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Abstract. In this paper, we develop a new type of Runge–Kutta (RK) discontinuous Galerkin5
(DG) method for solving hyperbolic conservation laws. Compared with the original RKDG method,6
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1. Introduction. In this paper, we present a novel class of high-order Runge–18

Kutta (RK) discontinuous Galerkin (DG) methods for solving hyperbolic conservation19

laws. Compared with the original RKDG method proposed in [6–10], the new method20

features more compact stencil sizes and will be hence referred to as the compact RKDG21

(cRKDG) method throughout the paper.22

The RKDG method for conservation laws was originally proposed by Cockburn23

et al. in a series of papers [6–10]. The method combines the DG finite element spa-24

tial discretization [25] with the strong-stability-preserving (SSP) RK time discretiza-25

tion [16, 17]. A limiting procedure is employed to control oscillations near physical26

discontinuities. The method naturally preserves the local conservation, features good27

hp adaptivity, and can be fitted into complex geometries. Due to its various advan-28

tages, the RKDG method has become one of the primary numerical methods for the29

simulation of hyperbolic conservation laws.30

This paper aims to further improve the RKDG method by reducing its stencil31

size within each time step, which can reduce its data communication and lead to32

potential advantages in parallel computing or implicit time marching. The DG spatial33

discretization is typically more compact when compared to the finite difference method34

of the same order. For example, when approximating the first-order spatial derivatives35

of a function on a given cell, the DG method only utilizes data from immediate36

neighbors, while the finite difference method may require data from farther nodes37

for a high-order approximation. However, this spatial discretization advantage is not38

preserved by the one-step multi-stage RK time stepping. In each temporal stage, the39

spatial operator calls for information from neighboring cells, hence the stencil of the40

scheme will be expanded after each stage. For example, for one-dimensional scalar41
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2 Q. CHEN, Z. SUN AND Y. XING

conservation laws with Lax–Friedrichs flux, the stencil size is 3 for the first-order42

forward-Euler time stepping, but becomes 2s+1 for the high-order RK time stepping43

with s stages. See Figure 3.1 for an illustration. This issue could be more evident44

with a very high-order RK method in multidimensions.45

There are some existing techniques in the literature circumventing the aforemen-46

tioned issue. The main idea is to construct a one-step one-stage method for time47

marching. For instance, the Lax–Wendroff temporal discretization can be used as an48

alternative, which leads to the so-called Lax–Wendroff DG (LWDG) method [22,23].49

This method utilizes only information from immediate neighbors regardless of its tem-50

poral order. However, implementing this method can be very tedious, especially for51

high-order schemes for multidimensional systems, as one needs to compute the high-52

order derivatives of the flux function in the Cauchy–Kowalewski procedure. Another53

avenue is to employ the Arbitrary DERivative (ADER) time stepping [29,30], resulting54

in the so-called ADER-DG method, which is presented in the spacetime integral form55

of the conservation laws and is known to be closely connected to the LWDG scheme.56

See [12, 14, 15, 24] and references therein. Besides LWDG and ADER-DG methods,57

there is also a stream of research addressing the compactness of DG methods for dis-58

cretizing the second or higher-order spatial derivatives [1–3,5,20,21,31,32,34]. These59

studies focus on reducing the stencils of spatial operators but are less related with60

the issue arising from the multi-stage RK time stepping. If RK methods are used to61

discretize the corresponding semi-discrete DG schemes for a time-dependent problem,62

the stencil size of the fully discrete schemes still grows with the number of RK stages.63

In this paper, we propose a very different novel approach to tackle this issue. Our64

method is still based on the RK methods for temporal discretization, specifically using65

the Butcher form instead of the Shu–Osher form [16]. The key idea is to hybridize66

two different types of spatial operators within each time step. For the inner stage(s)67

of the RK method, we employ the local derivative operator, which returns the L268

projection of the spatial derivative of the flux function. While for the very last stage,69

we use the DG operator as in the original DG scheme. A limiter will be applied only70

once at the end of each time step, if necessary. The proposed cRKDG method has71

the following desirable properties.72

• Stencil size: In each time step, the stencil of the cRKDGmethod only contains73

the current cell and its immediate neighbors, resulting in a compact stencil.74

• Convergence: We prove that if the cRKDG method converges boundedly,75

then its limit is a weak solution of the conservation laws.76

• Accuracy: We numerically observe that the cRKDG method attains (k+1)th77

order convergence rate when we couple a (k + 1)th order RK method with a78

DG method using kth order spatial polynomials. This matches the optimal79

convergence of the original RKDG method.80

• Boundary error: We numerically observe that the cRKDG method attains81

the same optimal convergence rate when nonhomogeneous Dirichlet boundary82

conditions are imposed. In contrast, the original RKDG method will suffer83

the accuracy degeneracy under this setting [35].84

In addition to the aforementioned analysis and numerical observations, we con-85

duct a linear stability analysis for the cRKDG method and identify its maximum86

CFL numbers for both second- and third-order cases. We employ the standard von87

Neumann analysis and investigate the eigen-structures of the amplification matrices.88

This approach aligns with the methodologies employed in previous works such as [11]89

for the RKDG method and [23] for the LWDG method. The details are omitted due90

to the space constraint. The maximum CFL numbers are documented in Table 1.1.91
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We can see from the table that the CFL number of the cRKDG method is the same92

as that of the RKDG method for the second-order case, and is slightly smaller for the93

third-order case. While comparing to the LWDG method, the CFL numbers of the94

cRKDG method are larger.

Maximum CFL cRKDG RKDG [11] LWDG [23]
Second-order 0.333 0.333 0.223
Third-order 0.178 0.209 0.127

Table 1.1: Maximum CFL numbers of the cRKDG method, the RKDG method, and
the LWDG method. Here the upwind flux is used for cRKDG method and the RKDG
method, and the Lax–Friedrichs flux (3.15) is used for the LWDG method [23].

95

For general nonlinear conservation laws, the cRKDG method proposed in this96

paper is different from the LWDG and ADER-DG methods. However these methods97

are closely connected. Indeed, for linear conservation laws with constant coefficients,98

the cRKDG method and the LWDG method are actually equivalent under certain99

choice of the numerical fluxes,1 although the two methods are designed from totally100

different perspectives. Furthermore, the cRKDG method with a special implicit RK101

method is equivalent to the ADER-DG method with a special local predictor. As a102

result, one can expect that the cRKDG method may share some similar properties103

with the LWDG and ADER-DG methods. These connections may bring in new104

perspectives that could contribute to the further development and understanding of105

existing methods.106

The rest of the paper is organized as follows. In Section 2, we review the original107

RKDG method and explain the formulation of the novel cRKDG method. In Section108

3, we summarize the theoretical properties of the cRKDG schemes and postpone some109

of the technical proofs to the appendix. Numerical tests are provided in Section 4110

and the conclusions are given in Section 5.111

2. Numerical schemes. In this section, we start by briefly reviewing the RKDG112

method and then describe in detail the construction of the cRKDG method. For ease113

of notation, we focus on scalar conservation laws, but the method can be extended to114

systems of conservation laws straightforwardly.115

2.1. RKDG schemes. Consider the hyperbolic conservation laws116

(2.1) ∂tu+∇ · f(u) = 0, u(x, 0) = u0(x).117

Let Th = {K} be a partition of the spatial domain in d dimension. We denote by118

hK the diameter of K and h = maxK∈Th
hK . Let ∂K be the boundary of K. For119

each edge e ∈ ∂K, νe,K is the unit outward normal vector along e with respect to120

K. The finite element space of the DG approximation is defined as Vh = {v : v|K ∈121

Pk(K), ∀K ∈ Th}, where Pk(K) denotes the set of polynomials of degree up to k122

on the cell K. The standard semi-discrete DG method for solving (2.1) is defined as123

follows: find uh ∈ Vh such that on each K ∈ Th,124

(2.2)

∫
K

(uh)t vhdx−
∫
K

f (uh) · ∇vhdx+
∑
e∈∂K

∫
e

̂f · νe,Kvhdl = 0, ∀vh ∈ Vh.125

1While with the numerical flux in [23], the LWDG method is not equivalent to the cRKDG
method even in the linear case. See Remark 3.4. This fact explains the different CFL numbers in
Table 1.1.
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4 Q. CHEN, Z. SUN AND Y. XING

Here ̂f · νe,K is the numerical flux, which can be computed from the exact or approx-126

imate Riemann solver defined at the cell interface. For example, we can choose the127

Lax–Friedrichs flux of the form128

̂f · νe,K =
1

2

(
f(uint

h ) · νe,K + f(uext
h ) · νe,K − αe,K

(
uext
h − uint

h

))
,129

with αe,K = max |∂uf · νe,K |. Here uint
h and uext

h are limits of uh along e from the130

interior and exterior of the cell K.131

We introduce the discrete operator ∇DG · f : Vh → Vh, defined by132

(2.3)

