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Abstract. Using equidistribution criteria, we establish divisibility by cyclotomic polynomials
of several partition polynomials of interest, including spt-crank, overpartition pairs, and t-core
partitions. As corollaries, we obtain new proofs of various Ramanujan-type congruences for
associated partition functions. Moreover, using results of Erdös and Turán, we establish the
equidistribution of roots of partition polynomials on the unit circle including those for the rank,
crank, spt, and unimodal sequences. Our results complement earlier work on this topic by Stanley,
Boyer-Goh, and others. We explain how our methods may be used to establish similar results
for other partition polynomials of interest, and o�er many related open questions and examples.

1. Introduction
The theory of ranks and cranks was initiated in order to study congruences for the partition

function p(n), which counts the number of integer partitions of n, that is, the number of ways to
write a non-negative integer n as a non-increasing sum of positive integers (called “parts”). For
example, p(5) = 7, as

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

The definitions of the rank and crank of a partition ⁄ may appear artificial at first inspection:
rank(⁄) := largest part of ⁄ ≠ number of parts of ⁄,

crank(⁄) :=
I

largest part of ⁄ if 1 is not a part of ⁄,

µ(⁄) ≠ o(⁄) if 1 is a part of ⁄,
(1)

where µ(⁄) denotes the number of parts of ⁄ strictly larger than the number of 1s in ⁄, and o(⁄)
denotes the number of 1s in ⁄. However, these two perhaps seemingly peculiar partition statistics
play significant roles in understanding partition numbers p(n). After Ramanujan conjectured his
famous congruences modulo 5, 7 and 11 (for all n œ N0)

p(5n + 4) © 0 (mod 5),
p(7n + 5) © 0 (mod 7),

p(11n + 6) © 0 (mod 11),
(2)

while still an undergraduate in 1944, Dyson [26] defined the rank of a partition in order to try
and combinatorially explain them. The following table illustrates how Dyson’s rank divides the
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partitions of 5 into 7 groups of equal size:
partition rank rank (mod 7)

5 5 ≠ 1 4
4 + 1 4 ≠ 2 2
3 + 2 3 ≠ 2 1

3 + 1 + 1 3 ≠ 3 0
2 + 2 + 1 2 ≠ 3 6

2 + 1 + 1 + 1 2 ≠ 4 5
1 + 1 + 1 + 1 + 1 1 ≠ 5 3.

Further investigations led Dyson to conjecture that the rank would always divide the partitions
of 7n + 5 (resp. 5n + 4) for any n œ N0 into 7 (resp. 5) groups of equal size when reduced mod 7
(resp. mod 5), thereby explaining Ramanujan’s congruences mod 7 and mod 5. This was proved
by Atkin and Swinnerton-Dyer in 1954 [8], and has led to further important related results in the
literature. A quick calculation reveals that the rank fails to explain Ramanujan’s congruences
mod 11 in the same way as we now know it does for the moduli 5 and 7, and this led Dyson
to conjecture the existence of another partition statistic which would simultaneously explain all
three of Ramanujan’s congruences in (2). Over four decades after Dyson’s paper, important work
of Garvan and Andrews [5, 29] led them to the definition of the crank statistic in (1), resolving
Dyson’s question.

Also playing key roles in understanding partitions, ranks, and cranks, are their generating
functions. To describe this, we let (a; q)n :=

rn≠1
k=0(1 ≠ aq

k) be the usual q-Pochhammer symbol
(n œ N0 fi {Œ}). Then we have that

ÿ

nØ0

ÿ

mœZ

N(m, n)wm
q

n =:
ÿ

nØ0
rankn(w)qn =

ÿ

nØ0

q
n2

(wq; q)n(w≠1q; q)n
, (3)

and
ÿ

nØ0

ÿ

mœZ

M(m, n)wm
q

n =:
ÿ

nØ0
crankn(w)qn =

Ÿ

nØ1

(1 ≠ q
n)

(1 ≠ wqn)(1 ≠ w≠1qn) , (4)

where N(m, n) (resp. M(m, n)) denotes the number of partitions of n with rank (resp. crank)
m. For example, when w = 1 in (3) we have that the partition generating function

ÿ

nØ0
p(n)qn =

ÿ

nØ0

q
n2

(q; q)2
n

=
Ÿ

nØ1

1
(1 ≠ qn)

is essentially the reciprocal of the weight 1/2 modular form

÷(·) = q
1

24
Ÿ

nØ1
(1 ≠ q

n),

with q = e
2fii·

, · œ H, the upper-half of the complex plane. (Here we have also used Euler’s
product identity for the partition generating function, see e.g. [1].) In general, when viewed as
a two-variable function in (z, ·) œ C ◊ H (additionally letting w = e

