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Two Birds with One Stone: Differential Privacy
by Low-power SRAM Memory
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AbstractÐThe software-based implementation of differential privacy mechanisms has been shown to be neither friendly for lightweight

devices nor secure against side-channel attacks. In this work, we aim to develop a hardware-based technique to achieve differential

privacy by design. In contrary to the conventional software-based noise generation and injection process, our design realizes local

differential privacy (LDP) by harnessing the inherent hardware noise into controlled LDP noise when data is stored in the memory.

Specifically, the noise is tamed through a novel memory design and power downscaling technique, which leads to double-faceted gains

in privacy and power efficiency. A well-round study that consists of theoretical design and analysis and chip implementation and

experiments is presented. The results confirm that the developed technique is differentially private, saves 88.58% system power,

speeds up software-based DP mechanisms by more than 106 times, while only incurring 2.46% chip overhead and 7.81% estimation

errors in data recovery.

Index TermsÐlocal differential privacy, static random-access memory, low-power, hardware-software co-design.

✦

1 INTRODUCTION

Nowadays, with the rapid development of Internet-of-
Things (IoT) technologies, the collection of user’s and envi-
ronment’s data becomes immense. Such a rich set of data
are frequently aggregated and analyzed using advanced
Artificial Intelligence (AI) algorithms to make faster and
more informed decisions. Despite the increased convenience
and intelligence, the collection and analysis of data could
incur significant privacy risks which are evidenced by recent
privacy breach incidents such as historical data collected
from Netflix [1] leading to unwanted intrusive market-
ing. Preserving data privacy thus attracts unprecedented
amount of attention in this era.

The line of work on data privacy has a groundbreaking
advance with the seminal work by Dwork et al. [2] in
differential privacy (DP), which now becomes the de facto
standard for preserving data privacy. The essence of the DP
notion is to ensure the rigourous privacy guarantee of indi-
vidual’s data without sacrificing its general statistics. Local
differential privacy (LDP), in contrast to the traditional DP
notion in the centralized setting [3], [4], is the state-of-the-
art approach which perturbs data locally with guarantees of
plausible deniability [5]. As such, LDP protects individual’s
data against the untrusted curator and still preserves useful
statistics of the original data. One example of the LDP
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realization is RAPPOR which was developed by Google and
is currently implemented in its Chrome browser [6].

However, existing realization or implementation of DP
(including LDP) have many issues. That is, existing DP
mechanisms typically add (subtract) to (from) the accurate
value a secret number (noise) sampled from a probabil-
ity distribution, which unfortunately bears the following
drawbacks. (i) The sampling/adding/subtrating process in
DP mechanisms is converted to the floating-point arith-
metic in the operating system (OS), which actually deviates
markedly from the DP’s mathematical abstraction, due to
rounding rules, compounding errors and many more in the
floating-point arithmetic, and could lead to side-channel
attacks. The vulnerability was spotted by Mironov et al.
[7] and later exploited by Andrysco et al. [8] to launch
attacks to the Fuzz differentially private database [9]. (ii)
The noise sampling process in DP mechanisms requires
function calls in the high-layer protocol stack, which are
easily supported by legacy OSs such as iOS, Linux and
Windows but may not stand for ªslimº OSs in lightweight
IoT devices such as sensors, cameras or lightbulbs. These
IoT OSs are mostly vendor- and application-specific, which
makes the implementation of DP mechanisms difficult to
scale. (iii) The computation processes of DP mechanisms
involve a significant number of CPU calls and memory
accesses, which could be resource-consuming and power
hungry. Although the cost of one-time DP randomization
could be negligible, it will be prohibitively high for real-time
or steaming data collection services when computations
repeat. The consumed resources and energy consumption
could become prohibitive for lightweight IoT devices such
as streaming cameras and wearable ECG sensors.

The above concerns thus call for a more secure, scal-
able, and lightweight implementation of DP mechanisms,
but very limited number of works have set foot on this
research problem. To fill this gap, this paper develops a
novel hardware-based technique that perturbs data when
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it is stored in memory Ð an ubiquitous component in all
electronic devices Ð thereby accomplishing the vision of
(differential) privacy by design [10]. In contrast to existing
hardware security primitives like physical unclonable func-
tion (PUF), we do not seek to generate and later use hard-
ware noises but rather perturb the data in situ such that it
carries DP noises naturally. Moreover, compared with other
hardware components like CPU, achieving DP in memory
avoids data passing between CPU and memories. This de-
sign idea of computation-storage integration is reminiscent
of a new concept Ð ªcomputing in memoryº (CIM) which
is inspired by the highly energy-efficient mammalian brain
where memory and processing are deeply intertwined [11].
In addition, by minimizing system interactions, we can also
avoid threat interfaces and reduce system overhead.

To this end, we develop a novel static random ac-
cess memory (SRAM) architecture, coined as SRAM_DP, to
achieve randomized response (RR) [12] Ð the widely adopted
approach to achieve LDP. The novelty of SRAM_DP lies
in its integration of data storage and LDP and enhanced
power efficiency. Specifically, by reducing the memory’s
supply voltage, each custom memory cell becomes volatile
and has a probability 𝑓 to fail thus flipping the stored bit
(1 → 0 or 0 → 1); otherwise, following a probability 1 − 𝑓

to maintain intact. In other words, a memory array Ð an
array of memory cells Ð is randomized by independently
applying the RR technique to each bit position through
adjusting supply voltages and cell sizing. In so doing, the
original data represented and stored in binary format in
the memory is sanitized with LDP noises. There are a few
challenges in developing SRAM_DP: (i) how to ensure that
the perturbation on binary values preserve LDP on their
original values (e.g., decimal, categorical values); (ii) how
could the curator revert useful statistics from a large number
of sanitized data with high utility; (iii) how to reduce system
overhead such as latency in control signaling. This work
addresses these challenges; and in summary, we push the
frontier of the state-of-the-art as follows.

1) This is the first work that simultaneously realizes
LDP in hardware (thereby achieving privacy-by-
design) and improves power efficiency and system
responsiveness, which promises a ªwin-winº out-
come.

2) The data is transformed from its original type to the
binary domain for LDP randomization. Theoretical
analysis are provided for its rigorous bounds in
privacy, utility, and side-channel leakage.

3) We design and implement a combination of hard-
ware techniques Ð voltage down-scaling and cus-
tom memory design Ð to introduce controlled noise
to the binary data. The developed hardware com-
plies to LDP, preserves utility by protecting signifi-
cant bits from failure, and reduces power consump-
tion and latency.

To the best of the authors’ knowledge, the proposed
hardware-based LDP realization has made the first and
interdisciplinary attempt to exploit low-power memory de-
sign for LDP. Also, other than the presented SRAM-based
scheme presented in this paper, the proposed technique can

be implemented using different memory technologies, such
as DRAM and nonvolatile memories [13].

The rest of the paper is organized as follows. Section 2
provides preliminaries on LDP and SRAM failure charac-
teristics. The details of SRAM_DP are described in Section
3. We present the theoretical study on privacy and utility
in Section 4. The statistical recovery algorithms are then
presented in Section 5. Section 6 demonstrates and dis-
cusses simulation and experiment results, which is followed
by a discussion on SRAM_DP reliability issues in Section
7. Finally, Section 8 surveys related works and Section 9
concludes the paper.

2 PRELIMINARIES

2.1 Local Differential Privacy

LDP enriches the conventional differential privacy frame-
work by ensuring the indistinguishability of two singleton
databases (i.e., two arbitrary records) via a local random-
ization mechanism. The definition of LDP and its enabling
technique are detailed as follows.

Definition 2.1 (Local Differential Privacy [6]). LDP allows
data contributor to locally perturb its own data using a random-
ization technique M that satisfies 𝜀-LDP, before sharing data to
the data curator. Specifically, a randomized mechanism M satisfies
𝜀-LDP, if and only if for two data records 𝑣1 and 𝑣2 and for all
output 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(M), the following inequality holds:

Pr[M(𝑣1) ∈ 𝑆] ≤ 𝑒𝜀 Pr[M(𝑣2) ∈ 𝑆]

To achieve LDP, it has been proven that the classic
random response technique that is widely used in surveys of
people’s ªyesº or ªnoº answers for sensitive questions can
be adapted to achieve LDP. Its definition is as follows.

