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RN-Net: Reservoir Nodes-Enabled Neuromorphic Vision

Sensing Network

Sangmnin Yoo, Eric Yeu-Jer Lee, Ziyu Wang, Xinxin Wang, and Wei D. Lu*

Neuromorphic computing systems promise high energy efficiency and low
latency. In particular, when integrated with neuromorphic sensors, they can be
used to produce intelligent systems for a broad range of applications. An event-
based camera is such a neuromorphic sensor, inspired by the sparse and
asynchronous spike representation of the biological visual system. However,
processing the event data requires either using expensive feature descriptors to
transform spikes into frames, or using spiking neural networks (SNNs) that are
expensive to train. In this work, a neural network architecture is proposed, reservoir
nodes-enabled neuromorphic vision sensing network (RN-Net), based on dynamic
temporal encoding by on-sensor reservoirs and simple deep neural network (DNN)
blocks. The reservoir nodes enable efficient temporal processing of asynchronous
events by leveraging the native dynamics of the node devices, while the DNN
blocks enable spatial feature processing. Combining these blocks in a hierarchical
structure, the RN-Net offers efficient processing for both local and global spa-
tiotemporal features. RN-Net executes dynamic vision tasks created by event-based
cameras at the highest accuracy reported to date at one order of magnitude smaller

Various visual tasks have been imple-
mented using event-based cameras.
Earlier datasets were generated by repro-
ducing conventional image recognition
tasks such as MNIST, CIFAR-10,*! and
Caltech 101, where stationary images
were placed in front of the camera and
moved around to create pixel intensity dif-
ferences along time. Objects in the tasks
are dynamic in their locations with their
shape fixed over time, which requires net-
works to be capable of classifying objects
regardless of their positional change.
Beyond the positional dynamic movement,
behaviorally more dynamic datasets, such
as DVS128 Gesture, N-CARS,®! and
DVS Lip!® were later created by the event
camera to fully utilize the camera’s
strength where the temporal evolutions
of both the object’s shape and movement

network size. The use of simple DNN and standard backpropagation-based
training rules further reduces implementation and training costs.

1. Introduction

Event-based cameras are neuromorphic vision sensors that pro-
duce visual signals as asynchronous spikes.!'! An event camera
produces a spike when and only when a momentary pixel inten-
sity difference exceeds a threshold, which can offer better energy
efficiency and latency when compared with conventional cam-
eras that produce data at a constant frame rate even when the
scene is stationary during video recording.
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are critical.

To process either the positionally
dynamic datasets or the behaviorally and
morphologically more dynamic datasets,
many efforts have been made based on
deep neural networks (DNNs) consisting of convolution and fully
connected layers or spiking neural networks (SNNs).*2¥
However, DNNs require additional recurrent units which increase
memory and training costs to process temporal information
embedded in the datasets due to the lack of temporal processing
capability and diminish the merits of asynchronous operation of
the event-based camera due to its synchronized processing. SNNs
allow temporal processing, however the necessity of backpropaga-
tion through time (BPTT) for proper training increases the train-
ing cost””! As the solution, feature descriptors such as time
surface (TS) were proposed.’'”%! It is cost-effective and powerful
in that it encodes only the latest temporal information and can be
integrated with DNN structures, enabling gradient-based training.
However, its latest information-dominant encoding fashion dis-
cards useful information prior to the last spike, which may be
essential for features that evolve over a longer history.

In this article, we introduce a neural network architecture,
reservoir nodes-enabled neuromorphic vision sensing network
(RN-Net), that leverages simple reservoir layers and DNN blocks
for temporal and spatial processing, respectively. Two reservoir
layers are employed, with the one at the front encoding the tem-
porally local information on the sensor by directly receiving asyn-
chronous events (spikes) and the one at the back encoding the
temporally global information without the expensive recurrent
units, respectively, both leveraging native dynamics of reservoir

© 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Figure 1. RN-Net structure. R;, and Ry are reservoir layers for local and global temporal feature encoding, respectively. Bottom left: outputs from Ry, from
a representative input in the DVS Lip dataset. Bottom right: outputs from Ry. Outputs from Ry are reshaped in 2D for better visualization. Deeper color in
Rin, Rs and output layers of convolution (Conv) blocks and fully-connected (FC;_,) layers represents a higher analog value. Hidden layers within Conv

blocks are not presented. The DNN structure for DVS Lip dataset is representatively illustrated. Cy, Dy, MP, FCy represent N-th Conv layer, kernel depth

of N-th Conv layer, max pooling layer and N-th FC layer, respectively.

nodes (RNs). The DNN blocks find spatial information in data
temporally processed by the reservoirs, resulting in spatiotempo-
ral output in the end.

Specifically, the nature of short-term memory (STM) memris-
tors implementing RNs allows RNs to work as native feature
descriptions of temporal information in all prior spikes produced
Dby the event camera or hidden layers, without dedicated memory
and complementary metal-oxide-semiconductor (CMOS) logic
circuits usually required by recurrent units or complex feature
descriptor algorithms.?’—*% RNs in the network can be thought
of as analogous to cells in a retina which directly sense and
encode raw and asynchronous visual inputs, and transmit them
to the brain.®" Besides, the better encoding capability of RNs
beyond the latest spike than TS that focuses only on the latest
one enables RN-Net to perform better with a much smaller net-
work size than others. (Figure 1) An example of the proposed RN-
Net is shown in Figure 1.