2fiiz), the rank generating
funciton in (3) does not posses the same strict modular properties as it does at w = 1, but
thanks to influential work of Zwegers [54], Bringmann-Ono [22], and Zagier [53], we now know
that (after a minor normalization) it is a mock Jacobi form. The crank generating function in
(4) too possesses modular properties, and is (up to a minor normalization) a (true) Jacobi form.
Such connections between partition generating functions and modular(-type) forms have led to
significant advances in our understanding in both the theory of partitions and in modular forms
(broadly speaking). For example, work of Hardy-Ramanujan and Rademacher established an
exact formula for p(n) using the modularity of its generating function; we also now know to look
at families of partition generating functions as potential explicit sources of holomorphic parts of
harmonic Maass forms. (For more on these topics, see e.g. [16].)
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When expanded as a q-series, the polynomial (in w) coe�cients rankn(w) and crankn(w) of
the generating functions (3) and (4) clearly carry important combinatorial information – which
it turns out may be revealed algebraically. To describe this, we review work of Stanton, and
Bringmann et al, and after Stanton define the modified rank and crank polynomials by

rankú

¸,n(w) := rank¸n+—(w) + w
¸n+—≠2

≠ w
¸n+—≠1 + w

2≠¸n≠—
≠ w

1≠¸n≠—
,

crankú

¸,n(w) := crank¸n+—(w) + w
¸n+—≠¸

≠ w
¸n+— + w

¸≠¸n≠—
≠ w

≠¸n≠—
,

where — := ¸ ≠ (¸2
≠ 1)/24. In unpublished notes, Stanton made some related conjectures on

divisibility by the cyclotomic polynomials �¸(w), including the following [50].

Conjecture (Stanton [50]). For n œ N0, the following are Laurent polynomials with non-negative
coe�cients:

rankú

5,n(w)
�5(w) ,

rankú

7,n(w)
�7(w) ,

and
crankú

5,n(w)
�5(w) ,

crankú

7,n(w)
�7(w) ,

crankú

11,n(w)
�11(w) .

The connection between these conjectured – and now proved in [17, 21] – algebraic properties
of polynomials and the combinatorial divisibilities prescribed by Ramanujan’s congruences (2) is
given by Lemma 2.1 [17, Lemma 2.4]: in short, divisibility by cyclotomic polynomials is equivalent
to an equidistribution result on coe�cients of (rank and crank) polynomials. As explained in [17],
Stanton’s modified rank and crank polynomials are designed to ensure positivity, with the eventual
goal of uncovering a combinatorial interpretation of what these positive coe�cients count, thereby
leading to a map between rank or crank congruence classes. Lemma 2.2 [17, Lemma 3.1] reveals
that such positivity is related to unimodality of coe�cients.

In the sections that follow, using equidistribution criteria, we establish divisibility by cyclotomic
polynomials of several partition polynomials of interest, including spt-crank, overpartition pairs,
and t-core partitions (see Theorem 3.1, Theorem 3.6, and Theorem 3.9). As corollaries, we
obtain new proofs of various Ramanujan-type congruences for associated partition functions (see
Corollary 3.2, Corollary 3.7, and Corollary 3.10). Moreover, using results of Erdös and Turán,
we establish the equidistribution of roots of partition polynomials on the unit circle including
those for the rank, crank, spt, and unimodal sequences (see Theorem 4.2, Theorem 4.3, and
Theorem 4.4). Our results complement earlier work on this topic by Stanley, Boyer-Goh [11,12],
and Boyer-Parry [13]. We also explain how our methods may be used to establish similar results
for other partition polynomials of interest, and o�er many related open questions and examples
in the ensuing sections.

Acknowledgements. To be added. We thank Ian Wagner, William Craig and Cristina Ballan-
tine, and the referee for helpful comments on previous versions of the paper.

2. Preliminaries
We use the following lemmas of Bringmann–Gomez–Rolen–Tripp [17]. To state these, recall

that the ¸th cyclotomic polynomial �¸(w) is the unique irreducible polynomial in Z[w] which
divides w

¸
≠1 but which does not divide w

j
≠1 for any 1 Æ j < ¸ (¸ œ N, ¸ Ø 2), and �1(w) := w≠1.

We also define (for (r, ¸) œ Z ◊ N)
‚fr,¸ :=

ÿ

j©r (mod ¸)
[wj ]f(w).

Here, by [wj ]f(w) we mean the coe�cient of w
j in (the series expansion of) f(w). We also

have the notion of divisibility in Q[w≠1
, w], where we say that �¸(w) divides f(w) if there exists

some g(w) œ Q[w≠1
, w] such that f(w) = g(w)�¸(w). The following lemma relates divisibility of

polynomials to an equidistribution criterion over arithmetic progressions.
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Lemma 2.1 (Lemma 2.4 of [17]). Let f(w) be a Laurent polynomial in Q[w≠1
, w] and ¸ a prime.

Then �¸(w) divides f(w) in Q[w≠1
, w] if and only if

‚fa,¸ = ‚fb,¸

for all a, b.
In particular, by showing divisibility by the ¸-th cyclotomic polynomial, we immediately obtain

equidistribution modulo ¸ and vice-versa. The next result gives non-negativity of the coe�cients
of f(w)/�(w) under certain conditions.

Lemma 2.2 (Lemma 3.1 of [17]). Let f(w) be a symmetric unimodal Laurent polynomial that is
divisible by �¸(w) for an odd prime ¸. Then the coe�cients of f(w)

�¸(w) are non-negative. Moreover,
if f(w) is strictly unimodal then the coe�cients of f(w)

�¸(w) are positive.

3. Divisibility of (c)rank polynomials
In the following three subsections, we give three examples of combinatorial objects that are

well-studied in the literature. We establish divisibility properties of their two-variable generating
functions, and establish new proofs of Ramanujan-type congruences. We also o�er many related
open questions of interest.

