DEEP LEARNING ACCELERATORS
(DLAs) based on compute-in-memory
(CIM) technologies have been consid-
ered promising candidates to drastical-
ly improve the throughput and energy
efficiency for running deep neural net-
work models. In this review, we analyze
DLA designs reported in the past decade,
including both fully digital DLAs and
analog CIM based DLAs, to provide
insights regarding the current status of
CIM technologies and prospective of
this emerging field. We observed that
the reported CIM designs, even in their
carly research stage, do provide energy
efficiency advantages from measured sili-
con data over digital DLA. Additionally,
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FIGURE 1 (a) Rough energy costs for various operations at 45 nm node, extracted from [24]. (b) Schematics of a CIM unit, including the memory
array and periphery. (c) Reported TOPS/W of fully digital, SRAM based CIM, and memristive CIM systems.

it is revealed that the main advantage
comes from completely eliminating the
run-time DRAM access for weights. For
performance benchmarks, we performed
a top-down analysis using a generic DLA
design and illustrated how fully-weight-
stationary CIM DLAs, being no lon-
ger bounded by the memory bottleneck,
offer large throughput advantages com-
pared to traditional digital DLAs. The
benchmark was performed by computing
popular models deployed in Google’s
TPU accelerator.

INTRODUCTION

Hardwares designed specifically to accel-
erate deep neural networks (DNNs) have
become a hot topic of interest in the past
decade due to the success of deep learn-
ing [1], [2], [13], [14], [15]. DNNs mod-
els are largely based on multiply-and-add
(MAC) operations with a massive num-
ber of parameters (weights) and vari-
ables (activations) [4]. Therefore, DLA
designs usually consist of large amounts
of MAC units or vector-matrix-multi-
plication (VMM) units to accelerate the
computations and optimize data move-
ment to minimize the cost of accessing
the weights and activations included in
DNN computation [16]. It is known that
memory access costs for data movement
are orders of magnitude larger than com-
putation costs, and the energy costs grow

with memory size [24]. For example, the
estimated energy required for 8-bit arith-
metic and various-sized memory access
(normalized to 8-bit) in 45 nm at 0.9 V
extracted from [24] is shown in Fig-
ure 1(a), illustrating the memory access
problem in traditional computer architec-
ture with separated centralized memory
units and computing units.

To (e.g.
throughput) and overcome the high ener-

improve  performance
gy cost that comes with data movements,
compute-in-memory (CIM) based DLAs
are proposed [22], [23]. Many VMM
engine designs based on the CIM princi-
ple can be achieved with little adjustments
in the peripheral circuits of existing mem-
ory arrays [17]. A simplified schematic of a
CIM unit for computing VMM is shown
in Figure 1(b). The matrix, represented
as low-precision fixed point values is pro-
grammed on the memory cells with the
input vectors, encoded as input voltages
(amplitude or pulse width), and applied to
the wordlines (WLs) of the memory array.
The output vector of the VMM opera-
tion will then be the current readouts at
the bitlines. The output is then typically
converted back to digital form through
analog-to-digital converters (ADCs). The
memory used for CIM implementations
can be separated roughly into two groups,
mainstream SRAM and emerging mem-
ristive memory. Figure 1(c) shows the

scaled energy efficiency (defined as Tera-
Operations-per-Second (TOPS) per watt)
of CIM based DLASs reported since 2018.
An overall trend of incremental improve-
ments in energy efficiency in both types
of CIM can be observed.

SURVEY OF DLAS

In this review, we analyze silicon data
reported in representative venues includ-
ing International Solid-State Circuits
Conference (ISSCC), Symposium on
VLSI Technology and Circuits (VLSI),
and relevant journals. The works includ-
ed are separated into three groups, fully
digital DLAs, SRAM-based CIM DLAs,
and memristive-based CIM DLAs, as
listed in Table 1. Digital-based DLAs
were reported earlier, e.g., starting from
around 2016, and CIM based DLAs
were reported later around 2018. For a
fair comparison of DLA prototypes, we
collect CIM-DLAs from 2018 to 2022,
and digital DLAs from 2016 to 2020,
five years for cach category. Although
some works demonstrated acceleration
for DNN training, in this analysis we
only focus on the DNN inference accel-
eration.