Definition 2.2 (Randomized Response [12]). For a private
binary value 𝑥 ∈ {0, 1}, a randomized response (RR) scheme
follows a 2 × 2 design matrix to perturb 𝑥, that is 𝑝𝑠𝑣 = 𝑝 [𝑦 =

𝑠 |𝑥 = 𝑣] (𝑠, 𝑣 ∈ {0, 1}) as the probability of the output being 𝑠

when the input is 𝑣. The RR that satisfies 𝜀-LDP follows that
𝑝00 = 𝑝11 =

𝑒𝜀

1+𝑒𝜀 and 𝑝01 = 𝑝10 =
1

1+𝑒𝜀 .

To handle more general data types, Google developed
RAPPOR [6] which applies RR to the Bloom filter encoded
data.

2.2 SRAM Failure Characteristics

Memories are ubiquitous in today’s electronic systems.
Among different memories, SRAM is mainly used as the
cache and internal registers of a CPU thanks to its fast
read/write speed. SRAM is volatile; its stored data is lost
when the supply voltage is removed. This unique property
has invited researchers to investigate the voltage down-
scaling technique, a.k.a., low-power memory design, to
balance power consumption and data integrity [14].

In addition to supply voltage, the SRAM failure char-
acteristics also depend on its cell structure and transistor
sizes. Specifically, among various SRAM designs, 6T and
8T are the two most widely-applied SRAM cells. Figure 1
shows 6T and 8T cells with the smallest silicon area in a
45 nm CMOS technology. 6T can enable compact memory
design for its small silicon area while 8T can effectively
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Fig. 1: 45nm SRAM cell schematics with the smallest silicon
area: (a) 6T (C61) and (b) 8T (C81).

Fig. 2: Failure characteristics of 45 nm 6T and 8T cells.

reduce memory failures thanks to the decoupled read and
write paths [15]. At low voltages, SRAM failures are mainly
caused by process variations, in particular threshold voltage
variations (𝜎𝑉𝑡ℎ), which can be expressed as 𝜎𝑉𝑡ℎ =

𝐴𝑉𝑇√
𝑊𝐿

[16]. 𝐴𝑉𝑇 is a technology dependent constant, and W, L re-
spectively represent the width and length of the transistors.
As the W and L of transistors increase, the threshold voltage
variations are reduced which makes the SRAM more reliable
in retaining its data at low voltages. In other words, upsizing
SRAM cells avoids data losses under low voltages but comes
with a tradeoff in silicon area.

In our experiments, we show in Figure 2 the failure
characteristics of two 6T and two 8T cells with different
transistor sizes. The detailed silicon area data of four cells is
listed in Table I. As compared to the smallest 6T design, i.e.,
C61, the area overhead of the upsized 6T (C62), the smallest
8T (C81), and the upsized 8T (C82) is 15.4%, 9.6%, and
14.3%, respectively. In our analysis, 100,000 HSPICE Monte-
Carlo simulations are performed in the worst process corner
to obtain the failure rates of cells, i.e. ªfsº (fast NMOS and
slow PMOS) for 6T and ªsfº (slow NMOS and fast PMOS)
for 8T. As shown in Figure 2, the failure rate of a memory
is monotone decreasing with respect to (w.r.t.) voltage and
area. As also observed, with similar silicon area, 8T cell
(C82) has a significant lower failure rate than upsized 6T
cells (C62).

TABLE 1: Silicon areas of 45 nm memory cells.

Different
Cells

Height
(𝜇m)

Width
(𝜇m)

Area
(𝜇𝑚2)

Area Ra-
tio

6T:C61 0.45 1.523 0.685 1.000
6T:C62 0.45 1.758 0.791 1.154
8T:C81 0.45 1.663 0.751 1.096
8T:C82 0.45 1.740 0.783 1.143

3 PRIVACY BY DESIGN IN SRAM MEMORY

In this paper, we propose to utilize the SRAM failures at
low voltages to inject LDP noises to the stored data, thereby
achieving privacy by design while reducing system power
consumption. This idea creates a ªwin-winº effect between
privacy preservation and power efficiency Ð reminiscent of
the old-saying: ªkill two birds with one stoneº. However,
existing SRAM chips cannot accomplish the goal for two
reasons. First, a failed memory cell cannot generate a ran-
dom binary value. In theory, for any bit 𝑥 ∈ {0, 1} that is
stored in a failed cell, it becomes ambiguous to determine
implying that 0 and 1 are the possible readouts. However, in
practice, for a specific SRAM chip after fabrication, its failed
bits will always be readout as 0 or 1. For example, at low
voltages, the failed bits of Cypress’s commercial memory
chip (CY62146GN) consistently generate 1s [17]. This prop-
erty, coined as ªfixed output upon cell failureº is unfortunately
unacceptable for achieving LDP. Second, SRAM cell failure
exhibits a ªfault inclusionº property; the cells that fail at
voltage 𝑉1 will certainly fail at a lower voltage 𝑉2 where
𝑉2 < 𝑉1 [18]. This deterministic pattern will reveal side-
information to adversaries who may conduct cell-failure
profiling experiments and eliminate unlikely bit values.
In this paper, we develop a new memory architecture to
address the above two challenges thus accomplishing the
vision of SRAM_DP.

3.1 Principle of SRAM_DP

Given a user’s value which could be in any format such
as numbers, characters and categories, it is converted to
binary bit strings 𝑋 = {𝑥1, ..., 𝑥𝑛} and then stored at the
user device’s SRAM cells 𝐶 = {𝑐1, ..., 𝑐𝑛}. Whenever the user
needs to send her data to a curator, 𝑋 is read out from the
memory as bit strings 𝑂 = {𝑜1, ..., 𝑜𝑛} with LDP noise. The
overview of the proposed SRAM_DP mechanism is shown
below, which consists of four steps.

1) Bit Shift. User’s memory system configures a finite
set of permutation vectors as Π = {𝜋1, ..., 𝜋𝑚} offline.
Before writing a value 𝑋 to memory for storage, a
permutation vector 𝜋𝑖 is randomly selected from Π

to re-organize the bit-string 𝑋 which is then stored
in the memory. The selected permutation vector is
also stored in memory for data reserve-shift.

2) Memory Storage. The noise injection process is
done by enabling low voltages for the custom mem-
ory. As discussed in Section 2.2, user’s low-voltage
memory system generates cell failures across the
memory. At a specific voltage, the failure positions
can be determined by its built-in self test (BIST)
process.

3) Noise Injection. Upon a memory read access, de-
pending on the position of failed cells, the readout
bits on non-failed cells are kept the same while the
readout bits on failed cells are replaced by 0 or 1
randomly.

4) Reverse Bit Shift. User’s memory system re-applies
the permutation vector 𝜋𝑖 used in Step 1 to revert the
generated bit string into 𝑂 as the output.
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Fig. 3: A toy example showing the procedures of SRAM_DP.

To put the above steps into perspective, we present a
toy example in Figure 3 that shows how a 4-bit data 𝑋 is
perturbed. The objective of each step is narrated as follows.

The Bit Shift in Step 1 serves for two purposes. First,
permutating input 𝑋 will address the ªfault inclusionº prob-
lem and effectively defend against side-channel attacks.
Second, by shifting bit positions of input 𝑋 , we achieve fine-
grained control over the failure rate of each bit position for
high utility preservation. Specifically, the most significant bit
(MSB) (resp. the least significant bit (LSB)) could be shifted
to the cell with least (resp. highest) failure rate, as shown in
Figure 3.

The Memory Storage in Step 2 is to let memory cells
manipulate the bits stored therein. Specifically, by online
adjusting the voltage 𝑉 and offline designing the set of per-
mutation vectors Π, we have control over a key parameter
𝑓 in LDP; that is, a bit 𝑥𝑖 ∈ 𝑋 will maintain its original
value with probability 1 − 𝑓𝑖 (i.e., by being stored in an
intact memory cell) while staying in an ambiguous state
with probability 𝑓𝑖 (i.e., by being stored in a failed memory
cell). Mathematically, the output of this step is

𝑜𝑖 =




0 with probability 1
2 𝑓𝑖

1 with probability 1
2 𝑓𝑖

𝑥𝑖 with probability 1 − 𝑓𝑖

The Noise Injection in Step 3 is to address the ªfixed
output upon cell failureº issue. During the readout process,
we inject random noises (0 or 1) to the failed cell positions.