3.1. The spt-crank. In [2], Andrews introduced the function spt(n), which counts the number
of smallest parts among the integer partitions of n. For example, the smallest parts among the
partitions of three are underlined here:

3, 2 + 1, 1 + 1 + 1
and hence we see that spt(3) = 5. Among the many interesting properties of spt now known
to be true, Andrews [2] proved that the spt function satisfies three beautiful Ramanujan-type
congruences

spt(5n + 4) © 0 (mod 5), spt(7n + 5) © 0 (mod 7), spt(13n + 6) © 0 (mod 13),
(5)

for n œ N0, in analogy to the celebrated Ramanujan partition congruences for the partition
function p(n) modulo 5, 7, and 11 in (2). As the partition crank function was famously found
to combinatorially explain Ramanujan’s partition congruences (see Section 1), it is natural to
search for an spt-crank function that combinatorially explains Andrews’s spt-congruences above.
To this end, Andrews, Garvan and Liang [6] defined an spt-crank which explains Andrews’ spt-
congruences modulo 5 and 7 in (5). In order to prove their results, Andrews, Garvan, and Liang
first introduced the set of vector partitions V , defined by the Cartesian product

V = D ◊ P ◊ P,

where D is the set of partitions into distinct parts and P is the set of partitions. Each vector
partition æ

fi œ V comes equipped with a crank, defined by

crank(æ
fi ) = #(fi2) ≠ #(fi3).

For a partition ⁄, let s(⁄) denote the smallest part, and define s(≠) = Œ for the empty partition.
Then a central subset of V in [6] is given by

S := {
æ
fi = (fi1, fi2, fi3) œ V : 1 Æ s(fi1) < Œ and s(fi1) Æ min(s(fi2), s(fi3))}.

For æ
fi œ S, its weight is defined by Ê1(æ

fi ) := (≠1)#(fi1)≠1. Then the number of vector partitions
of n in S with crank equal to m counted in accordance with the weight Ê1 is denoted by

NS(m, n) :=
ÿ

æ
fi œS,|

æ
fi |=n

crank(æ
fi )=m

Ê1(æ
fi ).
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Importantly, it turns out that
ÿ

mœZ

NS(m, n) = spt(n).

Before stating our results, define the spt-crank polynomials spt-crankn(w) (n œ N0) to be the
q-series coe�cients of the two-variable generating function for NS(m, n). That is (see [6]),

ÿ

nØ1

ÿ

mœZ

NS(m, n)wm
q

n =:
ÿ

nØ1
spt-crankn(w)qn =

ÿ

nØ1

q
n(qn+1; q)Œ

(wqn; q)Œ(w≠1qn; q)Œ

. (6)

Our first result, Theorem 3.1 below, explains spt-congruences another way, in terms of cyclotomic
polynomial divisibility properties. This leads to a new proof of Andrews’ spt-congruences modulo
5 and 7; see Corollary 3.2, its proof, and Remark 3.3.
Theorem 3.1. We have that �5(w) divides spt-crank5n+4(w) and �7(w) divides spt-crank7n+5(w)
in Z[w, w

≠1].
Moreover, the coe�cients of both spt-crank5n+4(w)

�5(w) and spt-crank7n+5(w)
�7(w) are non-negative.

Corollary 3.2. For n œ N0, we have that
spt(5n + 4) © 0 (mod 5), spt(7n + 5) © 0 (mod 7).

Remark 3.3. Due to Theorem 3.1 and Lemma 2.1, we in fact have an equidistribution result on
the coe�cients of the spt-crank5n+4(w) and spt7n+5(w) polynomials. While this implies Corollary
3.2, we establish this result more directly from Theorem 3.1 below for simplicity.
Proof of Theorem 3.1. The divisibility of the relevant polynomials follows from (6) and Lemma
2.1, using the fact that the spt-crank is equidistributed in these cases (see [6]). To see that the
coe�cients of each of spt-crank5n+4(w)

�5(w) and spt-crank7n+5(w)
�7(w) are non-negative it is enough to note

that NS(m, n) is symmetric and unimodal in m for each fixed n by results of Chen–Ji–Zang [23].
Applying Lemma 2.2 finishes the proof. ⇤
Proof of Corollary 3.2. By Theorem 3.1 with w = 1, we have that �5(1) divides spt-crank5n+4(1)
and �7(1) divides spt-crank7n+5(1). By (6), we have that for n œ N0, spt-crankn(1) = spt(n),
and by definition, we have that �5(1) = 5 and �7(1) = 7. The corollary now follows. ⇤

Of course, since Lemma 2.1 is an if-and-only-if statement, one could also prove the first part
of the result in the reverse direction, by showing that the relevant cyclotomic polynomial divides
the generating function on the given arithmetic progression.
Question 1. Is there a simple way to show that the relevant cyclotomic polynomial divides the
spt-crank on the given arithmetic progressions in Theorem 3.1 without using Lemma 2.1 and
unimodality?
Remark 3.4. In [6, Theorem 4.1], Andrews, Garvan, and Liang show that the generating function
for the spt-crank can be written (up to a multiplicative factor) as the di�erence between the
ordinary – unmodified – crank and rank generating functions. This may provide a starting point
towards answering Question 1.