DLA PERFORMANGE REPORTED WITH
SILICON DATA

For simplicity, throughput data (Giga-
Operations-per-Second, GOPS or
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m List of DLA works included in the analysis.

LABEL TECH NODE  YEAR MEMORY (KB) PRECISION

Digital Eyeriss, ISSCC’'16, 65 nm 65 nm 2016 Global buffer: PE buffer: 73.5 16b

Sim, ISSCC’16, 65 nm 65 nm 2016 38 SRAM 24b (16.8 format)

Moons, VLSI'16, 40 nm 40 nm 2016 144 SRAM Dynamic 1b x 16b

ENVISION, ISSCC’17, 28 nm 28 nm 2017 144 SRAM Dynamic 1xN - 16/N

Desoli, ISSCC’17, 28 nm 28 nm 2017 Microcontroller: 128, SRAM: 4000 16b

DNPU, ISSCC’17, 65 nm 65 nm 2017 280 (CNN core) + 10 (FC core) 4b, 16b

Bong, ISSCC’17, 65 nm 65nm 2017 160 T-SRAM 16b

Yin, VLSI'17, 65 nm 65 nm 2017 348 SRAM 8b, 16b

UNPU, ISSCC’18, 65 nm 65 nm 2018 256 SRAM 1 x 16 continuous activation

Song, ISSCC’19, 8 nm 8nm 2019 1568 SRAM 8b, 16b

Lin, ISSCC’20, 7 nm 7nm 2020 2176 SRAM 8b, 16b, FP16
SRAM CIM Bankman, ISSCC’18, 28nm 28 nm 2018 264.5 (Weight) + 64 (activation) Binary

Gonugondla, ISSCC’18, 65 nm 65 nm 2018 16 SRAM (512x256 array) 8b

Khwa, ISSCC’18, 65 nm 65 nm 2018 CIM SRAM: 0.5 (64x64 array) 1b

Biswas, ISSCC’'18, 65 nm 65 nm 2018 CIM SRAM: 2 (256x64 array) 1bto 7b

Valavi, VLSI'18, 65 nm 65 nm 2018 295 SRAM (64x64 array) 1b

XNOR-SRAM, VLSI'18, 65 nm 65 nm 2018 CIM SRAM: 2 (256x64 array) Binary/Ternary

Wang, ISSCC’19, 28 nm 28 nm 2019  CIM SRAM: 128 (128x256 array) 8b

Si, ISSCC’19, 55 nm 55 nm 2019 CIM SRAM: 0.47 1b, 2D, 4b, 5b

Su, ISSCC’20, 28 nm 28 nm 2020 CIM SRAM: 8 (512x128 array) 2D, 4b, 8b

Si, ISSCC’20, 28 nm 28 nm 2020 CIM SRAM: 8 4h

Dong, ISSCC’20, 7 nm 7nm 2020 CIM SRAM: 0.5 (64x64 array) 4b

Yue, ISSCC’20, 65 nm 65 nm 2020 Digital: 164, CIM SRAM: 0.5 2D, 4b, 6b, 8b

(128x128 array)

Chih, ISSCC’21 22 nm 22 nm 2021 SRAM CIM: 2 KB (256x64 array) 4b, 8b

PIMCA, VLSI'21, 28 nm 28 nm 2021 SRAM CIM: 432 KB 4D, 8b

Yue, ISSCC’21, 65 nm 65 nm 2021 Digital: 294, CIM SRAM: 8 1b to 8b

Su, ISSCC’21, 28 nm 28 nm 2021 CIM SRAM: 48 4h, 8b

Wu, ISSCC’22, 28 nm 28 nm 2022 CIM SRAM: 128 4b, 8b

Fujiwara, ISSCC’22, 5 nm 5nm 2022 CIM SRAM: 8 (256x256 array) 8b
Memristive CIM  Chen, ISSCC’18, 65 nm 65 nm 2018 CIM RRAM: 128 Binary

