

1 **THE RUNGE–KUTTA DISCONTINUOUS GALERKIN METHOD**
2 **WITH COMPACT STENCILS FOR HYPERBOLIC CONSERVATION**
3 **LAWS**

4 QIFAN CHEN*, ZHENG SUN†, AND YULONG XING‡

5 **Abstract.** In this paper, we develop a new type of Runge–Kutta (RK) discontinuous Galerkin
6 (DG) method for solving hyperbolic conservation laws. Compared with the original RKDG method,
7 the new method features improved compactness and allows simple boundary treatment. The key
8 idea is to hybridize two different spatial operators in an explicit RK scheme, utilizing local projected
9 derivatives for inner RK stages and the usual DG spatial discretization for the final stage only.
10 Limiters are applied only at the final stage for the control of spurious oscillations. We also explore the
11 connections between our method and Lax–Wendroff DG schemes and ADER-DG schemes. Numerical
12 examples are given to confirm that the new RKDG method is as accurate as the original RKDG
13 method, while being more compact, for problems including two-dimensional Euler equations for
14 compressible gas dynamics.

15 **Key words.** Discontinuous Galerkin method, Runge–Kutta method, stencil size, high-order
16 numerical method, convergence, hyperbolic conservation laws

17 **AMS subject classifications.** 65L06, 65M12, 65M20, 65M60

18 **1. Introduction.** In this paper, we present a novel class of high-order Runge–
19 Kutta (RK) discontinuous Galerkin (DG) methods for solving hyperbolic conservation
20 laws. Compared with the original RKDG method proposed in [6–10], the new method
21 features more compact stencil sizes and will be hence referred to as the compact RKDG
22 (cRKDG) method throughout the paper.

23 The RKDG method for conservation laws was originally proposed by Cockburn
24 et al. in a series of papers [6–10]. The method combines the DG finite element spatial
25 discretization [25] with the strong-stability-preserving (SSP) RK time discretization [16, 17]. A limiting
26 procedure is employed to control oscillations near physical discontinuities. The method naturally preserves the local conservation, features good
27 hp adaptivity, and can be fitted into complex geometries. Due to its various advantages, the RKDG
28 method has become one of the primary numerical methods for the
29 simulation of hyperbolic conservation laws.

30 This paper aims to further improve the RKDG method by reducing its stencil
31 size within each time step, which can reduce its data communication and lead to
32 potential advantages in parallel computing or implicit time marching. The DG spatial
33 discretization is typically more compact when compared to the finite difference method
34 of the same order. For example, when approximating the first-order spatial derivatives
35 of a function on a given cell, the DG method only utilizes data from immediate
36 neighbors, while the finite difference method may require data from farther nodes
37 for a high-order approximation. However, this spatial discretization advantage is not
38 preserved by the one-step multi-stage RK time stepping. In each temporal stage, the
39 spatial operator calls for information from neighboring cells, hence the stencil of the
40 scheme will be expanded after each stage. For example, for one-dimensional scalar

*Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA.
(chen.11010@osu.edu)

†Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA.
(zsun30@ua.edu)

‡Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA.
(xing.205@osu.edu)

42 conservation laws with Lax–Friedrichs flux, the stencil size is 3 for the first-order
 43 forward-Euler time stepping, but becomes $2s + 1$ for the high-order RK time stepping
 44 with s stages. See Figure 3.1 for an illustration. This issue could be more evident
 45 with a very high-order RK method in multidimensions.

46 There are some existing techniques in the literature circumventing the aforementioned
 47 issue. The main idea is to construct a one-step one-stage method for time
 48 marching. For instance, the Lax–Wendroff temporal discretization can be used as an
 49 alternative, which leads to the so-called Lax–Wendroff DG (LWDG) method [22, 23].
 50 This method utilizes only information from immediate neighbors regardless of its temporal
 51 order. However, implementing this method can be very tedious, especially for
 52 high-order schemes for multidimensional systems, as one needs to compute the high-
 53 order derivatives of the flux function in the Cauchy–Kowalewski procedure. Another
 54 avenue is to employ the Arbitrary DERivative (ADER) time stepping [29, 30], resulting
 55 in the so-called ADER-DG method, which is presented in the spacetime integral form
 56 of the conservation laws and is known to be closely connected to the LWDG scheme.
 57 See [12, 14, 15, 24] and references therein. Besides LWDG and ADER-DG methods,
 58 there is also a stream of research addressing the compactness of DG methods for dis-
 59 cretizing the second or higher-order spatial derivatives [1–3, 5, 20, 21, 31, 32, 34]. These
 60 studies focus on reducing the stencils of spatial operators but are less related with
 61 the issue arising from the multi-stage RK time stepping. If RK methods are used to
 62 discretize the corresponding semi-discrete DG schemes for a time-dependent problem,
 63 the stencil size of the fully discrete schemes still grows with the number of RK stages.

64 In this paper, we propose a very different novel approach to tackle this issue. Our
 65 method is still based on the RK methods for temporal discretization, specifically using
 66 the Butcher form instead of the Shu–Osher form [16]. The key idea is to hybridize
 67 two different types of spatial operators within each time step. For the inner stage(s)
 68 of the RK method, we employ the local derivative operator, which returns the L^2
 69 projection of the spatial derivative of the flux function. While for the very last stage,
 70 we use the DG operator as in the original DG scheme. A limiter will be applied only
 71 once at the end of each time step, if necessary. The proposed cRKDG method has
 72 the following desirable properties.

- 73 • Stencil size: In each time step, the stencil of the cRKDG method only contains
 the current cell and its immediate neighbors, resulting in a compact stencil.
- 74 • Convergence: We prove that if the cRKDG method converges boundedly,
 then its limit is a weak solution of the conservation laws.
- 75 • Accuracy: We numerically observe that the cRKDG method attains $(k + 1)$ th
 order convergence rate when we couple a $(k + 1)$ th order RK method with a
 DG method using k th order spatial polynomials. This matches the optimal
 convergence of the original RKDG method.
- 76 • Boundary error: We numerically observe that the cRKDG method attains
 the same optimal convergence rate when nonhomogeneous Dirichlet boundary
 conditions are imposed. In contrast, the original RKDG method will suffer
 the accuracy degeneracy under this setting [35].

85 In addition to the aforementioned analysis and numerical observations, we con-
 86 duct a linear stability analysis for the cRKDG method and identify its maximum
 87 CFL numbers for both second- and third-order cases. We employ the standard von
 88 Neumann analysis and investigate the eigen-structures of the amplification matrices.
 89 This approach aligns with the methodologies employed in previous works such as [11]
 90 for the RKDG method and [23] for the LWDG method. The details are omitted due
 91 to the space constraint. The maximum CFL numbers are documented in Table 1.1.

92 We can see from the table that the CFL number of the cRKDG method is the same
 93 as that of the RKDG method for the second-order case, and is slightly smaller for the
 94 third-order case. While comparing to the LWDG method, the CFL numbers of the
 cRKDG method are larger.

Maximum CFL	cRKDG	RKDG [11]	LWDG [23]
Second-order	0.333	0.333	0.223
Third-order	0.178	0.209	0.127

Table 1.1: Maximum CFL numbers of the cRKDG method, the RKDG method, and the LWDG method. Here the upwind flux is used for cRKDG method and the RKDG method, and the Lax–Friedrichs flux (3.15) is used for the LWDG method [23].

95
 96 For general nonlinear conservation laws, the cRKDG method proposed in this
 97 paper is different from the LWDG and ADER-DG methods. However these methods
 98 are closely connected. Indeed, for linear conservation laws with constant coefficients,
 99 the cRKDG method and the LWDG method are actually equivalent under certain
 100 choice of the numerical fluxes,¹ although the two methods are designed from totally
 101 different perspectives. Furthermore, the cRKDG method with a special implicit RK
 102 method is equivalent to the ADER-DG method with a special local predictor. As a
 103 result, one can expect that the cRKDG method may share some similar properties
 104 with the LWDG and ADER-DG methods. These connections may bring in new
 105 perspectives that could contribute to the further development and understanding of
 106 existing methods.

107 The rest of the paper is organized as follows. In Section 2, we review the original
 108 RKDG method and explain the formulation of the novel cRKDG method. In Section
 109 3, we summarize the theoretical properties of the cRKDG schemes and postpone some
 110 of the technical proofs to the appendix. Numerical tests are provided in Section 4
 111 and the conclusions are given in Section 5.

112 **2. Numerical schemes.** In this section, we start by briefly reviewing the RKDG
 113 method and then describe in detail the construction of the cRKDG method. For ease
 114 of notation, we focus on scalar conservation laws, but the method can be extended to
 115 systems of conservation laws straightforwardly.

116 **2.1. RKDG schemes.** Consider the hyperbolic conservation laws

117 (2.1)
$$\partial_t u + \nabla \cdot f(u) = 0, \quad u(x, 0) = u_0(x).$$

118 Let $\mathcal{T}_h = \{K\}$ be a partition of the spatial domain in d dimension. We denote by
 119 h_K the diameter of K and $h = \max_{K \in \mathcal{T}_h} h_K$. Let ∂K be the boundary of K . For
 120 each edge $e \in \partial K$, $\nu_{e,K}$ is the unit outward normal vector along e with respect to
 121 K . The finite element space of the DG approximation is defined as $V_h = \{v : v|_K \in$
 122 $\mathcal{P}^k(K), \forall K \in \mathcal{T}_h\}$, where $\mathcal{P}^k(K)$ denotes the set of polynomials of degree up to k
 123 on the cell K . The standard semi-discrete DG method for solving (2.1) is defined as
 124 follows: find $u_h \in V_h$ such that on each $K \in \mathcal{T}_h$,

125 (2.2)
$$\int_K (u_h)_t v_h dx - \int_K f(u_h) \cdot \nabla v_h dx + \sum_{e \in \partial K} \int_e \widehat{f \cdot \nu_{e,K}} v_h dl = 0, \quad \forall v_h \in V_h.$$

¹While with the numerical flux in [23], the LWDG method is not equivalent to the cRKDG method even in the linear case. See Remark 3.4. This fact explains the different CFL numbers in Table 1.1.

126 Here $\widehat{f \cdot \nu_{e,K}}$ is the numerical flux, which can be computed from the exact or approx-
 127 imate Riemann solver defined at the cell interface. For example, we can choose the
 128 Lax–Friedrichs flux of the form

$$129 \quad \widehat{f \cdot \nu_{e,K}} = \frac{1}{2} (f(u_h^{\text{int}}) \cdot \nu_{e,K} + f(u_h^{\text{ext}}) \cdot \nu_{e,K} - \alpha_{e,K} (u_h^{\text{ext}} - u_h^{\text{int}})),$$

130 with $\alpha_{e,K} = \max |\partial_u f \cdot \nu_{e,K}|$. Here u_h^{int} and u_h^{ext} are limits of u_h along e from the
 131 interior and exterior of the cell K .

132 We introduce the discrete operator $\nabla^{\text{DG}} \cdot f : V_h \rightarrow V_h$, defined by

$$133 \quad (2.3) \quad \int_K \nabla^{\text{DG}} \cdot f(u_h) v_h dx = - \int_K f(u_h) \cdot \nabla v_h dx + \sum_{e \in \partial K} \int_e \widehat{f \cdot \nu_{e,K}} v_h dl, \quad \forall v_h \in V_h.$$

134 Therefore the semi-discrete DG scheme (2.2) can be rewritten in the strong form

$$135 \quad (2.4) \quad \partial_t u_h + \nabla^{\text{DG}} \cdot f(u_h) = 0.$$

136 Then we apply an explicit RK method to discretize (2.4) in time. Consider an
 137 explicit RK method associated with the Butcher Tableau

$$138 \quad (2.5) \quad \begin{array}{c|c} c & A \\ \hline & b \end{array}, \quad A = (a_{ij})_{s \times s}, \quad b = (b_1, \dots, b_s),$$

139 where A is a lower triangular matrix in (2.5), namely, $a_{ij} = 0$ if $i > j$. The corre-
 140 sponding RKDG scheme is given by

$$141 \quad (2.6a) \quad u_h^{(i)} = u_h^n - \Delta t \sum_{j=1}^{i-1} a_{ij} \nabla^{\text{DG}} \cdot f(u_h^{(j)}), \quad i = 1, 2, \dots, s,$$

$$142 \quad (2.6b) \quad u_h^{n+1} = u_h^n - \Delta t \sum_{i=1}^s b_i \nabla^{\text{DG}} \cdot f(u_h^{(i)}).$$

144 Note we have $u_h^{(1)} = u_h^n$ for the explicit RK method. In the case that the problem
 145 is nonautonomous, for example, when a time-dependent source term $q(t)$ is included,
 146 $q(t + c_j \Delta t)$ should be included at appropriate places of the RK stages.