While the non-negativity of the coe�cients after dividing by the relevant cyclotomic polynomial
is an easy consequence of Lemma 2.2, the coe�cients themselves remain mysterious. It would be
extremely instructive to determine a combinatorial description for them.

Question 2. Do the coe�cients of spt-crank5n+4(w)
�5(w) and spt-crank7n+5(w)

�7(w) have a combinatorial in-
terpretation?

Moreover, Theorem 3.1 only deals with the cases of arithmetic progressions modulo 5 and
7, since here the spt-crank explains the corresponding Ramanujan-type congruences. It is well-
known that the spt-crank does not combinatorially explain the congruence spt(13n + 6) © 0
(mod 13).
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Question 3. Can one determine a combinatorial explanation for the spt congruence modulo 13
– and by establishing results as in this paper modulo 5 and 7?

Partition and smallest parts congruences modulo other primes and residue classes are of inter-
est, including modulo the smallest primes 2 and 3; see for example [27], or [45, 46] by Ono and
Radu, which notably prove Subbarao’s conjecture on the partition function modulo 2 and 3, or
[28] on spt-congruences modulo 2 and 3.

Question 4. Is the spt-crank equidistributed on certain arithmetic progressions modulo 2 and 3?

Remark 3.5. While the spt function is known to be almost always even (see [7, Theorem 1.3]),
the possible Ramanujan-type congruence modulo 2 may not hold with the exceptions captured
by those terms given in [7, Theorem 1.3].

As noted in Section 1, it is well-known that the partition generating function is essentially a
modular form. Since the time of Hardy, Ramanujan, and Rademacher and their influential related
work, mathematicians have produced a wealth of literature on modularity and partition functions
– broadly construed to also include Maass forms, mock theta functions, quantum modular forms,
and other modular-type functions. For example, in [14], Bringmann constructs a harmonic Maass
form associated to the spt-generating function, and it is of interest to investigate and establish the
modular properties of further spt-generating functions as well as its applications. As explained
in Remark 3.4, the generating function for spt-crank is essentially a di�erence between the rank
and crank generating functions, thereby implying mock Jacobi properties.

Question 5. What are the precise modular properties of the spt-crank generating function given
in (6) and can they be used to determine further congruences and asymptotic properties of the
spt-crank?

3.2. The rank of overpartition pairs. An overpartition is a partition in which the first oc-
currence of a part may be overlined. For example, there are four overpartitions of 2, namely
1 + 1, 1 + 1, 2, and 2. Corteel and Lovejoy helped pioneer the modern-day study of overpar-
titions and established several important results in [24], noting that related combinatorial and
q-hypergeometric results trace back to older work of MacMahon [44], Joichi-Stanton [42], and oth-
ers. It is known that there are no Ramanujan-type congruences for overpartitions, see [25, Theo-
rem 1.2], but for overpartition pairs, they do exist. To explain this, an overpartition pair of n is a
pair of overpartitions (µ, ⁄) where the sum of all of the parts is equal to n. For example, there are
12 overpartition pairs of n = 2 (noting that the definition allows the empty overpartition to be
used for µ or ⁄). Overpartition pairs have been of importance as associated to Ramanujan’s 1Â1
summation, the q-Gauss identity, and other q-hypergeometric series [43]. In [19], Bringmann and
Lovejoy establish the following overpartition pair congruence for the overparition pair function
pp(n) which the number of overpartition pairs of n (n œ N0):

pp(3n + 2) © 0 (mod 3). (7)

In the same way that the partition rank function can be used to combinatorially explain Ra-
manujan’s partition congruences modulo 5 and 7, Bringmann and Lovejoy [20, Theorem 1.2]
use the overpartition pair rank function to explain (7) by splitting overpartition pairs into three
equinumerous classes sorted by ranks. To define this rank function, we let ¸(·) denote the largest
part of a partition, and let n(·) denote the number of parts; their overlined counterparts count
only parts which are overlined. With this, the rank of an overpartition pair (⁄, µ) is defined by

¸((⁄, µ)) ≠ n(⁄) ≠ n(µ) ≠ ‰((⁄, µ)),

where ‰((⁄, µ)) is defined to be 1 if the largest part of (⁄, µ) is non-overlined and in µ, and 0
otherwise.

Our next set of results are parallel to Theorem 3.1 and Corollary 3.2. To state them, we define
the overpartition pair rank polynomials o-rankn(w) (n œ N0) to be the q-series coe�cients of the
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two-variable generating function for NN(m, n), the number of overpartition pairs of n with rank
m. Explicitly [20, Proposition 2.1], we have that

ÿ

nØ0
mœZ

NN(m, n)wm
q

n =:
ÿ

nØ0
o-rankn(w)qn =

ÿ

nØ0

(≠1; q)2
nq

n

(wq; q)n(w≠1q; q)n
. (8)

Our first result on overpartition pair rank polynomials is the following.

Theorem 3.6. We have that �3(w) divides o-rank3n+2(w) in Z[w, w
≠1].