Mochida, ISSCC’18, 40 nm 40 nm 2018 CIM RRAM: 512(40 nm) 1b x 8b

Mochida, ISSCC’18, 180 nm 180 nm 2018 CIM RRAM: 256(180 nm) 1b x 8b

Xue, ISSCC’19, 55 nm 55 nm 2019 CIM RRAM: 128 (256x512 array) 16, 2b, 3b

Chen, ISSCC’19, 22 nm 22 nm 2019 CIM RRAM: 128 Binary/Ternary

Xue, ISSCC’20, 22 nm 22 nm 2020  CIM RRAM: 256 (512x512 array) 1b, 2b, 4b

Liu, ISSCC’20, 130 nm 130 nm 2020 CIM RRAM: 19.85 1b x 3b

Wan, ISSCC’20, 130 nm 130 nm 2020 CIM RRAM: 8 (256x256 array) 1b act, 7 level weight

Xue, ISSCC’21, 22 nm 22 nm 2021 CIM RRAM: 512 (1024x512 array) 1b, 2D, 8b

Yoon, ISSCC’21, 40 nm 40 nm 2021 CIM RRAM: 8 1b to 8b

Hung, Nature’21, 22 nm 22 nm 2021 CIM RRAM: 512 8h

HERMES Core, VLSI'21, 14 nm 14 nm 2021 CIM RRAM: 8 (512x512 array) 1b, 2b, 4b

Xue, VLSI21, 14 nm 14 nm 2021 CIM RRAM: 256 (512x512 array) 8b

Hung, ISSCC’'22, 22 nm 22 nm 2022  CIM RRAM: 1024 (1024x256 array) 1b to 8b

Khwa, ISSCC’22, 40 nm 40 nm 2022 CIM RRAM: 256 (256x1024) 1b, 2b, 4b, 8b

Spetalnick, ISSCC’22, 40 nm 40 nm 2022 CIM RRAM: 8 Binary

Correll, VLSI'22, 65 nm 65 nm 2022 CIM RRAM: 8 (256x64 array) 8b x 4b

Chang, ISSCC’22, 40 nm 40 nm 2022 SRAM: 768, CIM RRAM:2304 Binary

Tera-Operations-per-Second, TOPS)
reported in various works are linearly
scaled to 84 x8b activation x weight
multiplication precision, which is typi-
cal for DNN inference [26]. where each
MAC is considered as two operations
(OPs): multiplication and add. However,
some factors which could affect the per-
formance should also be kept in mind.
Firstly, a more precise evaluation should
also consider output precision as a figure
of merit of the VMM operation. For
example, most CIM based DLAs trun-
cate the output precision directly at each

VMM unit to reduce the required ADC
precision. However, this introduces larg-
er errors compared to approaches that
keep higher output precision at each
VMM and truncate only after the final
output is obtained. We do not take this
effect into account while scaling the per-
formance because many studies do not
specify the output precision and only list
drops in the DNN accuracy. Secondly,
most CIM based DLAs, especially the
carlier ones are based on low multiplica-
tion precision, for example, binary or
ternary inputs and weights. For these

cases, aggressively scaling up to 84 x84
multiplications might lead to large over-
estimation from overhead.

