of a local misorientation peak in the electron

backscatter diffraction misorientation histogram for both pure magnesium and its al-

loys [36, 64].
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In this work, we observe twin-twin interactions in both compressive and tensile

loading, as shown in Fig. 7. Under [100]-compression (hcp case), two {112} twin

variants form a twin relation characterized by a misorientation of 51.1� degrees across

h11̄0i(Fig. 7a). In contrast, during [100]-tension (fcc case), we observe the merging of

the two twin variants and the formation of a single bcc variant (Fig. 7b). It is worth

noting that the twin variants in both cases (the purple and pink bcc unit cells in Figs. 7 a

and b) share the same orientation relative to the parent bcc structure. Surprisingly, they

exhibit distinctly different twin-twin interactions. As such, we will solve the twining

equation to quantitatively investigate the twin-twin interactions.

The twinning equation is a kinematic compatibility condition that appears from the

jump in the deformation gradient across a twin, whose solution has been discussed by

Ball and James [65]. If a twin is formed between variants I and J, with right stretch

tensors UI and UJ , then the twinning equation takes the form

Q ·UI �UJ = a⌦n, (5)

for some vector a and a unit normal n to the habit plane. The rotation tensor Q contains

information about the misorientation between the neighboring lattices. The procedure

for calculating the twinning elements is detailed by Bhattacharya [66].

The direction of shear ⌘, habit plane K and shear magnitude s can be calculated

from the elements of (5) by

⌘ =
a
|a| , K =

U�1
J

·n
|U�1

J
·n|

, s = |a| |U�1
J

·n| . (6)

When one of the variants is the reference lattice, say variant J, then UJ = I, which

allows us to combine Eqs. (5) and (6) as follows

Q ·UI � I = s(⌘⌦K) . (7)

Since the resulting deformation gradient for the twin bcc depends on the path the origi-

nal bcc lattice undergoes, i.e., fcc or hcp-related path, so do the twinning elements from

Eq. (7). We will start with the hcp case, for which the lattice correspondence has been

derived in Eqs. (2), (3), and (4). For twin-twin interactions between bcc1 and bcc2,
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Figure 6: Identification of lattice correspondence in the hcp case. (a) Two orthogonal

directions are traced in the parent phase, with the purple and cyan atoms representing

the [100]bcc and [011]bcc directions. (b) Following the bcc-hcp phase transformation,

the two traced directions transformation into 1
3 [1̄1̄20]hcp and [11̄00]hcp. (c) With the

hcp-bcc transformation completing the twin formation process, the traced directions

inside the twin evolve into 1
2 [11̄1̄]bcc1 and 1

2 [311]bcc1, respectively.

Figure 7: The {112} twin-twin interactions in Ti-Nb single-crystal during (a) com-

pression and (b) tension along the [100]-axis. The red unit cell represents the parent

bcc, whereas the purple and pink unit cells correspond to two twin variants bcc1 and

bcc2. The arrows indicate the loading directions.
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the stretch UI is calculated from the total correspondence Cbcc�hcp�bcc1 ·C�1
bcc�hcp�bcc2.

Based on this stretch, from Eq. (7) we obtain

K1 = (2̄3̄3̄) , ⌘1 = [31̄1̄] , s1 = 0.3536 ,

K2 = (2̄11) , ⌘2 = [111] , s2 = 0.3536 .
(8)

Indeed, the {332} twin is characterized by a misorientation of 51.1� degrees across

h11̄0i, consistent with the observation in the twin-twin interaction in Fig. 7a.

Next, we will examine the remarkable twin-twin interaction in the fcc case, where

the two distinct twin variants coalesce into a single bcc phase. From the MD simu-

lations in Fig. 4, we monitor the evolution of three orthogonal directions throughout

the twin formation process, as visualized in Fig. 8. This tracking leads us to derive a

specific set of orientation relations for bcc1, expressed as follows:

[100]bcc $ [100] f cc $ [011]bcc1

[011]bcc $ [010] f cc $ [1̄00]bcc1

[01̄1]bcc $ [001] f cc $ [01̄1]bcc1 .