The main contributions of this work can be summarized
below: 1) We implement a neural network with multiple reser-
voirs and DNN blocks that process temporal and spatial informa-
tion embedded in asynchronous event streams generated by
event-based cameras, respectively. 2) On-sensor RNs based on
STM memristors offer richer temporal spike encoding at a lower
cost, which makes DNN blocks simpler, leading to more efficient
operation and training. 3) RN-Net performs CIFAR10-DVS,
N-Caltech 101, DVS128 Gesture, and N-CARS tasks at the high-
est accuracy reported to date and DVS Lip task at one of the
highest accuracy at one order of magnitude lower network size
than other networks with similar capacity.

2. Backgrounds

2.1. Event-Based Dataset

In the early years, conventional static vision tasks were repro-
duced by the event-based camera by moving images in front
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of the camera to make changes in pixel intensity.”*! Beyond
the conversion, dedicated datasets have been created to maximize
the strengths of event-based cameras.***27*! Among them, we
use CIFAR10-DVS, N-Caltech 101, DVS128 Gesture, N-CARS,
and DVS Lip datasets in this work. The CIFAR10-DVS and
N-Caltech 101 are object detection tasks, The DVS128 Gesture
dataset is for human action recognition, the N-CARS is for
car classification in a real-world setting, and the DVS Lip dataset
is for word recognition based on lip motions of speaking partic-
ipants. Data of the first two datasets are dynamic in object’s loca-
tion over time, while the rest of the datasets include temporally
dynamic data in both shape and movement. The details of the
datasets are summarized in Table 1. We split datasets that are
not originally divided into train/test data 9:1.

2.2. Related Works

There have been various attempts to better execute the event-
based tasks, utilizing DNNs consisting of convolution and fully
connected layers, and SNNs have been demonstrated.***! Given
that DNNs are specialized in processing static spatial data,
recurrent units, such as long short-term memory (LSTM),*¢37)
gated recurrent unit (GRU)P® and bidirectional gated recurrent
unit (BIGRU)!*'®2% are typically required to process temporal
information hidden in the sequence (global) of momentary
(local) features. The momentary features are processed synchro-
nously in temporally local frames which are created either by
simple accumulation of spikes within a prefixed time range!®” or
using input representation algorithms like graph construction,***?
3D point cloud,™ event frame,*” event spike tensor,”*! and
voxel grid.**! Synchronized processing requires storing and
analyzing a large number of events as a pre-processing step,
which diminishes the advantages of asynchronous and sparse
spike generation features of event-based cameras. Recurrent units
require storing multiple state data for each node, causing
increased training costs.

© 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Table 1. Details of datasets used for RN-Net demonstration.

Dataset Train Test Category
CIFAR10-DVS 9000 1000 10 (Objects)
N-Caltech 101 7839 870 101 (Objects)
DVS128 Gesture 1077 264 11 (Actions)
N-CARS 15422 8607 2 (Car/Background)
DVS Lip 14896 4975 100 (Words)

SNNs store temporal information in the neuron dynamics
using models such as leaky integrate-and-fire (LIF) neurons®**
and can be trained using gradient-based approaches such as
BPTT.!* To address the non-differentiability of spikes, surrogate
approaches that replace spikes with neuron membrane potential
have been developed.*?) However, BPTT requires backpropaga-
tion through both the network layers and time, which technically
makes the network n times larger when unfolded in time, where
n is the number of timesteps going back in time. As a result,
BPTT is expensive to train. Other works have employed bio-
inspired local learning rules, such as spiking timing dependent
plasticity, for less training cost.**! Although these methods result
in significantly improved efficiency, the local learning rule is gen-
erally worse than BPTT in training quality.

To use spikes directly, feature descriptors such as T
were proposed. TS stores only the last spike event for every pixel
and converts the time to the last spike information into an analog
value by resetting the amplitude of each node to 1 every time it
receives a spike and then relaxes following a decay function:

gI5,17,26]

=T

S(t) = e (1)

where S(t) is an analog vector representing a node on the time
surface, ¢ is the current time, T(t) is the time information of the
last spike received by the node, and 7 is a pre-defined time
constant.?***) The TS conversion allows the encoded data in
the analog surface to be processed with DNN and trained using
gradient-based training while reducing memory and computing
costs compared to other feature descriptors, since only the last
spike instant needs to be recorded. However, since TS only stores
the last spike, it cannot handle spatiotemporal features whose
correlation is beyond its temporal neighbors, which is common
in real-world problems. Additionally, storing the last spike timing
information for each pixel (node), and calculating the analog state
based on Equation (1) still incurs substantial costs. More
advanced approaches such as Leaky Surface were subsequently
developed to encode the temporal information beyond the last
spike.*>! However, expensive pre-processing is still required,
for example, to store the previous node state and time elapsed
from the latest spike, and to calculate the new state for every pixel
at every time instant.