Throughput and power consump-
tion are important for evaluating the
performance of a DLA. The scatter plot
of peak throughput vs. average power
of the DLAs in Table 1 with reported
GOPS and TOPS/W or power num-
bers are shown in Figure 2. For works
without reported average power, we
use reported TOPS/W and GOPS to
extrapolate the power values. It can be
observed that CIM works generally
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FIGURE 2 Scatter plot of throughput (GOPS) vs. power (mW) for digital, SRAM-CIM, and memristive-CIM based DLAs.

report higher TOPS/mW. On the other
hand, the reported digital DLAs tend to
offer higher power and higher through-
put, which is expected since CIM based
DLASs prototypes are relatively smaller in
size as a relatively new technology. We
also include the memory size of the CIM
based DLAs in the inset of Figure 2. It
is shown that memristive-based DLAs,
although at a very carly research stage,
already demonstrated larger memory
macro for CIM. This could be an indi-
cation of the higher memory density
compared to SRAM provided by current
technology.

EFFECTS OF DRAM ACCESS

ENERGY EFFICIENCY CONSIDERING
DRAM ACCESS

The data evaluated in the previous sec-
tion only consider the on-chip power
consumption. With previous DLAs
demonstrating smaller throughput, it’s
unlikely for the DLAs, both digital and
CIM based, to keep all required data,
including weight and intermediate acti-
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FIGURE 3 Box plots of estimated power consumpt

ion with and without 0.5 GBps DRAM access

at 400 GOPS, for reported DLAs with multiplication precision above 8b.

vations, during DNN computations
on chip. However, for DLAs of smaller
scale, it is unrealistic to keep all weights
and intermediate activations on-chip dur-
ing computation, and frequent off-chip
DRAM access is needed. In this section,

we examine the effects of DRAM access
for traditional digital as well as CIM
architectures and discuss the importance
for CIM based DLA to keep all weights
stationary on-chip in order to exploit the
CIM benefits.
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In traditional digital architectures, separate
memory units and computing units (CUs) are
implemented, and weights are loaded on chip

layer-by-layer from off-chip memory. Each time

a set of new weights is loaded on chip, the

corresponding activations are prepared.

In the following, to avoid large scal-
ing error resulting from large overheads
when scaling systems with very low pre-
cision weights, we use the total multipli-
cation (i.e., activation x weight) precision
as a parameter and only consider report-
ed silicon data from implementations
with total multiplication precision over
8b (e.g. 46x2b or higher). Of these
54% of the GOPS reported falls between
10 to 400, with 29% under 10 GOPS and
17% above 400 GOPS. For comparison,
we estimate the required power (mW) for
400 GOPS operations for each system,
based on their reported performance
and energy numbers. Our analysis shows
digital DLAs, SRAM CIM, and mem-
ristive CIM to have an average power
consumption of 176.9 mW, 81.6 mW,
and 31.1 mW respectively, for the hypo-
thetical 400 GOPS operations. Note this
analysis does not consider DRAM access
costs. The box charts of the data points
are shown as the without-DRAM nccess
items in Figure 3.

To estimate the required DRAM
bandwidth for the 400 GOPS opera-
tions, we extract data reported in Eyer-
iss, which is a (scaled to 86x84) 336
GOPS DLA with dataflow designs to
optimize energy efficiency by limiting
data movement, including minimizing
off-chip DRAM access. With the MAC
and DRAM access breakdowns for lay-
ers in AlexNet and VGGI16 reported in
Eyeriss, we estimated that the theoreti-
cal average DRAM access for the DLA
to support 400 GOPS is 0.29 and 0.36
GBps for AlexNet and VGGI16, respec-
tively. Based on this analysis, we assume
0.5 GBps DRAM bandwidth is needed
for a hypothetical 400 GOPS DLA for
convolutional neural network (CNN)
inference. The associated energy for
the DRAM access is estimated as 100
mW [24]

With-DRAM access costs, in Fig-
ure 3 show that the power of digital
DLA is estimated to be 1.6x of the
chip-only power. If DRAM access

cannot be eliminated in CIM systems
either, the power of CIM based archi-
tectures increases to 2.2x and 4.2x
of chip-only power; and becomes less
impressive 0.66x and 0.47x of that
of traditional digital DLA architec-
tures, for SRAM-based and memris-
tive-based CIM systems, respectively.
However, if CIM based architecture
is designed to completely eliminate
DRAM access, the power consump-
tion is brought down to 0.3x and
0.11x of the digital DLA systems,
respectively, showing the potential for
CIM systems to drastically improve
energy efficiency and the necessity for
CIM systems to have enough on-chip
memory capacity to store all weights
on chip.