Proof. By Lemma 2.1 it is enough to have that the o-rank is equidistributed on the arithmetic
progression 3n +2. This is shown by Bringmann and Lovejoy [20, Theorem 1.2] who showed that
the overpartition pair rank splits overpartition pairs into three equinumerous classes. ⇤

As a corollary, we obtain a new proof of the overpartition rank congruence modulo 3 of Bring-
mann and Lovejoy discussed above.

Corollary 3.7. For n œ N0, we have that
pp(3n + 2) © 0 (mod 3).

Remark 3.8. The contents of Remark 3.3 also apply here to o-rank3n+2(w) and pp(3n+2) (mod 3)
in a similar manner.

Proof of Corollary 3.7. By Theorem 3.6 with w = 1, we have that �3(1) divides o-rank3n+2(1).
By (8), we have that for n œ N0, o-rankn(1) = pp(n), and by definition, we have that �3(1) = 3.
The corollary now follows. ⇤

Similar to the case of the spt-crank, the (non-)unimodality of NN(m, n) in the m-aspect
appears to be unknown in the literature. It is clear that NN(≠m, n) = NN(m, n), and numerical
tests (using SageMath [48]) suggest that NN(m, n) is not unimodal in m, although this may be a
situation that parallels the ordinary partition rank studied in [17], where the authors introduced
a slightly modified definition to ensure unimodality.

Question 6. What are the (non-)unimodality properties of NN(m, n) in the m-aspect?
A choice of crank to explain a particular partition congruence is not unique. For example, very

recently Wagner [52] described a vast array of cranks for various partition-theoretic congruence
families. In particular, a new crank statistic that explains the congruence pp(3n+2) © 0 (mod 3)
was introduced on p24 of [52], given by the pleasing infinite product formula

C2(w; q) :=
Ÿ

nØ1

(1 + wq
n)(1 + w

≠1
q

n)
(1 ≠ wqn)(1 + w≠1qn) .

One then obtains the analogues of Theorem 3.6 and Corollary 3.7 for this new crank. Moreover,
this new crank numerically appears to unimodal, in contrast to the crank of Bringmann–Lovejoy.
Unimodality would then lead to the non-negativity of coe�cients of this new crank polynomial
divided by �3n+2(w). One could ask for a combinatorial interpretation in analogy to Question 2.

Question 7. What are the unimodality properties of C2(w; q)? Can one extend the ideas pre-
sented here to the wide class of crank functions given by Wagner in [52]?
3.3. t-core partitions. Each partition comes equipped with a statistic called the hook length of
the partition. To explain this, we recall that every partition ⁄ = (⁄1, ⁄2, . . . , ⁄s) has a Ferrers–
Young diagram

• • • . . . • Ω ⁄1 many nodes
• • . . . • Ω ⁄2 many nodes
...

...
...

• . . . • Ω ⁄m many nodes,
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and each node has an associated hook length. The node in row k and column j has hook length
given by h(k, j) := (⁄k ≠ k) + (⁄Õ

j ≠ j) + 1, where ⁄
Õ

j is the number of nodes in column j. This
counts the number of nodes in the diagram directly below the given node plus the number to
the right plus one (to count the given node itself). These numbers play many significant roles
in combinatorics, number theory, and representation theory. For example, due to the Frame–
Robinson–Thrall hook length formula [38, 6.1.19] we know that the counts of hook lengths of
partitions control the number of irreducible representations of the symmetric groups An and Sn.

For positive integers t, t-core partitions have also been of importance in combinatorial number
theory. A t-core partition of a positive integer n is a partition of n for which none of its hook
lengths are divisible by t. Let ct(n) denote the number of t-core partitions of n. Granville and
Ono [35] showed that there are infinite families of congruences that 5-core, 7-core, and 11-core
partitions satisfy, including the Ramanujan-type congruences (n œ N0)

c5(5n + 4) © 0 (mod 5), c7(7n + 5) © 0 (mod 7), c11(11n + 6) © 0 (mod 11). (9)
In order to combinatorially explain such congruences, Garvan, Kim, and Stanton [31] intro-

duced the t-core crank. To define it, we recall Bijection 2 of [31], which states that there is a
bijection „2 : Pt-core æ {

æ
n = (n0, n1, . . . , nt≠1) : ni œ Z, n0 + n1 + · · · + nt≠1 = 0}, where

|⁄̃| = t||
æ
n ||

2

2 +
æ

b ·
æ
n,

æ

b := (0, 1, . . . , t ≠ 1).

Then the t-core crank definition is given algorithmically for a given partition ⁄. Choosing
t = 5, 7, 11 one begins by finding the t-core ⁄̃ of ⁄. Next, find „2(⁄̃) = æ

n . Then the t-core crank
is given by the following mod t combination

4n0 + n1 + n3 + 4n4 for t = 5,

4n0 + 2n1 + n2 + n4 + 2n5 + 4n6 for t = 7,

4n0 + 9n1 + 5n2 + 3n3 + n4 + n6 + 3n7 + 5n8 + 9n9 + 4n10 for t = 11.

Let ct(m, n) denote the number of t-core partitions of n with t-core crank m. Then the t-core
crank polynomials t-core-crankn(w) are defined for n œ N0 by

ÿ

nØ0
mœZ

ct(m, n)wm
q

n =:
ÿ

nØ0
t-core-crankn(w)qn

. (10)

Parallel to Theorem 3.1, but for all three moduli 5, 7 and 11, we establish the following result.