The Reverse Bit Shift in Step 4 is to recover the original
bit positions of 𝑋 .

3.2 Hardware Architecture of SRAM_DP

To support the above procedures in our proposed SRAM_DP,
we re-design the conventional SRAM memory architecture
into a novel one which is shown in Figure 4.

To protect privacy, the failed bits in SRAM would be
used to add random binary bits as noise. As shown in
Figure 4, a data shuffler is added to implement the Bit
Shift in Step 1, which is designed based on the configured
permutation vectors. The random bit generation logic for
the Noise Injection in Step 3 can be efficiently implemented
by connecting multiplexers (MUX) to sense amplifier (SA)
readout values of conventional SRAM. Each SA readout bit
is connected to a MUX which is controlled by the received
memory failure positions. If a memory failure is indicated, a
random binary bit is enabled by selecting output of random
bit generator. The failure position information will be used
as the select signal of the MUX to control which bit to be

the output. Similar to other existing fault position aware
mitigation techniques [19], the proposed SRAM_DP receives
pre-determined locations of failed bits, which is usually
executed either during post fabrication testing or during
power-on self-test (POST). Finally, a data reshuffler is added
to realize the Reverse Bit Shift in Step 4, based on the
permutation pattern selection bits stored in the memory. The
detailed hardware implementations and evaluation results
of SRAM_DP will be discussed in Appendix B and Section 6,
respectively.

4 PRIVACY AND UTILITY ANALYSIS

4.1 Compliance to LDP Notion

First of all, we attempt to draw a connection between the
parameter 𝑓 and the memory behaviors of SRAM_DP. It is
clear that whether a bit 𝑥𝑖 ∈ 𝑋 can maintain its original
value, i.e., 𝑜𝑖 = 𝑥𝑖 , is determined by (i) the bit shift pattern
and (ii) memory cell failure rate. For the former factor, sup-
pose that a randomly selected permutation vector 𝜋 could
shift a bit 𝑥𝑖 to any memory cell 𝑐𝑘 following the probability
vector 𝑷𝜋,𝑥𝑖 = {𝑝𝑥𝑖→𝑐1 , ..., 𝑝𝑥𝑖→𝑐𝑛 } where

∑𝑛
𝑘=1 𝑝𝑥 𝑗→𝑐𝑘 = 1

and 𝑥𝑖 → 𝑐𝑘 denotes the event that bit 𝑥𝑖 is shifted to (or
stored at) the memory cell 𝑐𝑘 . For the latter factor, when
a specific voltage V is applied, a memory will exhibit the
failure characteristics similar to Figure 2. Suppose that a
memory cell 𝑐𝑘 exhibits a failure probability 𝑝𝑉,𝑐𝑘 at voltage
V. By taking these two factors into account, the probability
that a bit retains its original value because of being stored in
an intact cell is

𝑃(𝑜𝑖 = 𝑥𝑖) =
𝑛∑︁

𝑘=1

𝑝𝑥𝑖→𝑐𝑘 (1 − 𝑝𝑉,𝑐𝑘 ) = 1 −
𝑛∑︁

𝑘=1

𝑝𝑥𝑖→𝑐𝑘 𝑝𝑉,𝑐𝑘 .

By relating the above equation to 𝑓 , we can conclude that
𝑓𝑖 =

∑𝑛
𝑘=1 𝑝𝑥𝑖→𝑐𝑘 𝑝𝑉,𝑐𝑘 , ∀𝑥𝑖 ∈ 𝑋 .

Next, we present the relationship between 𝑓 and 𝜖∞ in
the following theorem.

Theorem 4.1. The SRAM_DP mechanism satisfies 𝜖∞-differential

privacy for any input bit strings 𝑋 , where 𝜖∞ =
∑𝑛
𝑖=1 ln( 1− 1

2 𝑓𝑖
1
2 𝑓𝑖

).

Proof. Without loss of generality, assume 𝑋1 = {𝑥1 =

0, ..., 𝑥𝑛 = 0} and 𝑋2 = {𝑥1 = 1, ..., 𝑥𝑛 = 1} meaning that
𝑋1 and 𝑋2 are complimentary and the 𝑙1 norm is maximized.
Besides, we know that for any bit 𝑥𝑖 ∈ 𝑋 , SRAM_DP generates
the readout bit 𝑜𝑖 ∈ 𝑂 with probability

𝑃(𝑜𝑖 = 1 | 𝑥𝑖 = 1) = 1

2
𝑓𝑖 + 1 − 𝑓𝑖 = 1 − 1

2
𝑓𝑖 ,

𝑃(𝑜𝑖 = 1 | 𝑥𝑖 = 0) = 1

2
𝑓𝑖 .

(1)

Similarly, 𝑃(𝑜𝑖 = 0 | 𝑥𝑖 = 0) = 1 − 1
2 𝑓𝑖 and 𝑃(𝑜𝑖 = 0 | 𝑥𝑖 = 1) =

1
2 𝑓𝑖 . Then, for any output 𝑂∗ = {𝑜1, ..., 𝑜𝑛},

𝑃(𝑂 = 𝑂∗ | 𝑋 = 𝑋1) =(
1

2
𝑓1)𝑜1 · (1 − 1

2
𝑓1)1−𝑜1 × ...

× ( 1

2
𝑓𝑛)𝑜𝑛 · (1 − 1

2
𝑓𝑛)1−𝑜𝑛
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Fig. 4: Hardware Architecture of the proposed SRAM_DP.

𝑃(𝑂 = 𝑂∗ | 𝑋 = 𝑋2) =(1 − 1

2
𝑓1)𝑜1 · ( 1

2
𝑓1)1−𝑜1 × ...

× (1 − 1

2
𝑓𝑛)𝑜𝑛 · ( 1

2
𝑓𝑛)1−𝑜𝑛

Consider that the SRAM_DP design abstractly provides a
randomization function M where output M(𝑋) ∈ 𝑆. For
the LDP condition to hold, we need to ensure the ratio
of probabilities of getting the same output for any two
arbitrarily ªadjacentº inputs 𝑋1 and 𝑋2 to be bounded by
exp(𝜖∞). Mathematically, we have

𝑃(M(𝑋1) ∈ 𝑆)
𝑃(M(𝑋2) ∈ 𝑆)

=
𝑃(𝑂 = M(𝑋1) | 𝑋 = 𝑋1)
𝑃(𝑂 = M(𝑋2) | 𝑋 = 𝑋2)

=

∑
𝑂∗∈𝑆 𝑃(𝑂 = 𝑂∗ | 𝑋 = 𝑋1)∑
𝑂∗∈𝑆 𝑃(𝑂 = 𝑂∗ | 𝑋 = 𝑋2)

≤ max
𝑂∗∈𝑆

𝑃(𝑂 = 𝑂∗ | 𝑋 = 𝑋1)
𝑃(𝑂 = 𝑂∗ | 𝑋 = 𝑋2)

= ( 1

2
𝑓1)2𝑜1−1 · (1 − 1

2
𝑓1)1−2𝑜1 × ...

× ( 1

2
𝑓𝑛)2𝑜𝑛−1 · (1 − 1

2
𝑓𝑛)1−2𝑜𝑛

=

𝑛∏

𝑖=1

(
1
2 𝑓𝑖

1 − 1
2 𝑓𝑖

)2𝑜𝑖−1

≤
𝑛∏

𝑖=1

(
1 − 1

2 𝑓𝑖
1
2 𝑓𝑖

) = 𝑒𝑥𝑝(𝜖∞)

where the second inequality holds when every 𝑜𝑖 = 0. The

reason is as follows. First of all, it is clear that
1
2 𝑓𝑖

1− 1
2 𝑓𝑖

takes

values from [0, 1] because 𝑓𝑖 ∈ [0, 1]. Then, provided that
𝑜𝑖 is binary (0 or 1), the exponent 2𝑜𝑖 − 1 is either -1 or
1, respectively. Therefore, the upper bound of the above
equation occurs when 𝑜𝑖 = 0, ∀𝑖. ■

4.2 Side-channel Analysis

In addition to proving that SRAM_DP guarantees LDP, it is
equally vital to examine if SRAM_DP leaks any side-channel
information that may jeopardize data privacy. Amongst the
designed components of SRAM_DP, the power control unit
Ð a firmware executed by CPU Ð for voltage scaling is
vulnerable to (remote) power profiling attacks [20], [21].