147 **2.2. cRKDG schemes.** Similarly to (2.3), we define a local discrete spatial
 148 operator $\nabla^{\text{loc}} \cdot f : V_h \rightarrow V_h$ such that

$$149 \quad (2.7) \quad \int_K \nabla^{\text{loc}} \cdot f(u_h) v_h dx = - \int_K f(u_h) \cdot \nabla v_h dx + \sum_{e \in \partial K} \int_e f(u_h) \cdot \nu_{e,K} v_h dl, \quad \forall v_h \in V_h.$$

In other words, instead of using a numerical flux involving u_h on both sides of the cell interfaces, the values of u_h along ∂K are taken from the interior of the cell K . Therefore it is a local operation defined within K without couplings with the neighboring cells. It is easy to see that when all integrals in (2.7) are computed exactly, $\nabla^{\text{loc}} \cdot f$ indeed returns the projected local derivative

$$\nabla^{\text{loc}} \cdot f(u_h) = \Pi \nabla \cdot f(u_h),$$

150 where Π is the L^2 projection to V_h .

151 With $\nabla^{\text{loc}} \cdot f$ defined above, we propose our new cRKDG scheme in the following
 152 Butcher Tableau form:

153 (2.8a)
$$u_h^{(i)} = u_h^n - \Delta t \sum_{j=1}^{i-1} a_{ij} \nabla^{\text{loc}} \cdot f(u_h^{(j)}), \quad i = 1, 2, \dots, s,$$

154 (2.8b)
$$u_h^{n+1} = u_h^n - \Delta t \sum_{i=1}^s b_i \nabla^{\text{DG}} \cdot f(u_h^{(i)}).$$

156 The main difference with the original RKDG scheme (2.6) is to use the local operator
 157 $\nabla^{\text{loc}} \cdot f$ instead of $\nabla^{\text{DG}} \cdot f$ when evaluating the inner stage values $u_h^{(i)}$ in (2.8a).

158 For optimal convergence, we will couple $(k+1)$ th order RK method with \mathcal{P}^k
 159 spatial elements. The resulted fully discrete scheme is $(k+1)$ th order accurate, which
 160 is the same optimal rate as that of the original RKDG method. For clarity, we list
 161 second- and third-order cRKDG schemes below as examples.

162 *Second-order scheme ($k = 1$).*

163 (2.9a)
$$u_h^{(2)} = u_h^n - \frac{\Delta t}{2} \nabla^{\text{loc}} \cdot f(u_h^n),$$

164 (2.9b)
$$u_h^{n+1} = u_h^n - \Delta t \nabla^{\text{DG}} \cdot f(u_h^{(2)}).$$

166 *Third-order scheme ($k = 2$).*

167 (2.10a)
$$u_h^{(2)} = u_h^n - \frac{1}{3} \Delta t \nabla^{\text{loc}} \cdot f(u_h^n), \quad u_h^{(3)} = u_h^n - \frac{2}{3} \Delta t \nabla^{\text{loc}} \cdot f(u_h^{(2)}),$$

168 (2.10b)
$$u_h^{n+1} = u_h^n - \Delta t \left(\frac{1}{4} \nabla^{\text{DG}} \cdot f(u_h^n) + \frac{3}{4} \nabla^{\text{DG}} \cdot f(u_h^{(3)}) \right).$$

170 *Remark 2.1* (RK methods in Butcher form). For the original RKDG method,
 171 **strong-stability-preserving Runge–Kutta (SSP-RK)** methods are often adopted as
 172 time stepping methods. However, we address that the cRKDG method (2.8) has
 173 to be written based on the Butcher form of RK methods, in order to preserve local
 174 conservation and achieve optimal accuracy. We refer to Section 3.2.1 and Example
 175 4.2 for further details.

176 Since the cRKDG method is not based on SSP-RK time stepping, one can choose
 177 from a larger class of RK schemes without worrying about order barriers brought by
 178 the SSP property [16]. For example, the classical four-stage fourth-order RK method
 179 can be used for the fourth-order scheme.

180 *Remark 2.2* (Limiters). To suppress spurious oscillation near discontinuities, a
 181 minmod or WENO type limiter is often applied after the update of each inner stage
 182 value $u_h^{(i)}$ in the original RKDG method (2.6). For the cRKDG method, the limiter
 183 can be applied at the end of each time step. This is similar to the limiting strategy
 184 for **LWDG method** in [23] and will not change the stencil size of the cRKDG scheme.
 185 But at the same time, it's worth noting that the **total-variation boundedness property**,
 186 **guaranteed for the original RKDG method** [8], may not hold in this case.

187 **3. Properties of the cRKDG method.**

188 **3.1. Stencil size.** In the cRKDG method, all inner stages are discretized with
 189 a local operator only using the information on the cell K . As a result, the stencil of
 190 the cRKDG scheme is determined by that of the last stage (2.8b) only, and its size is

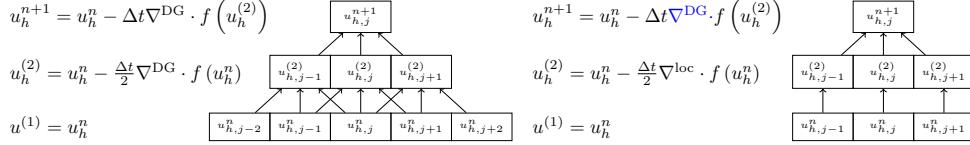


Fig. 3.1: Stencils of RKDG and cRKDG methods with a second-order RK method.

191 the same as the forward-Euler–DG scheme. For example, in the one-dimensional case
 192 with Lax–Friedrichs fluxes, regardless of the number of RK stages, the stencil size of
 193 the cRKDG scheme is identically 3.

194 In contrast, the stencil size of the RKDG scheme grows with the number of
 195 RK inner stages. In the one-dimensional case, the DG operator with Lax–Friedrichs
 196 flux has the stencil size 3. While after the temporal discretization with an s -stage
 197 RK method, the stencil size becomes $2s + 1$. See Figure 3.1 for an example with the
 198 second-order RK method. The difference on the stencil sizes between the two methods
 199 could be more significant in multidimensions.

200 *Proposition 3.1.* The stencil of a cRKDG method of any temporal order only
 201 involves the current mesh cell and its immediate neighbors.

202 3.2. Convergence.

203 **3.2.1. RK methods in Butcher form.** SSP-RK methods are usually used
 204 for time discretization in the original RKDG method. For example, the widely used
 205 second-order SSP-RKDG method is given by

$$206 \quad u_h^{(1)} = u_h^n - \Delta t \nabla^{\text{DG}} \cdot f(u_h^n), \\ 207 \quad u_h^{n+1} = \frac{1}{2} u_h^n + \frac{1}{2} \left(u_h^{(1)} - \Delta t \nabla^{\text{DG}} \cdot f(u_h^{(1)}) \right).$$

209 As above, an SSP-RK method can be written as convex combinations of forward-Euler
 210 steps, which is also referred to as the *Shu–Osher form* in the literature. The method
 211 can also be written in the equivalent *Butcher form* as those in (2.6).

212 In the design of the cRKDG method, one cannot directly replace $\nabla^{\text{DG}} \cdot f$ with
 213 $\nabla^{\text{loc}} \cdot f$ in the inner stages of an SSP-RKDG method in its Shu–Osher form, as this
 214 will cause accuracy reduction and violation of local conservation. For example, the
 215 following scheme is suboptimal and nonconservative:

$$216 \quad (3.1a) \quad u_h^{(1)} = u_h^n - \Delta t \nabla^{\text{loc}} \cdot f(u_h^n),$$

$$217 \quad (3.1b) \quad u_h^{n+1} = \frac{1}{2} u_h^n + \frac{1}{2} \left(u_h^{(1)} - \Delta t \nabla^{\text{DG}} \cdot f(u_h^{(1)}) \right).$$

219 This can be made clear by substituting (3.1a) into (3.1b):

$$220 \quad (3.2) \quad u_h^{n+1} = u_h^n - \frac{\Delta t}{2} \left(\nabla^{\text{loc}} \cdot f(u_h^n) + \nabla^{\text{DG}} \cdot f(u_h^{(1)}) \right).$$

221 One can see that a low-order and nonconservative spatial operator $\nabla^{\text{loc}} \cdot f$ is used to
 222 update u_h^{n+1} , which will cause trouble. Indeed, if we consider its Butcher form, then
 223 the resulting cRKDG method can be written as

$$224 \quad (3.3a) \quad u_h^{(1)} = u_h^n - \Delta t \nabla^{\text{loc}} \cdot f(u_h^n),$$

$$225 \quad (3.3b) \quad u_h^{n+1} = u_h^n - \frac{\Delta t}{2} \left(\nabla^{\text{DG}} \cdot f(u_h^n) + \nabla^{\text{DG}} \cdot f(u_h^{(1)}) \right),$$

227 i.e., replacing the last step (3.1b) or (3.2) by (3.3b). The resulting scheme will have
 228 optimal convergence and the provable local conservation property. Some numerical
 229 tests will be given in Example 4.2 to illustrate the different convergence rates of these
 230 methods. Note that (3.3) and (2.9) are both second-order cRKDG schemes, although
 231 they are different as the associated RK methods are different.

232 In general, for the RKDG method in Butcher form, we can prove that replacing
 233 inner stages with $\nabla^{\text{loc}} \cdot f$ will retain local conservation property (see Theorem 3.1),
 234 and the optimal convergence rate can still be observed numerically (see Example 4.2).

235 **3.2.2. Convergence.** Although all inner stages of the cRKDG method (2.8a)
 236 do not preserve local conservation, the fully discrete numerical scheme is still conserv-
 237 ative as long as the update of u_h^{n+1} in the last stage is discretized with a conserva-
 238 tive method. Indeed, for explicit RK methods, the cRKDG scheme can be formally
 239 written as a one-step scheme after recursive substitutions. By taking $v_h = 1_K$, the
 240 characteristic function on K , in (2.8b) and combining with (2.3), we obtain

$$241 \quad (3.4) \quad \bar{u}_{h,K}^{n+1} = \bar{u}_{h,K}^n - \frac{\Delta t}{|K|} \sum_{e \in \partial K} g_{e,K}(u_h^n),$$

242 where the bar notation is used to represent the cell average,

$$243 \quad (3.5) \quad g_{e,K}(u_h^n) = \int_e \left(\sum_{i=1}^s b_i \widehat{f \cdot \nu_{e,K}}(u_h^{(i)}) \right) \mathrm{d}l$$

244 and $u_h^{(i)}$ can be explicitly computed from (2.8a). (3.4) is written in the conservative
 245 form. Following [26], we obtain a Lax–Wendroff type theorem in Theorem 3.1, with
 246 its detailed proof given in Appendix A. Here we consider scalar conservation laws for
 247 simplicity, and the results can also be extended to multidimensional systems. We will
 248 use C for a generic constant that may depend on the polynomial order k , the stage
 249 number s , the bound of u and u_h , etc., but is independent of Δt and h .

250 **THEOREM 3.1.** *Consider the cRKDG scheme (2.8) for the hyperbolic conservation
 251 law (2.1) on quasi-uniform meshes with the following assumptions:*

252 1. *f is Lipschitz continuous and f' , f'' are uniformly bounded in L^∞ .*

253 2. *The numerical flux $\widehat{f \cdot \nu_{e,K}}(u_h)$ has the following properties:*

254 (a) *Consistency: if $u_h = u_h^{\text{int}} = u_h^{\text{ext}}$, then $\widehat{f \cdot \nu_{e,K}}(u_h) = f(u_h) \cdot \nu_{e,K}$.*

255 (b) *Lipschitz continuity: $|\widehat{f \cdot \nu_{e,K}}(u_h) - \widehat{f \cdot \nu_{e,K}}(v_h)| \leq C \|u_h^n - v_h^n\|_{L^\infty(B_K)}$,*

256 *where $B_K = K \cup K^{\text{ext}}$ is the union of K and its neighboring cell K^{ext} .*

257 3. *The CFL condition $\Delta t/h \leq C$ is satisfied.*

258 *If u_h^n converges boundedly almost everywhere to some function u as $\Delta t, h \rightarrow 0$, then
 259 the limit u is a weak solution to the conservation law (2.1), namely*

$$260 \quad (3.6) \quad \int_{\mathbb{R}^d} u_0 \phi \mathrm{d}x + \int_{\mathbb{R}^d \times \mathbb{R}^+} u \phi_t \mathrm{d}x \mathrm{d}t + \int_{\mathbb{R}^d \times \mathbb{R}^+} f(u) \cdot \nabla \phi \mathrm{d}x \mathrm{d}t = 0, \quad \forall \phi \in C_0^\infty(\mathbb{R}^d \times \mathbb{R}^+).$$

261 **3.3. Accuracy.** In the cRKDG scheme, we apply $\nabla^{\text{loc}} \cdot f$ to approximate spa-
 262 tial derivatives of f for all inner stages. However, $\nabla^{\text{loc}} \cdot f$ may not have the same
 263 approximation property as $\nabla^{\text{DG}} \cdot f$. (For example, for \mathcal{P}^0 elements, $\nabla^{\text{loc}} \cdot f(u_h) =$
 264 $\Pi \nabla \cdot f(u_h) \equiv 0$.) A natural question to ask is whether the cRKDG scheme will still
 265 admit the optimal convergence rate in both space and time.