∫
K

∇DG · f(uh)vhdx = −
∫
K

f(uh) ·∇vhdx+
∑
e∈∂K

∫
e

̂f · νe,Kvhdl, ∀vh ∈ Vh.133

Therefore the semi-discrete DG scheme (2.2) can be rewritten in the strong form134

(2.4) ∂tuh +∇DG · f(uh) = 0.135

Then we apply an explicit RK method to discretize (2.4) in time. Consider an136

explicit RK method associated with the Butcher Tableau137

(2.5)
c A

b
, A = (aij)s×s, b = (b1, · · · , bs),138

where A is a lower triangular matrix in (2.5), namely, aij = 0 if i > j. The corre-139

sponding RKDG scheme is given by140

u
(i)
h =un

h −∆t

i−1∑
j=1

aij∇DG · f
(
u
(j)
h

)
, i = 1, 2, · · · , s,(2.6a)141

un+1
h =un

h −∆t

s∑
i=1

bi∇DG · f
(
u
(i)
h

)
.(2.6b)142

143

Note we have u
(1)
h = un

h for the explicit RK method. In the case that the problem144

is nonautonomous, for example, when a time-dependent source term q(t) is included,145

q(t+ cj∆t) should be included at appropriate places of the RK stages.146

2.2. cRKDG schemes. Similarly to (2.3), we define a local discrete spatial147

operator ∇loc · f : Vh → Vh such that148

(2.7)∫
K

∇loc · f (uh) vhdx = −
∫
K

f (uh) · ∇vhdx+
∑
e∈∂K

∫
e

f(uh) · νe,Kvhdl, ∀vh ∈ Vh.149

In other words, instead of using a numerical flux involving uh on both sides of the
cell interfaces, the values of uh along ∂K are taken from the interior of the cell
K. Therefore it is a local operation defined within K without couplings with the
neighboring cells. It is easy to see that when all integrals in (2.7) are computed
exactly, ∇loc · f indeed returns the projected local derivative

∇loc · f (uh) = Π∇ · f (uh) ,

where Π is the L2 projection to Vh.150
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With ∇loc · f defined above, we propose our new cRKDG scheme in the following151

Butcher Tableau form:152

u
(i)
h =un

h −∆t
i−1∑
j=1

aij∇loc · f
(
u
(j)
h

)
, i = 1, 2, · · · , s,(2.8a)153

un+1
h =un

h −∆t
s∑

i=1

bi∇DG · f
(
u
(i)
h

)
.(2.8b)154

155

The main difference with the original RKDG scheme (2.6) is to use the local operator156

∇loc · f instead of ∇DG · f when evaluating the inner stage values u
(i)
h in (2.8a).157

For optimal convergence, we will couple (k + 1)th order RK method with Pk158

spatial elements. The resulted fully discrete scheme is (k+1)th order accurate, which159

is the same optimal rate as that of the original RKDG method. For clarity, we list160

second- and third-order cRKDG schemes below as examples.161

Second-order scheme (k = 1).162

u
(2)
h =un

h − ∆t

2
∇loc · f (un

h) ,(2.9a)163

un+1
h =un

h −∆t∇DG · f
(
u
(2)
h

)
.(2.9b)164

165

Third-order scheme (k = 2).166

u
(2)
h =un

h − 1

3
∆t∇loc · f (un

h) , u
(3)
h = un

h − 2

3
∆t∇loc · f

(
u
(2)
h

)
,(2.10a)167

un+1
h =un

h −∆t

(
1

4
∇DG · f (un

h) +
3

4
∇DG · f

(
u
(3)
h

))
.(2.10b)168

169

Remark 2.1 (RK methods in Butcher form). For the original RKDG method,170

strong-stability-preserving Runge–Kutta (SSP-RK) methods are often adopted as171

time stepping methods. However, we address that the cRKDG method (2.8) has172

to be written based on the Butcher form of RK methods, in order to preserve local173

conservation and achieve optimal accuracy. We refer to Section 3.2.1 and Example174

4.2 for further details.175

Since the cRKDG method is not based on SSP-RK time stepping, one can choose176

from a larger class of RK schemes without worrying about order barriers brought by177

the SSP property [16]. For example, the classical four-stage fourth-order RK method178

can be used for the fourth-order scheme.179

Remark 2.2 (Limiters). To suppress spurious oscillation near discontinuities, a180

minmod or WENO type limiter is often applied after the update of each inner stage181

value u
(i)
h in the original RKDG method (2.6). For the cRKDG method, the limiter182

can be applied at the end of each time step. This is similar to the limiting strategy183

for LWDG method in [23] and will not change the stencil size of the cRKDG scheme.184

But at the same time, it’s worth noting that the total-variation boundedness property,185

guaranteed for the original RKDG method [8], may not hold in this case.186

3. Properties of the cRKDG method.187

3.1. Stencil size. In the cRKDG method, all inner stages are discretized with188

a local operator only using the information on the cell K. As a result, the stencil of189

the cRKDG scheme is determined by that of the last stage (2.8b) only, and its size is190
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u(1) = un
h

u
(2)
h = un

h − ∆t
2 ∇DG · f (un

h)

un+1
h = un

h −∆t∇DG · f
(
u
(2)
h

)

un
h,j−2 un

h,j−1

u
(2)
h,j−1

un
h,j un

h,j+1

u
(2)
h,j+1

un
h,j+2

u
(2)
h,j

u
n+1
h,j

u(1) = un
h

u
(2)
h = un

h − ∆t
2 ∇loc · f (un

h)

un+1
h = un

h −∆t∇DG·f
(
u
(2)
h

)

un
h,j−1

u
(2)
h,j−1

un
h,j un

h,j+1

u
(2)
h,j+1

u
(2)
h,j

u
n+1
h,j

Fig. 3.1: Stencils of RKDG and cRKDG methods with a second-order RK method.

the same as the forward-Euler–DG scheme. For example, in the one-dimensional case191

with Lax–Friedrichs fluxes, regardless of the number of RK stages, the stencil size of192

the cRKDG scheme is identically 3.193

In contrast, the stencil size of the RKDG scheme grows with the number of194

RK inner stages. In the one-dimensional case, the DG operator with Lax–Friedrichs195

flux has the stencil size 3. While after the temporal discretization with an s-stage196

RK method, the stencil size becomes 2s+ 1. See Figure 3.1 for an example with the197

second-order RK method. The difference on the stencil sizes between the two methods198

could be more significant in multidimensions.199

Proposition 3.1. The stencil of a cRKDG method of any temporal order only200

involves the current mesh cell and its immediate neighbors.201

3.2. Convergence.202

3.2.1. RK methods in Butcher form. SSP-RK methods are usually used203

for time discretization in the original RKDG method. For example, the widely used204

second-order SSP-RKDG method is given by205

u
(1)
h =un

h −∆t∇DG · f(un
h),206

un+1
h =

1

2
un
h +

1

2

(
u
(1)
h −∆t∇DG · f

(
u
(1)
h

))
.207

208

As above, an SSP-RK method can be written as convex combinations of forward-Euler209

steps, which is also referred to as the Shu–Osher form in the literature. The method210

can also be written in the equivalent Butcher form as those in (2.6).211

In the design of the cRKDG method, one cannot directly replace ∇DG · f with212

∇loc · f in the inner stages of an SSP-RKDG method in its Shu–Osher form, as this213

will cause accuracy reduction and violation of local conservation. For example, the214

following scheme is suboptimal and nonconservative:215

u
(1)
h =un

h −∆t∇loc · f(un
h),(3.1a)216

un+1
h =

1

2
un
h +

1

2

(
u
(1)
h −∆t∇DG · f

(
u
(1)
h

))
.(3.1b)217

218

This can be made clear by substituting (3.1a) into (3.1b):219

(3.2) un+1
h = un

h − ∆t

2

(
∇loc · f (un

h) +∇DG · f
(
u
(1)
h

))
.220

One can see that a low-order and nonconservative spatial operator ∇loc · f is used to221

update un+1
h , which will cause trouble. Indeed, if we consider its Butcher form, then222

the resulting cRKDG method can be written as223

u
(1)
h =un

h −∆t∇loc · f(un
h),(3.3a)224

un+1
h =un

h − ∆t

2

(
∇DG · f (un

h) +∇DG · f
(
u
(1)
h

))
,(3.3b)225

226
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i.e., replacing the last step (3.1b) or (3.2) by (3.3b). The resulting scheme will have227

optimal convergence and the provable local conservation property. Some numerical228

tests will be given in Example 4.2 to illustrate the different convergence rates of these229

methods. Note that (3.3) and (2.9) are both second-order cRKDG schemes, although230

they are different as the associated RK methods are different.231

In general, for the RKDG method in Butcher form, we can prove that replacing232

inner stages with ∇loc · f will retain local conservation property (see Theorem 3.1),233

and the optimal convergence rate can still be observed numerically (see Example 4.2).234