For instance, Hertzbleed threat allows attackers to steal
full cryptographic keys by observing variations in CPU fre-
quency enabled by dynamic voltage scaling [20]. Nonethe-
less, in our SRAM_DP design, the voltage profile is only
correlated with 𝜖 as shown in the above proof and Table 3.
Knowing 𝜖 gives no benefits to attackers Ð 𝜖 by default
is a public information, not to mention that extracting 𝜖 is
almost impossible because attackers have no clues of victim
devices’ SRAM specifications such as its transistor sizing, as
illustrated earlier in Figure 2.

Even for the most adversarial case where attackers claim
root access to CPU and gain full knowledge of SRAM
specifications, LDP noises cannot be stolen or in any way
inferred because they are generated and utilized on-the-fly
during the SRAM read/write process (achieved by the sense
amplifier and noise generator in Figure 4) and they are never
stored. Moreover, the sensitive data are naturally perturbed
when they are written into memory. Therefore, any attempt
in reading data from SRAM will not be able to reverse their
true values.

4.3 Utility Analysis

Theorem 4.2. The expected 𝑙1 utility loss of SRAM_DP, denoted
as E( |𝑂 − 𝑋 |), has a O(𝑐𝑛) upper bound where 𝑐 is a constant
relevant to { 𝑓1, ..., 𝑓𝑛}.

Proof. Denote the change of bit value as Δ𝑎𝑖 = 𝑜𝑖 − 𝑥𝑖 ∈
{−1, 0, 1}. Without any prior assumption on 𝑥𝑖 , i.e., it can
take value 0 or 1 with equal probability, the probability of
Δ𝑎𝑖 is given as

𝑃(Δ𝑎𝑖) =



1
4 𝑓𝑖 , Δ𝑎𝑖 = −1

1 − 1
2 𝑓𝑖 , Δ𝑎𝑖 = 0

1
4 𝑓𝑖 , Δ𝑎𝑖 = 1

(2)

according to Eq.(1). Upon mapping randomization in binary
domain back to its decimal format, we can obtain the change

of data’s original value Δ𝐴
def
= 𝑂−𝑋 = Δ𝑎𝑛−12𝑛−1+Δ𝑎𝑛−22𝑛−2+

· · ·+Δ𝑎020. Δ𝐴 is a random variable whose value is an integer
from {−2𝑛 + 1, ..., 0, ..., 2𝑛 − 1}. Then, to derive the expected
value of |𝑂 − 𝑋 | (or |Δ𝐴|) which is 𝑙1 loss of SRAM_DP, we
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have the following Lemma for the probability mass function
(PMF) of Δ𝐴.

Lemma 4.3. The PMF of Δ𝐴 is zero-mean and symmetric w.r.t.
Δ𝐴 = 0. The proof is shown in the Appendix A.

With Lemma 4.3, we can derive E(Δ𝐴) as follows:

E( |𝑂 − 𝑋 |) =
2𝑛−1∑︁

|𝑂−𝑋 |=0

|𝑂 − 𝑋 |𝑃( |𝑂 − 𝑋 |)

(1)
= 2

2𝑛−1∑︁

Δ𝐴=0

Δ𝐴𝑃(Δ𝐴)

(2)
= 2

2𝑛−1∑︁

Δ𝐴=0

Δ𝐴
∑︁

𝐾∈KΔ𝐴

[
∏

𝑖∈𝐼

(
1 − 1

2
𝑓𝑖

)∏

𝑖∈𝐼 ′

(
1

4
𝑓𝑖

)]

(3)
≤ 2

2𝑛−1∑︁

Δ𝐴=0

Δ𝐴

𝑛∑︁

𝑘=0



𝑘∏

𝑖=0

(
1 − 1

2
𝑓𝑖

) 𝑛∏

𝑗=𝑘+1

(
1

4
𝑓𝑖

)

(4)
= 22𝑛−1

𝑛∑︁

𝑘=0



𝑘∏

𝑖=0

(
1 − 1

2
𝑓𝑖

) 𝑛∏

𝑗=𝑘+1

(
1

4
𝑓 𝑗

)
We have equality (1) because of Lemma 4.3. The rationale
of equality (2) is that any value of Δ𝐴 is due to a combina-
tion of {Δ𝑎𝑛−1, . . . ,Δ𝑎0}. For example, for a three-bit (𝑛=3)
decimal number, there are two combinatorics that can result
in Δ𝐴 = 5, which are KΔ𝐴=5 = {{1, 1,−1}, {1, 0, 1}}. Here,
KΔ𝐴 represents the set of combinatorics that lead to Δ𝐴.
Any combinatoric 𝐾 in KΔ𝐴 is a specific realization of Δ𝐴.
For any 𝐾 , it contains 𝑛 corresponding values (e.g., 𝐾 ( 𝑗) is
the 𝑗 th element) in {Δ𝑎𝑛−1, . . . ,Δ𝑎0}. Then, the probability
of Δ𝐴 = 𝑎, ∀𝑎 ∈ {−2𝑛 + 1, ..., 0, ..., 2𝑛 − 1}, is simply the
addition of probabilities for having every combinatorics in
KΔ𝐴=𝑎. More specifically, the probability of any combina-
toric 𝐾 in KΔ𝐴=𝑎 is the product of probabilities in Eq.(2)
for all {Δ𝑎𝑛−1, . . . ,Δ𝑎0}. For notation simplicity, denote
𝐼 = { 𝑗 |𝐾 ( 𝑗) = 0, 1 ≤ 𝑗 ≤ 𝑛} and 𝐼 ′ = { 𝑗 |𝐾 ( 𝑗) ≠ 0, 1 ≤ 𝑗 ≤ 𝑛}.
For instance, in the above three-bit example, 𝑃(Δ𝐴 = 5) =(

1
4 𝑓1

) (
1
4 𝑓2

) (
1
4 𝑓3

)
+
(

1
4 𝑓1

) (
1 − 1

2 𝑓2

) (
1
4 𝑓3

)
.

Note that deriving KΔ𝐴 for all possible Δ𝐴 requires ex-
haustive search which is significantly time-consuming as the
search space increases exponentially w.r.t. 𝑛. Nonetheless, it
is intuitive to assert that for any specific value of Δ𝐴, as long
as the number of zero-valued elements in {Δ𝑎𝑛−1, . . . ,Δ𝑎0}
are fixed, the remaining non-zero elements will be deter-
ministic. In light of it, we have inequality (3) by relaxing
the carnality of KΔ𝐴 to 𝑛 Ð the maximum number of zero-
valued elements. Moreover, without loss of generality, we
can neglect the order of cell failure positions { 𝑓1, ..., 𝑓𝑛}
and simply consider the number of failed cells that lead
to Δ𝑎∗ = 0 (with probability 1 − 1

2 𝑓∗). Then, we can easily
conclude with the result by calculating the sum of arithmetic
series in equality (4).

Obviously, the expected 𝑙1 utility loss of SRAM_DP has
an O(𝑐𝑛) upper bound, in which 𝑐 is a constant relevant to
{ 𝑓1, ..., 𝑓𝑛}. In fact, this claim will become more intuitive at a
special case of homogeneous failure rate 𝑓1 = ... = 𝑓𝑛 = 𝑓 , for

which the above derivation can be further simplified into

E( |𝑂 − 𝑋 |) ≤ (4𝑛 − 2𝑛) ·

(
1 − 1

2 𝑓
)𝑛+1

−
(

1
4 𝑓

)𝑛+1

1 − 3
4 𝑓

.