2.3. Reservoir Nodes

We note that in a reservoir computing (RC) system, the reservoir
maintains short-term memory and performs nonlinear transfor-
mation (encoding) of the temporal input data into the reservoir
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states, represented by the states of the reservoir nodes (RNs). RC
systems have been efficiently implemented in hardware using
devices such as memristors for vision (MNIST handwritten dig-
its recognition), speech (NIST TI46), and Time-series forecasting
(Mackey—Glass time series) tasks.”?®! In these systems, the
reservoir nodes encode the spikes’ spatiotemporal information
naturally following the internal device dynamics, without any
external memory or arithmetic and logic units (ALUs). By
leveraging the internal device and circuit dynamics to process
temporal data, these implementations have shown excellent
energy efficiency and performance.!?”-254¢=4]

Generally, due to the STM property, RNs will be affected more
strongly by the near history events and weakly by far history
events, with the extent of the non-linearity determined by the
internal RN time constant.?>*°! Inspired by this principle, we
hypothesize that RNs can be directly used to encode temporal
spike data similar to what TS aims to accomplish, but at a lower
cost and better encoding capability beyond the last spike since
RNs non-linearly accumulate all prior incoming spike
information.

3. Methods

3.1. Event Encoding with Reservoir Nodes

A reservoir node can be implemented using only a single
STM memristor, making hardware implementation very light
weight.””?®l In a STM memristor, the node state (i.e., device
conductance) is natively excited by the incoming spikes and

relaxes in between the spikes,[30‘49] as described by the following
equation:
Gy = P (Gax — Gi1) * S () + Gy_q % e 2)

where G, is the node state at time #, P, is a potentiation factor,
Gmax 18 the upper bound of the node state, 7 is the characteristic
relaxation time constant, and Jy(#) is a delta function represent-
ing a spiking event:

0,
5spk(t) = { 1

Sepk(t) can represent incoming events from an event-based
camera or spikes from preceding layers within the network.

Figure 2 shows the comparison of the RN approach imple-
mented with a single STM memristor based on Equation (2) ver-
sus the TS approach introduced in Section 2.2. Both approaches
convert the spiking patterns into an analog state that can be proc-
essed by subsequent DNN blocks. Compared to TS encoding
which resets the state to 1 after each spike, the RN implementa-
tion allows longer-term history to be represented in the state in a
non-linear fashion. For example, at t = 50, the TS output is iden-
tical to that at t = 30, since both values were reset to 1, 10 time
steps earlier (at t =20 and 40, respectively). However, this repre-
sentation missed the differences in the two temporal sequences
(e.g., an additional preceding spike at t = 15). In contrast, the RN
implementation clearly differentiates the two cases as all inputs
before the current time are accumulated non-linearly. Combined

when no spike.

3)

when receiving spike.
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Figure 2. Dynamics of a reservoir node (blue) and a time surface node (red) under identical spikes (black) shown below.

with the hardware efficiency, for example, Equation (2) is natively
implemented in a single device owing to internal device physics
(ionic and electronic dynamic processes)!*”-*! without the need
of additional dedicated memory (to store t and T(t)) and ALUs
(to execute Equation (1)), we believe the RN-Net to be a suitable
solution for asynchronous, real-time processing of event data.
The proposed RN-Net operates by directly taking asynchro-
nous spikes as they are generated. The memristor-based RNs
located in the first part of RN-Net, each of which is connected
to a pixel, autonomously transform the temporal spikes into
analog values following Equation (2) on the sensor in real-time,
analogous to visual inputs encoded by cells in a retina.*" The
states of the RNs are retrieved only when the network operates
a forward pass, as shown in Figure 1. In the process, the temporal
events from a pixel output are encoded as the state of the corre-
sponding RN node in the R, layer, and the spatial information is
preserved in the R;, layer since each RN node is independently
connected to a corresponding pixel. As a result, the states of all
nodes in the Ry, layer encode the spatiotemporal information of

the inputs. The values of the R, node states can then be read out
and processed using conventional DNN blocks. Notably, owing to
the discrete memristor dedicated to a pixel, RN-Net is free of
parasitic resistance-capacitance effects of the crossbar format that
is common for memristor applications. In the second half of
RN-Net, after the convolution blocks and the spikes conversion
layer, the spatiotemporal features are again embedded in the
spikes. Instead of using the number of spikes to perform classi-
fication in the subsequent FC layers, we chose to use another RN
layer (R layer in Figure 1) to encode the spatiotemporal features
discovered by the first half of the network. At the end of a video
input clip, the states of Ry capture the long-term temporal infor-
mation and are supplied to the FC layers for classification.
Figure 3 shows examples of five temporally consecutive states
of the input layer (R;,) RNs, responding to asynchronous events
from two representative datasets. The states are obtained at a con-
stant time interval (i.e., 30 ms). Frequent input spikes lead to
stronger RN states due to the excitation term (the first term of
Equation (2)), while RN states natively relax for inputs that are

(a)

(b)

Figure 3. Temporally consecutive states of the input reservoir nodes, responding to asynchronous events in the a) DVS128 Gesture and b) DVS Lip
datasets. Each state is retrieved at a constant time interval of 30 ms. Deeper red represents a higher amplitude value of an RN state.
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temporally too far from the current time instant due to the inter-
nal decay term (the second term of Equation (2)). These proper-
ties allow RNs to capture temporal features of inputs
independently and the Ry, layer possesses spatial features when
the RNs are gathered, as shown in Figure 3. For example, in
Figure 3b, both the speaking motion and movement (top to bot-
tom) of the lips can be captured by the RNs’ states in the Ry, layer.
Temporally fast movements are reflected in a single moment
(e.g., the 3rd plot in Figure 3b), while temporally slow move-
ments are reflected in multiple moments captured at the differ-
ent time instants (e.g., the first two plots).