266 In [18], Grant analyzed perturbed RK schemes with mixed precision. It is pointed
 267 out that replacing certain stages in an RK scheme with a low-precision approxima-
 268 tion may not affect the overall accuracy of the solver. The order conditions of the
 269 methods were systematically studied there. In particular, the work by Grant implies
 270 the following results.

271 **THEOREM 3.2** (Grant, 2022. [18]). *Let $F^\varepsilon(u) = F(u) + \mathcal{O}(\varepsilon)$ be a low-precision
 272 perturbation of $F(u)$. Consider a p th order RK method for solving the ordinary dif-
 273 ferential equation $u_t = F(u)$:*

274 (3.7a)
$$u^{(i)} = u^n + \sum_{j=1}^s a_{ij} F^\varepsilon \left(u_h^{(j)} \right), \quad i = 1, 2, \dots, s,$$

275 (3.7b)
$$u^{n+1} = u^n + \sum_{j=1}^s b_j F \left(u_h^{(j)} \right).$$

277 The local truncation error of the scheme (3.7) is $\mathcal{O}(\Delta t^{p+1}) + \mathcal{O}(\varepsilon \Delta t^2)$.

278 The numerical error of the cRKDG scheme (2.8) can be analyzed by considering
 279 $F = \nabla^{\text{DG}} \cdot f$ and $F^\varepsilon = \nabla^{\text{loc}} \cdot f$ in Theorem 3.2. Although $\nabla^{\text{loc}} \cdot f$ could be low-order
 280 accurate, it may yield $\|\nabla^{\text{DG}} \cdot f(u_h) - \nabla^{\text{loc}} \cdot f(u_h)\| \leq Ch^k$. Hence from Theorem 3.2,
 281 we expect that the local truncation error after one step is $\mathcal{O}(\Delta t^{p+1} + h^k \Delta t^2 + h^{k+1} \Delta t)$.
 282 Under the standard CFL condition for hyperbolic conservation laws, we have $\Delta t \leq$
 283 Ch , hence the local truncation error is $\mathcal{O}(\Delta t^{\min(p+1, k+2)})$. Hence a heuristic global
 284 error estimate is $\|u_h^n(\cdot) - u(\cdot, t^n)\| = \mathcal{O}(\Delta t^{\min(p, k+1)})$, which is the same as the original
 285 RKDG scheme.

286 However, the above argument is far from rigorous error estimates. For example,
 287 estimates in Theorem 3.2 rely on the derivatives of F and $F - F^\varepsilon$, which are not
 288 defined for $\nabla^{\text{DG}} \cdot f$ and $\nabla^{\text{DG}} \cdot f - \nabla^{\text{loc}} \cdot f$. A detailed fully discrete error analysis
 289 using an energy type argument is still needed and is postponed to our future work.

290 **3.4. Boundary Error.** When the nonhomogeneous Dirichlet boundary condi-
 291 tion is used, it is known that, if one directly uses the exact inflow data for RK inner
 292 stages, the RKDG method for hyperbolic conservation laws may suffer order degen-
 293 eration of the accuracy [35]. This order degeneration is not specific to DG schemes
 294 but can also arise with other spatial discretization methods [4].

295 The reason for such order deductions relates to the fact that some RK stages
 296 are designed to be of low stage order, which means that they should be low-order
 297 approximations of the true solutions at the corresponding stages. These low-order
 298 stages are combined in a subtle way with the coefficients in the Butcher Tableau so
 299 that they can build up a high-order accurate solution at t^{n+1} . If we replace the low-
 300 order RK stage with the exact boundary data, we also break the subtle cancellation
 301 of the error terms, which will lead to a low-order accurate approximation at t^{n+1} .

302 Compared with the RKDG method, the cRKDG method uses the local operator to
 303 approximate the values at the inner stages. By doing so, it does not need any exterior
 304 information and will avoid introducing the boundary data in the update of the inner
 305 stage values. Therefore, the boundary condition is only needed in the last stage to
 306 update u_h^{n+1} , and this will automatically maintain the optimal convergence rate of
 307 the cRKDG method. A detailed analysis involving the nonhomogeneous boundary
 308 condition will be provided in future work.

309 **3.5. Connections with other DG methods.**

310 **3.5.1. Equivalence with Lax–Wendroff DG in special cases.** DG methods
 311 with Lax–Wendroff type time discretization were studied in [23]. The main idea there
 312 was to consider the high-order temporal Taylor expansion

313 (3.8) $u(x, t + \Delta t) = u(x, t) + \Delta t u_t(x, t) + \frac{\Delta t^2}{2!} u_{tt}(x, t) + \frac{\Delta t^3}{3!} u_{ttt}(x, t) + \dots$

314 and then apply the Lax–Wendroff procedure (or the so-called Cauchy–Kowalewski
 315 procedure) to convert all temporal derivatives to spatial derivatives. For example, for
 316 the one-dimensional problem with a third-order expansion, this gives

317 $u^{n+1} = u^n - \Delta t F(u)_x,$

318 where

319
$$F(u) = f(u) + \frac{\Delta t}{2} f'(u) u_t + \frac{\Delta t^2}{6} (f''(u)(u_t)^2 + f'(u) u_{tt}) + \dots,$$

$$u_t = -f(u)_x, u_{tt} = -(f'(u) u_t)_x, u_{ttt} = -(f''(u)(u_t)^2 + f'(u) u_{tt})_x, \text{ etc.}$$

320 The LWDG method [23] is then given as

321 $u_h^{n+1} = u_h^n - \Delta t \nabla^{\text{DG}} \cdot F(u_h^n)$

322 with a suitable choice of the numerical flux $\widehat{F \cdot \nu_{e,K}}$.

323 Although for a generic nonlinear problem, the RK methods suffer the so-called
 324 order barrier and we typically need $s > p$ for high-order RK methods. While for linear
 325 autonomous problems, it is possible to construct a p -stage and p th order RK method
 326 [17]. The following theorem states that for linear conservation laws with constant
 327 coefficients and with a certain choice of the numerical flux, the LWDG method is the
 328 same as the cRKDG method with such p -stage and p th order RK method.

329 THEOREM 3.3. *Consider linear conservation laws with constant coefficients. Suppose $\nabla^{\text{DG}} \cdot f$ is linear in the sense that*

331
$$\nabla^{\text{DG}} \cdot f \left(\sum_{j=1}^s b_j u_h^{(j)} \right) = \sum_{j=1}^s b_j \nabla^{\text{DG}} \cdot f \left(u_h^{(j)} \right).$$

332 *Then when a specific numerical flux is chosen, as indicated in (3.14), the LWDG
 333 method with p th temporal order is equivalent to a cRKDG method using an explicit
 334 RK method of p th order with p stages.*

335 *Proof.* For ease of notation, we will only consider the scalar conservation law
 336 $\partial_t u + \nabla \cdot (\beta u) = 0$, where β is a constant vector. But the argument can be similarly
 337 generalized to multidimensional linear systems with constant coefficients. We will also
 338 denote by $\nabla^{\text{DG}} \cdot f(v_h) = \nabla^{\text{DG}} \cdot (\beta v_h)$ and $\nabla^{\text{loc}} \cdot f(v_h) = \nabla^{\text{loc}} \cdot (\beta v_h)$ for any $v \in V_h$.

339 We will show that both schemes can be written in the following form.

340 (3.9) $u_h^{n+1} = u_h^n - \Delta t \nabla^{\text{DG}} \cdot \left(\beta \sum_{i=0}^{p-1} \frac{\Delta t^i}{(i+1)!} L_h^i u_h^n \right), \quad \text{with} \quad L_h u_h^n := -\nabla^{\text{loc}} \cdot (\beta u_h^n).$

341 Define $Lu = -\nabla \cdot (\beta u)$. Using the conservation law, we have

342 $u_t = -\nabla \cdot (\beta u) = Lu \quad \text{and} \quad u_{tt} = -\nabla \cdot (\beta u_t) = -\nabla \cdot (\beta Lu).$

343 Using a recursive argument, we have $\partial_t^j u = -\nabla \cdot (\beta L^{j-1} u)$, for all $j = 0, 1, \dots, p$.
 344 Substituting it into the Taylor expansion (3.8), we have

345
$$u^{n+1} = u^n - \Delta t \nabla \cdot F(u^n), \quad F(u^n) = \beta \sum_{i=1}^p \frac{\Delta t^{i-1}}{i!} L^{i-1} u^n.$$

346 In the LWDG method, we take the solution to be from V_h and approximate the outer
 347 spatial derivative $\nabla \cdot F$ with the DG operator $\nabla^{\text{DG}} \cdot F$ to obtain

348 (3.10)
$$u_h^{n+1} = u_h^n - \Delta t \nabla^{\text{DG}} \cdot F(u_h^n), \quad F(u_h^n) = \beta \sum_{i=0}^{p-1} \frac{\Delta t^i}{(i+1)!} L^i u_h^n,$$

349 after changing the summation index in the definition of F . Finally, note that when β
 350 is constant, we have $L u_h^n = -\nabla \cdot (\beta u_h^n) = \Pi(-\nabla \cdot (\beta u_h^n)) = -\nabla^{\text{loc}} \cdot (\beta u_h^n) := L_h u_h^n$.
 351 Hence the LWDG scheme (3.10) can be written in the form of (3.9).

352 Now consider the cRKDG method with explicit time stepping (2.8). Using the
 353 linearity of $\nabla^{\text{DG}} \cdot f$, we have

354 (3.11)
$$u_h^{n+1} = u_h^n - \Delta t \nabla^{\text{DG}} \cdot \left(\beta \sum_{i=1}^p b_i u_h^{(i)} \right).$$

355 For explicit methods, we can use forward substitution to obtain

356 (3.12)
$$u_h^{(i)} = \sum_{l=0}^{i-1} d_{il} (\Delta t L_h)^l u_h^n$$

357 from (2.8a), where d_{il} is defined recursively as $d_{i0} = 1$ and $d_{il} = \sum_{m=l}^{i-1} a_{im} d_{m,l-1}$.
 358 Substituting (3.12) into (3.11) and exchanging the summation indices, we have

359 (3.13)
$$\begin{aligned} u_h^{n+1} &= u_h^n - \Delta t \nabla^{\text{DG}} \cdot \left(\beta \sum_{i=1}^p \sum_{l=0}^{i-1} b_i d_{il} (\Delta t L_h)^l u_h^n \right) \\ &= u_h^n - \Delta t \nabla^{\text{DG}} \cdot \left(\beta \sum_{l=0}^{p-1} \left(\sum_{i=l+1}^p b_i d_{il} \right) (\Delta t L_h)^l u_h^n \right). \end{aligned}$$

360 Note that both $-\nabla^{\text{DG}} \cdot (\beta v_h)$ and $L_h v_h$ are approximations to $\partial_t v_h$. To achieve p th
 361 order temporal accuracy, we need (3.13) to match the Taylor series after replacing
 362 both spatial operators to ∂_t . Hence $\sum_{i=l+1}^p b_i d_{il} = 1/(l+1)!$. Substituting it into
 363 (3.13) gives (3.9).

364 Finally, we consider the numerical fluxes of the LWDG method and the cRKDG
 365 method. The numerical flux for the LWDG method is $\widehat{F \cdot \nu_{e,K}}(u_h^n)$. For the cRKDG
 366 method, from (2.6b), one can see that the numerical flux in the update of u_h^{n+1} is
 367 $\sum_{j=1}^s b_j \widehat{f \cdot \nu_{e,K}}(u_h^{(j)})$. Therefore, the LWDG method and the cRKDG method are
 368 equivalent if we have

369 (3.14)
$$\widehat{F \cdot \nu_{e,K}}(u_h^n) = \sum_{j=1}^s b_j \widehat{f \cdot \nu_{e,K}}(u_h^{(j)}).$$

370 \square

371 *Remark 3.4.* For the LWDG method studied in [23], the authors adopted the
 372 Lax–Friedrichs flux

373 (3.15)
$$\widehat{F \cdot \nu_{e,K}} = \frac{1}{2} (F(u_h^{\text{int}}) \cdot \nu_{e,K} + F(u_h^{\text{ext}}) \cdot \nu_{e,K} - \alpha_{e,K} (u_h^{\text{ext}} - u_h^{\text{int}})),$$

374 where $\alpha_{e,K} = \max |\partial_u f \cdot \nu_{e,K}|$. Note that the resulted scheme will be different from the
 375 cRKDG method with the Lax–Friedrichs flux. This is because the cRKDG method
 376 will include the jump terms of the inner stages $u_h^{(j)}$, $j = 1, \dots, s$, but the LWDG
 377 method will only include the jump terms of u_h^n , which leads to different numerical
 378 viscosity used in these numerical fluxes (hence, (3.14) is not satisfied). For the linear
 379 scalar case, the Lax–Friedrichs flux for the cRKDG method retrieves the upwind flux,
 380 whereas the Lax–Friedrichs flux for the LWDG method (3.15) does not retrieve the
 381 upwind flux. However, if we also choose the upwind flux for $\widehat{F \cdot \nu_{e,K}}$ in the LWDG
 382 method, the resulting scheme will be identical to the cRKDG method with the upwind
 383 flux (or, equivalently, the Lax–Friedrichs flux). From Theorem 3.3 and the discussion
 384 here, one can see that the cRKDG method is closely related to the LWDG method in
 385 the linear case, which has been carefully investigated in [23].