THROUGHPUT AND THE DRAM
MEMORY BOTTLENECK

In traditional digital architectures,
separate memory units and comput-
ing units (CUs) are implemented, and
weights are loaded on chip layer-by-layer
from off-chip memory. Each time a set
of new weights is loaded on chip, the
corresponding activations are prepared.
Batching of inputs is often employed to
help reduce the required weight reads
for computation. To model the per-
formance considering such cross-chip
data-movement of weights, the Roofline
performance model used in high-per-
formance computing (HPC) is adopted,
following [18].

The roofline model plots through-
put (TOPS) vs. operation intensity (OI).
There are two types of Ols, one is the
intrinsic OI of a model, defined as the
number of MACs per weight. The intrin-
sic OI is thus a measure of the intrinsic
reuse factor of a given weight. The other
is the computational OI, which considers
the intrinsic OI and the batching done
for a given workload; The computational

OI can be defined as, x batch ,

. weight

i.e., the larger the batch size the larger
the computational OI, leading to larger
reuse of the weights. As illustrated in
Figure 4, the roofline typically consists
of two parts, a flat part on the right
and a slanted part on the left. The flat

part (red) marks the max throughput
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FIGURE 5 Schematic of high-level architecture of (a) TPU and (b) FWS-tiled CIM.

provided by the DLA compute unit(s)
while the slanted part (blue) marks the
memory-bounded throughput, i.e. when
the CUs are starved of data.

A given hardware would have a spe-
cific roofline profile, and different work-
loads would fall in different regions of
the roofline. For example, consider a
perfect case corresponding to the hol-
low dots that sit on the roofline in Fig-
ure 4. If the throughput is limited by
the memory bandwidth, the point could
be pushed to the right and gets higher
TOPS by increasing the batch size of a
DNN workload; However, a larger batch
size means longer latency, and inference
applications usually have response time
requirements [18] and therefore restricts
the points to be pushed too far out right.

The memory-bounded slant in the
roofline illustrates the fundamen-
tal difficulty of obtaining optimal
throughput and response time in a
traditional fully digital DLA for a tar-
geted workload. Oftentimes the work-

load is memory bandwidth limited,
preventing the system from achieving
high utilization of the CU(s) and thus
high throughput. As shown below, this
problem could be eliminated complete-
ly with a fully-weight-stationary (FWS)
CIM architecture.

CIM DLA PERFORMANCE
BENCHMARKS: A TOP-DOWN
ANALYSIS

Since most reported CIM prototypes
are too small to map full CNN models,
to analyze CIM DLA performance for
practical CNN workloads, we performed
top-down analysis using a hypothetical,
generic CIM DLA system. The goal is
to use real-world applications to bench-
mark CIM DLA performance and to
help identify important future directions
of CIM research. We choose the Tensor
Processing Unit (TPU) hardware [18] as
the digital baseline to compare against
the CIM architecture, and use similar
workloads deployed in Google’s data-

m Comparison of TPU and FWS-CIM architectures.

center to evaluate the performance of the
different architectures.