All the above analytical results of Lemma 4.3 will later
be validated numerically in Figure 7. ■

5 STATISTICS RECOVERY ALGORITHMS

In this work, we assume each user’s data is independently
and identically distributed (i.i.d.) with a specific distribution
P. After applying SRAM_DP, a data curator needs to recover
certain statistics of P. In this section, we adopt two statistics
recovery algorithms, namely the expectation-maximization
(EM) algorithm and the constrained linear regression (CLR)
algorithm, to achieve the goal. Note that EM and CLR are
well-established methods and the purpose of selecting them
is to convey the idea that the hardware-perturbed data
by SRAM_DP can be easily analyzed by classical recovery
algorithms.

Before running recovery algorithms, the data curator
should (i) be aware and apply the same encoding algorithm
that is used at users’ SRAM system to convert data of
arbitrary format into bit strings, (ii) obtain every user’s
failure rate vector 𝐹 = { 𝑓1, ..., 𝑓𝑛} thus the LDP parameter
𝜖 , and (iii) construct a set of data candidates Ω that cover all
the possible values of users’ choices. For instance, for heart
beat monitoring, a reasonable heart beat range is between
30bpm to 150bpm so Ω = {𝑋 | 30 ≤ 𝑋 ≤ 150, 𝑋 ∈ Z+} and
a user’s specific input 𝑋 ∈ Ω. These requirements could
be easily fulfilled by relying on users to piggyback them
with the sanitized data or the curator retrieving them from
side channels without compromising the differential privacy
condition.

5.1 EM Algorithm

The essence of EM algorithm is to find the maximum-
likelihood estimates (MLEs) through iteration. In the context
of this work, the data curator is interested to search through
the candidate set Ω for the most likely 𝑋∗ that contributes
to the observed sanitized data 𝑂. Specifically, our EM algo-
rithm consists of the following steps.

1) Initialization. Assume the data curator has no ad-
ditional prior information about users’ data, it will
initialize the prior probability by setting a uniform
distribution as 𝑃(𝑋) = 1

|Ω | , ∀𝑋 ∈ Ω.

2) Likelihood Calculation. When the data curator ob-
serves a sanitized bit strings 𝑂 = {𝑜1, ..., 𝑜𝑛} from
a user, it calculates the likelihood of generating
𝑂 by any candidate from Ω. Specifically, for the
SRAM_DP mechanism, an output bit 𝑜𝑖 ∈ 𝑂 main-
tains its original value with probability 1 − 1

2 𝑓𝑖
whereas flips with probability 1

2 𝑓𝑖 as derived in
Eq.(1). Then, for a candidate represented in bit string
𝑋 = {𝑥1, ..., 𝑥𝑛}, each of its bit has the likelihood of
𝑃(𝑜𝑖 | 𝑥𝑖) = ( 1

2 𝑓𝑖)𝛽𝑖 · (1 − 1
2 𝑓𝑖)1−𝛽𝑖 of generating 𝑜𝑖 for

∀𝑜𝑖 ∈ 𝑂, where 𝛽𝑖 = XOR(𝑜𝑖 , 𝑥𝑖) and XOR() is the
boolean exclusive OR operator. Then, for any user’s
submitted data, we have
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𝑃(𝑂 | 𝑋) =
𝑛∏

𝑖=1

( 1

2
𝑓𝑖)𝛽𝑖 · (1 − 1

2
𝑓𝑖)1−𝛽𝑖 , ∀𝑋 ∈ Ω. (3)

3) Posterior Calculation. Given all the conditional dis-
tributions of one particular observation 𝑂 as above,
the corresponding posterior probability can be cal-
culated according to the Bayesian theorem, which is
given below.

𝑃(𝑋 |𝑂) = 𝑃(𝑋) · 𝑃(𝑂 | 𝑋)
∑
𝑋∈Ω 𝑃(𝑋) · 𝑃(𝑂 | 𝑋) , ∀𝑋 ∈ Ω. (4)

4) Update and Iteration. After calculating the poste-
rior for every user, we update the prior probability
for the calculation of next round. Specifically, we
take the average of posterior probabilities of all
𝑈 users in the current iteration and assign it to
the prior probability used for the next iteration,
mathematically,

𝑃(𝑋) = 1

𝑈

𝑈∑︁

𝑚=1

𝑃(𝑋 |𝑂𝑚), ∀𝑋 ∈ Ω

The aforementioned steps continue till convergence. We can
set a stopping criteria as max𝑋∈Ω |𝑃𝑡 (𝑋) − 𝑃𝑡−1 (𝑋) | ≤ 𝛿.

5.2 CLR Algorithm

Another popular algorithm to recover statistics is the empir-
ical estimation method [22], which computes an empirical
estimate P̂ of P using the empirical distribution Q̂ of
the sanitized data 𝑂 given the LDP randomization matrix
(or conditional probability matrix) M. Mathematically, we
have P̂M = Q̂, whose closed-form solutions can be easily
computed and obtained. As the number of users increases,
the empirical distribution Q̂ gets asymptotically close to the
true distribution of sanitized data Q, thus P̂ also converges
to P given invariant M. However, when the number of
users is small, we cannot ensure the positiveness of P̂. One
method is to use Bonferroni correction [23] to eliminate
estimates below a significance level. Here in this work, we
will leverage a constrained linear regression model to obtain
P̂. The detailed steps are shown as follows.

1) Construct M. SRAM_DP applies a randomization

matrix M ∈ R |Ω |× |Ω |
≥0

, which characterizes the con-
ditional probability of mapping an input 𝑋 to a
sanitized output 𝑂. The calculation of M follows
Eq.(3).

2) Calculate P̂. We first build the empirical distri-
bution Q̂ by normalizing the frequencies of each
record. Then, we solve the following constrained
least-square problem:

min
P̂

1

2
∥P̂M − Q̂∥2

2

s.t. E[𝑋 𝑗 ] = 𝑚 𝑗 , 𝑗 ≥ 1;

0 ≤ P̂(𝑋) ≤ 1, ∀𝑋 ∈ Ω.

(5)

to obtain the optimizer P̂ as the estimation for the
input distribution P. Note that E[𝑋 𝑗 ] is the 𝑗 th

moment of the probability distribution P, which is
the prior knowledge known to the reconstruction
algorithm.

6 PERFORMANCE EVALUATION

In this section, we give a thorough evaluation of our de-
sign in both simulations and experiments. We first present
several metrics for quantitative evaluation. We consider two
specific adversarial side information, one of which strongly
pertains to our SRAM_DP mechanism, to examine the ab-
solute privacy level besides the above 𝜖∞-DP theoretical
analysis. We then assess how accurately the EM-based and
CLR-based algorithms can recover original statistics. Fur-
thermore, based on the simulation results, we implement
a proof-of-concept SRAM to achieve SRAM_DP. We carry
experiments to validate its performance w.r.t. the proposed
metrics.

6.1 Evaluation Metrics

Privacy Meter: The SRAM_DP design conforms to the dif-
ferential privacy notion given the proof in Theorem 4.1.
In other words, an adversary is unable to distinguish any
datum 𝑋 from its ªneighbouringº data. Without loss of
generality, we denote that such ªneighbouringº data collec-
tively form an indistinguishable set, whose size is determined
by the number of failed cells in SRAM Ð denoted as 𝑧.
Obviously, an adversary will have to guess the true datum
from a larger indistinguishable set when there are more failed
cells, leading to a higher uncertainty for the adversary. Since
different privacy only poses privacy guarantee within the
indistinguishable set, the size of the indistinguishable set that
is 2𝑧 has a strong implication on the adversarial inference
accuracy. In this work, we assume that an adversary follows
the maximum likelihood estimation (MLE) to obtain the
inferred data 𝑋̂ from its observation 𝑂. Then, we follow the
privacy meter to measure the in-accurateness of adversarial
inference as IA =

∑
𝑋 𝑃(𝑋 | 𝑂) | 𝑋̂ − 𝑋 | which is equivalent to

the privacy level.

Utility Meter: Privacy always comes with the cost of
utility, and our design is no exception. Intuitively, more
failed cells or higher cell failure rates lead to more severe
data corruption thus lower utility. Moreover, utility is also
affected by the positions of failed cells, in the sense that
a higher utility is retained when failed cells occur at less
significant bits. To characterize utility level of our design,
we use 𝑙1 loss (i.e., absolute error) to measure the utility loss
as UL =

∑
𝑂 𝑃(𝑂 | 𝑋) |𝑂 − 𝑋 |.