386 *Remark 3.5.* The maximum CFL numbers of the cRKDG method and the LWDG
 387 method in [23], in comparison to those of the RKDG method, are given in Table 1.1.
 388 The CFL numbers of the LWDG method (with Lax–Friedrichs flux) are about 60%
 389 to 67% of those of the corresponding RKDG method. While the cRKDG method
 390 achieves the same CFL number as the RKDG method for the second-order case, its
 391 CFL number for the third-order case is about 85% of that of the RKDG method.
 392 The difference in the CFL numbers of the cRKDG method and the LWDG method
 393 is indeed caused by the difference in the numerical fluxes.

394 *Remark 3.6.* For nonlinear problems, the LWDG and the cRKDG methods are
 395 completely different. The LWDG method requires to precompute the Jacobian and
 396 the high-order derivatives of the flux function, which can be very cumbersome in the
 397 implementation of the multidimensional systems. However, the cRKDG method does
 398 not involve such complications and can be programmed as that of the original RKDG
 399 method.

400 *Remark 3.7.* A “new” LWDG method was proposed in [19] and then analyzed
 401 in [28]. Note this method is different from the LWDG method in [23] in the linear
 402 case and is also different from the cRKDG method.

403 **3.5.2. Connections with the ADER-DG schemes with a local predictor.**
 404 The ADER approach was proposed in [29,30] as a high-order extension of the classical
 405 Godunov scheme. Then the methods have been extended in different ways and under
 406 both the finite volume and the DG framework. Here we consider one version of the
 407 ADER-DG scheme with a local predictor in [12,13].

408 Multiply the equation (2.1) with a test function $v_h \in V_h$ over a spacetime element
 409 $K \times [t^n, t^{n+1}]$. Replacing u with $u_h \in V_h$ yields

410
$$\int_{t^n}^{t^{n+1}} \int_K \partial_t u_h v_h \, dx \, dt + \int_{t^n}^{t^{n+1}} \int_K \nabla \cdot f(u_h) v_h \, dx \, dt = 0.$$

411 Note $v_h = v_h(x)$ is independent of t . Then we apply Newton-Lebniz rule to ∂_t and

412 perform integration by parts for $\nabla \cdot$, which yields

$$413 \quad \int_K (u_h^{n+1} - u_h^n) v_h dx - \int_{t^n}^{t^{n+1}} \int_K f(u_h) \cdot \nabla v_h dx dt + \int_{t^n}^{t^{n+1}} \int_{\partial K} f(u_h) \cdot \nu_{e,K} v_h dl dt = 0.$$

414 The ADER-DG method with a local predictor can be obtained by replacing u_h in the
 415 spatial flux with a local prediction q_h and then replacing the cell interface term with
 416 the numerical flux. To be more specific, letting $\mathcal{P}_{K,n}^{k,s} := \mathcal{P}^k(K) \times \mathcal{P}^s([t^n, t^{n+1}])$ be
 417 the polynomial space on the spacetime element $K \times [t^n, t^{n+1}]$, the ADER-DG method
 418 is written as the following: find $u_h \in V_h$ such that

(3.16)

$$419 \quad \int_K (u_h^{n+1} - u_h^n) v_h dx - \int_{t^n}^{t^{n+1}} \int_K f(q_h) \cdot \nabla v_h dx dt + \int_{t^n}^{t^{n+1}} \sum_{e \in \partial K} \int_e \widehat{f \cdot \nu_{e,K}}(q_h) v_h dl dt = 0$$

420 holds for all $v_h \in V_h$, where on each spacetime element $K \times [t^n, t^{n+1}]$, $q_h = q_h(x, t) \in$
 421 $\mathcal{P}_{K,n}^{k,s}$ is a local predictor obtained through a local spacetime Galerkin method

$$422 \quad (3.17) \quad \int_{t^n}^{t^{n+1}} \int_K (\partial_t q_h + \nabla \cdot f(q_h)) w_h dx dt = 0, \quad \forall w_h = w_h(x, t) \in \mathcal{P}_{K,n}^{k,s},$$

423 with $q_h(x, t^n) = u_h^n(x)$. Note (3.17) can then be converted into a system of nonlinear
 424 equations on each element K and solved locally. By adopting the notations in Section
 425 2, we can write the ADER-DG scheme (3.16) with the local predictor (3.17) into the
 426 following strong form:

$$427 \quad (3.18a) \quad u_h^{n+1} = u_h^n - \int_{t^n}^{t^{n+1}} \nabla^{\text{DG}} \cdot f(q_h) dt,$$

$$428 \quad (3.18b) \quad \partial_t q_h = -\Pi_{\text{st}} \nabla \cdot f(q_h),$$

430 where $u_h^n, u_h^{n+1} \in V_h$, $q_h \in \mathcal{P}_{K,n}^{k,s}$, and Π_{st} is the local L^2 projection to the spacetime
 431 polynomial space $\mathcal{P}_{K,n}^{k,s}$.

432 To see the connection between (3.18) and the cRKDG scheme (2.8), we rewrite
 433 both equations in (3.18) in the integral form, which yield

$$434 \quad (3.19) \quad u_h^{n+1} = u_h^n - \int_{t^n}^{t^{n+1}} \nabla^{\text{DG}} \cdot f(q_h) dt \quad \text{and} \quad q_h^{n+1} = q_h^n - \int_{t^n}^{t^{n+1}} \Pi_{\text{st}} \nabla \cdot f(q_h) dt.$$

435 Next, we apply a collocation method with s points to integrate (3.19). Suppose this
 436 method is associated with the Butcher Tableau (2.5). Then with $q_h^n = u_h^n$, we get (the
 437 equations for q_h^{n+1} and $u_h^{(i)}$ are omitted)

$$438 \quad (3.20a) \quad q_h^{(i)} = u_h^n - \Delta t \sum_{j=1}^s a_{ij} (\Pi_{\text{st}} \nabla \cdot f)^{(j)}, \quad i = 1, 2, \dots, s,$$

$$439 \quad (3.20b) \quad u_h^{n+1} = u_h^n - \Delta t \sum_{i=1}^s b_i \nabla^{\text{DG}} \cdot f \left(q_h^{(i)} \right),$$

441 where

$$442 \quad (\Pi_{\text{st}} \nabla \cdot f)^{(j)} = \left(\Pi_{\text{st}} \nabla \cdot f \left(\sum_{l=1}^s q_h^{(l)}(x) b_l(t) \right) \right) \Big|_{t=t+c_j \Delta t},$$

443 and $\{b_l(t)\}_{l=1}^s$ are the Lagrange basis functions associated with the collocation points.
 444 Comparing (3.20) with (2.8), we can see that after applying a collocation type
 445 approximation, the ADER-DG method with a local predictor can be written in a
 446 similar form as that of the cRKDG method. The main difference between the two
 447 methods comes from the definition of the local operator. In the ADER-DG method,
 448 the local operator involves the spacetime projection $K \times [t^n, t^{n+1}]$, which couples all
 449 s stages in each of the terms of $(\Pi_{\text{st}} \nabla \cdot f)^{(j)}$, hence an implicit approach is needed to
 450 solve for $q_h^{(i)}$. While in the cRKDG method, the local operator only involves projection
 451 in space and hence is decoupled among different temporal stages – only the term $q_h^{(j)}$
 452 appears in $\nabla^{\text{loc}} \cdot f(q_h^{(j)})$.

453 In light of the above analysis, we have the following theorem.

454 **THEOREM 3.8.** *Suppose we replace Π_{st} with the spatial only projection Π and
 455 apply a collocation method with s points to integrate (3.19). Then the ADER-DG
 456 method with a $\mathcal{P}_{K,n}^{k,s}$ local predictor (3.18) becomes a cRKDG method associated with
 457 a collocation type RK method with s stages.*

458 Moreover, for linear conservation laws with constant coefficients, we have the
 459 following equivalence theorem.

460 **THEOREM 3.9.** *For linear hyperbolic conservation laws with constant coefficients,
 461 the ADER-DG method (3.16) with a $\mathcal{P}_{K,n}^{k,s}$ local predictor (3.17) is equivalent to the
 462 cRKDG method with the corresponding RK method being the (implicit) Gauss method.*

463 *Proof.* For ease of notation, we will only consider the scalar case $f(u) = \beta u$ with
 464 β being a constant vector. But the system case can be proved similarly. Note that

$$465 \quad \Pi_{\text{st}} \nabla \cdot f(q_h) = \Pi_{\text{st}} \nabla \cdot (\beta q_h) = \nabla \cdot (\beta q_h) = \Pi \nabla \cdot (\beta q_h) = \nabla^{\text{loc}} \cdot f(q_h) \in \mathcal{P}_{K,n}^{k,s}.$$

466 Therefore, only considering its dependence on t , $\Pi_{\text{st}} \nabla \cdot f(q_h)$ is a temporal polynomial
 467 of degree at most s . Using the exactness of Gauss quadrature, the temporal integration
 468 in (3.19) can be replaced by an s -stage Gauss collocation method. Hence (3.19) is
 469 equivalent to (3.20) with the RK method chosen as the Gauss method. Moreover,
 470 note that

$$471 \quad \begin{aligned} (\Pi_{\text{st}} \nabla \cdot f)^{(j)} &= \left(\nabla \cdot \left(\beta \sum_{l=1}^s q_h^{(l)}(x) b_l(t) \right) \right) \Big|_{t=t+c_j \Delta t} \\ &= \sum_{l=1}^s \nabla \cdot \left(\beta q_h^{(l)}(x) \right) b_l(t + c_j \Delta t) = \nabla \cdot \left(\beta q_h^{(j)}(x) \right) = \nabla^{\text{loc}} \cdot f(q_h^{(j)}). \end{aligned}$$

472 We can replace $(\Pi_{\text{st}} \nabla \cdot f)^{(j)}$ by $\nabla^{\text{loc}} \cdot f(q_h^{(j)})$ in (3.20). Then (3.20) becomes the
 473 cRKDG method, where the RK method is the s -stage Gauss method. \square

474 **4. Numerical results.** In this section, we present the numerical results of our
 475 cRKDG schemes and compare them with those of the original RKDG schemes. We
 476 always couple a \mathcal{P}^k -DG method with a $(k+1)$ th-order RK method. Unless other-
 477 wise stated, for the second- and the third-order schemes, we use the SSP-RK time
 478 discretization for the original RKDG method, and (2.9) and (2.10) for the cRKDG
 479 method, respectively. For the fourth- and the fifth-order schemes, we use the classi-
 480 cal forth-order RK and the fifth-order Runge–Kutta–Fehlberg methods for both the
 481 original and cRKDG methods, respectively.

482 **4.1. Accuracy tests.** In this section, we test the accuracy of cRKDG schemes
 483 in different settings and demonstrate the effectiveness of cRKDG schemes for handling
 484 nonhomogenous Dirichlet boundary conditions.

485 **4.1.1. One-dimensional tests.**

486 *Example 4.1* (Burgers equations). We solve the nonlinear Burgers equation in
 487 one dimension with periodic boundary conditions: $\partial_t u + \partial_x (u^2/2) = 0$, $x \in (-\pi, \pi)$,
 488 $u(x, 0) = \sin(x)$. We use the Godunov flux and compute to $t = 0.2$ on both uniform
 489 and nonuniform meshes with spatial polynomial degrees $k = 1, 2, 3, 4$. We compare the
 490 numerical results of RKDG and cRKDG methods. Their L^2 errors and convergence
 491 rates are given in Table 4.2. It can be observed that both schemes could achieve the
 492 designed optimal order of accuracy with comparable errors on the same meshes. We
 493 have also tested our schemes on randomly perturbed meshes, whose numerical results
 494 are omitted due to the space limit, and similar convergence rates are observed.

		N	$k = 1$		$k = 2$		$k = 3$		$k = 4$	
			L^2 error	order						
uniform	RKDG	40	2.7386e-03	-	3.8131e-05	-	6.3822e-07	-	1.0505e-08	-
		80	6.9998e-04	1.97	4.9991e-06	2.95	4.1961e-08	3.93	3.5188e-10	4.90
		160	1.7637e-04	1.99	6.4554e-07	2.95	2.7101e-09	3.95	1.1821e-11	4.90
		320	4.4366e-05	1.99	8.2632e-08	2.97	1.7286e-10	3.97	3.8814e-13	4.93
	cRKDG	40	2.3502e-03	-	3.4537e-05	-	5.9497e-07	-	1.0241e-08	-
		80	5.9868e-04	1.97	4.5379e-06	2.93	3.8796e-08	3.94	3.3912e-10	4.92
		160	1.5073e-04	1.99	5.8341e-07	2.96	2.4857e-09	3.96	1.1335e-11	4.90
		320	3.7882e-05	1.99	7.4902e-08	2.96	1.5801e-10	3.98	3.7040e-13	4.94
nonuniform	RKDG	40	4.2044e-03	-	7.2335e-05	-	1.6005e-06	-	3.5190e-08	-
		80	1.0118e-03	2.06	9.6082e-06	2.91	1.0456e-07	3.94	1.1728e-09	4.91
		160	2.5507e-04	1.99	1.2302e-06	2.97	6.8121e-09	3.94	3.9468e-11	4.89
		320	6.4143e-05	1.99	1.5724e-07	2.97	4.3541e-10	3.97	1.2971e-12	4.93
	cRKDG	40	3.7976e-03	-	6.8122e-05	-	1.5490e-06	-	3.4695e-08	-
		80	9.0218e-04	2.07	8.9388e-06	2.93	9.8699e-08	3.97	1.1449e-09	4.92
		160	2.2598e-04	2.00	1.1464e-06	2.96	6.4244e-09	3.94	3.8321e-11	4.90
		320	5.6822e-05	1.99	1.4645e-07	2.97	4.0891e-10	3.97	1.2563e-12	4.93

Table 4.2: L^2 error of RKDG and cRKDG methods for the one-dimensional Burgers equation on uniform and nonuniform meshes in Example 4.1. The nonuniform meshes are generated by perturbing every other node by $h/3$. $\Delta t = 0.1h$ for $k = 1, 2$ and $\Delta t = 0.05h$ for $k = 3, 4$.