3.2. Model Architecture

The RN-Net is formed sequentially by an input RN layer (R;,) as a
feature descriptor for temporally local encoding, convolution
(Conv) layers (Cy) for spatial processing, a spike conversion
(SC) layer, another RN layer (Ry) for temporally global encoding,
and multi-layer perceptron (MLP) (Fy) for classification. Figure 1
illustrates the overall architecture of the proposed network for the
DVS Lip dataset.

The Ry, layer has as many RNs as the output dimension of the
event-based camera. For example of the DVS128 Gesture dataset
with 2 x 128 x 128 pixels, where 2 represents the polarity of the
events, 32768 (2 x 128 x 128) independent nodes are used to
form the Ry, layer. Each RN in the Ry, layer processes input
spikes asynchronously from a corresponding pixel in the event
camera in real time without any preprocessing, following
Equation (2). Examples of the outputs generated by R, are shown
in Figure 3.

Depending on the application, different temporal resolutions
can be chosen by adjusting P, and 7 of Equation (2) and the inter-
val of R;, state acquisitions. A shorter time constant z and more
frequent acquisitions (shorter interval) produce temporally finer
outputs, while a longer time constant and less frequent acquis-
itions (longer interval) produce spatially more detailed outputs
owing to more input spikes and the slower internal decay.
Accordingly, a shorter acquisition interval results in more fre-
quent activations for the following layers. The convolution layers
(C1—C; with depths D;—-D; in Figure 1) then process the encoded
spatiotemporal features in R;, at a constant time interval (i.e.,
30 ms). Similar to Conv blocks in conventional DNNs, the output
O from the Conv layers reflects the spatial features existing in the

www.advintellsyst.com

R;, states, and in this case, the spatiotemporal features embed-
ded in the spike stream within the time interval.

Output O is then flattened and sent to the spike conversion SC
layer. We use a predetermined threshold to convert the outputs O
from the Conv layers into spikes in the SC layer. Spikes gener-
ated after the SC layer are shown in Figure 4. Thus, the spikes
after SC represent the local spatiotemporal features captured by
the Ry, layer and the Conv layers, and become much sparser com-
pared with the original spiking inputs.

The spikes from the SC layer are then supplied to the RNs in
the Ry layer for global spatiotemporal feature encoding and sub-
sequent classification in MLP. Similar to the RNs in the Ry, layer,
RNs (e.g. also implemented with STM memristors) in Ry natu-
rally potentiates/relaxes with the presence/absence of spikes
from the SC layer. The state of Ry thus represents the historical
(global) spatiotemporal features by encoding the processed local
spatiotemperal features over time, and is then used by the sub-
sequent fully-connected (FC) layers of MLP (FC;—-FC, in
Figure 1) to perform final classification functions. Similar to
the RNs in the Ry, layer, RN states in Ry are retrieved at a certain
time interval (i.e., 0.3 s, which is longer than that used in Ry,)
over the whole video clip and fed to the FC layers."® The final
decision is made based on accumulated potentials through mul-
tiple FC feedforwards. (i.e., 5)

3.3. Training Method

We train RN-Net with standard backpropagation, using the out-
put potentials calculated by FC, at the end of data presentation.
Unlike BPTT that calculates error and gradient across each time-
step,*) error and gradient of RN-Net is calculated only once for
one input training video, leading to lower training cost. To
address the non-differentiability arising from spike generation
in the SC layer, we adopted surrogate gradient for the SC layer.
Since the surrogate is used only in one layer of the network, we
expect the error introduced by this approach to be lower when
compared with SNN approaches which require surrogates at
all layers.

We also applied several data augmentation techniques, such as
random/center crop, horizontal flip and Gaussian noise to mini-
mize overfitting effects. In the case of random/center crop, we
referred to existing works.*’”) During training, we center-
cropped the original input dimension (128 x 128) to 96 x 96

Figure 4. a) Visualization of asynchronous input spikes and b) spikes generated after the spike conversion (SC) layer.
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and then random cropped them to 76 x 76, while the inputs are
directly center-cropped to 76 x 76 in the testing phase.
Horizontal flip with a probability of 0.5 and Gaussian noise with
standard deviation of 5¢~* were used during training for the
same purpose. These techniques helped generalize the input
data and reduce overfitting during training. These techniques
were used only during training of RN-Net for the DVS Lip.

4. Experimental Section

4.1. Experiment Setup

The DVS128 Gesture dataset consists of repetitions of the same
motion of a participant along the clip, while lip motions in the
DVS Lip dataset are not repetitive, as shown in Figure 3. As a
result, a fraction of a clip should be sufficient to classify the
action in DVS128 Gesture, while the whole clip is necessary
for DVS Lip classification. Based on this understanding, we only
used the first 1.5 s for all videos in the DVS128 Gesture dataset
during training and inference, corresponding to 10% of the
longest video (15.5s). For CIFAR10-DVS, N-Caltech 101, and
N-CARS datasets, the first 0.6 s, 0.3 s, and 90 ms are used, respec-
tively when the videos are longer than the lengths for the same
purpose. The DVS Lip dataset has variable input lengths due to
the irregular length of the words and the unique speaker’s traits,
with most video clips (99%) having lengths between 0.75 and
1.5 s. To make the data size regular across the dataset, we chose
to keep the captured R;, outputs at 50 by simply applying null
(no spike) for clips shorter than 1.5 s and clipping videos longer
than 1.5 s during DVS Lip training and inference.