(9)

Accordingly, we define the parent basis as G1 = a0 e1, G2 = a0 (e2+e3), and G3 =

a0 (�e2+e3), while the twin basis as g1 = a0 (e2+e3), g2 =�a0 e1, and g3 = a0 (�e2+

e3). Hence, the correspondence matrix Ci j for this deformation is

Ci j|bcc� f cc�bcc1 =

2

6664

0 �0.5 �0.5

1 0.5 �0.5

1 �0.5 0.5

3

7775
. (10)

For bcc2, the lattice correspondence is found to be

[100]bcc $ [100] f cc $ [011̄]bcc2

[011]bcc $ [010] f cc $ [1̄00]bcc2

[01̄1]bcc $ [001] f cc $ [011]bcc2 .

(11)
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leading to a correspondence matrix

Ci j|bcc� f cc�bcc2 =

2

6664

0 �0.5 �0.5

1 �0.5 0.5

1 �0.5 0.5

3

7775
, (12)

When solving the twinning equation for the twin-twin boundary in the fcc case, we are

surprised to discover that the stretch U is identical for both bcc1 (Eq. (10)) and bcc2

(Eq. (12)), so that no solution is found from the twinning equation. In essence, the

two co-zone twin variants merge because they have identical stretch U, preventing the

formation of a twin-twin boundary upon their intersection.

In the fcc case, merging bcc1 and bcc2 expedites the rapid growth of these two

variants, leading to a substantial portion of merged twins. However, it is crucial to ac-

knowledge that this merging process necessitates the concurrent rotation of bcc1 and

bcc2, resulting in pronounced long-range elastic stress. Such high local stress concen-

tration is clearly shown in Fig. S2(a). The earlier merging of bcc1 and bcc2 generates

elastic stress that, in turn, hampers the subsequent growth and merging of bcc3 and

bcc4. This phenomenon is manifested as localized detwinning of bcc3 and bcc4 in

certain regions in Fig. 4d.

3.1.4. Twin mode

While all the twins share the same {112} habit, they involve different intermedi-

ate phases and exhibit distinct twin-twin interactions. These disparities necessitate a

closer examination of the twinning mode and deformation path for these primary {112}

twins. As such, we compare the strain contours for the two cases in Fig. 9. The most

prominent observation is the opposing strain component within the twins: the hcp case

shows a positive strain component (red in Fig. 9a), while fcc case shows a negative

strain component (blue in Fig. 9b). Given that the reference for the strain component

is the same—the parent bcc structure—the opposing strain components signify oppo-

site twinning shears between the hcp and fcc cases. Additionally, the magnitude of the

strain in the hcp case is one-half of that in the fcc case, as indicated by the color bars in

Fig. 9. In other words, the strain contour clearly reveals the distinction between these

{112} twins, including their opposing shear directions and different shear magnitudes.
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Figure 8: Identification of lattice correspondence in the fcc case. (a) Two orthogonal

directions are traced in the parent phase, with the purple and cyan atoms representing

the [100]bcc and [011]bcc directions. (b) When the twin nucleus forms and exhibits the

fcc structure, the two traced directions transform into [100] f cc and [010] f cc. (c) Upon

the completion of twin formation, the traced directions inside the twin become [011]bcc1

and [1̄00]bcc1, respectively.

Figure 9: The contour plot displays the strain component eyy for (a) the hcp case at a

stain of 14.6% and (b) the fcc case at a strain of 15.48%. The red color inside the twins

in the hcp case indicates a positive eyy, while the blue color inside the twins in the fcc

case signifies a negative eyy.
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The distinctions observed in the two cases call for additional theoretical calcula-

tions to precisely identify the specific twinning modes. Specifically, the stretch tensor

components Ui j calculated from the correspondence matrices will be used to determine

the exact twinning mode. For the fcc case, based on the correspondence matrix in

Eq. (10), we find the following twinning elements

K1 = (211) , ⌘1 = [11̄1̄] , s1 = 0.7071 ,

K2 = (2̄11) , ⌘2 = [1̄1̄1̄] , s2 = 0.7071 .
(13)

It should be noted that for each twin variant, the twinning equation will offer dif-

ferent solutions, even if just a permutation of the same twinning mode. For example,

the twinning solutions for the twin variant with the correspondence matrix in Eq. (12)

present planes and directions belonging to the same family of Eq. (13),

K1 = (211̄) , ⌘1 = [11̄1] , s1 = 0.7071 ,

K2 = (2̄11̄) , ⌘2 = [1̄1̄1] , s2 = 0.7071 .
(14)