495 *Example 4.2* (Euler equations and validation for Section 3.2.1). In this test,
 496 we solve the following nonlinear system of one-dimensional Euler equations $\partial_t u +$
 497 $\partial_x f(u) = 0$ on $(0, 2)$, where $u = (\rho, \rho w, E)^T$, $f(u) = (\rho w, \rho w^2 + p, w(E + p))^T$, $E =$
 498 $p/(\gamma - 1) + \rho w^2/2$ with $\gamma = 1.4$. The initial condition is set as $\rho(x, 0) = 1 + 0.2 \sin(\pi x)$,
 499 $w(x, 0) = 1$, $p(x, 0) = 1$, and the periodic boundary condition is imposed. The exact
 500 solution is $\rho(x, t) = 1 + 0.2 \sin(\pi(x - t))$, $w(x, t) = 1$, $p(x, t) = 1$. We use the local
 501 Lax–Friedrichs flux to compute to $t = 2$.

502 First, in Table 4.3, we show the numerical error of the cRKDG method with
 503 the CFL numbers close to those obtained from the linear stability analysis, which is
 504 0.3 for the second-order case and 0.16 for the third-order case. As anticipated, the
 505 cRKDG method can achieve their designed orders of accuracy and remains stable for
 506 this nonlinear system when refining the mesh.

507 Next, we clarify the comments in Section 3.2.1 and explain why the alternations
 508 in the cRKDG scheme should be made based on the Butcher form but not the Shu–

509 **Osher form.** We implement the schemes (3.2) and (3.3) and observe suboptimal
 510 convergence for scheme (3.2) and optimal convergence for scheme (3.3), as shown in
 511 Table 4.4. We have also done a similar test to examine the schemes based on the third-
 512 order SSP-RK (SSP-RK3) time discretization coupled with \mathcal{P}^2 spatial polynomials.
 513 A suboptimal convergence rate is observed when we modify the scheme in its Shu-
 514 Osher form (similar to (3.1), or equivalently, (3.2)), and the optimal convergence rate
 515 is observed when we modify the scheme in its Butcher form (similar to (3.3)).

N	(2.9), $k = 1$				(2.10), $k = 2$			
	L^2 error	order	L^∞ error	order	L^2 error	order	L^∞ error	order
20	8.6401e-04	-	1.5693e-03	-	4.8592e-05	-	9.6982e-05	-
40	2.1391e-04	2.01	4.3033e-04	1.87	6.3337e-06	2.94	1.3105e-05	2.89
80	5.3413e-05	2.00	1.1235e-04	1.94	7.9905e-07	2.99	1.6569e-06	2.98
160	1.3096e-05	2.03	2.6785e-05	2.07	9.9311e-08	3.01	2.0228e-07	3.03
320	3.3054e-06	1.99	7.0220e-06	1.93	1.2477e-08	2.99	2.5741e-08	2.97
640	8.3321e-07	1.99	1.8091e-06	1.96	1.5656e-09	2.99	3.2598e-09	2.98
1280	2.0304e-07	2.04	4.1002e-07	2.14	1.9242e-10	3.02	3.8229e-10	3.09
2560	5.1018e-08	1.99	1.0552e-07	1.96	2.4061e-11	3.00	4.7861e-11	3.00

Table 4.3: L^2 and L^∞ error for one-dimensional Euler equations in Example 4.2. CFL is 0.3 for $k = 1$ and 0.16 for $k = 2$.

N	Wrong implementation with Shu-Osher form				Correct implementation with Butcher form			
	Scheme (3.2), $k = 1$		SSP-RK3, $k = 2$		Scheme (3.3), $k = 1$		SSP-RK3, $k = 2$	
	L^2 error	order	L^2 error	order	L^2 error	order	L^2 error	order
20	2.2503e-002	-	8.42142e-04	-	8.3248e-04	-	4.7661e-05	-
40	1.1013e-002	1.03	2.4793e-04	1.93	1.9946e-04	2.06	6.1420e-06	2.96
80	5.4484e-003	1.03	6.3363e-05	1.97	4.9608e-05	2.01	7.7938e-07	2.98

Table 4.4: L^2 error for one-dimensional Euler equations in Example 4.2. CFL is 0.1.

516 **Example 4.3** (Boundary error). In this example, we test the problem [35, Section
 517 4] to examine the possible accuracy degeneration due to the nonhomogeneous bound-
 518 ary condition. We use the \mathcal{P}^2 -DG method with upwind flux and the third-order RK
 519 scheme to solve $\partial_t u + \partial_x u = 0$ on domain $(0, 4\pi)$. The initial condition is set as
 520 $u(x, 0) = \sin(x)$ and the exact solution is given by $u(x, t) = \sin(x - t)$. Both the
 521 periodic and the inflow boundary conditions are considered in our test.

522 We set $\Delta t = 0.16h$ and compute to $t = 20$. Numerical errors and convergence
 523 rates are listed in Table 4.5. It could be seen that the original RKDG method achieves
 524 the optimal convergence rate for the periodic boundary condition but a degenerated
 525 rate for the inflow boundary condition. While in contrast, the cRKDG method is able
 526 to achieve optimal convergence rates for both types of boundary conditions.

527 **4.1.2. Two-dimensional tests.** The triangular meshes in this section are gen-
 528 erated by taking a cross in each cell of the $N \times N$ uniform square meshes.

529 **Example 4.4** (Euler equations in two dimensions). We solve the nonlinear Euler
 530 equations in two dimensions with the periodic boundary condition: $\partial_t u + \partial_x f(u) +$
 531 $\partial_y g(u) = 0$, where $u = (\rho, \rho w, \rho v, E)^T$, $f(u) = (\rho w, \rho w^2 + p, \rho w v, w(E + p))^T$, $g(u) =$
 532 $(\rho v, \rho w v, \rho v^2 + p, v(E + p))^T$, $E = p/(\gamma - 1) + \rho(w^2 + v^2)/2$ with $\gamma = 1.4$. The initial
 533 condition is set as $\rho(x, y, 0) = 1 + 0.2 \sin(\pi(x + y))$, $w(x, y, 0) = 0.7$, $v(x, y, 0) = 0.3$,
 534 $p(x, y, 0) = 1$. The exact solution is $\rho(x, y, t) = 1 + 0.2 \sin(\pi(x + y - (w + v)t))$, $w = 0.7$,

	N	periodic boundary				inflow boundary			
		L^2 error	order	L^∞ error	order	L^2 error	order	L^∞ error	order
RKDG	40	4.5605E-04	-	4.0696E-04	-	3.8572E-04	-	3.8889E-04	-
	80	5.5726E-05	3.03	5.1832E-05	2.97	4.8763E-05	2.98	4.8941E-05	2.99
	160	6.9243E-06	3.01	6.5389E-06	2.99	6.3065E-06	2.95	7.2957E-06	2.75
	320	8.6412E-07	3.00	8.2105E-07	2.99	8.4142E-07	2.91	1.7155E-06	2.09
	640	1.0796E-07	3.00	1.0286E-07	3.00	1.1738E-07	2.84	4.1662E-07	2.04
	1280	1.3493E-08	3.00	1.2873E-08	3.00	1.7331E-08	2.76	1.0270E-07	2.02
cRKDG	40	1.7656E-03	-	7.3382E-04	-	7.3651E-04	-	4.6481E-04	-
	80	2.2030E-04	3.00	9.0392E-05	3.02	9.0921E-05	3.02	5.9025E-05	2.98
	160	2.7536E-05	3.00	1.1209E-05	3.01	1.1296E-05	3.01	7.4400E-06	2.99
	320	3.4428E-06	3.00	1.3953E-06	3.01	1.4079E-06	3.00	9.3401E-07	2.99
	640	4.3036E-07	3.00	1.7415E-07	3.00	1.7576E-07	3.00	1.1701E-07	3.00
	1280	5.3797E-08	3.00	2.1783E-08	3.00	2.1957E-08	3.00	1.4643E-08	3.00

Table 4.5: Error table for the one-dimensional linear advection equation with periodic and inflow boundary conditions in Example 4.3. For the periodic boundary, $u(0, t) = u(4\pi, t)$; for the inflow boundary, $u(0, t) = \sin(-t)$. $k = 2$ and $\Delta t = 0.16h$.

535 $v = 0.3$, $p = 1$. We use the local Lax–Friedrichs flux and compute the solution up
 536 to $t = 2$. Here the CFL numbers are taken as 0.2 and 0.12 for \mathcal{P}^1 and \mathcal{P}^2 cRKDG
 537 methods, and as 0.3 and 0.18 for \mathcal{P}^1 and \mathcal{P}^2 RKDG methods. We list numerical
 538 results in Table 4.6. We can observe that both RKDG and cRKDG schemes achieve
 539 their expected order of optimal accuracy with comparable numerical errors on both
 540 triangular and rectangular meshes.

	N	RKDG				cRKDG			
		k = 1		k = 2		k = 1		k = 2	
		L^2 error	order						
triangular	20	4.5685e-04	-	5.1570e-05	-	4.4847e-04	-	4.9510e-05	-
	40	1.1073e-04	2.04	6.1085e-06	3.08	1.0842e-04	2.05	5.8449e-06	3.08
	80	2.7508e-05	2.01	7.7595e-07	2.98	2.6859e-05	2.01	7.4251e-07	2.98
	160	6.8934e-06	2.00	9.6981e-08	3.00	6.6652e-06	2.01	9.2728e-08	3.00
	20	2.4343e-03	-	1.1101e-04	-	2.4662e-03	-	1.1300e-04	-
	40	4.2736e-04	2.51	1.3885e-05	3.00	4.2767e-04	2.53	1.4213e-05	2.99
rectangular	80	9.0669e-05	2.24	1.7297e-06	3.00	8.9727e-05	2.25	1.7737e-06	3.00
	160	2.1445e-05	2.08	2.1586e-07	3.00	2.1140e-05	2.09	2.2173e-07	3.00

Table 4.6: L^2 error for two-dimensional Euler equations with the periodic boundary condition on triangular and rectangular meshes in Example 4.4.

541 *Example 4.5 (Boundary error).* Consider the linear advection equation in two
 542 dimensions $\partial_t u + \partial_x u + \partial_y u = 0$, $(x, y) \in [-1, 1] \times [-1, 1]$, $u(x, y, 0) = \sin(\pi x) \sin(\pi y)$,
 543 The exact solution is $u(x, y, t) = \sin(\pi(x - t)) \sin(\pi(y - t))$. We use the upwind flux
 544 and compute the solution up to $t = 0.4$ with \mathcal{P}^3 elements. The numerical results
 545 with both periodic and inflow boundary conditions are given in Table 4.7. It can
 546 be observed that, on the same set of triangular meshes, both schemes achieve their
 547 designed order of accuracy with comparable numerical error under the periodic con-
 548 dition. For the inflow boundary condition, the RKDG method becomes suboptimal
 549 while the cRKDG method remains optimal.

550 **4.2. Tests with discontinuous solutions.** We now test the cRKDG method
 551 for problems with discontinuous solutions. Only cell averages of the solutions are
 552 plotted. [For one-dimensional problems, we apply the TVB minmod limiter for systems](#)

	N	periodic boundary				inflow boundary			
		L^2 error	order	L^∞ error	order	L^2 error	order	L^∞ error	order
RKDG	20	1.6470e-06	-	6.1638e-06	-	2.4337e-06	-	2.7118e-05	-
	40	1.0807e-07	3.93	4.1438e-07	3.89	2.8514e-07	3.09	6.6092e-06	2.04
	80	6.7371e-09	4.00	2.5981e-08	4.00	4.5845e-08	2.64	1.6418e-06	2.01
	160	4.2131e-10	4.00	1.6135e-09	4.01	7.9968e-09	2.52	4.0979e-07	2.00
cRKDG	20	1.4623e-06	-	4.4906e-06	-	1.7295e-06	-	4.9173e-06	-
	40	8.9533e-08	4.03	2.8503e-07	3.98	1.0770e-07	4.01	3.0924e-07	3.99
	80	5.6015e-09	4.00	1.7533e-08	4.02	6.7326e-09	4.00	1.9284e-08	4.00
	160	3.5131e-10	3.99	1.0718e-09	4.03	4.2143e-10	4.00	1.2036e-09	4.00

Table 4.7: Error table for the two-dimensional linear advection equation on triangular meshes with periodic and inflow boundary conditions in Example 4.5. $k = 3$. $\Delta t = h/20$ for the RKDG scheme and $\Delta t = h/30$ for the cRKDG scheme.