For all the datasets, the same potentiation factor P, (0.5) and
time constant 7 (60 ms) in Equation (2) are used for the RNs in
Riy. The values are referred to prior works.””?® The states of R;,
are captured every 30 ms and sent to the subsequent Conv layers.
We note that we used one set of state retrieval frequency and time
constant chosen for all the datasets to demonstrate the potential
of RN-Net, although tuning the time constants and feeding data
at different intervals for a specific task can further enhance the
performance.””!

Due to the different input dimensions and the different num-
ber of categories in the datasets, the convolution layers and FC
layers in RN-Net are configured accordingly. The detailed net-
work configurations for the datasets are summarized in
Table 2 and 3.

The output of a DNN block consists of a convolution and a
pooling layer (if exists), following:

Oy = f(BN(MP(C(Iy)))) )

where Oy is the output of N-th layer, f(x) is a ReLU activation
function, BN(x) is a batch normalization function, MP(x)/C(x)
is a maxpooling/convolution operation, and Iy is input of the
N-th layer.!

After the last convolution layer, the outputs are converted to
spikes for subsequent temporal feature encoding at Rf.[SZ] The
SC layer generates spikes by comparing the analogue values
in O (Figure 1) with a pre-fixed threshold value, set as 0.3.

RNs in the Ry layer encode the global spatiotemporal features.
P. and 7 for the RNs in Ry are setas 0.3, 2 and 0.1, 2 s for DVS Lip

Adv. Intell. Syst. 2024, 2400265 2400265 (6 of 12)

Table 2. Network configuration of RN-Net for DVS Lip dataset. The last
column represents the output dimension of the network for datasets other
than N-Caltech 101. The 6th convolution layer and the following max-
pooling layer are exclusively applied for N-Caltech 101 due to its larger
input dimension (240 x 180) than the others (128 x 128).

DVS128 Gesture

Layer Kernel Size Out Channel Pad/Stride Output Dim
Ri, 2 - 128 x 128
MaxPool 2 2 0/2 64 x 64
Convl 3 64 0/1 62 x 62
MaxPool 3 64 0/2 30 x 30
Conv2 3 128 mhn 30 x 30
MaxPool 3 128 0/2 14 x 14
Conv3 3 256 0/1 12 x12
Conv4 3 512 N 12 x 12
MaxPool 3 512 0/2 5x5
Conv5 3 512 0/1 3x3
MaxPool 3 512 0/1 1x1
Convé 3 512 0/1 -
MaxPool 3 512 0/1 -

Re - 512 - -

FC1 - 512 - -
FC2 - 1 - -

Table 3. Network configuration of RN-Net for DVS Lip dataset.

DVS Lip
Layer Kernel Size Out Channel Pad/Stride Output Dim
Ry - 2 - 76 x 76
Convl 5 64 0/2 36 x 36
Conv2 3 128 mhn 36 x 36
MaxPool 3 128 0/2 17 x17
Conv3 3 128 hn 17 x17
Conv4 3 256 mhn 17 x17
MaxPool 3 256 0/2 8x8
Convs 3 256 mhn 8x8
Convé 3 512 mn 8x8
MaxPool 3 512 0/2 3x3
Conv7 3 512 0/1 1x1

R - 512 - -

FC1 - 512 - -

FC2 - 100 - -

and other datasets, respectively. A longer 7 is used in Ry than in
R;;, to process the longer temporal correlations. The RN states in
the Ry layer are retrieved every 0.3 s for both DVS128 Gesture
and DVS Lip, every 0.12s for CIFAR10-DVS, every 60 ms for
N-Caltech 101, and every 30 ms for N-CARS (corresponding to
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5 Ry acquisitions for all other than N-CARS (3)). In the case of
clips shorter than a fixed video length, we let RNs in Ry continue
relaxing after the last meaningful input without padding the
input data with new spikes (e.g., through repeating the clip).
These relaxed states are still captured following the normal
schedule and fed to the classification layers. Examples of RN
states at different time instants in DVS Lip task are shown in
Figure 5, along with the spikes they receive from the SC layer.
For better visualization, the data are reshaped in 2D format. As
shown in the figure, even without any new inputs (e.g., after 0.9 s
for Data2), the RN states do not immediately decay to zero due to
the slow decay term in Equation (2), and the evolution of the RNs
still represents useful information. This approach also simplifies
training and inference processes and allows the system to handle
inputs with irregular lengths.

MLP consists of two FC layers, an activation function, and a
batch normalization layer, following:

Or = FC(f(BN(FC(I)))) ©)

where Oy is the output of the block, f(x) is a ReLU activation
function, BN(x) is a batch normalization function, FC(x) is
an FC layer, and I is the input to the FC layer. In RN-Net, the
output of MLP is used as the final output.

The Pytorch framework®®! was used for all the experiments
with methods described earlier. SoftMax function was chosen
to calculate the probability of an output neuron in the final out-
put, and the neuron with the largest probability was selected as
the classification result. During training, the cost was derived by
categorical cross-entropy function.®” ATan was selected as a sur-
rogate gradient calculation for the SC layer during training.*?

www.advintellsyst.com

We also used Adam optimizer® with an initial learning rate
between 1le™? and le™ and a weight decay between 0 and
le3 as the model optimizer and ReduceLROnPlateau with a
factor of 0.9, patience between 1 and 3, threshold between
le™* and 1¢~%, minimum learning rate between 1le~* and le”’
as the learning scheduler, and selected a set of hyper-parameters
based on the best performances. Batch sizes of 32 and 150
epochs were used. All experiments are performed on an Intel
Xeon Gold 6226R and an NVIDIA A40.