6.2 Adversarial Side Information

We assume two specific adversarial knowledge. The sim-
plest one is to assume an oblivious adversary, which pos-
sesses no additional information about the original data and
has to guess randomly. That is to say, the prior probability
in the MLE inference 𝑃(𝑋) = 1

2𝑧 . We denote such adversarial
knowledge as K1. Furthermore, we consider a more capable
adversary that knows the statistics (e.g., range, mean and
variance) of the original data set but is unaware of any
specific individual’s data. This adversarial knowledge is
denoted as K2. Then, an adversary with K2 can easily
derive a more accurate 𝑃(𝑋) by calculating the frequencies
of specific elements, for instance, the frequency of data that
is in binary form of ª111*****º (i.e., a 8-bit value with three
leading 1s in MSBs followed by five wild cards). Note that
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Fig. 5: Privacy analysis.

both K1 and K2 are aware of the details of SRAM_DP such
as cell failure rates and 𝜖 .

6.3 Input Data

We generate 1,000 8-bit random binary numbers (i.e., of val-
ues 0-255) as input data by sampling a Gaussian distribution
with 𝜇 = 125 and 𝜎 = 20. For notional convenience, we
refer every bit using ªLSB*º. For instance, LSB1 indicates
the least significant bit whereas LSB1-3 indicates the least
three significant bits.

6.4 Simulation Results and Analysis

Simulation Setup: To simulate the algorithmic procedures
of SRAM_DP, we use MATLAB R2022a to implement the
key steps in Section 3.1. Specifically, we first sample 1,000
random numbers, convert them into binary values, shuffle
their bit positions, and follow an i.i.d., Bernoulli multivari-
ate vector (mimicking the SRAM cell failure probabilities)
to decide if any binary values need to be changed into an
constant value (e.g., 1s, which reflects the fixed output upon
cell failure property). Next, we replace the prior changed
values with 1s or 0s randomly. In the end, we reverse the
binary values back to their original bit positions, which
completes the SRAM_DP randomization life-cycle.

Privacy Analysis: To preserve the 𝜖∞-DP guarantee in
Theorem 4.1, we must select appropriate cell failure rates
𝑓 , the number of failed cells 𝑧, and the positions of failed
cells. For the sake of simplicity, we assume homogeneous
failure rates among memory cells. Then, we plot how the
cell failure rate changes w.r.t. 𝜖∞ as shown in Figure 5a.
The result indicates that a stronger privacy (i.e., smaller
𝜖∞) is achieved by increasing cell failure rates and confining
failures in a small number of memory cells. For example, a
single cell failure with probability 0.5, i.e., 𝑧 = 1 with 𝑓 = 0.5,
yields ln3-DP. Nevertheless, a small indistinguishable set for
a small 𝑧 gives rises a higher chance for adversaries to infer
the correct value. As shown in Figure 5b, a larger 𝑧 offers a
higher IA under the adversarial knowledge K1.

When it comes to different adversarial knowledge, we
evaluate how it can affect adversaries’ capability in com-
promising data privacy. We present simulation results in
Figure 6. When compared with an adversary with K1, its
peer with K2 outperforms in inference accuracy at the
high end of the spectrum (i.e., failed cells close to MSB).
This can be reasoned by looking into the characteristics
of the input data. As shown in Figure 8, there are nearly

LSB1-3 LSB2-4 LSB3-5 LSB4-6 LSB5-7 LSB6-8

Positions of Failed Cells

0

20

40

60

80

100

120

140

160

In
a
c
c
u
ra

te
n
e
s
s

(a) IA with prior knowledge
K1

LSB1-3 LSB2-4 LSB3-5 LSB4-6 LSB5-7 LSB6-8

Positions of Failed Cells

0

20

40

60

80

100

120

140

160

In
a
c
c
u
ra

te
n
e
s
s

(b) IA with prior knowledge
K2

Fig. 6: Privacy level under different prior knowledge.
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no samples beyond 𝑋 = 192 (in binary form 110*****), so
the K2 can confidently eliminate 110***** and 111***** from
the indistinguishable set leading to higher inference accuracy.
Nevertheless, we notice that the K1 adversary does not have
an evident advantage over K2 when failed cells are clustered
at low-to-medium bit positions. This provides us with a
great insight when rendering cell failures at the design of
SRAM_DP.

Utility Analysis: In addition to the privacy analysis, we
evaluate utility losses. In this simulation, we set 𝜖 = ln3. As
shown in Figure 7a, it is obvious that utility loss increases
exponentially as there are more failed cells. This finding
matches with our theoretical analysis in Theorem 4.2. Nev-
ertheless, it is not advisable to select a small number of
failed cells for the reasons that were discussed in the privacy
analysis.

Moreover, Figure 7b shows that the utility loss is moder-
ately low when failed cells are placed at the low end of bit
positions, which is intuitive.

Data Re-construction: Here, we demonstrate how well
original data can be re-constructed from the sanitized one
by using EM-based and CLR-based algorithms. Specifically,
in the EM-based algorithm, we set the convergence criteria
of as 𝛿 = 10−3 and assume no prior information about
input statistics. Likewise, no information about original
distribution is assumed in the CLR-based algorithm. We
consider three failed cells with failure patterns F1, F2 and
F3 for 𝜖 = ln3. Figure 8 shows the reconstructed frequency
histograms versus the original one. There are two take-
away from the results. First, both algorithms in general
perform better when the failed positions are near LSB.
Second, the EM-based algorithm is preferred at low-end bit
failures while the CLR-based one slightly outperforms its
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peer at high-end bit failures. Another note is that if any
prior information were available such as variance, we could
significantly improve upon reconstructing the shape of the
distribution via smoothing.

6.5 Experiment Results and Analysis

A key take-away from the above simulation results is that
the number of, the location of, and the failure rate of failed
cells jointly affect IA, UL, and data re-construction accuracy.
A fair principle is to place failed cells as close to LSBs
as possible and keep the number of failed cells moderate.
In this subsection, we instantiate a memory configuration
for implementation that balances IA, UL, and data re-
construction accuracy. That is, we set four failed cells at the
four LSBs (i.e., LSB1-4) with the same failure rate whose
value is guided by Theorem 4.1.

The design details of SRAM_DP are outlined in the Ap-
pendix B. In brief, SRAM_DP is implemented based on a 45
nm CMOS technology and the standard supply voltage is
1V. SRAM_DP is designed with a layout of 8 memory banks
and each bank has 128 words × 10 bits.

Analysis on IA, UL and Data Re-construction: Our ex-
periment is based on the setting of 0.50V supply voltage. We
write and then read out the same 1,000 data, and analyze the
performance of IA, UL and data re-construction compared
with the previous simulation results.

First, as shown in Figure 9a, the re-constructed data
is plotted against the original data. Obviously, the EM-
based algorithm has a quite low miss-detection rate and
its frequency estimation for most data records are accurate.
Nonetheless, if we use the Mean Squared Error (MSE) metric
to capture how well data is reconstructed, the EM-based
algorithm achieves MSE = 69.56 in the experiment while
MSE = 5.12 in the simulation. Apparently, the experimental
performance is inferior to the simulation. The reason is
because of the inconsistency of failure rate 𝑓 in the sense
that EM-based algorithm takes the simulated or theoretical
value of 𝑓 (i.e., 81.57%) as the input parameter to recover
the experimentally perturbed data, in which the exact value
of 𝑓 may deviate from the simulated one.

Next, we demonstrate and compare the performance of
IA and UL. As shown in Figure 10, the simulation and
experiment results are comparatively similar, which implies
that the perturbed data that is generated in the experiment
resembles well to the one generated in the simulation.