METHOD
ARCHITECTURE
TPU is Google’s inference-only DLA
and has been deployed in its data-cen-
ters since 2015 [18]. TPU uses a typi-
cal weight stationary design with a large
enough SRAM buffer to keep intermedi-
ate activations on chip. The heart of the
TPU is a 256x256 8-bit integer systolic
matrix multiplier array that offers a peak
throughput of 92 TOPS, and a large
24 MB SRAM buffer for storing inter-
mediate activations. A simplified illustra-
tion of the TPU is shown in Figure 5(a).
For the hypothetical CIM DLA, we
assume it is based on the fully-weight-
stationary (FWS) design principle with
tiled CIM computation components that
share data through a mesh network-on-
chip (NoC). In this approach, the weights
of a CNN model are fully stationary dur-
ing inference without being rewritten or

WEIGHT ACTIVATION COMPUTATION
STORAGE MOVEMENT STORAGE MOVEMENT
TPU o Off-chip DRAM o WS Full feature map in large Between MAC array and Centralized MAC array
e 0On-chip FIFO and buffer e Rewrite for each centralized SRAM buffer buffer temporally shared between

layer each batch

CIM e On-chip CIM unit D
o Distributed o

FWS

No rewrites

Partial feature map in
distributed SRAM buffers

during runtime

Passed with hierarchical
interconnect to down-
stream tiles

NN layers
Distributed CIM units com-
puting only parts of the
NN each
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m TPU and FWS-CIM specs used for

analysis in this work.

CiM TPU

Frequency 200 MHz Frequency 700 MHz

Tech node 22 nm Tech node 28 nm

Crossbar (Xbar) size 256x256 MAC unit (8bx8b) 256x256

Cell/Weight 8 DRAM type DDR3

Compute 32 Xbar/CU, 4 CU/tile DRAM size 8 GB

# of Tiles 56 DRAM BW 34 GBps

Total RRAM 56 MB Weight buffering 128 KB

SRAM buffer 14 MB (64 KB) SRAM buffer 24 MB

Peak TOPs 92 TOPs Peak TOPs 92 TOPS

Area 672 mm? Die area <331 mm?

IV Y:AN-'8 Parameters of MLPO and CNNO for TPU bench marking, and relative pseudo
models.

MODEL WEIGHT MAC # OF LAYERS BATCH SIZE MAPPED WEIGHTS

MLPO (TPU) 20 M 20 M 5 200 N/A

CNNO (TPU) 8 M 2888 M 16 8 N/A

MLP (pseudo) 195M  195M 5 1 55.9M1)

CNN (pseudo) 11.7M 3277 M 14 1 55.8M2)

1) Three copies of all weights
2)192/192/48/48/12/12/3/3/1/1/1 copies for CON

V layers; 1/1 copies for FC layer

91.6 TOPs, Batch =
100 _E_J.s OPs, Batch =1

83 TOPs, Batch=1

10

TOPs

e
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FIGURE 6 Roofline analysis of the generic CIM chi
workloads.

moved. The inputs are streamed into the
tiles and the mesh NoC moves the result-
ing intermediate activations to the cor-
responding downstream tiles. The main
differences between the two approaches
are listed in Table 2.

In our analysis, we assume a generic
CIM architecture, shown in Figure 5(b).
A CU includes a set of crossbar (Xbar)-
based processing elements (PEs) work-
ing together through a shared SRAM

p vs. TPU for the two DNN model

buffer. Here for brevity, we assume the
crossbars are based on resistive random-
access memory (RRAM), although other
memristive crossbars can be used instead
without losing generality. A number
of CU are connected through a shared
BUS, forming a tile; where a set of tiles
form the complete CIM chip through
NoC routers. The CIM chip is linked
to the outside through an input/out-
put (IO) interface. In order to facilitate

a comparison between CIM and digital
TPU, we examine prior works [19], [20],
[21] and selected the architectural specs
for the FWS-CIM as shown in Table 3.
The peak TOPS is set to 92 TOPS to
match the TPU baseline performance.
Most RRAM CIM PE-related numbers
are extracted from [Hung, ISSCC’22,
22nm], with TOPS/RRAM scaled up
to match TPU throughput under accept-
able total area. With these parameters,
the 92 TOPS CIM chip requires 56 MB
total on-chip RRAM.