4.2. Experimental Results

RN-Net shows excellent performance (classification accuracy) on
all the datasets. Comparisons of classification accuracy and
model size (the number of parameters) with existing networks
are shown in Figure 6 and Table 4 and 5. The accuracies of net-
works listed in Table 5 were obtained from,'® and the parameter
size of ResNet variants are obtained from.”® RN-Net outper-
forms all existing networks on CIFAR10-DVS, N-Caltech 101,
and N-CARS tasks with much smaller network size, while only
using the first 10 percent of the longest clip on DVS128 Gesture.
We attribute the improved performance of RN-Net even at a
smaller network size to the RN layers’ powerful capability to
effectively encode temporal information hidden in the event
streams. The spatiotemporal features captured at the R;, and
R layers allow more efficient processing by the subsequent
DNN blocks and FC blocks, respectively. For DVS Lip, RN-
Net achieves top 2 accuracy, only behind MSTP® which is a
multi-branch network with different input channels generating
frames in different temporal granularity, and employs Voxel Grid

© RN Acquisition —— Data length Relaxation
09s 12s 15s

Figure 5. Visualization of outputs from Ry over the whole 1.5 s clip, along with spikes generated from the spike conversion layer. For Data2 whose input
video length is only 0.9 s, the RN states will continue to relax and still used for classification.
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Figure 6. RN-Net on CIFAR10-DVS, N-Caltech101, N-CARS, and DVS Lip compared with existing works in classification accuracy and network size.

Table 4. Performance and Comparison of RN-Net on CIFAR10-DVS, N-Caltech 101, DVS128 Gesture, and N-CARS datasets. Data of RN-Net are in bold.

Model Backbone Params [M] CIFAR10-DVS [%] N-Caltech 101 [%] DVS Gesture [%] N-CARS [%]
HATSP! Linear SVYM - 52.4 64.2 - 90.2
Gao et al.? FLNN 5.4 58.8 72.2 - 93.9
tdBNI' ResNet-19 1.2 67.8 - 96.9 -
SlideGCNI GCN - 68.0 76.1 - 93.1
LIAF-Net'] - 1.6 70.4 - 97.6 -
TA-SNNE! - 1.7 72.0 - 98.6 -
SEW-ResNet!' Wide-7B-Net 1.2 74.4 - 97.9 -
PLIFM - 17.4 74.8 - 97.6 -
MVF-Net!®" ResNet-18 4 34 32.9 76.2 87.1 - 96.8
TCJA-TET-SNNU - 9.2 833 82.5 99.0 -
PSNI®2 VGG 9.2 85.9 - - -
MSTIE3] Swin-T 27.6 88.1 91.4 - 97.3
N-ImageNet® ResNet-34 21.5 - 86.8 - -
She et al.5®! - 1.7 - 71.2 98.0 -
MatrixLSTM+E2VID!®®! ResNet-34 21.5 - 85.7 - 95.7
ACE-BET!®") ResNet-34 21.5 - 90.0 - 97.1
Event Clouds®" PointNet 8.1 - - 95.3 -
Asynet!®®! VGG13 133 - - - 94.4
Ours RN-Net 5.2 96.0 91.6 99.2 99.8

Table 5. Comparison of existing models and RN-Net on Lip reading dataset including DVS Lip. The accuracy values are from.!! Data of RN-Net are in
bold.

Model Input ACC [%] Params [M] Backbone Preprocess Local encoding Global encoding
DFTN® Video 63.2 40.5 ResNet-18 - DFN BiGRU
Feng et al.'”! Video 63.4 11.2 ResNet-18 - - BiGRU
Martinez et al.*®! Video 65.5 11.2 ResNet-18 Greyscaling - Multi-scale TCN
Event Clouds®"! Event 42.2 8.1 PointNet Random Sampling 3D point cloud 3D point cloud
EV-Gait-3DGraph?*! Event 32.0 7.2 - OctreeGrid Filtering 3D-Graph N/A
EV-Gait-IMGP?2 Event 34.5 64.6 - Event Noise Cancelling Image-like N/A
EST Event 48.7 21.5 ResNet-34 Normalized Time Stamp MLP (Grid) N/A
MSTP! Event 72.1 38.5 ResNet-18 Multiple Time-Scaling Voxel Grid BiGRU
Ours Event 67.5 6.0 - - Reservoir Reservoir
Adv. Intell. Syst. 2024, 2400265 2400265 (8 of 12) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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as the feature descriptor and using larger BiGRU and ResNet-18
network architectures. By comparison, RN-Net uses a single
branch and a much lighter DNN network, without expensive fea-
ture description, preprocessing, and recurrent units that can lead
to significant hardware and latency overheads.