3.2.2. Convergence. Although all inner stages of the cRKDG method (2.8a)235

do not preserve local conservation, the fully discrete numerical scheme is still conser-236

vative as long as the update of un+1
h in the last stage is discretized with a conserva-237

tive method. Indeed, for explicit RK methods, the cRKDG scheme can be formally238

written as a one-step scheme after recursive substitutions. By taking vh = 1K , the239

characteristic function on K, in (2.8b) and combining with (2.3), we obtain240

(3.4) ūn+1
h,K = ūn

h,K − ∆t

|K|
∑
e∈∂K

ge,K(un
h),241

where the bar notation is used to represent the cell average,242

(3.5) ge,K(un
h) =

∫
e

(
s∑

i=1

bi ̂f · νe,K
(
u
(i)
h

))
dl243

and u
(i)
h can be explicitly computed from (2.8a). (3.4) is written in the conservative244

form. Following [26], we obtain a Lax–Wendroff type theorem in Theorem 3.1, with245

its detailed proof given in Appendix A. Here we consider scalar conservation laws for246

simplicity, and the results can also be extended to multidimensional systems. We will247

use C for a generic constant that may depend on the polynomial order k, the stage248

number s, the bound of u and uh, etc., but is independent of ∆t and h.249

Theorem 3.1. Consider the cRKDG scheme (2.8) for the hyperbolic conservation250

law (2.1) on quasi-uniform meshes with the following assumptions:251

1. f is Lipschitz continuous and f ′, f ′′ are uniformly bounded in L∞.252

2. The numerical flux ̂f · νe,K(uh) has the following properties:253

(a) Consistency: if uh = uint
h = uext

h , then ̂f · νe,K(uh) = f(uh) · νe,K .254

(b) Lipschitz continuity: | ̂f · νe,K(uh)− ̂f · νe,K(vh)| ≤ C ∥un
h − vnh∥L∞(BK),255

where BK = K ∪Kext is the union of K and its neighboring cell Kext.256

3. The CFL condition ∆t/h ≤ C is satisfied.257

If un
h converges boundedly almost everywhere to some function u as ∆t, h → 0, then258

the limit u is a weak solution to the conservation law (2.1), namely259

(3.6)

∫
Rd

u0ϕdx+

∫
Rd×R+

uϕtdxdt+

∫
Rd×R+

f(u)·∇ϕdxdt = 0, ∀ϕ ∈ C∞
0 (Rd×R+).260

3.3. Accuracy. In the cRKDG scheme, we apply ∇loc · f to approximate spa-261

tial derivatives of f for all inner stages. However, ∇loc · f may not have the same262

approximation property as ∇DG · f . (For example, for P0 elements, ∇loc · f(uh) =263

Π∇ · f(uh) ≡ 0.) A natural question to ask is whether the cRKDG scheme will still264

admit the optimal convergence rate in both space and time.265
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In [18], Grant analyzed perturbed RK schemes with mixed precision. It is pointed266

out that replacing certain stages in an RK scheme with a low-precision approxima-267

tion may not affect the overall accuracy of the solver. The order conditions of the268

methods were systematically studied there. In particular, the work by Grant implies269

the following results.270

Theorem 3.2 (Grant, 2022. [18]). Let F ε(u) = F (u) +O(ε) be a low-precision271

perturbation of F (u). Consider a pth order RK method for solving the ordinary dif-272

ferential equation ut = F (u):273

u(i) =un +
s∑

j=1

aijF
ε
(
u
(j)
h

)
, i = 1, 2, · · · , s,(3.7a)274

un+1 =un +
s∑

j=1

bjF
(
u
(j)
h

)
.(3.7b)275

276

The local truncation error of the scheme (3.7) is O
(
∆tp+1

)
+O(ε∆t2).277

The numerical error of the cRKDG scheme (2.8) can be analyzed by considering278

F = ∇DG · f and F ε = ∇loc · f in Theorem 3.2. Although ∇loc · f could be low-order279

accurate, it may yield
∥∥∇DG · f(uh)−∇loc · f(uh)

∥∥ ≤ Chk. Hence from Theorem 3.2,280

we expect that the local truncation error after one step is O(∆tp+1+hk∆t2+hk+1∆t).281

Under the standard CFL condition for hyperbolic conservation laws, we have ∆t ≤282

Ch, hence the local truncation error is O(∆tmin(p+1,k+2)). Hence a heuristic global283

error estimate is ∥un
h(·)− u(·, tn)∥ = O(∆tmin(p,k+1)), which is the same as the original284

RKDG scheme.285

However, the above argument is far from rigorous error estimates. For example,286

estimates in Theorem 3.2 rely on the derivatives of F and F − F ε, which are not287

defined for ∇DG · f and ∇DG · f − ∇loc · f . A detailed fully discrete error analysis288

using an energy type argument is still needed and is postponed to our future work.289

3.4. Boundary Error. When the nonhomogeneous Dirichlet boundary condi-290

tion is used, it is known that, if one directly uses the exact inflow data for RK inner291

stages, the RKDG method for hyperbolic conservation laws may suffer order degen-292

eration of the accuracy [35]. This order degeneration is not specific to DG schemes293

but can also arise with other spatial discretization methods [4].294

The reason for such order deductions relates to the fact that some RK stages295

are designed to be of low stage order, which means that they should be low-order296

approximations of the true solutions at the corresponding stages. These low-order297

stages are combined in a subtle way with the coefficients in the Butcher Tableau so298

that they can build up a high-order accurate solution at tn+1. If we replace the low-299

order RK stage with the exact boundary data, we also break the subtle cancellation300

of the error terms, which will lead to a low-order accurate approximation at tn+1.301

Compared with the RKDGmethod, the cRKDGmethod uses the local operator to302

approximate the values at the inner stages. By doing so, it does not need any exterior303

information and will avoid introducing the boundary data in the update of the inner304

stage values. Therefore, the boundary condition is only needed in the last stage to305

update un+1
h , and this will automatically maintain the optimal convergence rate of306

the cRKDG method. A detailed analysis involving the nonhomogeneous boundary307

condition will be provided in future work.308

3.5. Connections with other DG methods.309
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3.5.1. Equivalence with Lax–Wendroff DG in special cases. DG methods310

with Lax–Wendroff type time discretization were studied in [23]. The main idea there311

was to consider the high-order temporal Taylor expansion312

(3.8) u(x, t+∆t) = u(x, t) + ∆tut(x, t) +
∆t2

2!
utt(x, t) +

∆t3

3!
uttt(x, t) + · · ·313

and then apply the Lax–Wendroff procedure (or the so-called Cauchy–Kowalewski314

procedure) to convert all temporal derivatives to spatial derivatives. For example, for315

the one-dimensional problem with a third-order expansion, this gives316

un+1 = un −∆tF (u)x,317

where318

F (u) = f(u) +
∆t

2
f ′(u)ut +

∆t2

6

(
f ′′(u)(ut)

2 + f ′(u)utt

)
+ · · · ,

ut = −f(u)x, utt = − (f ′(u)ut)x , uttt = −
(
f ′′(u)(ut)

2 + f ′(u)utt

)
x
, etc..

319

The LWDG method [23] is then given as320

un+1
h = un

h −∆t∇DG · F (un
h)321

with a suitable choice of the numerical flux F̂ · νe,K .322

Although for a generic nonlinear problem, the RK methods suffer the so-called323

order barrier and we typically need s > p for high-order RK methods. While for linear324

autonomous problems, it is possible to construct a p-stage and pth order RK method325

[17]. The following theorem states that for linear conservation laws with constant326

coefficients and with a certain choice of the numerical flux, the LWDG method is the327

same as the cRKDG method with such p-stage and pth order RK method.328

Theorem 3.3. Consider linear conservation laws with constant coefficients. Sup-329

pose ∇DG · f is linear in the sense that330

∇DG · f

 s∑
j=1

bju
(j)
h

 =
s∑

j=1

bj∇DG · f
(
u
(j)
h

)
.331

Then when a specific numerical flux is chosen, as indicated in (3.14), the LWDG332

method with pth temporal order is equivalent to a cRKDG method using an explicit333

RK method of pth order with p stages.334

Proof. For ease of notation, we will only consider the scalar conservation law335

∂tu+∇ · (βu) = 0, where β is a constant vector. But the argument can be similarly336

generalized to multidimensional linear systems with constant coefficients. We will also337

denote by ∇DG · f(vh) = ∇DG · (βvh) and ∇loc · f(vh) = ∇loc · (βvh) for any v ∈ Vh.338

We will show that both schemes can be written in the following form.339

(3.9) un+1
h = un

h −∆t∇DG ·

(
β

p−1∑
i=0

∆ti

(i+ 1)!
Li
hu

n
h

)
, with Lhu

n
h := −∇loc · (βun

h).340

Define Lu = −∇ · (βu). Using the conservation law, we have341

ut = −∇ · (βu) = Lu and utt = −∇ · (βut) = −∇ · (βLu) .342
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Using a recursive argument, we have ∂j
t u = −∇ ·