553 in [7] to identify troubled cells and the WENO limiter in [23] for reconstruction. For
 554 two-dimensional problems, we apply the standard TVB minmod limiters in [10] to
 555 identify troubled cells and reconstruct polynomials, with a suitable parameter M to
 556 be specified for each problem. For the RKDG method, the limiter is applied in every
 557 inner stage. For the cRKDG method, the limiter is only applied once at the final
 558 stage for each time step.

559 Since the cRKDG method is equivalent to the LWDG method for linear problems,
 560 they share the same CFL limit. As has been tested in [23] with the von Neumann
 561 analysis, this CFL limit will be slightly more restrictive compared with the original
 562 RKDG method. In our numerical tests, the CFL numbers are taken as 0.3 and 0.16
 563 for \mathcal{P}^1 and \mathcal{P}^2 cRKDG methods, and as 0.3 and 0.18 for \mathcal{P}^1 and \mathcal{P}^2 RKDG methods,
 564 respectively, unless otherwise noted.

565 4.2.1. One-dimensional tests.

566 *Example 4.6* (Buckley–Leverett equation). We solve two Riemann problems as-
 567 sociated with the Buckley–Leverett equation $\partial_t u + \partial_x (4u^2/(4u^2 + (1-u)^2)) = 0$.
 568 The initial condition is set as $u(x, 0) = u_l$ for $x < 0$ and $u(x, 0) = u_r$ for $x \geq 0$, where
 569 we have $u_l = 2$ and $u_r = -2$ in the first test and $u_l = -3$ and $u_r = 3$ in the second
 570 test. We set $k = 1, 2$ and compute to $t = 1$ with 80 mesh cells. The Godunov flux
 571 and WENO limiter with TVB constant $M = 1$ are employed in the simulation. We
 572 observe that the cRKDG method converges to the correct entropy solutions and its
 573 numerical results are in good agreement with the original RKDG method. We have
 574 also plotted the solution by the first-order Roe scheme in green dots. In contrast, the
 575 solution by the Roe scheme converges to a non-entropy solution.

576 *Example 4.7* (Sod problem). In this test, we solve a Riemann problem for the
 577 one-dimensional Euler equations given in Example 4.2. The initial condition is set as

$$578 \quad \rho(x, 0) = \begin{cases} 1.0, & x < 0.5 \\ 0.125, & x \geq 0.5 \end{cases}, \quad \rho u(x, 0) = 0, \quad E(x, 0) = \frac{1}{\gamma - 1} \begin{cases} 1, & x < 0.5 \\ 0.1, & x \geq 0.5 \end{cases},$$

579 where $\gamma = 1.4$. We compute to $t = 0.2$ with $N = 100$ elements. We use the local Lax–
 580 Friedrichs flux, WENO limiter and TVB constant $M = 1$. The solution profiles are
 581 given in Figure 4.3, from which we can observe that the cRKDG method performs well
 582 in capturing the shock and contact discontinuity, and its numerical solution matches
 583 the RKDG solution and the exact solution.

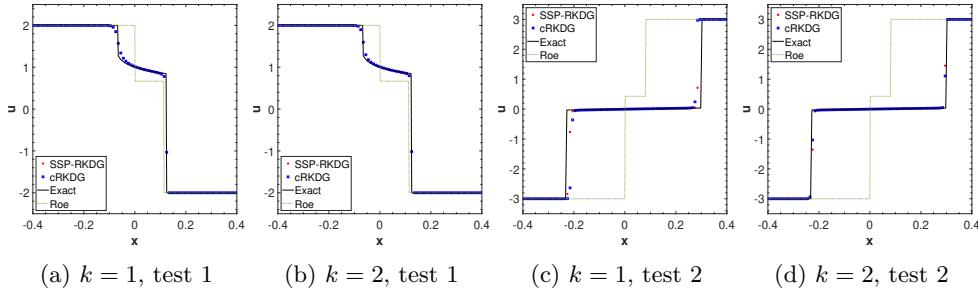


Fig. 4.2: Solution profiles for two Riemann problems of the Buckley–Leverett equation in Example 4.6. $N = 80$ and $M = 1$.

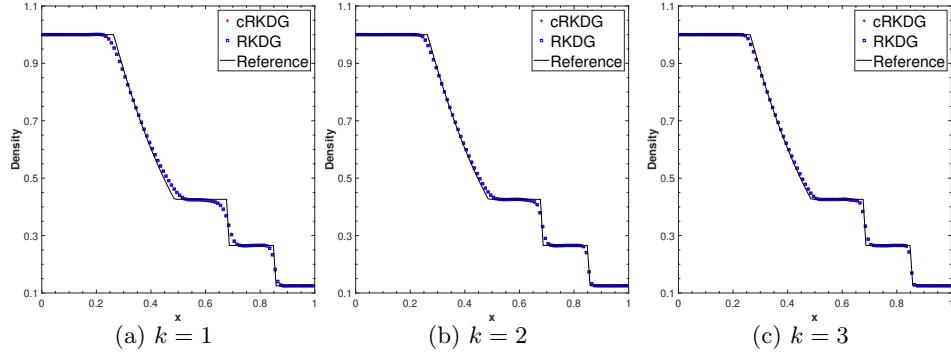


Fig. 4.3: Solution profiles for the Sod problem in Example 4.7. $N = 100$ and $M = 1$.

584 *Example 4.8 (Interacting blast waves).* We consider the interacting blast waves
585 with Euler equations using the following initial condition

$$586 \quad (\rho, \mu, p) = \begin{cases} (1, 0, 1000), & x \leq 0.1, \\ (1, 0, 0.01), & 0.1 < x \leq 0.9, \\ (1, 0, 100), & x > 0.9. \end{cases}$$

587 Reflective boundaries are imposed both at $x = 0$ and $x = 1$. We use the local Lax–
588 Friedrichs flux, [WENO limiter](#) and [TVB constant \$M = 200\$](#) , and compute the solution
589 to $t = 0.038$. Numerical results are shown in Figure 4.4. The numerical density ρ
590 is plotted against the reference solution which is a converged solution computed by
591 the fifth-order finite difference WENO scheme on a much refined mesh. [It is observed](#)
592 that numerical solutions obtained from RKDG and cRKDG methods are very close.

593 *Example 4.9 (Shu–Osher problem).* We consider the Shu–Osher problem de-
594 scribing a Mach 3 shock interacting with sine waves in density. This is a problem
595 of shock interaction with entropy waves and thus contains both shocks and complex
596 smooth region structures [27]. The initial condition is set as

$$597 \quad (\rho, \mu, p) = \begin{cases} (3.857143, 2.629369, 10.333333), & x < -4, \\ (1 + 0.2 \sin(5x), 0, 1), & x \geq -4. \end{cases}$$

598 The numerical density ρ is plotted at $t = 1.8$ against the reference solution which
599 is computed by the fifth-order finite difference WENO scheme. In Figure 4.5, we
600 plot the densities by cRKDG and RKDG methods with the local Lax–Friedrichs flux,

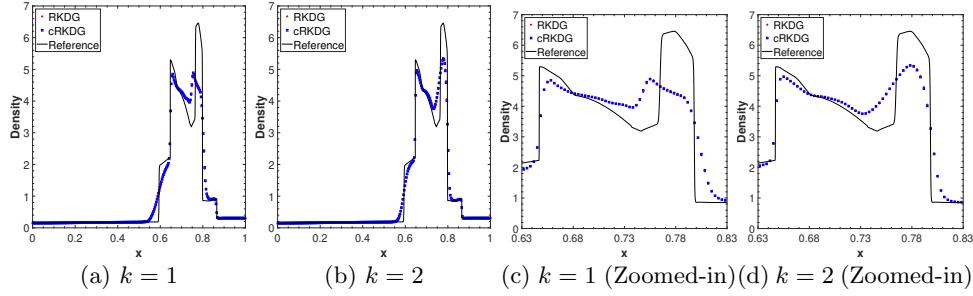


Fig. 4.4: Solution profiles for the blast wave problem in Example 4.8. $N = 300$ and $M = 200$.

601 **WENO limiter and TVB constant $M = 200$.** In addition, we also show a zoomed-in
 602 view of the solution at $x \in [0.5, 2.5]$ in Figures 4.5c and 4.5d.

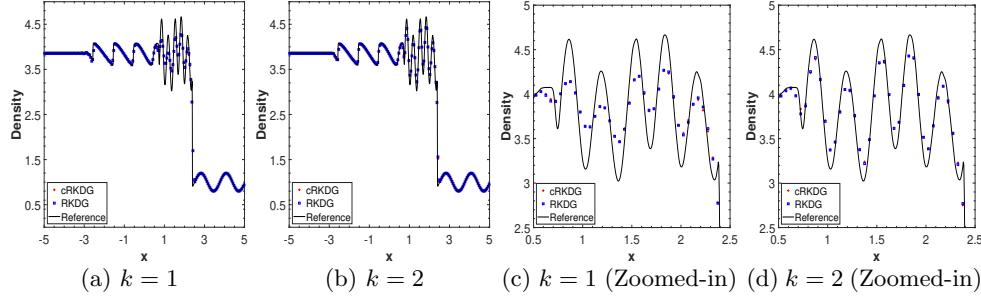


Fig. 4.5: Solution profiles for the Shu–Osher problem in Example 4.9 at $t = 1.8$. $M = 200$ and $N = 200$.

603 **4.2.2. Two-dimensional tests.**

604 *Example 4.10* (Double Mach reflection). This problem is originally studied in [33]
 605 and describes reflections of planar shocks in the air from wedges. The computational
 606 domain is $[0, 4] \times [0, 1]$, and the reflecting wall lies at the bottom boundary, starting
 607 from $x = 1/6$. Therefore, for the bottom boundary, the exact post-shock condition is
 608 imposed for the region from $x = 0$ to $x = 1/6$, while a reflective boundary condition is
 609 applied to the rest. At $t = 0$, a right-moving Mach 10 shock is positioned at $x = 1/6$,
 610 $y = 0$ and makes a 60° angle with the x -axis. At the top boundary, the flow values
 611 are set to describe the exact motion of the Mach 10 shock. The boundary conditions
 612 at the left and the right are inflow and outflow respectively. We compute the solution
 613 up to $t = 0.2$ and use the TVB limiter with $M = 50$. To save space, we only present
 614 the simulation results with 480×120 mesh cells for $k = 1$ and 1960×480 mesh cells
 615 for $k = 1, 2$ in Figure 4.6. The corresponding zoomed-in figures around the double
 616 Mach stem are given in Figure 4.7. For this problem, the resolutions of cRKDG and
 617 RKDG methods are comparable for the same order of accuracy and the same meshes.
 618

619 *Example 4.11* (Forward facing step). This is another classical test studied in [33].
 620 In this test, a Mach 3 uniform flow travels to the right and enters a wind tunnel (of
 621 1 length unit wide and 3 length units long), with the step of 0.2 length units high
 622 located 0.6 length units from the left-hand end of the tunnel. Reflective boundary
 623 conditions are applied along the wall of the tunnel, while inflow/outflow boundary

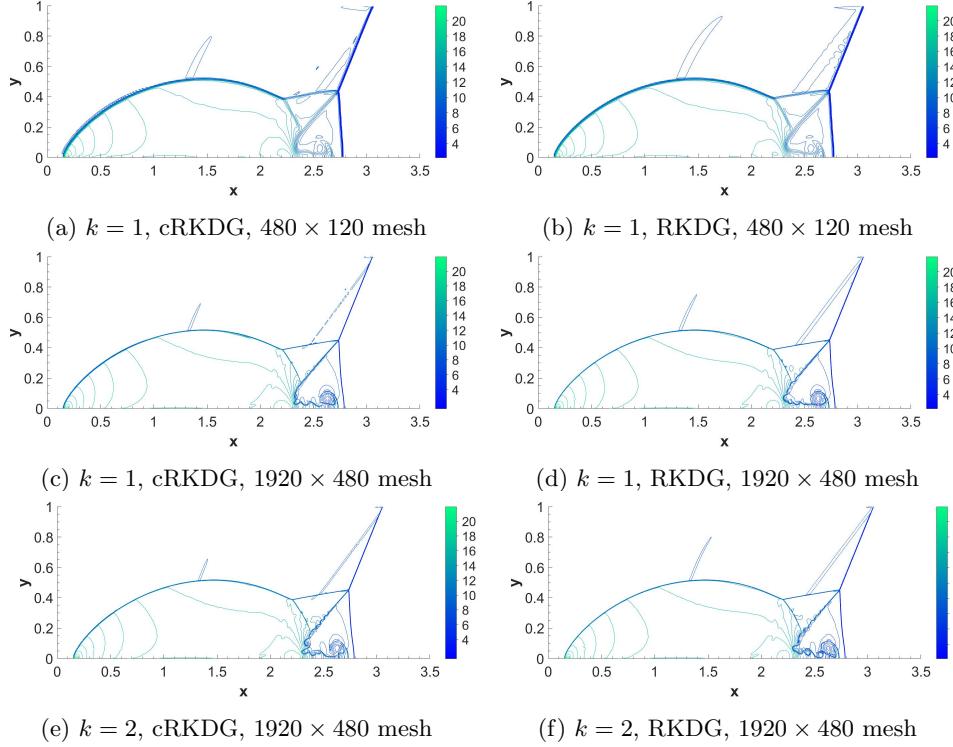


Fig. 4.6: Solution profiles for the double Mach problem in Example 4.10 at $t = 0.2$ with $M = 50$. 30 equally spaced density contours from 1.3695 to 22.682 are displaced.