Power Saving: Figure 9b shows the power consumption
of SRAM_DP at three different voltages including standard
supply voltage 1V and two low voltages 0.60V and 0.50V.
For each test case shown in Figure 9b, the average power
consumption is measured for writing 8-input input data
101001102 to a random word in a 128 word × 10 bit memory
bank, which is initialized to 101010012, followed immedi-
ately by reading 101001102 from the same word, such that
all read/write memory operations are equally included (i.e.,
reading ª0º and ª1,º and writing ª0º to ª0,º ª0º to ª1,º ª1º
to ª0,º and ª1º to ª1º). During this process, the two MSBs
of the selected 10-bit word store the pattern selection signal
S[1:0], which is generated by the 2-bit random generator
(Figure 17). Our first test case is that SRAM_DP operates at
1V, which is the standard supply voltage without memory

failures, and it shows that the total power consumption is
3.713×10−3W. Our next test case is to let SRAM_DP operate at
0.60V, the cell failure rate is 60.26%, and the corresponding
𝜖 value is 3.36 (Table 3). With noise injection, SRAM_DP
consumes 5.724 × 10−4W, which is 84.64% lower than base
case. Our final test case is that SRAM_DP operates at 0.50V
and the cell failure rate is increased to 81.57%. In this case,
SRAM_DP achieves the LDP with 𝜖 = 1.49 and it obtains
88.58% power savings as compared to the base case.

Timing Diagram: The timing diagram of SRAM_DP is
shown in Figure 13. Two supply voltages are used in
SRAM_DP including Vdd! and Vdd1!. Vdd1! is applied for
memory cells and it can be adjusted to enable the target
failure rate for noise injection, as shown in Table 3. In this
timing diagram, the value of Vdd1! is 0.50V. Vdd! is used
as a global supply voltage for all other designs to support
the functionality of the memory and its values is 0.60V.
Also, two clock signals are adopted in SRAM_DP: Clk is the
global clock signal for the entire memory and Clk 1 is used
to generate random noise ranNoise[3:0] for four LSBs in
the noise injection process. writeEn and readEn are write
enable and read enable signals, respectively. dataIn[7:0] is
8-bit input data and dataOut[7:0] is the final output of the
memory. The 2-bit control signal S[1:0] are the generated
2-bit random bits for permutation pattern selection.

The working process is detailed as follows. As one ex-
ample which is highlighted in green in Figure 13, 8-bit input
data dataIn[7:0] = 111101012 is applied to the memory. The
generated random signal S[1:0] is 012, so the permutation
pattern 𝜋2-[0, 1, 2, 3, 5, 4, 7, 6] is selected for data shuffling
and the four LSBs DS[3:0] are reordered to 10102. Then, 10-
bit out[9:0] including 8-bit shuffled data DS[7:0] and 2-bit
pattern selection signal S[1:0] are written to memory for
storage. During the reading process, the generated random
noise ranNoise will be injected according to the memory
failure map at 0.50V. For the selected word, three bits out
of the four LSBs are failed and the control signal Sfailure[3:0]
are generated accordingly. After noise injection, the value
of four LSBs outNoise[3:0] is 10012. Then, based on the
control signal out[9:8], i.e., S[1:0], the data re-shuffler is
enabled to reverse the bit shift and generate the final output
dataOut[7:0], which is 111101102. As another example high-
lighted in red in Figure 13, the 8-bit input data dataIn[7:0]
is 101010012 and the pattern selection signal S[1:0] is 102,
and therefore the permutation pattern 𝜋3-[0, 1, 2, 3, 6, 7,
4, 5] is selected for data shuffling. The generated 10-bit
out[9:0] including 8-bit shuffled data 101001102 and 2-bit
pattern selection signal 102 are stored in memory. During
the read operation, based on the control signal Sfailure[3:0],
ranNoise⟨0⟩, ranNoise⟨1⟩, out⟨2⟩, and ranNoise⟨3⟩ are se-
lected as four LSBs of the data (11002). After re-shuffling,
the final output data is 101000112.

6.6 Comparison with Software-based LDP

In this section, we compare our SRAM_DP mechanism with
the widely accepted software-based RR mechanisms for
their performance in utility, estimation error, and system
overhead.

Setup: The comparison is drawn by using a real-life
dataset Ð Foursquare which is one of the largest location
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(a) EM-based Re-construction on F1.
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(b) EM-based Re-construction on F2.
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(c) EM-based Re-construction on F3.
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(d) CLR-based Re-construction on F1.
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(e) CLR-based Re-construction on F2.
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(f) CLR-based Re-construction on F3.

Fig. 8: The normalized frequencies of input data are plotted in grey. Software-generated DP noises are drawn based on three
failure patterns F1: 𝑓 = [0, 0, 0, 0, 0, 0.82, 0.82, 0.82], F2: 𝑓 = [0, 0, 0.82, 0.82, 0.82, 0, 0, 0] and F3: 𝑓 = [0.82, 0.82, 0.82, 0, 0, 0, 0, 0] for

𝜖 = ln3. Green plots show the re-constructed distributions under EM-based and CLR-based algorithms.
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bution for 𝜖 = 1.49.

(b) Power savings.

Fig. 9: Experiment results in estimation accuracy and power
saving.
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Fig. 10: Performance Comparison on IA and UL.

datasets [24]. Foursquare contains 227,428 check-ins in New
York City, each of which is associated with a user ID, time
stamp and GPS coordinate. Specifically, we narrow down

the geographical scope to a 2.8Km×2.8Km region within
(40.7999N, -73.9700W) and (40.7744N, -73.9445W). A total of
4,759 check-ins are found within this region. We further di-
vide this region into 64×64 areas of interests (AOIs) Ð each
AOI is a 43.75m×43.75m grid. For this selected region, all
check-in coordinates (longitude and latitude) are the same
to their tenths decimal, so the SRAM_DP and RR mechanisms
are only applied to the hundredths, thousandths and ten
thousandths, i.e., **.*999-**.*744 for latitude while **.*700-
**.*445 for longitude.

To implement RR, we employ the IBM Diffprvlib [25]
for which we call the diffprivlib.mechanisms.Binary class to
add LDP noises. To draw a fair comparison, we consider an
utility-optimal RR that the bit randomization is only applied
to the same LSBs as SRAM_DP. RR as software-based LDP
mechanisms are programmed, compiled and run in the VS
Code IDE in a macOS v12.3 computer with a Apple M1 chip
of 39-watt standard power and a 32GB memory of 12-watt
standard power.

UL and Estimation Accuracy: We adopt the metric MSE
in meters to assess the utility losses and estimation errors.
EM algorithm is employed for estimating original data.
As shown in Figure 11a, SRAM_DP achieves lower utility
loss by as much as 6.89%, but the estimation error can
be 8.45% higher than the RR mechanism. The reason lies
within the calculation and application of cell failure rate
vector { 𝑓1, ..., 𝑓8}. For simplicity, our SRAM_DP mechanism
calculates the average cell failure rate across all 1,000 word-
lines and uses it for recovering original data. Yet, each
wordline may not exactly follow the failure rate { 𝑓1, ..., 𝑓8},
thus leading to high estimation errors. One possible remedy
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1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
60

62

64

66

68

70

72

74

76

78

M
S

E
 (

in
 m

e
te

rs
)

SRAM_DP
IBM Diffpriv

(b) Estimation Errors.

Fig. 11: Comparison of SRAM_DP and the utility-optimal RR
mechanism from IBM Diffprvlib.

to this problem is to keep track of each wordline’s cell
failure rate, but it comes with a sacrifice in storage overhead.
Recall that our insights from Figure 9a coincide with our
observation here, that is the incapability of tracking 𝑓 s in
fine granularity deteriorates estimation accuracy.

System Overhead: By using the psutil tool and ex-
cluding the most time-consuming library loading process,
we obtained the 8.71% CPU usage and 0.287% memory
usage for the 8-bit Binary randomization process, which
accounts for 7.61×10−5 seconds runtime and consumes
roughly 39 × 8.71% + 12 × 0.287% = 3.43 watt power.

Moreover, we consider a standard memory (45 nm
CMOS, 8 memory banks, each bank has 128 words × 10 bits)
without any customization as the baseline for comparison.
As shown in Table 2, despite minor increase in chip periph-
eral overhead due to added circuits for voltage control and
bit manipulation, SRAM_DP significantly outperforms IBM
Diffprvlib in terms of system responsiveness (measured in
latency) and power saving. Note that we neglect the storage
overhead for the bit-shuffle pattern as it is data-dependent
and can be easily optimized using data piggybacking, pe-
ripheral look-up table, and many other methods.