(
βLj−1u

)
, for all j = 0, 1, · · · , p.343

Substituting it into the Taylor expansion (3.8), we have344

un+1 = un −∆t∇ · F (un), F (un) = β

p∑
i=1

∆ti−1

i!
Li−1un.345

In the LWDG method, we take the solution to be from Vh and approximate the outer346

spatial derivative ∇ · F with the DG operator ∇DG · F to obtain347

(3.10) un+1
h = un

h −∆t∇DG · F (un
h), F (un

h) = β

p−1∑
i=0

∆ti

(i+ 1)!
Liun

h,348

after changing the summation index in the definition of F . Finally, note that when β349

is constant, we have Lun
h = −∇ · (βun

h) = Π(−∇ · (βun
h)) = −∇loc · (βun

h) := Lhu
n
h.350

Hence the LWDG scheme (3.10) can be written in the form of (3.9).351

Now consider the cRKDG method with explicit time stepping (2.8). Using the352

linearity of ∇DG · f , we have353

(3.11) un+1
h = un

h −∆t∇DG ·

(
β

p∑
i=1

biu
(i)
h

)
.354

For explicit methods, we can use forward substitution to obtain355

(3.12) u
(i)
h =

i−1∑
l=0

dil (∆tLh)
l
un
h356

from (2.8a), where dil is defined recursively as di0 = 1 and dil =
∑i−1

m=l aimdm,l−1.357

Substituting (3.12) into (3.11) and exchanging the summation indices, we have358

(3.13)

un+1
h = un

h −∆t∇DG ·

(
β

p∑
i=1

i−1∑
l=0

bidil (∆tLh)
l
un
h

)

= un
h −∆t∇DG ·

(
β

p−1∑
l=0

(
p∑

i=l+1

bidil

)
(∆tLh)

l
un
h

)
.

359

Note that both −∇DG · (βvh) and Lhvh are approximations to ∂tvh. To achieve pth360

order temporal accuracy, we need (3.13) to match the Taylor series after replacing361

both spatial operators to ∂t. Hence
∑p

i=l+1 bidil = 1/(l + 1)!. Substituting it into362

(3.13) gives (3.9).363

Finally, we consider the numerical fluxes of the LWDG method and the cRKDG364

method. The numerical flux for the LWDG method is F̂ · νe,K(un
h). For the cRKDG365

method, from (2.6b), one can see that the numerical flux in the update of un+1
h is366 ∑s

j=1 bj
̂f · νe,K(u

(j)
h ). Therefore, the LWDG method and the cRKDG method are367

equivalent if we have368

(3.14) F̂ · νe,K (un
h) =

s∑
j=1

bj ̂f · νe,K
(
u
(j)
h

)
.369

370
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Remark 3.4. For the LWDG method studied in [23], the authors adopted the371

Lax–Friedrichs flux372

(3.15) F̂ · νe,K =
1

2

(
F (uint

h ) · νe,K + F (uext
h ) · νe,K − αe,K

(
uext
h − uint

h

))
,373

where αe,K = max |∂uf ·νe,K |. Note that the resulted scheme will be different from the374

cRKDG method with the Lax–Friedrichs flux. This is because the cRKDG method375

will include the jump terms of the inner stages u
(j)
h , j = 1, · · · , s, but the LWDG376

method will only include the jump terms of un
h, which leads to different numerical377

viscosity used in these numerical fluxes (hence, (3.14) is not satisfied). For the linear378

scalar case, the Lax–Friedrichs flux for the cRKDG method retrieves the upwind flux,379

whereas the Lax–Friedrichs flux for the LWDG method (3.15) does not retrieve the380

upwind flux. However, if we also choose the upwind flux for F̂ · νe,K in the LWDG381

method, the resulting scheme will be identical to the cRKDG method with the upwind382

flux (or, equivalently, the Lax–Friedrichs flux). From Theorem 3.3 and the discussion383

here, one can see that the cRKDG method is closely related to the LWDG method in384

the linear case, which has been carefully investigated in [23].385

Remark 3.5. The maximum CFL numbers of the cRKDG method and the LWDG386

method in [23], in comparison to those of the RKDG method, are given in Table 1.1.387

The CFL numbers of the LWDG method (with Lax–Friedrichs flux) are about 60%388

to 67% of those of the corresponding RKDG method. While the cRKDG method389

achieves the same CFL number as the RKDG method for the second-order case, its390

CFL number for the third-order case is about 85% of that of the RKDG method.391

The difference in the CFL numbers of the cRKDG method and the LWDG method392

is indeed caused by the difference in the numerical fluxes.393

Remark 3.6. For nonlinear problems, the LWDG and the cRKDG methods are394

completely different. The LWDG method requires to precompute the Jacobian and395

the high-order derivatives of the flux function, which can be very cumbersome in the396

implementation of the multidimensional systems. However, the cRKDG method does397

not involve such complications and can be programmed as that of the original RKDG398

method.399

Remark 3.7. A “new” LWDG method was proposed in [19] and then analyzed400

in [28]. Note this method is different from the LWDG method in [23] in the linear401

case and is also different from the cRKDG method.402

3.5.2. Connections with the ADER-DG schemes with a local predictor.403

The ADER approach was proposed in [29,30] as a high-order extension of the classical404

Godunov scheme. Then the methods have been extended in different ways and under405

both the finite volume and the DG framework. Here we consider one version of the406

ADER-DG scheme with a local predictor in [12,13].407

Multiply the equation (2.1) with a test function vh ∈ Vh over a spacetime element408

K × [tn, tn+1]. Replacing u with uh ∈ Vh yields409 ∫ tn+1

tn

∫
K

∂tuhvhdxdt+

∫ tn+1

tn

∫
K

∇ · f(uh)vhdxdt = 0.410

Note vh = vh(x) is independent of t. Then we apply Newton-Lebniz rule to ∂t and411
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perform integration by parts for ∇·, which yields412 ∫
K

(
un+1
h − un

h

)
vhdx−

∫ tn+1

tn

∫
K

f(uh) ·∇vhdxdt+

∫ tn+1

tn

∫
∂K

f(uh) ·νe,Kvhdldt = 0.413

The ADER-DG method with a local predictor can be obtained by replacing uh in the414

spatial flux with a local prediction qh and then replacing the cell interface term with415

the numerical flux. To be more specific, letting Pk,s
K,n := Pk(K) × Ps

(
[tn, tn+1]

)
be416

the polynomial space on the spacetime element K× [tn, tn+1], the ADER-DG method417

is written as the following: find uh ∈ Vh such that418

(3.16)∫
K

(
un+1
h − un

h

)
vhdx−

∫ tn+1

tn

∫
K

f(qh) ·∇vhdxdt+

∫ tn+1

tn

∑
e∈∂K

∫
e

̂f · νe,K(qh)vhdldt = 0419

holds for all vh ∈ Vh, where on each spacetime element K × [tn, tn+1], qh = qh(x, t) ∈420

Pk,s
K,n is a local predictor obtained through a local spacetime Galerkin method421

(3.17)

∫ tn+1

tn

∫
K

(∂tqh +∇ · f(qh))whdxdt = 0, ∀wh = wh(x, t) ∈ Pk,s
K,n,422

with qh(x, t
n) = un

h(x). Note (3.17) can then be converted into a system of nonlinear423

equations on each element K and solved locally. By adopting the notations in Section424

2, we can write the ADER-DG scheme (3.16) with the local predictor (3.17) into the425

following strong form:426

un+1
h =un

h −
∫ tn+1

tn
∇DG · f(qh)dt,(3.18a)427

∂tqh =−Πst∇ · f (qh) ,(3.18b)428429

where un
h, u

n+1
h ∈ Vh, qh ∈ Pk,s

K,n, and Πst is the local L2 projection to the spacetime430

polynomial space Pk,s
K,n.431

To see the connection between (3.18) and the cRKDG scheme (2.8), we rewrite432

both equations in (3.18) in the integral form, which yield433

(3.19) un+1
h = un

h −
∫ tn+1

tn
∇DG · f(qh)dt and qn+1

h = qnh −
∫ tn+1

tn
Πst∇ · f (qh) dt.434

Next, we apply a collocation method with s points to integrate (3.19). Suppose this435

method is associated with the Butcher Tableau (2.5). Then with qnh = un
h, we get (the436

equations for qn+1
h and u

(i)
h are omitted)437

q
(i)
h =un

h −∆t
s∑

j=1

aij (Πst∇ · f)(j) , i = 1, 2, · · · , s,(3.20a)438

un+1
h =un

h −∆t

s∑
i=1

bi∇DG · f
(
q
(i)
h

)
,(3.20b)439

440

where441

(Πst∇ · f)(j) =

(
Πst∇ · f

(
s∑

l=1

q
(l)
h (x)bl(t)