624 conditions are applied at the entrance/exit. At the corner of the step, a singularity
 625 is present. Unlike in [33], we do not modify our schemes or refine the mesh near the
 626 corner in order to test the performance of our schemes in handling such singularity.
 627 We compute the solution up to $t = 4$ and utilize the TVB limiter with a TVB constant
 628 $M = 50$. Due to the space limitation, we only present the simulation results with
 629 240×80 mesh cells for $k = 1$ and 960×320 mesh cells for $k = 1, 2$ in Figure 4.8. For
 630 this problem, the resolutions of cRKDG and RKDG methods are comparable for the
 631 same order of accuracy and mesh.

632 **5. Conclusions and future work.** In this paper, we present a novel class of
 633 RKDG methods with compact stencils for solving the hyperbolic conservation laws.
 634 Our main idea is to replace the DG operator in the inner temporal stages of the fully
 635 discrete RKDG scheme by a local derivative operator. We prove a Lax–Wendroff
 636 type theorem which guarantees its convergence to the weak solution. Numerically,
 637 we observe the new method achieves the optimal convergence rate and does not suf-
 638 ffer from the order degeneracy when the Dirichelet type inflow boundary condition is
 639 imposed. Moreover, the connections of the new method with the LWDG and ADER-
 640 DG methods are established. This is the first paper of a few of our future works,
 641 which include the rigorous stability and error analysis **with the energy method**, ex-
 642 tensions to implicit time stepping and convection-dominated problems, and the design
 643 of structure-preserving schemes based on the cRKDG methods, etc..

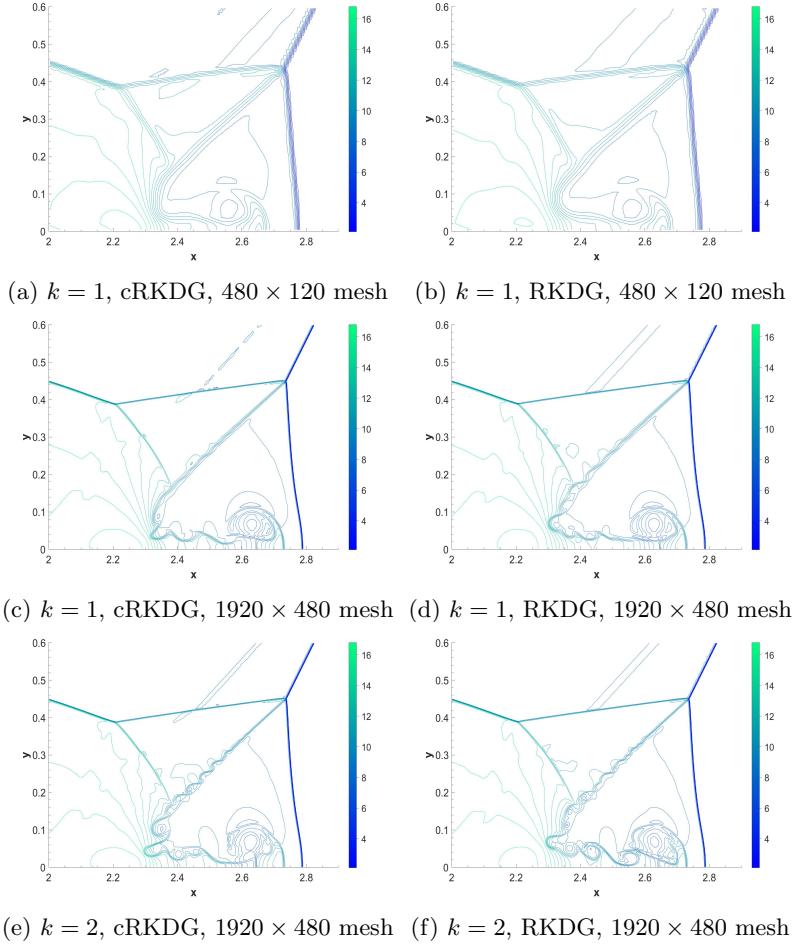


Fig. 4.7: Zoomed-in solutions for the double Mach problem in Example 4.10 at $t = 0.2$ with $M = 50$. 30 equally spaced density contours from 1.3695 to 22.682 are displayed.

644 **Acknowledgments.** Z. Sun was partially supported by the NSF grant DMS-
645 2208391. Y. Xing was partially supported by the NSF grant DMS-1753581 and DMS-
646 2309590. The authors would also like to thank Professor Jianxian Qiu at Xiamen
647 University for sharing the code for 2D Euler tests and providing helpful comments.

648 **Appendix A. Proof of Theorem 3.1.** Recall that we denote by $u_h^{(1)} = u_h^n$. To
649 prove a Lax–Wendroff convergence theorem, we will use the following result simplified
650 from [26, Theorems 2.3 and 3.2].

651 **THEOREM A.1** (Shi and Shu, 2018. [26]). *Let f be Lipschitz continuous and f' ,
652 f'' be uniformly bounded in L^∞ . Consider a numerical scheme in d -dimensional space
653 that yields (3.4). For any mesh cell K , its edge $e \in \partial K$, and its neighboring cell K^{ext} ,
654 suppose $g_{e,K}$ satisfies the following properties on $B_K = K \cup K^{\text{ext}}$.*

- 655 1. *Consistency:* if $u_h^n(x) \equiv u$ is a constant, then $g_{e,K}(u_h^n) = |e|f(u) \cdot \nu_{e,K}$.
- 656 2. *Boundedness:* $|g_{e,K}(u_h^n) - g_{e,K}(v_h^n)| \leq C\|u_h^n - v_h^n\|_{L^\infty(B_K)} \cdot h^{d-1}$.
- 657 3. *Anti-symmetry:* $g_{e,K}(u_h^n) + g_{e,K^{\text{ext}}}(u_h^n) = 0$, for $e = K \cap K^{\text{ext}}$.

658 *If u_h^n converges boundedly almost everywhere to a function u as $\Delta t, h \rightarrow 0$, then u is*

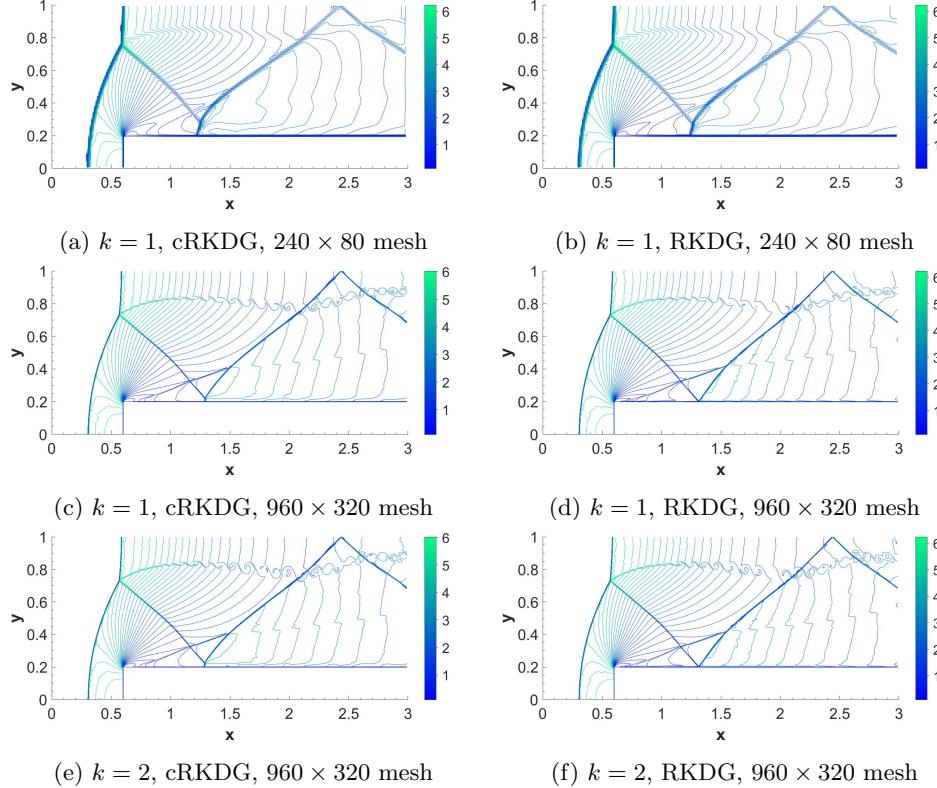


Fig. 4.8: Solution profiles for the forward step problem in Example 4.11 at $t = 4$ with $M = 50$. 30 equally spaced density contours from 0.090388 to 6.2365 are displaced.

659 *a weak solution to the conservation law saftisfying (3.6).*

660 Hence to analyze the convergence of the cRKDG method, it suffices to verify that
661 $g_{e,K}$ defined in (3.5) does satisfy three properties in Theorem A.1.

662 *Lemma A.1.* Under assumptions in Theorem 3.1, the combined flux $g_{e,K}$ defined
663 in (3.5) satisfies the three properties in Theorem A.1.

664 Once Lemma A.1 is proved, Theorem 3.1 follows as a direct consequence of Theorem
665 A.1. The rest of the section is dedicated to the proof of Lemma A.1, especially on the
666 boundedness of $g_{e,K}$.

667 *Lemma A.2.* Let ρ be a L^2 and L^∞ function. Then $\|\Pi\rho\|_{L^\infty(K)} \leq C\|\rho\|_{L^\infty(K)}$.

668 *Proof.* This lemma can be proved by selecting an orthonormal basis of $\mathcal{P}^k(K)$
669 and expand $\Pi\rho$ under this basis. Details are omitted. \square

670 *Lemma A.3.* For any $u_h, v_h \in V_h$ with $\|u_h\|_{L^\infty}, \|v_h\|_{L^\infty} \leq C$, we have

$$671 \quad (A.1) \quad \|\Pi \nabla \cdot (f(u_h) - f(v_h))\|_{L^\infty(B_K)} \leq \frac{C}{h} \|u_h - v_h\|_{L^\infty(B_K)}.$$

672 *Proof.* Applying Lemma A.2 and after some algebraic manipulations, we have

$$\begin{aligned}
 & \|\Pi \nabla \cdot (f(u_h) - f(v_h))\|_{L^\infty(B_K)} \\
 & \leq C \|\nabla \cdot (f(u_h) - f(v_h))\|_{L^\infty(B_K)} \\
 & = C \|f'(u_h) \cdot \nabla u_h - f'(v_h) \cdot \nabla v_h\|_{L^\infty(B_K)} \\
 & = C \|f'(u_h) \cdot \nabla u_h - f'(v_h) \cdot \nabla u_h + f'(v_h) \cdot \nabla u_h - f'(v_h) \cdot \nabla v_h\|_{L^\infty(B_K)} \\
 & \leq C \|f'(u_h) - f'(v_h)\|_{L^\infty(B_K)} + C \|f'(v_h) \cdot \nabla (u_h - v_h)\|_{L^\infty(B_K)} \\
 & \leq C \|f''\|_{L^\infty} \|u_h - v_h\|_{L^\infty(B_K)} \|\nabla u_h\|_{L^\infty(B_K)} + C \|f'\|_{L^\infty} \|\nabla (u_h - v_h)\|_{L^\infty(B_K)}.
 \end{aligned} \tag{A.2}$$

674 With the inverse estimate, we have $\|\nabla u_h\|_{L^\infty(B_K)} \leq Ch^{-1}\|u_h\|_{L^\infty(B_K)}$ and $\|\nabla(u_h - v_h)\|_{L^\infty(B_K)} \leq Ch^{-1}\|u_h - v_h\|_{L^\infty(B_K)}$. Recall that we assumed f' , f'' , and u_h are bounded in L^∞ . (A.1) can be obtained after substituting these estimates into (A.2). \square

677 *Lemma A.4.* $\|u_h^{(i)} - v_h^{(i)}\|_{L^\infty(B_K)} \leq C\|u_h^n - v_h^n\|_{L^\infty(B_K)}$, for all $1 \leq i \leq s$.