NN WORKLOADS FOR EVALUATION
For evaluation, we consider the NN
models reported in the TPU work
which represent 95 % of the NN infer-
ence workload in Google’s data-center
at that time. The benchmarked models
in TPU include 2 multi-layer percep-
tron (MLP) layers, 2 CNN layers, and
2 long short-term memory (LSTM) lay-
ers. The inference of MLP and CNN
models has been extensively studied,
therefore we chose one of each (MLP0O
and CNNO) for the analysis in this sec-
tion. Although the exact model archi-
tecture was not released, some model
information including weight size,
MAC size, and total number of lay-
ers was reported, listed in Section 1
of Table 4. Since the exact NN model
architecture is needed to estimate DLA
performance, we created two pseudo
models that match the model specifica-
tions of MLP and CNN, listed in the
second section of Table 4.

e MLP - Five fully connected (FC) lay-
ers with input and output size of each
layer ranging from 512 to 2816 and a
total of 19.5 M weights.

e CNN - A VGG-like model with
12 3x3 convolutional (CONV) lay-
ers with filter count ranging from
64 to 512 and 2 FC layers. The
model has a total of 11.7 M weights
and 3277 M MAC.

EVALUATION

From the roofline analysis, we know
that for traditional DLA with sepa-
rate memory and computing units, the
computational OI limits the maximum
throughput a DLA can achieve. The
computational OI is determined by the

50";“&&'%%%%9&%%‘&%&01 Mﬁﬁﬁﬁo% Michigan Library. Downloaded on July 26,2024 at 13:30:24 UTC from IEEE Xplore. Restrictions apply.



MAINSTREAM MEMORIES

SRAM DRAM
Cell area >100 F2 6-8 F2
Bit/cell 1 1
Voltage 1V ~1V
Read time ~1ns ~10 ns
Write time ~1ns ~10 ns
Retention N/A ~64 ms
Endurance 1016 1016
Write energy ~11J ~101J

batch size and the intrinsic OI of the
targeted DNN model. The larger the
batch size the better the TOPS (for
memory-bound cases), and the lower
the DRAM access power (for computa-
tion-bounded cases). However, in real-
world applications, the latency of the
computation largely affects a user’s sat-
isfaction with the service. Since batch-
ing increases latency, the number of
batches selected in a workload during
NN inference is thus normally restricted
below a certain level. In [18] batch sizes
of 200 and 8 are selected for MLPO
and CNNO after latency considerations
(including the server time as well as
accelerator time).

For FWS-CIM, throughput can be
maximized by leveraging pipelining. To
avoid stalling in the pipeline stages, cop-
ies of the slower layers can be mapped to
additional PEs to accelerate these slower
layers. After mapping the models on
chip with the optimal number of copies
for different layers to maximize over-
all throughput, MLP and CNN require
559 M and 55.8 M weight storage,
respectively.

RESULTS

As shown in Figure 6, the two models
mapped on the hypothetical FWS-CIM
architecture can utilize 91.6 TOPS and
83 TOPS, respectively, out of the total
92 theoretical TOPS with no batch-
ing (i.e. batch size of 1). For compar-
ison, the max utilization for TPU is
0.068 TOPs and 19 TOPDs, respectively,
at batch size of 1. It is clear that both
models are in the memory-bounded
region and lead to significant under-
utilization of the TPU. After increas-
ing the batch numbers as suggested by

the TPU paper, the CNN model with
a batch size of 8 can be moved to the
computation-bounded region. However,
the MLP model even with an aggres-
sive batch size of 200 is still memory-
bounded, as shown in Figure 6.