Theorem 3.9. We have that �5(w) divides t-core-crank5n+4(w), �7(w) divides t-core-crank7n+5(w),
and �11(w) divides t-core-crank11n+6(w) in Z[w, w

≠1].
Proof. Garvan, Kim, and Stanton [31] showed that the t-core-crank splits c5(5n + 4), c7(7n + 5),
and c11(11n + 6) into equinumerous classes (see also [30, Theorem 3.1]). Combined with Lemma
2.1, one immediately obtains the result. ⇤

As a corollary, we obtain a new proof of the Ramanujan-type congruences for ct(n) modulo
5, 7 and 11 in (9).

Corollary 3.10. For n œ N0, we have that
c5(5n + 4) © 0 (mod 5), c7(7n + 5) © 0 (mod 7), c11(11n + 6) © 0 (mod 11).

Remark 3.11. The contents of Remark 3.3 also apply here to t-core-crank5n+4(w), t-core-crank7n+5(w),
t-core-crank11n+6(w), and c5(5n + 4), c7(7n + 5) and c11(11n + 6) (mod 5, 7, 11) (respectively)
in a similar manner.

Proof of Corollary 3.10. By Theorem 3.9 with w = 1, we have that �5(1) divides t-core-crank5n+4(1),
that �7(1) divides t-core-crank7n+5(1), and that �11(1) divides t-core-crank11n+6(1). By (10),
we have that for n œ N0, t-core-crankn(1) = ct(n), and by definition, we have that �5(1) = 5,
�7(1) = 7, and �11(1) = 11. The corollary now follows. ⇤
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To the best of the authors’ knowledge, the (non-)unimodality properties of ct(m, n) in the
m-aspect are unknown in the literature.
Question 8. What are the (non-)unimodality properties of ct(m, n) in the m-aspect?

To obtain numerical evidence for this question, it is natural to ask for a q-series representation
for the two-variable generating function given in (10). To the best of the authors’ knowledge,
this is unknown in the literature and so we leave this as a question.
Question 9. Is there a (nice) q-hypergeometric or product expression (e.g. as in (3), (4), (6),
(8)) that allows one to answer (or make progress in answering) Question 8?

We end this section by noting that there are a plethora of other partitions statistics in the
literature that one could ask similar questions for. For example, spt residual cranks of overparti-
tions, unimodal sequences, the rank of overpartition pairs and more general partition pairs [51],
and the many crank/rank functions of Garvan and Jennings-Sha�er [32,33,39–41].

4. Principal Polynomial roots
Refined information on partition statistics can be found by inspecting their so-called princi-

pal polynomials (defined explicitly in our cases below). This story begins with Stanley, who
investigated the zeros of the partition polynomials

Fn(w) :=
nÿ

k=1
pk(n)wn

,

where pk(n) denotes the number of partitions into exactly k parts. Stanley plotted the zeros of
F200(w) and asked for their limiting behaviour as n tends to Œ. This was settled in two beautiful
papers of Boyer and Goh [11, 12], who discussed in detail the (rather exotic) zero-attractor of
Fn(x) (we refer the reader to these papers for more history and background on this topic). Boyer-
Goh also prove similar results for the zero-attractors of several other common objects, including
Appell and Euler polynomials [9, 10], and Boyer–Parry proved similar results for traces of plane
partitions [13]. In each case, the resulting zero-attractor is rather complicated, and the proofs
require technical asymptotics and bounds.

However, in some particular cases the roots of polynomials associated to partition-theoretic
objects take a very simple shape - they become equidistributed on the unit circle as n grows.
To state this formally, we require classical results of Erdös and Turán, which were conveniently
packaged together in our setting by Granville in [34]. Let f(w) =

qd
j=0 ajw

j and

L(f) :=
qd

j=0 |aj |

(|a0||ad|) 1
2

.

Let ‹{|z|=1} be the Haar measure on the unit circle (that is, equidistribution), and for a polynomial
with not necessarily distinct roots z1, . . . zd let µ{f} = 1

d

qd
j=1 ”zj where ”z is the Dirac delta

measure. Then Theorem 1.3 of [34] reads as follows.
Theorem 4.1. Suppose that f1, f2, . . . is a sequence of polynomials in C[x] where fd has degree
d and fd(0) ”= 0. If L(fd) = e

o(d) as d æ Œ then
lim

dæŒ

µ{fd(x)} = ‹{|z|=1}

in the sense of “weak convergence” of measures.
In general, we consider two situations. First, take a partition family s(n) with partition-

theoretic statistic s(m, n) such that s(≠m, n) = s(m, n) and s(m, n) Ø 0 for all m œ Z and
n œ N, with s(0, n) ”= 0 for all n. Assume that s(0, n) + 2

q¸
m=1 s(m, n) = s(n) for some ¸ œ N.

Assume that s(n) ≥ e
o(¸). Consider the principal polynomial

Sn(w) := s(0, n)
2 +

ÿ

1ÆmÆ¸

s(m, n)wm
.
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Then using Theorem 4.1 it is not di�cult to show that as n æ Œ the roots of Sn(w) tend
to equidistribution around the unit circle. Of course, the di�culty is usually in finding the
asymptotic behaviour of s(n). The families s(m, n) often occur as ranks and cranks of various
objects, which are allowed to be negative.