678 *Proof.* We prove the lemma by induction. For $i = 1$, by definition we have
679 $u_h^{(1)} = u_h^n$ and $v_h^{(1)} = v_h^n$. The inequality is true with $C = 1$ for all $u_h^n, v_h^n \in V_h$.

680 Now we assume that the inequality is true with $i \leq m$.

681 First, we want to show that the induction hypothesis implies

$$682 \|u_h^{(i)}\|_{L^\infty(B_K)} \leq C\|u_h^n - v_h^n\|_{L^\infty(B_K)} \quad \forall 1 \leq i \leq m.$$

683 Indeed, note that when $v_h^n \equiv 0$ on B_K , $f(v_h^n) \equiv 0$ is a constant. Hence $v_h^{(2)} = 684 0 - a_{21}\Delta t \nabla^{\text{loc}} \cdot 0 = 0$. Similarly, we have $v_h^{(i)} \equiv 0$ for all $1 \leq i \leq m$. By the induction
685 hypothesis, we can see that for all $1 \leq i \leq m$,

$$686 \|u_h^{(i)}\|_{L^\infty(B_K)} = \|u_h^{(i)} - v_h^{(i)}\|_{L^\infty(B_K)} \leq C\|u_h^n - v_h^n\|_{L^\infty(B_K)} = C\|u_h^n\|_{L^\infty(B_K)}.$$

687 Then we prove the lemma is true for $i = m + 1$. It can be seen that

$$\begin{aligned}
 & \|u_h^{(m+1)} - v_h^{(m+1)}\|_{L^\infty(B_K)} \\
 & = \left\| \left(u_h^n - \Delta t \sum_{j=1}^m a_{ij} \Pi \nabla \cdot f(u_h^{(j)}) \right) - \left(v_h^n - \Delta t \sum_{j=1}^m a_{ij} \Pi \nabla \cdot f(v_h^{(j)}) \right) \right\|_{L^\infty(B_K)} \\
 & \leq \|u_h^n - v_h^n\|_{L^\infty(B_K)} + \Delta t \sum_{j=1}^m |a_{ij}| \left\| \Pi \nabla \cdot \left(f(u_h^{(j)}) - f(v_h^{(j)}) \right) \right\|_{L^\infty(B_K)}.
 \end{aligned}$$

689 According to the first part of the proof, $\|u_h^{(j)}\|_{L^\infty} \leq C\|u_h^n\|_{L^\infty} \leq C$ and $\|v_h^{(j)}\|_{L^\infty} \leq 690 C\|v_h^n\|_{L^\infty} \leq C$ are bounded. Hence with Lemma A.3, it yields

$$691 \|u_h^{(m+1)} - v_h^{(m+1)}\|_{L^\infty(B_K)} \leq \|u_h^n - v_h^n\|_{L^\infty(B_K)} + \frac{C\Delta t}{h} \sum_{j=1}^m |a_{ij}| \|u_h^{(j)} - v_h^{(j)}\|_{L^\infty(B_K)}.$$

692 One can then prove the lemma after using the CFL condition $\Delta t/h \leq C$ and the
693 induction hypothesis $\|u_h^{(j)} - v_h^{(j)}\|_{L^\infty(B_K)} \leq C\|u_h^n - v_h^n\|_{L^\infty(B_K)}$ for all $1 \leq j \leq m$. \square

694 *Proof of Lemma A.1.* The consistency of $g_{e,K}$ can be obtained from the consistency of \hat{f} and the consistency of the RK method $\sum_{i=1}^s b_i = 1$. The anti-symmetry

696 of $g_{e,K}$ can be obtained from the anti-symmetry of \widehat{f} . The key is to show the bound-
 697 edness of $g_{e,K}$ as follows.

$$\begin{aligned}
 |g_{e,K}(u_h) - g_{e,K}(v_h)| &= \left| \int_e \left(\sum_{i=1}^s b_i \widehat{f \cdot \nu_{e,K}}(u_h^{(i)}) \right) dl - \int_e \left(\sum_{i=1}^s b_i \widehat{f \cdot \nu_{e,K}}(v_h^{(i)}) \right) dl \right| \\
 &\leq \sum_{i=1}^{s-1} \int_e |b_i| \left| \widehat{f \cdot \nu_{e,K}}(u_h^{(i)}) - \widehat{f \cdot \nu_{e,K}}(v_h^{(i)}) \right| dl \\
 &\leq C \sum_{i=1}^{s-1} |b_i| |e| \left\| u_h^{(i)} - v_h^{(i)} \right\|_{L^\infty} \leq C \|u_h^n - v_h^n\|_{L^\infty} \cdot h^{d-1}.
 \end{aligned}$$

699 Here we have used the Lipschitz continuity of $\widehat{f \cdot \nu_{e,K}}$ in the second last inequality
 700 and Lemma A.4 in the last inequality. \square

701 REFERENCES

- 702 [1] F. BASSI, A. CRIVELLINI, S. REBAY, AND M. SAVINI, *Discontinuous Galerkin solution of the*
 703 *reynolds-averaged Navier-Stokes and $k-\omega$ turbulence model equations*, Comput. & Fluids,
 704 34 (2005), pp. 507–540.
- 705 [2] F. BASSI, S. REBAY, G. MARIOTTI, S. PEDINOTTI, AND M. SAVINI, *A high-order accurate*
 706 *discontinuous finite element method for inviscid and viscous turbomachinery flows*, in
 707 *Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and*
 708 *Thermodynamics*, Antwerpen, Belgium, 1997, pp. 99–109.
- 709 [3] J. L. BONA, H. CHEN, O. A. KARAKASHIAN, AND Y. XING, *Conservative, discontinuous*
 710 *Galerkin-methods for the Generalized Korteweg-de Vries equation*, Math. Comp., 82
 711 (2013), pp. 1401–1432.
- 712 [4] M. H. CARPENTER, D. GOTTLIEB, S. ABARBANEL, AND W.-S. DON, *The theoretical accuracy*
 713 *of Runge–Kutta time discretizations for the initial boundary value problem: a study of the*
 714 *boundary error*, SIAM J. Sci. Comput., 16 (1995), pp. 1241–1252.
- 715 [5] Y. CHENG AND C.-W. SHU, *A discontinuous Galerkin finite element method for time depen-*
 716 *dent partial differential equations with higher order derivatives*, Math. Comp., 77 (2008),
 717 pp. 699–730.
- 718 [6] B. COCKBURN, S. HOU, AND C.-W. SHU, *The Runge–Kutta local projection discontinuous*
 719 *Galerkin finite element method for conservation laws. IV. the multidimensional case*,
 720 Math. Comp., 54 (1990), pp. 545–581.
- 721 [7] B. COCKBURN, S.-Y. LIN, AND C.-W. SHU, *TVB Runge–Kutta local projection discontinuous*
 722 *Galerkin finite element method for conservation laws III: one-dimensional systems*, J.
 723 Comput. Phys., 84 (1989), pp. 90–113.
- 724 [8] B. COCKBURN AND C.-W. SHU, *TVB Runge–Kutta local projection discontinuous Galerkin fi-*
 725 *nite element method for conservation laws. II. general framework*, Math. Comp., 52 (1989),
 726 pp. 411–435.
- 727 [9] B. COCKBURN AND C.-W. SHU, *The Runge–Kutta local projection P^1 -discontinuous-Galerkin*
 728 *finite element method for scalar conservation laws*, ESAIM Math. Model. Numer. Anal.,
 729 25 (1991), pp. 337–361.
- 730 [10] B. COCKBURN AND C.-W. SHU, *The Runge–Kutta discontinuous Galerkin method for conser-*
 731 *vation laws V: multidimensional systems*, J. Comput. Phys., 141 (1998), pp. 199–224.
- 732 [11] B. COCKBURN AND C.-W. SHU, *Runge–Kutta discontinuous Galerkin methods for convection-*
 733 *dominated problems*, J. Sci. Comput., 16 (2001), pp. 173–261.
- 734 [12] M. DUMBSER, D. S. BALSARA, E. F. TORO, AND C.-D. MUNZ, *A unified framework for the*
 735 *construction of one-step finite volume and discontinuous Galerkin schemes on unstructured*
 736 *meshes*, J. Comput. Phys., 227 (2008), pp. 8209–8253.
- 737 [13] M. DUMBSER, C. ENAUX, AND E. F. TORO, *Finite volume schemes of very high order of*
 738 *accuracy for stiff hyperbolic balance laws*, J. Comput. Phys., 227 (2008), pp. 3971–4001.
- 739 [14] M. DUMBSER AND C.-D. MUNZ, *Building blocks for arbitrary high order discontinuous Galerkin*
 740 *schemes*, J. Sci. Comput., 27 (2006), pp. 215–230.
- 741 [15] E. GABURRO, P. ÖFFNER, M. RICCHIUTO, AND D. TORLO, *High order entropy preserving*
 742 *ADER-DG schemes*, Appl. Math. Comput., 440 (2023), p. 127644.

743 [16] S. GOTTLIEB, D. I. KETCHESON, AND C.-W. SHU, *Strong stability preserving Runge-Kutta and*
 744 *multistep time discretizations*, World Scientific, 2011.

745 [17] S. GOTTLIEB, C.-W. SHU, AND E. TADMOR, *Strong stability-preserving high-order time dis-*
 746 *cretization methods*, SIAM Rev., 43 (2001), pp. 89–112.

747 [18] Z. J. GRANT, *Perturbed Runge-Kutta methods for mixed precision applications*, J. Sci. Com-
 748 *put.*, 92 (2022), p. 6.

749 [19] W. GUO, J.-M. QIU, AND J. QIU, *A new Lax–Wendroff discontinuous Galerkin method with*
 750 *superconvergence*, J. Sci. Comput., 65 (2015), pp. 299–326.

751 [20] H. LUO, L. LUO, R. NOURGALIEV, V. A. MOUSSEAU, AND N. DINH, *A reconstructed discontinu-*
 752 *ous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids*, J.
 753 *Comput. Phys.*, 229 (2010), pp. 6961–6978.

754 [21] J. PERAIRE AND P.-O. PERSSON, *The compact discontinuous Galerkin (CDG) method for el-*
 755 *liptic problems*, SIAM J. Sci. Comput., 30 (2008), pp. 1806–1824.

756 [22] J. QIU, *A numerical comparison of the Lax–Wendroff discontinuous Galerkin method based on*
 757 *different numerical fluxes*, J. Sci. Comput., 30 (2007), pp. 345–367.

758 [23] J. QIU, M. DUMBSER, AND C.-W. SHU, *The discontinuous Galerkin method with Lax–Wendroff*
 759 *type time discretizations*, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 4528–
 760 4543.

761 [24] L. RANNABAUER, M. DUMBSER, AND M. BADER, *ADER-DG with a-posteriori finite-volume*
 762 *limiting to simulate tsunamis in a parallel adaptive mesh refinement framework*, Comput.
 763 & Fluids, 173 (2018), pp. 299–306.

764 [25] W. H. REED AND T. HILL, *Triangular mesh methods for the neutron transport equation*, tech.
 765 report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.

766 [26] C. SHI AND C.-W. SHU, *On local conservation of numerical methods for conservation laws*,
 767 *Comput. & Fluids*, 169 (2018), pp. 3–9.

768 [27] C.-W. SHU AND S. OSHER, *Efficient implementation of essentially non-oscillatory shock-*
 769 *capturing schemes, II*, J. Comput. Phys., 83 (1989), pp. 32–78.

770 [28] Z. SUN AND C.-W. SHU, *Stability analysis and error estimates of Lax–Wendroff discontinuous*
 771 *Galerkin methods for linear conservation laws*, ESAIM Math. Model. Numer. Anal., 51
 772 (2017), pp. 1063–1087.

773 [29] V. A. TITAREV AND E. F. TORO, *ADER: Arbitrary high order Godunov approach*, J. Sci.
 774 *Comput.*, 17 (2002), pp. 609–618.

775 [30] E. F. TORO, R. MILLINGTON, AND L. NEJAD, *Towards very high order Godunov schemes*, in
 776 *Godunov Methods: Theory and Applications*, Springer, 2001, pp. 907–940.

777 [31] B. VAN LEER, M. LO, AND M. VAN RAALTE, *A discontinuous Galerkin method for diffusion*
 778 *based on recovery*, in 18th AIAA Computational Fluid Dynamics Conference, 2007, p. 4083.

779 [32] B. VAN LEER AND S. NOMURA, *Discontinuous Galerkin for diffusion*, in 17th AIAA Computa-
 780 *tional Fluid Dynamics Conference*, 2005, p. 5108.

781 [33] P. WOODWARD AND P. COLELLA, *The numerical simulation of two-dimensional fluid flow with*
 782 *strong shocks*, J. Comput. Phys., 54 (1984), pp. 115–173.

783 [34] J. YAN AND C.-W. SHU, *A local discontinuous Galerkin method for KdV type equations*, SIAM
 784 *J. Numer. Anal.*, 40 (2002), pp. 769–791.

785 [35] Q. ZHANG, *Third order explicit Runge-Kutta discontinuous Galerkin method for linear conser-*
 786 *vation law with inflow boundary condition*, J. Sci. Comput., 46 (2011), pp. 294–313.