Similarly, based on the correspondence matrix in Eq. (2), we find the following

twinning elements for the hcp case

K1 = (2̄1̄1̄) , ⌘1 = [11̄1̄] , s1 = 0.3536 ,

K2 = (2̄33) , ⌘2 = [311] , s2 = 0.3536 .
(15)

As summarized in Table 2, twin variants formed through different intermediate

phases and, consequently, different deformation paths, exhibit distinct twinning ele-

ments. In the fcc case, variant bcc1 has a (211) habit and a shear in [11̄1̄] direction with

a magnitude of 0.7071 (
p

2/2). Conversely, in the hcp case, variant bcc1 maintains the

same (211) habit, but an opposite shear in [1̄11] direction with a magnitude of 0.3536

(
p

2/4). In other words, the twinning mode calculation confirms the observation from

the MD simulations, showing that the hcp case has an opposite twinning shear direction

and half the shear magnitude compared to the fcc case.

Furthermore, based on the twinning elements identified in the equations above, we

can readily identify the atomic movements associated with the twin modes within the

dichromatic complex. Figure 10a depicts the {112} twin mode in the fcc case, where all
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3*Loading directions [100]-compression [100]-tension

[011]-tension [011]-compression

[01̄1]-tension [01̄1]-compression

intermediate phase hcp fcc

K1 plane {2̄1̄1̄} {211}

K2 plane {2̄33} {2̄11}

h1 direction h111̄i h111̄i

shear s 0.3536 0.7071

twin-twin interaction {332}h113̄i twin twin merging

Table 2: The summary of the twinning modes observed in each loading condition,

along with the corresponding twin-twin interactions.

atoms are sheared into their correction positions without undergoing atomic shuffle. It

is correlated to the fact that the Bain path for bcc-fcc transformation is a uniform lattice

distortion without atomic shuffle. Hence, this twinning mode represents the normal "no

shuffle" twin mode observed in numerous bcc structures, including Fe, molybdenum,

and tungsten [35, 20].

Figure 10: The dichromatic complexes of (a) "no shuffle" {112} twin, (b) "1/2 atoms

shuffle" {112} twin, and (c) {332} twins, projected along the h11̄0i direction. The

parent bcc is represented by the bottom gray and top open symbols, while the twin bcc

is represented by the top gray symbols. The shear direction h1 and atomic shuffle are

shown by red and blue arrows, respectively.
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Contrarily, the {112} twin mode in the hcp case entails both shear and shuffle, as

depicted in Fig. 10b. It is again correlated to the fact that the Burgers path for bcc-hcp

transformation requires both lattice shear and atomic shuffle. Therefore, this twinning

mode corresponds to the "1/2 atoms shuffle" mode, which is the reciprocal of the {332}

twin mode (Fig. 10c) widely observed in metastable titanium alloys [9, 10, 67]. From

a mathematical perspective, the twinning equation in Eq. (7) has a pair of interchange-

able solutions, corresponding to the reciprocal twin pairs of "1/2 atoms shuffle" {112}

twin mode and the {332} twin mode. They exhibit identical twinning shear magnitude

but interchanged K1 and K2 planes, as well as h1 and h2 directions, as evident in their

twinning elements in Eqs. (8) and (15).

Moreover, the different twin-twin interactions can also be interpreted by the atomic

movements within the twinning modes. Specifically, when different twin variants ap-

proach each other, they generate strong elastic interactions that exert substantial local

stress. Since the twinning in the fcc case only involves simple shear, the elastic inter-

action can rotate the twin variants to perfect alignment, resulting in the merging of the

impinging twins. In contrast, the twinning in the hcp phase requires both shear and

shuffle. Here, the elastic interaction cannot accommodate the "random" atomic shuffle,

leading to a problematic state for twin merging. Consequently, a new {332} twin-twin

boundary is formed between the impinging twin variants.