))∣∣∣∣
t=t+cj∆t

,442
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and {bl(t)}sl=1 are the Lagrange basis functions associated with the collocation points.443

Comparing (3.20) with (2.8), we can see that after applying a collocation type444

approximation, the ADER-DG method with a local predictor can be written in a445

similar form as that of the cRKDG method. The main difference between the two446

methods comes from the definition of the local operator. In the ADER-DG method,447

the local operator involves the spacetime projection K × [tn, tn+1], which couples all448

s stages in each of the terms of (Πst∇ · f)(j), hence an implicit approach is needed to449

solve for q
(i)
h . While in the cRKDG method, the local operator only involves projection450

in space and hence is decoupled among different temporal stages – only the term q
(j)
h451

appears in ∇loc · f
(
q
(j)
h

)
.452

In light of the above analysis, we have the following theorem.453

Theorem 3.8. Suppose we replace Πst with the spatial only projection Π and454

apply a collocation method with s points to integrate (3.19). Then the ADER-DG455

method with a Pk,s
K,n local predictor (3.18) becomes a cRKDG method associated with456

a collocation type RK method with s stages.457

Moreover, for linear conservation laws with constant coefficients, we have the458

following equivalence theorem.459

Theorem 3.9. For linear hyperbolic conservation laws with constant coefficients,460

the ADER-DG method (3.16) with a Pk,s
K,n local predictor (3.17) is equivalent to the461

cRKDG method with the corresponding RK method being the (implicit) Gauss method.462

Proof. For ease of notation, we will only consider the scalar case f(u) = βu with463

β being a constant vector. But the system case can be proved similarly. Note that464

Πst∇ · f(qh) = Πst∇ · (βqh) = ∇ · (βqh) = Π∇ · (βqh) = ∇loc · f(qh) ∈ Pk,s
K,n.465

Therefore, only considering its dependence on t, Πst∇·f(qh) is a temporal polynomial466

of degree at most s. Using the exactness of Gauss quadrature, the temporal integration467

in (3.19) can be replaced by an s-stage Gauss collocation method. Hence (3.19) is468

equivalent to (3.20) with the RK method chosen as the Gauss method. Moreover,469

note that470

(Πst∇ · f)(j) =

(
∇ ·

(
β

s∑
l=1

q
(l)
h (x)bl(t)

))∣∣∣∣
t=t+cj∆t

=
s∑

l=1

∇ ·
(
βq

(l)
h (x)

)
bl(t+ cj∆t) = ∇ ·

(
βq

(j)
h (x)

)
= ∇loc · f

(
q
(j)
h

)
.

471

We can replace (Πst∇ · f)(j) by ∇loc · f
(
q
(j)
h

)
in (3.20). Then (3.20) becomes the472

cRKDG method, where the RK method is the s-stage Gauss method.473

4. Numerical results. In this section, we present the numerical results of our474

cRKDG schemes and compare them with those of the original RKDG schemes. We475

always couple a Pk-DG method with a (k + 1)th-order RK method. Unless other-476

wise stated, for the second- and the third-order schemes, we use the SSP-RK time477

discretization for the original RKDG method, and (2.9) and (2.10) for the cRKDG478

method, respectively. For the fourth- and the fifth-order schemes, we use the classi-479

cal forth-order RK and the fifth-order Runge–Kutta–Fehlberg methods for both the480

original and cRKDG methods, respectively.481
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4.1. Accuracy tests. In this section, we test the accuracy of cRKDG schemes482

in different settings and demonstrate the effectiveness of cRKDG schemes for handling483

nonhomogenous Dirichlet boundary conditions.484

4.1.1. One-dimensional tests.485

Example 4.1 (Burgers equations). We solve the nonlinear Burgers equation in486

one dimension with periodic boundary conditions: ∂tu+ ∂x
(
u2/2

)
= 0, x ∈ (−π, π),487

u(x, 0) = sin(x). We use the Godunov flux and compute to t = 0.2 on both uniform488

and nonuniform meshes with spatial polynomial degrees k = 1, 2, 3, 4. We compare the489

numerical results of RKDG and cRKDG methods. Their L2 errors and convergence490

rates are given in Table 4.2. It can be observed that both schemes could achieve the491

designed optimal order of accuracy with comparable errors on the same meshes. We492

have also tested our schemes on randomly perturbed meshes, whose numerical results493

are omitted due to the space limit, and similar convergence rates are observed.494

k = 1 k = 2 k = 3 k = 4
N L2 error order L2 error order L2 error order L2 error order

u
n
if
or
m R
K
D
G

40 2.7386e-03 - 3.8131e-05 - 6.3822e-07 - 1.0505e-08 -
80 6.9998e-04 1.97 4.9991e-06 2.95 4.1961e-08 3.93 3.5188e-10 4.90
160 1.7637e-04 1.99 6.4554e-07 2.95 2.7101e-09 3.95 1.1821e-11 4.90
320 4.4366e-05 1.99 8.2632e-08 2.97 1.7286e-10 3.97 3.8814e-13 4.93

cR
K
D
G

40 2.3502e-03 - 3.4537e-05 - 5.9497e-07 - 1.0241e-08 -
80 5.9868e-04 1.97 4.5379e-06 2.93 3.8796e-08 3.94 3.3912e-10 4.92
160 1.5073e-04 1.99 5.8341e-07 2.96 2.4857e-09 3.96 1.1335e-11 4.90
320 3.7882e-05 1.99 7.4902e-08 2.96 1.5801e-10 3.98 3.7040e-13 4.94

n
on

u
n
if
or
m

R
K
D
G

40 4.2044e-03 - 7.2335e-05 - 1.6005e-06 - 3.5190e-08 -
80 1.0118e-03 2.06 9.6082e-06 2.91 1.0456e-07 3.94 1.1728e-09 4.91
160 2.5507e-04 1.99 1.2302e-06 2.97 6.8121e-09 3.94 3.9468e-11 4.89
320 6.4143e-05 1.99 1.5724e-07 2.97 4.3541e-10 3.97 1.2971e-12 4.93

cR
K
D
G

40 3.7976e-03 - 6.8122e-05 - 1.5490e-06 - 3.4695e-08 -
80 9.0218e-04 2.07 8.9388e-06 2.93 9.8699e-08 3.97 1.1449e-09 4.92
160 2.2598e-04 2.00 1.1464e-06 2.96 6.4244e-09 3.94 3.8321e-11 4.90
320 5.6822e-05 1.99 1.4645e-07 2.97 4.0891e-10 3.97 1.2563e-12 4.93

Table 4.2: L2 error of RKDG and cRKDG methods for the one-dimensional Burgers
equation on uniform and nonuniform meshes in Example 4.1. The nonuniform meshes
are generated by perturbing every other node by h/3. ∆t = 0.1h for k = 1, 2 and
∆t = 0.05h for k = 3, 4.

Example 4.2 (Euler equations and validation for Section 3.2.1). In this test,495

we solve the following nonlinear system of one-dimensional Euler equations ∂tu +496

∂xf(u) = 0 on (0, 2), where u = (ρ, ρw,E)T, f(u) =
(
ρw, ρw2 + p, w(E + p)

)T
, E =497

p/(γ − 1)+ρw2/2 with γ = 1.4. The initial condition is set as ρ(x, 0) = 1+0.2 sin(πx),498

w(x, 0) = 1, p(x, 0) = 1, and the periodic boundary condition is imposed. The exact499

solution is ρ(x, t) = 1 + 0.2 sin(π(x − t)), w(x, t) = 1, p(x, t) = 1. We use the local500

Lax–Friedrichs flux to compute to t = 2.501

First, in Table 4.3, we show the numerical error of the cRKDG method with502

the CFL numbers close to those obtained from the linear stability analysis, which is503

0.3 for the second-order case and 0.16 for the third-order case. As anticipated, the504

cRKDG method can achieve their designed orders of accuracy and remains stable for505

this nonlinear system when refining the mesh.506

Next, we clarify the comments in Section 3.2.1 and explain why the alternations507

in the cRKDG scheme should be made based on the Butcher form but not the Shu–508
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Osher form. We implement the schemes (3.2) and (3.3) and observe suboptimal509

convergence for scheme (3.2) and optimal convergence for scheme (3.3), as shown in510

Table 4.4. We have also done a similar test to examine the schemes based on the third-511

order SSP-RK (SSP-RK3) time discretization coupled with P2 spatial polynomials.512

A suboptimal convergence rate is observed when we modify the scheme in its Shu–513

Osher form (similar to (3.1), or equivalently, (3.2)), and the optimal convergence rate514

is observed when we modify the scheme in its Butcher form (similar to (3.3)).515

(2.9), k = 1 (2.10), k = 2
N L2 error order L∞ error order L2 error order L∞ error order
20 8.6401e-04 - 1.5693e-03 - 4.8592e-05 - 9.6982e-05 -
40 2.1391e-04 2.01 4.3033e-04 1.87 6.3337e-06 2.94 1.3105e-05 2.89
80 5.3413e-05 2.00 1.1235e-04 1.94 7.9905e-07 2.99 1.6569e-06 2.98
160 1.3096e-05 2.03 2.6785e-05 2.07 9.9311e-08 3.01 2.0228e-07 3.03
320 3.3054e-06 1.99 7.0220e-06 1.93 1.2477e-08 2.99 2.5741e-08 2.97
640 8.3321e-07 1.99 1.8091e-06 1.96 1.5656e-09 2.99 3.2598e-09 2.98
1280 2.0304e-07 2.04 4.1002e-07 2.14 1.9242e-10 3.02 3.8229e-10 3.09
2560 5.1018e-08 1.99 1.0552e-07 1.96 2.4061e-11 3.00 4.7861e-11 3.00

Table 4.3: L2 and L∞ error for one-dimensional Euler equations in Example 4.2. CFL
is 0.3 for k = 1 and 0.16 for k = 2.