Interestingly, we found that all prior works that showed suc-
cess for the DVS Lip task are based on DNNs using optimized
input representation techniques, and SNN-based works are more
successful on the others. This observation seems to suggest that
conventional SNNs work well for tasks with temporally coarse
and repetitive features, but suffer from tasks where both tempo-
rally fine-grained features and global temporal features are criti-
cal, such as DVS Lip. We hypothesize that the use of RNs with
different time constants to encode temporal features and inte-
grated DNN blocks to capture spatial features in RN-Net allow
it to better process spatio-temporal features at both local and
global scales. Similar concepts, when implemented in SNN,
may help SNN performance for similar tasks.

4.3. Ablation Study

The effects of the RN in Ry, and Ry layers on model performance
are investigated in an ablation study by replacing each RN layer
with a TS or temporal average pooling (TAP, only for Ry) layer
without modifying the rest of the network. (Table 6) In both
tasks, the case with both RN layers shows the best performance,
while the case with TS at both places shows the worst
performance. However, replacing Ry with TS degrades the
performance more than that of Ry for the DVS128 Gesture task,
while the DVS Lip task shows the opposite tendency. We attri-
bute this difference to different characteristics of the datasets.
Data in DVS128 Gesture are repetitive along the clip, which
can tolerate less precise input encoding because there are oppor-
tunities to capture the lost information at a different time instant.
In contrast, in DVS Lip information at different time instants is
unique, which makes input encoding more critical for the net-
work performance. Interestingly, although the use of RNs
achieves the best results for both datasets, the use of TAP in
the Ry layer achieves better results than the use of TS for the
DVS Lip task, while the use of TS is better for the DVS128
Gesture task. We speculate that this is caused by the character-
istics of TS, which completely discards far history that is critical
for the DVS Lip dataset. In contrast, the repetitive inputs in
DVS128 Gesture alleviate this problem of TS implementation,
where its capability to encode local temporal information outper-
forms TAP. As a result, this study illustrates that the RN’

Table 6. Performance comparison of different R, /Ry layer configurations
for DVS128 Gesture and DVS Lip tasks with the original RN-Net (bold).

Local encoding R;, Global encoding Re Gesture [%] Lip [%]
Time Surface Time Surface 96.2 445
Time Surface Reservoir Node 97.7 49.7
Reservoir Node Time Surface 97.0 61.0
Reservoir Node Reservoir Node 99.2 67.5
Reservoir Node Temporal AvgPool 96.6 62.5
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capability to capture both local and global temporal dynamics
allows networks based on them (i.e., RN-Net) to achieve higher
accuracy for both tasks.

4.4, Power Estimation

The power efficiency largely depends on implementation meth-
ods of RNs, using either a memristor or a resistor-capacitor (RC)
unit.””##48 In the following sections, the power of a proposed
hardware system running RN-Net for DVS128 Gesture and DVS
Lip is representatively estimated based on an existing memristor
technology and reported values.!*”)

4.4.1. Spike Encoding

One physical RN device (i.e., a memristor) is assigned to one
pixel of the event-based camera. Every time the pixel senses
an intensity difference larger than the pre-fixed value, it produces
a spike (event), which is input to the dedicated RN. Then, the RN
natively encodes temporal information of the spikes following
the Equation (2).

The total spike encoding energy consumed by RNs in the Ry,
layer during a clip can be calculated following:

N
Eencodingtin = Z Vpulse2 * G(xnv Y pn) * tpulse (6)
n=1

where Eepcoding 1S the total energy consumed in the Ry, layer, Nis
the total number of input spikes in the video clip, Vi is the
(fixed) amplitude of the input spike, G(x,,y,.p,) is the conduc-
tance of the RN device assigned to the pixel located at x,,, y,,, with
polarity p,, and t,y. is the (fixed) time duration of the spike.

Similarly, in Ry, an RN device is assigned to a neuron in the
output layer of the convolution blocks. The total spike encoding
energy of Rr during a clip is calculated as:

Ny
Eencoding,f = Z Vpulse2 * G(Nt) * tpulse (7)

i=1

where G(N;) is the conductance of the RN device assigned with
the i-th neuron in the output layer of convolution blocks along a
clip. Ny is the total number of spikes from the output layer dur-
ing the state retrieval window.

Considering the minimum time interval (1 ps) of events for
typical event-based cameras,*® we set touise to 1ps for both Ry,
and Ry. Ve and G,y are set to 1.5V and 100 pS, according it

We simulated the average total energy consumption of Ry,
and Ry for a typical clip in DVS128 Gesture and DVS Lip tasks.
Using the total energy and the total number of spikes, the average
energy consumption per spike was also derived. The results are
shown in Table 7.

4.4.2. State Retrieval
The states of RNs in Ry, and Ry are retrieved for the forward-pass

every 30 and 300 ms, respectively. The total retrieval energy of Ry,
and Ry is calculated as:

© 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Table 7. Total encoding energy and the energy per spike for spike
encoding in Ry, and Ry, for a typical DVS128 Gesture and DVS Lip
video clip.

Dataset Rin/Rs Total Energy [p)] Energy/Spike [p]]
DVS128 Gesture Rin 15.0 156.2
Re 1.1 123.3
DVS Lip Ry 03 22.8
R 0.7 185.7
128 128
Erenievalin = Z > Z Viead® * G(%,7, ) * tread ®)
p=0 y=1 x—
Dy
Eretn‘eval,f = Z Vread2 * G(Nl) * tread 9)

i=1

where Eencodingin and Eencodings are the energy consumption for
the state retrieval of Ry, and Ry, respectively, Vie,q is the ampli-
tude of the read pulse, G(x,y,p) is the conductance of a node
located at x,,,y,,, with polarity p, in Ry,, G(N;) is the conductance
of a node assigned to the i-th node in Ry, and t,,q is the duration
of the read pulse.