Similarly, we also consider a partition family t(n) with partition-theoretic statistic t(m, n)
which vanishes for m < 0, where t(m, n) Ø 0 for all m œ N0 and n œ N, with t(0, n) ”= 0 for all n.
Assume that

q¸
m=0 t(m, n) = t(n) for some ¸ œ N. Then we consider the principal polynomial

Tn(w) :=
ÿ

0ÆmÆ¸

t(m, n)wm
. (11)

Again, using Theorem 4.1 we see that as n æ Œ the roots of Tn(w) tend to equidistribution
around the unit circle. The families t(m, n) often occur from partition statistics which are natu-
rally positive counts, for example partitions with number of parts equal to m.

In Section 4.1, following these methods, we establish equidistribution results for some specific
partition polynomials of interest. Many other partition-theoretic families can be shown to have
principal polynomials whose roots tend to equidistribution on the unit circle in a similar way.
We pay special attention to strongly unimodal sequence polynomials in Section 4.2.1 and t-hook
polynomials in Section 4.2.2, for which equidistribution-type properties are less clear, and o�er
various computations and open questions.

4.1. Equidistribution of roots of partition polynomials.

4.1.1. Rank and crank polynomials. In [12], the principal polynomials of the rank and crank of
ordinary partitions were each shown to have roots whose arguments tend to equidistribution on
the unit circle as n æ Œ. The authors of [12] go on to conjecture that the zero attractor for
these polynomials is the unit circle. To the best of the authors’ knowledge, this is not confirmed
in the literature, and so we record the result here.

Let N(m, n) and M(m, n) denote the number of partitions of n with rank and crank m re-
spectively. We define the principal polynomials

Nn(w) := N(0, n)
2 +

ÿ

1Æm<n

N(m, n)wm
, Mn(w) := M(0, n)

2 +
ÿ

1ÆmÆn

M(m, n)wm
,

noting that the factor of 1
2 in the constant term of each is not present in [12]. In particular, recall

that
ÿ

≠n<m<n

N(m, n) =
ÿ

≠nÆmÆn

M(m, n) = p(n).

Moreover, we have that N(0, n) ”= 0 and M(0, n) ”= 0 for n Ø 1, along with the well-known
asymptotic formula of Hardy and Ramanujan [37]

p(n) ≥
1

4n
Ô

3
exp

A

fi

Ú
2n

3

B

, n æ Œ.

Thus the assumptions of Theorem 4.1 apply, and we conclude the following theorem.

Theorem 4.2. As n æ Œ the roots of the rank and crank principal polynomials, i.e. Nn(w) and
Mn(w), tend to equidistribution on the unit circle.

4.1.2. spt-crank polynomials. Recall the spt-crank generating function given in (6). For fixed
n œ N consider the principal polynomial attached to the spt-crank given by

Pn(w) = 1
2NS(0, n) +

ÿ

1Æm<n

NS(m, n)wm
.

We have that Pn(0) = 1
2NS(0, n) = 1

2 ospt(n) by Section 2 of [4], where ospt counts the di�erence
of first moments of the ordinary crank and rank distributions. Moreover, by [3, Theorem 3] we
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have that ospt(n) > 0 for n > 0, and so we need only check that

NS(0, n) + 2
n≠1ÿ

j=1
NS(n ≠ 1, n)

(2NS(0, n)NS(n ≠ 1, n)) 1
2

= e
o(n≠1)

The numerator is equal to spt(n) by definition. Using the known asymptotic for spt(n) given in
[14]

spt(n) ≥
1

2
Ô

2fi
Ô

n
e

fi


2n
3 = e

o(n≠1)
,

we may again apply Theorem 4.1 to conclude that the zeros of Qn(w) are equidistributed on the
unit circle as n æ Œ. We record this as a theorem.

Theorem 4.3. As n æ Œ the roots of Pn(w) tend to equidistribution on the unit circle.
4.1.3. Unimodal sequence polynomials. A (weakly) unimodal sequence of size n is a sequence of
positive integers {aj}1ÆjÆs such that

a1 Æ a2 Æ . . . ak≠1 Æ ak Ø ak+1 Ø · · · Ø as,

sÿ

j=1
aj = n. (12)

We follow the notation of [18] by indicating with the overline on the peak ak that if the largest
part is repeated, the sequences may be further distinguished by specifying the location of the
peak. Unimodal sequences are ubiquitous in number theory and in wider mathematics, and we
refer the reader to [49] and the references therein for many beautiful examples.

The rank of a unimodal sequence is defined to be the number of parts to the right of the peak
minus the number of parts before the peak. If we consider unimodal sequences of size n with
rank m, denoted by u(m, n), then the generating function is given by (see e.g. [18])

U(w; q) :=
ÿ

nØ0

ÿ

mœZ

u(m, n)wm
q

n =
ÿ

nØ0

q
n

(wq; q)n(w≠1q; q)n
.

For fixed n œ N, we consider the principal part polynomial defined by

Qn(w) := 1
2u(0, n) +

ÿ

1Æm<n

u(m, n)wm
.