Wrong implementation with Shu–Osher form Correct implementation with Butcher form
Scheme (3.2), k = 1 SSP-RK3, k = 2 Scheme (3.3), k = 1 SSP-RK3, k = 2

N L2 error order L2 error order L2 error order L2 error order
20 2.2503e-002 - 8.42142e-04 - 8.3248e-04 - 4.7661e-05 -
40 1.1013e-002 1.03 2.4793e-04 1.93 1.9946e-04 2.06 6.1420e-06 2.96
80 5.4484e-003 1.03 6.3363e-05 1.97 4.9608e-05 2.01 7.7938e-07 2.98

Table 4.4: L2 error for one-dimensional Euler equations in Example 4.2. CFL is 0.1.

Example 4.3 (Boundary error). In this example, we test the problem [35, Section516

4] to examine the possible accuracy degeneration due to the nonhomogeneous bound-517

ary condition. We use the P2-DG method with upwind flux and the third-order RK518

scheme to solve ∂tu + ∂xu = 0 on domain (0, 4π). The initial condition is set as519

u(x, 0) = sin(x) and the exact solution is given by u(x, t) = sin(x − t). Both the520

periodic and the inflow boundary conditions are considered in our test.521

We set ∆t = 0.16h and compute to t = 20. Numerical errors and convergence522

rates are listed in Table 4.5. It could be seen that the original RKDG method achieves523

the optimal convergence rate for the periodic boundary condition but a degenerated524

rate for the inflow boundary condition. While in contrast, the cRKDG method is able525

to achieve optimal convergence rates for both types of boundary conditions.526

4.1.2. Two-dimensional tests. The triangular meshes in this section are gen-527

erated by taking a cross in each cell of the N ×N uniform square meshes.528

Example 4.4 (Euler equations in two dimensions). We solve the nonlinear Euler529

equations in two dimensions with the periodic boundary condition: ∂tu + ∂xf(u) +530

∂yg(u) = 0, where u = (ρ, ρw, ρv,E)T , f(u) = (ρw, ρw2 + p, ρwv,w(E + p))T , g(u) =531

(ρv, ρwv, ρv2 + p, v(E + p))T , E = p/(γ − 1)+ ρ(w2 + v2)/2 with γ = 1.4. The initial532

condition is set as ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), w(x, y, 0) = 0.7, v(x, y, 0) = 0.3,533

p(x, y, 0) = 1. The exact solution is ρ(x, y, t) = 1+0.2 sin(π(x+y−(w+v)t)), w = 0.7,534
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periodic boundary inflow boundary
N L2 error order L∞ error order L2 error order L∞ error order

R
K
D
G

40 4.5605E-04 - 4.0696E-04 - 3.8572E-04 - 3.8889E-04 -
80 5.5726E-05 3.03 5.1832E-05 2.97 4.8763E-05 2.98 4.8941E-05 2.99
160 6.9243E-06 3.01 6.5389E-06 2.99 6.3065E-06 2.95 7.2957E-06 2.75
320 8.6412E-07 3.00 8.2105E-07 2.99 8.4142E-07 2.91 1.7155E-06 2.09
640 1.0796E-07 3.00 1.0286E-07 3.00 1.1738E-07 2.84 4.1662E-07 2.04
1280 1.3493E-08 3.00 1.2873E-08 3.00 1.7331E-08 2.76 1.0270E-07 2.02

cR
K
D
G

40 1.7656E-03 - 7.3382E-04 - 7.3651E-04 - 4.6481E-04 -
80 2.2030E-04 3.00 9.0392E-05 3.02 9.0921E-05 3.02 5.9025E-05 2.98
160 2.7536E-05 3.00 1.1209E-05 3.01 1.1296E-05 3.01 7.4400E-06 2.99
320 3.4428E-06 3.00 1.3953E-06 3.01 1.4079E-06 3.00 9.3401E-07 2.99
640 4.3036E-07 3.00 1.7415E-07 3.00 1.7576E-07 3.00 1.1701E-07 3.00
1280 5.3797E-08 3.00 2.1783E-08 3.00 2.1957E-08 3.00 1.4643E-08 3.00

Table 4.5: Error table for the one-dimensional linear advection equation with periodic
and inflow boundary conditions in Example 4.3. For the periodic boundary, u(0, t) =
u(4π, t); for the inflow boundary, u(0, t) = sin(−t). k = 2 and ∆t = 0.16h.

v = 0.3, p = 1. We use the local Lax–Friedrichs flux and compute the solution up535

to t = 2. Here the CFL numbers are taken as 0.2 and 0.12 for P1 and P2 cRKDG536

methods, and as 0.3 and 0.18 for P1 and P2 RKDG methods. We list numerical537

results in Table 4.6. We can observe that both RKDG and cRKDG schemes achieve538

their expected order of optimal accuracy with comparable numerical errors on both539

triangular and rectangular meshes.540

RKDG cRKDG
k = 1 k = 2 k = 1 k = 2

N L2 error order L2 error order L2 error order L2 error order

tr
ia
n
gu

la
r 20 4.5685e-04 - 5.1570e-05 - 4.4847e-04 - 4.9510e-05 -

40 1.1073e-04 2.04 6.1085e-06 3.08 1.0842e-04 2.05 5.8449e-06 3.08
80 2.7508e-05 2.01 7.7595e-07 2.98 2.6859e-05 2.01 7.4251e-07 2.98
160 6.8934e-06 2.00 9.6981e-08 3.00 6.6652e-06 2.01 9.2728e-08 3.00

re
ct
an

gu
la
r 20 2.4343e-03 - 1.1101e-04 - 2.4662e-03 - 1.1300e-04 -

40 4.2736e-04 2.51 1.3885e-05 3.00 4.2767e-04 2.53 1.4213e-05 2.99
80 9.0669e-05 2.24 1.7297e-06 3.00 8.9727e-05 2.25 1.7737e-06 3.00
160 2.1445e-05 2.08 2.1586e-07 3.00 2.1140e-05 2.09 2.2173e-07 3.00

Table 4.6: L2 error for two-dimensional Euler equations with the periodic boundary
condition on triangular and rectangular meshes in Example 4.4.

Example 4.5 (Boundary error). Consider the linear advection equation in two541

dimensions ∂tu+∂xu+∂yu = 0, (x, y) ∈ [−1, 1]× [−1, 1], u(x, y, 0) = sin (πx) sin (πy),542

The exact solution is u(x, y, t) = sin (π(x− t)) sin (π(y − t)). We use the upwind flux543

and compute the solution up to t = 0.4 with P3 elements. The numerical results544

with both periodic and inflow boundary conditions are given in Table 4.7. It can545

be observed that, on the same set of triangular meshes, both schemes achieve their546

designed order of accuracy with comparable numerical error under the periodic con-547

dition. For the inflow boundary condition, the RKDG method becomes suboptimal548

while the cRKDG method remains optimal.549

4.2. Tests with discontinuous solutions. We now test the cRKDG method550

for problems with discontinuous solutions. Only cell averages of the solutions are551

plotted. For one-dimensional problems, we apply the TVB minmod limiter for systems552
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periodic boundary inflow boundary
N L2 error order L∞ error order L2 error order L∞ error order

R
K
D
G

20 1.6470e-06 - 6.1638e-06 - 2.4337e-06 - 2.7118e-05 -
40 1.0807e-07 3.93 4.1438e-07 3.89 2.8514e-07 3.09 6.6092e-06 2.04
80 6.7371e-09 4.00 2.5981e-08 4.00 4.5845e-08 2.64 1.6418e-06 2.01
160 4.2131e-10 4.00 1.6135e-09 4.01 7.9968e-09 2.52 4.0979e-07 2.00

cR
K
D
G

20 1.4623e-06 - 4.4906e-06 - 1.7295e-06 - 4.9173e-06 -
40 8.9533e-08 4.03 2.8503e-07 3.98 1.0770e-07 4.01 3.0924e-07 3.99
80 5.6015e-09 4.00 1.7533e-08 4.02 6.7326e-09 4.00 1.9284e-08 4.00
160 3.5131e-10 3.99 1.0718e-09 4.03 4.2143e-10 4.00 1.2036e-09 4.00