Different from spike encoding, the read operations do not
induce conductance change. For state retrieval, the V.4 ampli-
tude was set to 0.5 V according to,*% and pulse duration was set
as 1ps for both Ry, and Ry layers.

Based on the energy per read, the number of read retrievals
and the number of nodes in both reservoir layers, the average
total energy of RN state retrieval during the whole video clip,
energy per state retrieval, and energy per node were calculated.
The values are presented in Table 8.

4.4.3. Data Conversion

The SC layer does not require analog-digital conversion because
the SC layer takes digital values from the convolution blocks and
outputs a binary value using a threshold value within the digital
domain. Analog-digital converters (ADCs) are however needed at
the state retrieval process, which converts the retrieved analog
values into digital values for the following digital DNN blocks.
To be conservative, 8-bit ADCs between the RN output and

Table 8. Total retrieval energy during a DVS128 Gesture and DVS Lip
video clip, and the energy per state retrieval and per node, for R, and
R¢ RN layers.

Dataset Rin/R¢ Total Energy/ Energy/
Energy [n)] Retrieval [n]] Node [p]]
DVS128 Gesture Rin 2234.9 44.7 1.4
Re 24.6 4.9 9.6
DVS Lip R 178.7 36 03
R¢ 33.4 6.7 13.0

www.advintellsyst.com

the digital DNN blocks were considered to provide sufficient pre-
cision during conversion.

For the DVS128 Gesture dataset, the number of RNs in the R,
layer is 8192 (2 x 64 x 64) and the number of retrievals is 50.
Thus, the total number of ADC operations is 409600 during
1.5 s running time. It requires at least a 273KSPS (kilo samples
per second) ADC. For the Ry layer, 512 RNs are necessary, and
the states are retrieved five times during 1.5 s running time. It
requires 2560 ADC operations during a video, corresponding to a
1.7KSPS ADC. To perform conservation estimate, we chose the
power of a commercial 8 bit-ADC (ADC7040 ultra-low power
SAR ADC from TI), which consumes 171 yW for 274.7KSPS
of the task.

For the DVS Lip dataset, 11552 (2 x 76 x 76) RNs are in the
R;, layer and the total number of ADC operations is 577600
(11552 x 50) during 1.5 s running time, which demands at least
a 385KSPS ADC. For the Ry layer, the same ADC used for
DVS128 gesture dataset is needed to support the same structure.
If we utilize the same commercialized ADC, 171 pW are addi-
tionally consumed for DVS Lip dataset. Furthermore, we expect
that the power consumption will become less with less precision
ADCs (e.g., 6-bit or 4-bit) which are commonly used in neuro-
morphic circuits.

4.4.4. Overall System Power Estimation

The total energy of the RN-Net hardware system can be calcu-
lated by summing up the energy used by the R;,/R; layers
and ADCs calculated above, plus the energy used for the
DNN blocks to run a clip for DVS128 Gesture and DVS Lip.
To calculate the energy of the DNN blocks, we derived the num-
ber of MAC operations for running a video clip in RN-Net,
according to Table 3. The number of MAC operations during
a video clip was calculated based on the number of MAC oper-
ations in the convolution and fully-connected layers, multiplied
by the number of forward passes (i.e., 50) through these layers
during the clip. We use published, conservative TOPS/W value
(ie., 2 TOPS/W from the Google Edge TPU’) to estimate the
energy used by the DNN blocks since these blocks can be imple-
mented in any digital accelerator. By adding all the energy costs,
the total energy consumed by RN-Net per video clip, and the aver-
age power of RN-Net for DVS128 Gesture and DVS Lip tasks are
estimated at 10.3 and 11.6 mW, respectively, and more details are
presented in Table 9.

Table 9. Total energy and average power of the RN-Net system, along with
the total number of MAC operations in the DNN blocks when running
DVS128 Gesture and DVS Lip tasks.

Dataset Convolution/ Fully- Whole Energy Power
Forward-pass connected Network [m]] [mW]
[MOPS] [MOPS] [GOPS]
Gesture 608.7 2.7 30.4 15.4 10.3
Lip 686.3 2.7 343 17.3 11.6
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5. Conclusion

In this work, we propose a hybrid reservoir/DNN network,
reservoir nodes-enabled neuromorphic vision sensing network
(RN-Net), for asynchronous event-based vision processing. The
use of dynamic reservoir nodes enables efficient spatiotemporal
encoding of both local and global features at different hierarchies
in real time and eliminates external memory and logic/recurrent
units. RN-Net achieves the highest classification accuracy on
CIFAR10-DVS, N-Caltech 101, DVS128 Gesture, and N-CARS
and one of the highest DVS Lip classification accuracy with a
much lighter network structure. The reservoir nodes can be effi-
ciently implemented with STM memristors, taking advantage of
internal device physics to perform signal processing. The low
hardware and training costs of RN-Net make it an attractive
option for event-camera applications. Additionally, new devices,
such as optical neural transistors, can potentially both sense opti-
cal inputs and process temporal information in one device,*®!
allowing better power-efficiency in vision processing following
approaches discussed here.
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