Then, since Qn(0) = 1
2u(0, n) ”= 0, we need only check that

u(0, n) + 2
n≠1ÿ

j=1
u(j, n)

(2u(0, n)u(n ≠ 1, n)) 1
2

= e
o(n≠1)

as n æ Œ. Using that u(≠m, n) = u(m, n), we see that the numerator counts exactly the number
of unimodal sequences of size n, denoted by u(n). Using [18, Theorem 1.1 (1)] with k = 0, which
gives

u(n) ≥
1

8 · 3 3
4 n

5
4

e
fi


4n
3 = e

o(n≠1)
,

we apply Theorem 4.1 we conclude that the zeros of Qn(w) tend toward equidistribution on the
unit circle as n æ Œ. We record this as a theorem.

Theorem 4.4. As n æ Œ the roots of Qn(w) tend to equidistribution on the unit circle.
4.2. Non-equidistribution of roots of partition polynomials. In this section we collect
some examples of partition polynomials whose roots numerically appear to not be equidistributed
on the unit circle as n grows. In each case, we explain why one cannot appeal to Theorem 4.1,
and o�er some numerical data and open questions.
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(a) n = 200 (b) n = 500

Figure 1. Roots of Rn(w) for two choices of n.

4.2.1. Strongly unimodal sequences. A close relative of unimodal sequences are known as strongly
unimodal sequences, where in (12) one requires the inequalities to be strict. We denote the number
of strongly unimodal sequences of size n with rank m by u

ú(m, n), and the number of strongly
unimodal sequences of size n by u

ú(n). Numerical experiments (using SageMath [48]) suggest
that the roots of the principal polynomial for the rank of strongly unimodal sequences do not tend
to equidistribution around the unit circle. Figure 1 plots the roots of the principal polynomial of
the rank of strongly unimodal sequences for n = 200 and 500.

Let Rn(w) be the principal polynomial attached to strongly unimodal sequences of size n. To
apply Theorem 4.1, one would need that the growth of strongly unimodal sequences of size n is
o(d(n)), where d(n) is the degree of Rn(w). By [47] we have

u
ú(n) ≥

Ô
3

2(24n ≠ 1) 3
4

exp
3

fi

6
Ô

24n ≠ 1
4

as n æ Œ. However, it is not di�cult to see that d(n) is given by taking the index of next
triangular number above n and then taking o� 1 (which is very roughly

Ô
n). To see this, simply

write out the strongly unimodal sequences diagrammatically. The largest possible rank will be
given by a strictly decreasing triangle starting with the largest size in the first column, and a
single dot in the final column.

Thus Theorem 4.1 does not apply, and we do not expect the roots of Rn(w) to tend to be
equidistributed on the unit disk as n grows (at least, using this method).

Question 10. What is the limiting distribution of the roots of Rn(w)?

4.2.2. t-hooks. Recall the hook length of a partition introduced in Section 3.3. The hook lengths
which are multiples of a fixed positive integer t are called t-hooks, and been a central object of
focus in several recent papers, including work of Bringmann, Craig, Ono, and the second author
[15], who determined an exact formula for the number of t-hooks in partitions as well as the
non-equidistribution properties over arithmetic progressions.

We also remark that the case of t = 2, 3 appears to be similar numerically. However, the
interested researcher aiming to answer this question should be aware that their behaviour may be
influenced by the fact that there are arithmetic progressions on which the number of 2-hooks and
3-hooks congruent to a (mod b) identically vanish. Moreover, the number of t-hooks of partitions
is not (in general) equidistributed among congruence classes (see [15]).

If we let Ht(⁄) denote the multiset of t-hooks of a partition ⁄, then Han [36] proved that the
generating function for t-hooks in partitions

Ht(w; q) :=
ÿ

⁄œP

w
#Ht(⁄)

q
|⁄| =

ÿ

m,nØ0
ct(m, n)wm

q
n

takes the following form.
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(a) t = 4, n = 1000 (b) t = 4, n = 2000

Figure 2. Roots of the 4-hook principal polynomial.

(a) t = 5, n = 1000 (b) t = 5, n = 2000

Figure 3. Roots of the 5-hook principal polynomial.

Theorem 4.5. (Corollary 5.1 of [36]) As formal power series, we have

Ht(w; q) = 1
r

Œ

n=1 (1 ≠ (wqt)n)t

ŒŸ

n=1

!
1 ≠ q

tn
"t

1 ≠ qn
.

We define the principal polynomial for t-hooks by
Ht,n(w) :=

ÿ

0ÆmÆn

ct(m, n)wm
.

and below we include several figures on the roots of Ht,n(w) for several choices of t and n. As can
be seen, the zeros appear to tend to lie on two distinct circles as n grows although these circles
may have radii that tend to a common value of 1. In every case, there are several “sporadic”
zeros lying far from any apparent circles outside of the unit circle. For the cases t = 4, 5 and
n = 2000 (see Figures 2 and 3) there appear to be further zeros far from the two apparent circles.

Question 11. What is the limiting distribution of the zeros of Ht,n(w)?



14 AMANDA FOLSOM, JOSHUA MALES, AND LARRY ROLEN

(a) t = 7, n = 1000 (b) t = 7, n = 2000

Figure 4. Roots of the 7-hook principal polynomial.
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