Table 4.7: Error table for the two-dimensional linear advection equation on triangular
meshes with periodic and inflow boundary conditions in Example 4.5. k = 3. ∆t =
h/20 for the RKDG scheme and ∆t = h/30 for the cRKDG scheme.

in [7] to identify troubled cells and the WENO limiter in [23] for reconstruction. For553

two-dimensional problems, we apply the standard TVB minmod limiters in [10] to554

identify troubled cells and reconstruct polynomials, with a suitable parameter M to555

be specified for each problem. For the RKDG method, the limiter is applied in every556

inner stage. For the cRKDG method, the limiter is only applied once at the final557

stage for each time step.558

Since the cRKDG method is equivalent to the LWDG method for linear problems,559

they share the same CFL limit. As has been tested in [23] with the von Neumann560

analysis, this CFL limit will be slightly more restrictive compared with the original561

RKDG method. In our numerical tests, the CFL numbers are taken as 0.3 and 0.16562

for P1 and P2 cRKDG methods, and as 0.3 and 0.18 for P1 and P2 RKDG methods,563

respectively, unless otherwise noted.564

4.2.1. One-dimensional tests.565

Example 4.6 (Buckley–Leverett equation). We solve two Riemann problems as-566

sociated with the Buckley–Leverett equation ∂tu + ∂x
(
4u2/(4u2 + (1− u)2)

)
= 0.567

The initial condition is set as u(x, 0) = ul for x < 0 and u(x, 0) = ur for x ≥ 0, where568

we have ul = 2 and ur = −2 in the first test and ul = −3 and ur = 3 in the second569

test. We set k = 1, 2 and compute to t = 1 with 80 mesh cells. The Godunov flux570

and WENO limiter with TVB constant M = 1 are employed in the simulation. We571

observe that the cRKDG method converges to the correct entropy solutions and its572

numerical results are in good agreement with the original RKDG method. We have573

also plotted the solution by the first-order Roe scheme in green dots. In contrast, the574

solution by the Roe scheme converges to a non-entropy solution.575

Example 4.7 (Sod problem). In this test, we solve a Riemann problem for the576

one-dimensional Euler equations given in Example 4.2. The initial condition is set as577

ρ(x, 0) =

{
1.0, x < 0.5
0.125, x ≥ 0.5

, ρu(x, 0) = 0, E(x, 0) =
1

γ − 1

{
1, x < 0.5

0.1, x ≥ 0.5
,578

where γ = 1.4. We compute to t = 0.2 with N = 100 elements. We use the local Lax–579

Friedrichs flux, WENO limiter and TVB constant M = 1. The solution profiles are580

given in Figure 4.3, from which we can observe that the cRKDG method performs well581

in capturing the shock and contact discontinuity, and its numerical solution matches582

the RKDG solution and the exact solution.583
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Fig. 4.2: Solution profiles for two Riemann problems of the Buckley–Leverett equation
in Example 4.6. N = 80 and M = 1.

0 0.2 0.4 0.6 0.8 1

x

0.1

0.3

0.5

0.7

0.9

1.1

D
e
n

s
it

y

cRKDG

RKDG

Reference

(a) k = 1

0 0.2 0.4 0.6 0.8 1

x

0.1

0.3

0.5

0.7

0.9

1.1

D
e
n

s
it

y

cRKDG

RKDG

Reference

(b) k = 2

0 0.2 0.4 0.6 0.8 1

x

0.1

0.3

0.5

0.7

0.9

1.1

D
e
n

s
it

y

cRKDG

RKDG

Reference

(c) k = 3

Fig. 4.3: Solution profiles for the Sod problem in Example 4.7. N = 100 and M = 1.

Example 4.8 (Interacting blast waves). We consider the interacting blast waves584

with Euler equations using the following initial condition585

(ρ, µ, p) =


(1, 0, 1000), x ≤ 0.1,

(1, 0, 0.01), 0.1 < x ≤ 0.9,

(1, 0, 100), x > 0.9.

586

Reflective boundaries are imposed both at x = 0 and x = 1. We use the local Lax–587

Friedrichs flux, WENO limiter and TVB constant M = 200, and compute the solution588

to t = 0.038. Numerical results are shown in Figure 4.4. The numerical density ρ589

is plotted against the reference solution which is a converged solution computed by590

the fifth-order finite difference WENO scheme on a much refined mesh. It is observed591

that numerical solutions obtained from RKDG and cRKDG methods are very close.592

Example 4.9 (Shu–Osher problem). We consider the Shu–Osher problem de-593

scribing a Mach 3 shock interacting with sine waves in density. This is a problem594

of shock interaction with entropy waves and thus contains both shocks and complex595

smooth region structures [27]. The initial condition is set as596

(ρ, µ, p) =

{
(3.857143, 2.629369, 10.333333), x < −4,

(1 + 0.2 sin(5x), 0, 1), x ≥ −4.
597

The numerical density ρ is plotted at t = 1.8 against the reference solution which598

is computed by the fifth-order finite difference WENO scheme. In Figure 4.5, we599

plot the densities by cRKDG and RKDG methods with the local Lax–Friedrichs flux,600
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Fig. 4.4: Solution profiles for the blast wave problem in Example 4.8. N = 300 and
M = 200.

WENO limiter and TVB constant M = 200. In addition, we also show a zoomed-in601

view of the solution at x ∈ [0.5, 2.5] in Figures 4.5c and 4.5d.602
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Fig. 4.5: Solution profiles for the Shu–Osher problem in Example 4.9 at t = 1.8.
M = 200 and N = 200.

4.2.2. Two-dimensional tests.603

Example 4.10 (Double Mach reflection). This problem is originally studied in [33]604

and describes reflections of planar shocks in the air from wedges. The computational605

domain is [0, 4] × [0, 1], and the reflecting wall lies at the bottom boundary, starting606

from x = 1/6. Therefore, for the bottom boundary, the exact post-shock condition is607

imposed for the region from x = 0 to x = 1/6, while a reflective boundary condition is608

applied to the rest. At t = 0, a right-moving Mach 10 shock is positioned at x = 1/6,609

y = 0 and makes a 60◦ angle with the x-axis. At the top boundary, the flow values610

are set to describe the exact motion of the Mach 10 shock. The boundary conditions611

at the left and the right are inflow and outflow respectively. We compute the solution612

up to t = 0.2 and use the TVB limiter with M = 50. To save space, we only present613

the simulation results with 480 × 120 mesh cells for k = 1 and 1960× 480 mesh cells614

for k = 1, 2 in Figure 4.6. The corresponding zoomed-in figures around the double615

Mach stem are given in Figure 4.7. For this problem, the resolutions of cRKDG and616

RKDG methods are comparable for the same order of accuracy and the same meshes.617

618

Example 4.11 (Forward facing step). This is another classical test studied in [33].619

In this test, a Mach 3 uniform flow travels to the right and enters a wind tunnel (of620

1 length unit wide and 3 length units long), with the step of 0.2 length units high621

located 0.6 length units from the left-hand end of the tunnel. Reflective boundary622

conditions are applied along the wall of the tunnel, while inflow/outflow boundary623
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(a) k = 1, cRKDG, 480× 120 mesh (b) k = 1, RKDG, 480× 120 mesh

(c) k = 1, cRKDG, 1920× 480 mesh (d) k = 1, RKDG, 1920× 480 mesh

(e) k = 2, cRKDG, 1920× 480 mesh (f) k = 2, RKDG, 1920× 480 mesh

Fig. 4.6: Solution profiles for the double Mach problem in Example 4.10 at t = 0.2
with M = 50. 30 equally spaced density contours from 1.3695 to 22.682 are displaced.

conditions are applied at the entrance/exit. At the corner of the step, a singularity624

is present. Unlike in [33], we do not modify our schemes or refine the mesh near the625

corner in order to test the performance of our schemes in handling such singularity.626

We compute the solution up to t = 4 and utilize the TVB limiter with a TVB constant627

M = 50. Due to the space limitation, we only present the simulation results with628

240× 80 mesh cells for k = 1 and 960× 320 mesh cells for k = 1, 2 in Figure 4.8. For629

this problem, the resolutions of cRKDG and RKDG methods are comparable for the630

same order of accuracy and mesh.631

5. Conclusions and future work. In this paper, we present a novel class of632

RKDG methods with compact stencils for solving the hyperbolic conservation laws.633