DISCUSSION

Our survey of reported silicon data and
our top-down analysis of a generic CIM
DLA verity that CIM based DLAs have
clear advantages over traditional digital
DLAs, especially for highly memory-
bound NN workloads. This advantage
comes in two folds, the power saved
by eliminating DRAM access, and the
higher throughput achieved by remov-
ing the constraint of the memory bot-
tleneck. However, these advantages
are only achieved if all the weight of a
model can be stored on-chip. Figure 7
shows the number of parameters vs.
ImageNet top-1 accuracy [27] of recent
DNN models [1], [2], [3], [5], [6], [7],
[8], [9], [10], [11], [12], [28]. It can be
observed that state-of-the-art models

Comparison of different memory technologies. Data collected from [29], [30], [31].

EMERGING MEMORIES

NOR FLASH NAND FLASH FEFET STT MRAM PCRAM RRAM
10 F2 <4 F2 (3D) 6-30 F2 6-30 F2 4-30 F2 4-12 F2
~2 ~3 1 1 ~2 ~2
10V 10V 3.5V 15V 3V 3V
~50 ns ~10mu s 100 ns ~10 ns 100 ns 100 ns
~1 mus ~100 mu s 100 ns ~10 ns ~50ns 100 ns
~10 years ~10 years ~10 years ~10 years ~10 years ~10 years
105 104 109 1015 109 109
~100 pJ ~10fJ ~11J ~0.1pJd ~10 pJ ~1pJ

can ecasily hold over tens of millions of
parameters. In our previous mapping
example shown in Table 4, it is shown
that to minimize pipeline stalls duplica-
tion of weights needs to be employed
for CIM, further increasing the need-
ed on-chip memory size, as shown in
Figure 6. The limited on-chip memory
capacity, combined with the increasing
model size, thus becomes a major chal-
lenge for CIM deployments, and storage
density will be the most important spec
when evaluating potential memory tech-
nologies for CIM applications.

Key specs of various memory technol-
ogies including mainstream memory and
emerging memory are listed in Table 5.
In general, emerging memories shown in
the table can offer higher density com-
pared to SRAM, and some have demon-
strated multi-level-storage making them
attractive for CIM. Another factor to
consider is energy proportionality, i.c.,
power consumption with respect to the
amount of work being processed. [25]
shows that servers are rarely 100% busy;
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FIGURE 7 Weight size and ImageNet top-1 accuracy for popular CNN models.
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therefore, good energy proportionality
can help reduce the overall system power.
With many emerging devices being non-
volatile, the power of unused PEs can be
completely turned oft. From these points
one can see memristive CIMs are more
attractive than SRAM CIMs, and mate-
rial, device, and architecture co-opti-
mizations that can further improve the
CIM crossbar density, energy efficiency,
and reliability will help bring the CIM
DLAsS to practice.

CONCLUSION

CIM based DLA is a promising field
of study due to its potential of high
throughput and high energy efficiency
by eliminating the memory bottleneck.
Reviewing recently published CIM sili-
con data verified that CIM DLAs indeed
showed an advantage over digital DLAs
even at this early development stage.
When normalized to 400 GOPS opera-
tions, SRAM and memristive based CIM
DLAs consume on average 81.6 mW
and 31.1 mW, respectively, as opposed
to 176.9 mW for conventional digital
DLAs. However, noting the power con-
sumption of required DRAM access is
similar, the benefits of CIM-DLAs can
only be fully achieved when DRAM
access is completely eliminated.

To highlight the effects of DRAM
bandwidth  on
(throughput), we analyzed a hypotheti-
cal CIM DLA and benchmarked its per-
formance against TPU for reported NN
workloads. The elimination of DRAM
bottleneck allows CIM DLA to achieve
very high utilization even without batch-

DLA  performance

ing. However, like energy efficiency
gains, this performance gain can only be
realized if all weights can be stored fully
stationary on-chip. These results high-
light the benefits of CIM DLA over digi-
tal DLAs and the importance of memory
density when choosing memory technol-
ogies for CIM-DLA implementations.
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