7 DISCUSSION ON SRAM_DP RELIABILITY

Temperature Variations: The reliability of the proposed
SRAM_DP in various operating conditions such as high aging
and temperature variation is one important design consid-
eration. Figure 12 shows the simulated failure probability
of the 6T cells used in our design under temperature fluc-
tuations. The temperature was varied from -40◦C to 120◦C
for the target voltage range (0.5V-0.6V), with 25◦C as the
reference temperature. As shown, the memory cells become
more inclined to failure as the temperature increases (2 times
from -40◦C to 125◦C). This is mainly due to the weakened
PMOS transistors in the 6T SRAM cells.

Voltage Precision Control: Supply voltage droop is an-
other factor which will cause variation of memory failure
probability, thereby impacting the reliability of SRAM_DP.
However, its effect is much smaller than the temperature
variation for today’s mainstream voltage regulators and
power management Integrated Circuits (PMIC). For exam-
ple, the voltage droop of a commercial PMIC for IoT devices
can be well controlled within ± 1.5% [26]. Such a small
voltage droop can cause less than ± 1% change in the cell
failure probability, as shown in Figure 2 and 12. When

mapping the cell failure probability variation into the the
drift of LDP parameter 𝜖 , we have the following theorem.

Theorem 7.1. For a SRAM cell whose failure probability changes
from 𝑓𝑖 to 𝛼𝑖 𝑓𝑖 (0 ≤ 𝛼𝑖 ≤ 1/ 𝑓𝑖) due to the supply voltage droop,
the variation of 𝜖 is bounded by |Δ𝜖 | = |𝜖 ′−𝜖 | ≤ ∑𝑛

𝑖=1 |𝑙𝑛(2𝛼𝑖−1) |.

Proof. According to Theorem 4.1, we can calculate that

|Δ𝜖 | =|
𝑛∑︁

𝑖=1

𝑙𝑛(
1 − 1

2𝛼𝑖 𝑓𝑖
1
2𝛼𝑖 𝑓𝑖

) −
𝑛∑︁

𝑖=1

𝑙𝑛(
1 − 1

2 𝑓𝑖
1
2 𝑓𝑖

) |

=|
𝑛∑︁

𝑖=1

𝑙𝑛(2 − 𝛼𝑖 𝑓𝑖) − 𝑙𝑛(2 − 𝑓𝑖) − 𝑙𝑛(𝛼𝑖) |

≤
𝑛∑︁

𝑖=1

|𝑙𝑛(2 − 𝛼𝑖 𝑓𝑖) − 𝑙𝑛(2 − 𝑓𝑖) | +
𝑛∑︁

𝑖=1

|𝑙𝑛(𝛼𝑖) |

For the case 1 ≤ 𝛼𝑖 ≤ 1/ 𝑓𝑖 implying that the supply voltage
droop causes the cell failure probability to increase, we can
deduce that for every SRAM cell, 𝑙𝑛(2 − 𝑓𝑖) − 𝑙𝑛(2 − 𝛼𝑖 𝑓𝑖) ≤
𝑙𝑛(2− 1

𝛼𝑖
) by observing that 2− 𝑓𝑖

2−𝛼𝑖 𝑓𝑖 − (2− 1
𝛼𝑖
) = 2(𝛼𝑖 −1) (𝛼𝑖 𝑓𝑖 −

1) ≤ 0. Similarly, for the cell probability downscaling case
where 0 ≤ 𝛼𝑖 ≤ 1, we can arrive at the same upper bound.
Then, |Δ𝜖 | can be further written as

|Δ𝜖 | ≤
𝑛∑︁

𝑖=1

|𝑙𝑛(2 − 1

𝛼𝑖
) | +

𝑛∑︁

𝑖=1

|𝑙𝑛(𝛼𝑖) | =
𝑛∑︁

𝑖=1

|𝑙𝑛(2𝛼𝑖 − 1) |.

■

Specifically for our developed SRAM_DP that adopts 6T
cells and renders cell failures in the 4 LSBs, a ±1% drift in
cell probability will result in at most ±0.08 variations in 𝜖 for
all possible selection of 𝜖 ’s. The privacy customer should
thus be cautioned of this worst-case variation when using
the SRAM_DP chip.

Reliability Enhancement Solutions: Amid the reliability
concerns, different design strategies can be adopted as reme-
dies. First, designing variation-aware cells is one possible
solution. The current SRAM_DP adopts 6T cells to achieve
the target failure probability for noise injection. To enhance
the reliability, the transistor sizing and structure of memory
cells can be further custom designed to enable the target
mean failure probability while minimizing its variance in
the presence of temperature variation or voltage voltage
droop [27].

Also, SRAM_DP can utilize the well-studied variation-
adaptive solutions [28], which integrate with on-chip sen-
sors and adaptive control circuits to measure specific pa-
rameters (e.g., temperature, voltage droop, or aging effect)
and then to adjust the supply voltage accordingly. Existing
variation-adaptive schemes (such as [29]) have been devel-
oped mainly to compensate for the impact of the parameter
changes on performance or power consumption. However,
they can be easily adapted to our SRAM_DP design, which
requires compensation to achieve a stable failure probability
(or 𝜖).

8 RELATED WORK

Broadly speaking, most recent works on DP focus on de-
veloping domain-specific DP mechanisms for various appli-
cations [30], [31], [32]. However, little to no attention has
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TABLE 2: Performance comparison between SRAM_DP and utility-optimal RR for 𝜖 = 1.49 (bold ones are better)

Figure of Merits Baseline SRAM_DP IBM Diffprivlib

Utility Loss (MSE) 0 78.8861 (-6.79%) 84.6308
Estimation Error (MSE) 0 76.7106 70.717 (-7.81%)

Chip Peripheral Overhead (# of transistors) 66,000 67,623 (+2.459%) +0%

System Latency (ns) 0.84 1.02 (+21.4%) 7.61 × 104 (+9.06×106%)
Power Consumption (mW) 3.713 0.5724 (-88.58%) 3.43 × 103 (+922.78%)
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Fig. 12: Cell failure probabilities at various temperatures.

been paid to the realization of DP mechanisms due to the
presumption that DP noises can be easily, correctly, and
even securely generated and injected in software. This is
unfortunately challenged by many recent studies [7], [8],
[9] and the emerging lightweight IoT devices that have no
rich software modules. Ilvento et al. [33] is among the very
few works to investigate the realization of DP mechanisms,
and they switch from base-e to base-2 arithmetic Ð offering
higher precision in existing arithmetic libraries Ð when
implementing the popular exponential DP mechanism in
software.

In recent years, we observe a growing trend of realizing
DP, or more broadly noise-injection, mechanisms by utiliz-
ing hardware characteristics. In general, the hardware-based
approach is superior than the software-based one because of
its true randomness of noise and scalability in implementa-
tion (i.e., independence from complex software modules),
although the former approach falls short in real-time adapt-
ability after hardware is fabricated. Nonetheless, there are
only limited number of works along this theme line. Yang et
al. [34] proposed to introduce DP Gaussian noises to deep
learning model training by scaling down supply voltage
and creating SRAM bit errors. Fu et al. [13] leveraged the
inherent Gaussian noises due to the imperfectness of memo-
ristor operations and developed a differentially private deep
learning model. Although these works are innovative in
their ideas, they are neither implemented in hardware nor
rigorous when it comes to conforming to DP notions. For
instance, Gaussian mechanism only ensures (𝜖, 𝛿)-DP with
𝜖 < 1, but some works neglected this constraint.

9 CONCLUSION

In this paper, we designed, implemented, and evaluated
a new memory architecture to achieve local differential

Fig. 13: Timing diagram of the implemented SRAM_DP.

privacy in hardware rather than in software. By down-
scaling supply voltages, LDP noise can be introduced to
data, especially those in least significant bits, when it is
stored in memory. Compared with existing software-based
LDP mechanisms, this paper’s analytical, simulated and
experimental results all supported the feasibility and supe-
riority of our design in terms of privacy, utility, latency, and
system power consumption with moderate compromise in
estimation errors and chip overhead.
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