Our main idea is to replace the DG operator in the inner temporal stages of the fully634

discrete RKDG scheme by a local derivative operator. We prove a Lax–Wendroff635

type theorem which guarantees its convergence to the weak solution. Numerically,636

we observe the new method achieves the optimal convergence rate and does not suf-637

fer from the order degeneracy when the Dirichelet type inflow boundary condition is638

imposed. Moreover, the connections of the new method with the LWDG and ADER-639

DG methods are established. This is the first paper of a few of our future works,640

which include the rigorous stability and error analysis with the energy method, ex-641

tensions to implicit time stepping and convection-dominated problems, and the design642

of structure-preserving schemes based on the cRKDG methods, etc..643
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(a) k = 1, cRKDG, 480× 120 mesh (b) k = 1, RKDG, 480× 120 mesh

(c) k = 1, cRKDG, 1920× 480 mesh (d) k = 1, RKDG, 1920× 480 mesh

(e) k = 2, cRKDG, 1920× 480 mesh (f) k = 2, RKDG, 1920× 480 mesh

Fig. 4.7: Zoomed-in solutions for the double Mach problem in Example 4.10 at t = 0.2
with M = 50. 30 equally spaced density contours from 1.3695 to 22.682 are displaced.
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Appendix A. Proof of Theorem 3.1. Recall that we denote by u
(1)
h = un

h. To648

prove a Lax–Wendroff convergence theorem, we will use the following result simplified649

from [26, Theorems 2.3 and 3.2].650

Theorem A.1 (Shi and Shu, 2018. [26]). Let f be Lipschitz continuous and f ′,651

f ′′ be uniformly bounded in L∞. Consider a numerical scheme in d-dimensional space652

that yields (3.4). For any mesh cell K, its edge e ∈ ∂K, and its neighboring cell Kext,653

suppose ge,K satisfies the following properties on BK = K ∪Kext.654

1. Consistency: if un
h(x) ≡ u is a constant, then ge,K(un

h) = |e|f(u) · νe,K .655

2. Boundedness: |ge,K(un
h)− ge,K(vnh)| ≤ C∥un

h − vnh∥L∞(BK) · hd−1.656

3. Anti-symmetry: ge,K(un
h) + ge,Kext(un

h) = 0, for e = K ∩Kext.657

If un
h converges boundedly almost everywhere to a function u as ∆t, h → 0, then u is658
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(a) k = 1, cRKDG, 240× 80 mesh (b) k = 1, RKDG, 240× 80 mesh

(c) k = 1, cRKDG, 960× 320 mesh (d) k = 1, RKDG, 960× 320 mesh

(e) k = 2, cRKDG, 960× 320 mesh (f) k = 2, RKDG, 960× 320 mesh

Fig. 4.8: Solution profiles for the forward step problem in Example 4.11 at t = 4 with
M = 50. 30 equally spaced density contours from 0.090388 to 6.2365 are displaced.

a weak solution to the conservation law saftisfying (3.6).659

Hence to analyze the convergence of the cRKDG method, it suffices to verify that660

ge,K defined in (3.5) does satisfy three properties in Theorem A.1.661

Lemma A.1. Under assumptions in Theorem 3.1, the combined flux ge,K defined662

in (3.5) satisfies the three properties in Theorem A.1.663

Once Lemma A.1 is proved, Theorem 3.1 follows as a direct consequence of Theorem664

A.1. The rest of the section is dedicated to the proof of Lemma A.1, especially on the665

boundedness of ge,K .666

Lemma A.2. Let ρ be a L2 and L∞ function. Then ∥Πρ∥L∞(K) ≤ C∥ρ∥L∞(K).667

Proof. This lemma can be proved by selecting an orthonormal basis of Pk(K)668

and expand Πρ under this basis. Details are omitted.669

Lemma A.3. For any uh, vh ∈ Vh with ∥uh∥L∞ , ∥vh∥L∞ ≤ C, we have670

(A.1) ∥Π∇ · (f(uh)− f(vh)) ∥L∞(BK) ≤
C

h
∥uh − vh∥L∞(BK).671
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Proof. Applying Lemma A.2 and after some algebraic manipulations, we have672

(A.2)

∥Π∇ · (f(uh)− f(vh)) ∥L∞(BK)

≤C∥∇ · (f(uh)− f(vh)) ∥L∞(BK)

=C∥f ′(uh) · ∇uh − f ′(vh) · ∇vh∥L∞(BK)

=C∥f ′(uh) · ∇uh − f ′(vh) · ∇uh + f ′(vh) · ∇uh − f ′(vh) · ∇vh∥L∞(BK)

≤C∥ (f ′(uh)− f ′(vh)) · ∇uh∥L∞(BK) + C∥f ′(vh) · ∇ (uh − vh) ∥L∞(BK)

≤C∥f ′′∥L∞∥uh − vh∥L∞(BK)∥∇uh∥L∞(BK) + C∥f ′∥L∞∥∇(uh − vh)∥L∞(BK).

673

With the inverse estimate, we have ∥∇uh∥L∞(BK) ≤ Ch−1∥uh∥L∞(BK) and ∥∇(uh −674

vh)∥L∞(BK) ≤ Ch−1∥uh − vh∥L∞(BK). Recall that we assumed f ′, f ′′, and uh are675

bounded in L∞. (A.1) can be obtained after substituting these estimates into (A.2).676

Lemma A.4. ∥u(i)
h − v

(i)
h ∥L∞(BK) ≤ C∥un

h − vnh∥L∞(BK), for all 1 ≤ i ≤ s.677

Proof. We prove the lemma by induction. For i = 1, by definition we have678

u
(1)
h = un

h and v
(1)
h = vnh . The inequality is true with C = 1 for all un

h, v
n
h ∈ Vh.679

Now we assume that the inequality is true with i ≤ m.680

First, we want to show that the induction hypothesis implies681

∥u(i)
h ∥L∞(BK) ≤ C∥un

h∥L∞(BK) ∀1 ≤ i ≤ m.682

Indeed, note that when vnh ≡ 0 on BK , f(vnh) ≡ 0 is a constant. Hence v
(2)
h =683

0− a21∆t∇loc · 0 = 0. Similarly, we have v
(i)
h ≡ 0 for all 1 ≤ i ≤ m. By the induction684

hypothesis, we can see that for all 1 ≤ i ≤ m,685

∥u(i)
h ∥L∞(BK) = ∥u(i)

h − v
(i)
h ∥L∞(BK) ≤ C∥un

h − vnh∥L∞(BK) = C∥un
h∥L∞(BK).686

Then we prove the lemma is true for i = m+ 1. It can be seen that687

∥u(m+1)
h − v

(m+1)
h ∥L∞(BK)

=

∥∥∥∥∥∥
un

h −∆t
m∑
j=1

aijΠ∇ · f
(
u
(j)
h

)−

vnh −∆t
m∑
j=1

aijΠ∇ · f
(
v
(j)
h

)∥∥∥∥∥∥
L∞(BK)

≤∥un
h − vnh∥L∞(BK) +∆t

m∑
j=1

|aij |
∥∥∥Π∇ ·

(
f
(
u
(j)
h

)
− f

(
v
(j)
h

))∥∥∥
L∞(BK)

.

688

According to the first part of the proof,
∥∥∥u(j)

h

∥∥∥
L∞

≤ C ∥un
h∥L∞ ≤ C and

∥∥∥v(j)h

∥∥∥
L∞

≤689

C ∥vnh∥L∞ ≤ C are bounded. Hence with Lemma A.3, it yields690

∥u(m+1)
h − v

(m+1)
h ∥L∞(BK) ≤ ∥un

h − vnh∥L∞(BK) +
C∆t

h

m∑
j=1

|aij |
∥∥∥u(j)

h − v
(j)
h

∥∥∥
L∞(BK)

.691

One can then prove the lemma after using the CFL condition ∆t/h ≤ C and the692

induction hypothesis ∥u(j)
h − v

(j)
h ∥L∞(BK) ≤ C∥un

h − vnh∥L∞(BK) for all 1 ≤ j ≤ m.693

Proof of Lemma A.1. The consistency of ge,K can be obtained from the consis-694

tency of f̂ and the consistency of the RK method
∑s

i=1 bi = 1. The anti-symmetry695
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of ge,K can be obtained from the anti-symmetry of f̂ . The key is to show the bound-696

edness of ge,K as follows.697

|ge,K(uh)− ge,K(vh)| =

∣∣∣∣∣
∫
e

(
s∑

i=1

bi ̂f · νe,K
(
u
(i)
h

))
dl −

∫
e

(
s∑

i=1

bi ̂f · νe,K
(
v
(i)
h

))
dl

∣∣∣∣∣
≤

s−1∑
i=1

∫
e

|bi|
∣∣∣ ̂f · νe,K

(
u
(i)
h

)
− ̂f · νe,K

(
v
(i)
h

)∣∣∣ dl
≤C

s−1∑
i=1

|bi||e|
∥∥∥u(i)

h − v
(i)
h

∥∥∥
L∞

≤ C ∥un
h − vnh∥L∞ · hd−1.

698

Here we have used the Lipschitz continuity of ̂f · νe,K in the second last inequality699

and Lemma A.4 in the last inequality.700
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