Therefore, this twinning mode corresponds to the "1/2 atoms shuffle" mode, which

is the reciprocal of the 332 twin mode (Fig. 10c) widely observed in metastable tita-

nium alloys. From a mathematical perspective, the twinning equation in Eq. (7) has

a pair of interchangeable solutions, corresponding to the reciprocal twin pairs of "1/2

atoms shuffle" 112 twin mode and the 332 twin mode. They exhibit identical twinning

shear magnitude but interchanged K1 and K2 planes, as well as h1 and h2 directions,

as evident in their twinning elements in Eqs. (8) and (15).

3.2. The effect of temperature

The phenomenon of tension-compression asymmetry and the various twinning modes

are evident in single crystals. However, investigating the impact of loading direction

on polycrystalline structures is intriguing due to the presence of more complex stress
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Figure 11: (a) The initial polycrystal Fe is subject to a [100]-compression at the strain

rate of 1010s�1 and a temperature of 10 K. (b) A slice of the polycrystal showing a grain

in the initial bcc phase. (c) and (d) The nucleation and growth of the intermediate hcp

phase. The reverse hcp to bcc phase transformation is initiated in (e) and completed in

(f), leading to the formation of {112} twins.

and strain conditions. In such cases, additional parameters may play a more pivotal

role, such as temperature which is known to introduce twinning asymmetry in hcp ma-

terials. Inspired by the hcp and fcc cases observed in Ti alloy, we have chosen Fe as

our material of interest for polycrystal. Fe exhibits an hcp structure at low tempera-

tures and transforms to an fcc structure at higher temperatures. Consequently, we will

conduct MD simulations to explore deformation in a polycrystalline Fe structure at two

significantly different temperatures of 10 K and 800 K.

A meticulous examination and comparison of the microstructure evolution in the

two cases allow us to deduce that the {112} twin is formed through an intermediate

hcp phase at lower temperatures while involving fcc phases at elevated temperatures.

Specifically, in one large grain of Fe polycrystal, we observe the formation of {112}

twins through the bcc-hcp-bcc pathway at 10 K (Fig. 11b-f). In contrast, thin layers of

fcc atoms are observed during the twin formation in the same grain when the tempera-

ture is raised to 800 K (Fig. 12).

It is noted that the random grain orientation of the polycrystal makes it challenging
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Figure 12: Microstructure evolution in the same grain of the Fe polycrystal under

[100]-compression at the strain rate of 1010s�1 and a temperature of 800 K. (a-c) With

increasing strain, the initial bcc structure begins to form {112} twin nuclei, within

which the presence of fcc atoms is evident. (d) and (e) The fcc-bcc reverse phase

transformation assists the complete nucleation of {112} twins. (f) The {112} twins

continue to grow further.

28

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



to directly calculate the deformation gradient as in the single crystal case in Sec. 3.1.4.

However, MD simulations offer real-time microstructure evolution, enabling us to iden-

tify the conjugate twinning planes and associated twinning modes. Fig. 13 presents the

analysis employed to determine the K2 planes for the low-temperature case (Fig. 13a-b)

and the high-temperature case (Fig. 13c-d).

In Fig. 13a, we trace a {2̄33} plane in the parent phase, which is found to transform

into a {233} plane after twinning in Fig. 13b. Thus, the K2 conjugate twin plane for the

{112} twin is determined to be the {233} plane. Based on the theoretical calculation in

Sec.3.1.4, at low temperatures, the {112} twinning mode is the 1/2 atoms shuffle mode,

achieved through the hcp intermediate phase with a smaller shear amount of 0.3536.

In Fig. 13c, we trace a {2̄11} plane in the parent phase, which transforms into

another {211} plane after twinning in Fig. 13d. Consequently, at high temperatures, the

{112} twinning mode is the no-shuffle mode with a twinning shear amount of 0.7071.

As such, the observation in the MD simulations of polycrystalline Fe underscores the

significant influence of temperature in altering the twinning mode of the {112} twins.

In previous studies, the temperature effect on the deformation in bcc metals and alloys

mostly focused on the competition between dislocation slip and deformation twinning.

Specifically, with increasing temperature the Peierls barrier for dislocations decreases

faster than twinning, leading to the activation of dislocation and the suppression of

twinning. Facilitated by the high strain rate in MD simulations, twinning occurs ex-

clusively in the polycrystalline Fe in this work. Such twinning abundancy allows us to

expand the understanding of temperature effect to the competition between different

twinning modes in bcc materials.

4. Conclusions

As summarized in Fig. 14, our MD simulations provide valuable insights into the

mechanisms that govern the activation of diverse twin modes in bcc materials un-

der distinct loading directions and temperatures. In Ti-Nb single crystal, a tension-

compression asymmetry in twinning behavior is observed across all six loading di-

rections. For instance, when loading along [100], the {112} twin forms through the
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Figure 13: The identification of the conjugate twin plane for the polycrystalline Fe

during x-compression. A black plane is tracked during the deformation process to

observe its transformation after twinning. The K2 plane is found to be {233} at 10K

(a-b), while turns into {211} at 800 K (c-d). The microstructure evolution is projected

along the h11̄0i direction.
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Figure 14: A schematic diagram of the microstructural evolution in bcc structure under

different loading or temperature conditions. Left: the case with hcp intermediate phase

occurs under [100]-compression or h011i-tension or low temperature; Right: the case

with fcc intermediate phase occurs under [100]-tension or h011i-compression or high

temperature. The bcc, hcp, and fcc atoms are depicted in red, blue, and green colors,

respectively.
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bcc-hcp-bcc phase transformation under compression. Conversely, under tension, fcc

atomic layers are observed within the twin nuclei. Similarly, our MD simulations of Fe

polycrystals reveal the temperature effect on the activation of distinct twin modes. At a

low temperature of 10 K, the {112} twin forms via the bcc-hcp-bcc pathway, while in-

creasing the temperature to 800 K leads to the twin formation through the bcc-fcc-bcc

pathway.

Though all twins share the same {112} habit plane, the strain contour clearly

demonstrates that twins in the two cases have opposing shear directions and different

shear magnitudes. The lattice correspondence captured in our MD simulations enables

us to determine the complete twinning components. In the fcc case, the twin involves

only a shear—in [11̄1̄] direction with a magnitude of
p

2/2—and represents the nor-

mal "no shuffle" twin mode observed in numerous bcc structures. In contrast, in the

hcp case, the twin involves an opposite shear in [1̄11] direction with a magnitude of
p

2/4. Notably, this corresponds to the 1/2 atoms shuffle mode, where only half of

the atoms are sheared into the correct position, while the other half requires additional

atomic shuffle. These intricacies in the twinning modes have significant implications

for the twin-twin interactions. The no-shuffle mode in the fcc case facilitates the elastic

distortion to align different twin variants, resulting in the merging of twins. However,

the shuffle in the hcp case creates a challenging scenario for twin merging, ultimately

resulting in the formation of a twin-twin boundary with a {332} habit.

Furthermore, we calculate the deformation gradient and correspondence matrix to

investigate the variant selection observed in our MD simulations. The theoretical cal-

culations validate the variant selection within the MD simulations, confirming not only

the number of variants but also the specific variant activated under the mechanical load.

These results underscore the pivotal role played by mechanical loading and tempera-

ture in the activation of specific twin modes. This insight opens up new opportunities

for engineering microstructures through meticulously designed thermomechanical pro-

cessing techniques [68].

In this work, we focus on unraveling the mechanisms governing loading orientation

or temperature-induced twinning mode asymmetry. However, it is worth emphasizing

that factors such as loading, temperature, and grain boundaries all directly influence
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the energy barrier and the minimal energy path for various twinning modes, which ul-

timately affect twinning modes and variant selection. However, we acknowledge that

MD is not the single optimal tool for investigating the coupling and interactions of mul-

tiple factors, especially compared to mesoscale approaches such as phase field or crys-

tal plasticity. For example, a comprehensive analysis of the effect of grain boundaries

on twinning necessitates the inclusion of many grains in the simulation. This, however,

results in substantial, if not formidable, computation costs for MD simulations, which

are typically limited to a few million atoms on a regular-sized computing cluster. In

contrast, crystal plasticity simulations have the potential to effectively demonstrate the

collective influence of grain size and grain misorientation on twin nucleation. Never-

theless, the distinctive advantage of MD simulations lies in their ability to present a

well-contained system that isolates a single factor for a rigorous analysis of its impact

on twinning behaviors.
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