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D Compute-In-Memory 
Technologies for 

Deep Learning 
Acceleration

Status and Prospect

DEEP LEARNING ACCELERATORS 
(DLAs) based on compute-in-memory 
(CIM) technologies have been consid-
ered promising candidates to drastical-
ly improve the throughput and energy 
efficiency for running deep neural net-
work models. In this review, we analyze 
DLA designs reported in the past decade, 
including both fully digital DLAs and 
analog CIM based DLAs, to provide 
insights regarding the current status of 
CIM technologies and prospective of 
this emerging field. We observed that 
the reported CIM designs, even in their 
early research stage, do provide energy 
efficiency advantages from measured sili-
con data over digital DLA. Additionally, 
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it is revealed that the main advantage 
comes from completely eliminating the 
run-time DRAM access for weights. For 
performance benchmarks, we performed 
a top-down analysis using a generic DLA 
design and illustrated how fully-weight-
stationary CIM DLAs, being no lon-
ger bounded by the memory bottleneck, 
offer large throughput advantages com-
pared to traditional digital DLAs. The 
benchmark was performed by computing 
popular models deployed in Google’s 
TPU accelerator.

INTRODUCTION
Hardwares designed specifically to accel-
erate deep neural networks (DNNs) have 
become a hot topic of interest in the past 
decade due to the success of deep learn-
ing [1], [2], [13], [14], [15]. DNNs mod-
els are largely based on multiply-and-add 
(MAC) operations with a massive num-
ber of parameters (weights) and vari-
ables (activations)  [4]. Therefore, DLA 
designs usually consist of large amounts 
of MAC units or vector-matrix-multi-
plication (VMM) units to accelerate the 
computations and optimize data move-
ment to minimize the cost of accessing 
the weights and activations included in 
DNN computation [16]. It is known that 
memory access costs for data movement 
are orders of magnitude larger than com-
putation costs, and the energy costs grow 

with memory size [24]. For example, the 
estimated energy required for 8-bit arith-
metic and various-sized memory access 
(normalized to 8-bit) in 45 nm at 0.9 V 
extracted from  [24] is shown in Fig-
ure 1(a), illustrating the memory access 
problem in traditional computer architec-
ture with separated centralized memory 
units and computing units.

To improve performance (e.g. 
throughput) and overcome the high ener-
gy cost that comes with data movements, 
compute-in-memory (CIM) based DLAs 
are proposed  [22], [23]. Many VMM 
engine designs based on the CIM princi-
ple can be achieved with little adjustments 
in the peripheral circuits of existing mem-
ory arrays [17]. A simplified schematic of a 
CIM unit for computing VMM is shown 
in Figure  1(b). The matrix, represented 
as low-precision fixed point values is pro-
grammed on the memory cells with the 
input vectors, encoded as input voltages 
(amplitude or pulse width), and applied to 
the wordlines (WLs) of the memory array. 
The output vector of the VMM opera-
tion will then be the current readouts at 
the bitlines. The output is then typically 
converted back to digital form through 
analog-to-digital converters (ADCs). The 
memory used for CIM implementations 
can be separated roughly into two groups, 
mainstream SRAM and emerging mem-
ristive memory. Figure  1(c) shows the 

scaled energy efficiency (defined as Tera-
Operations-per-Second (TOPS) per watt) 
of CIM based DLAs reported since 2018. 
An overall trend of incremental improve-
ments in energy efficiency in both types 
of CIM can be observed.

SURVEY OF DLAS
In this review, we analyze silicon data 
reported in representative venues includ-
ing International Solid-State Circuits 
Conference (ISSCC), Symposium on 
VLSI Technology and Circuits (VLSI), 
and relevant journals. The works includ-
ed are separated into three groups, fully 
digital DLAs, SRAM-based CIM DLAs, 
and memristive-based CIM DLAs, as 
listed in Table  1. Digital-based DLAs 
were reported earlier, e.g., starting from 
around 2016, and CIM based DLAs 
were reported later around 2018. For a 
fair comparison of DLA prototypes, we 
collect CIM-DLAs from 2018 to 2022, 
and digital DLAs from 2016 to 2020, 
five years for each category. Although 
some works demonstrated acceleration 
for DNN training, in this analysis we 
only focus on the DNN inference accel-
eration.

DLA PERFORMANCE REPORTED WITH 
SILICON DATA
For simplicity, throughput data (Giga-
Operat ions-per-Second, GOPS or 

FIGURE 1  (a) Rough energy costs for various operations at 45 nm node, extracted from [24]. (b) Schematics of a CIM unit, including the memory 
array and periphery. (c) Reported TOPS/W of fully digital, SRAM based CIM, and memristive CIM systems.
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Tera-Operations-per-Second, TOPS) 
reported in various works are linearly 
scaled to 8 8b b×  activation × weight 
multiplication precision, which is typi-
cal for DNN inference  [26]. where each 
MAC is considered as two operations 
(OPs): multiplication and add. However, 
some factors which could affect the per-
formance should also be kept in mind. 
Firstly, a more precise evaluation should 
also consider output precision as a figure 
of merit of the VMM operation. For 
example, most CIM based DLAs trun-
cate the output precision directly at each 

VMM unit to reduce the required ADC 
precision. However, this introduces larg-
er errors compared to approaches that 
keep higher output precision at each 
VMM and truncate only after the final 
output is obtained. We do not take this 
effect into account while scaling the per-
formance because many studies do not 
specify the output precision and only list 
drops in the DNN accuracy. Secondly, 
most CIM based DLAs, especially the 
earlier ones are based on low multiplica-
tion precision, for example, binary or 
ternary inputs and weights. For these 

cases, aggressively scaling up to 8 8b b×  
multiplications might lead to large over-
estimation from overhead.

Throughput and power consump-
tion are important for evaluating the 
performance of a DLA. The scatter plot 
of peak throughput vs. average power 
of the DLAs in Table  1 with reported 
GOPS and TOPS/W or power num-
bers are shown in Figure  2. For works 
without reported average power, we 
use reported TOPS/W and GOPS to 
extrapolate the power values. It can be 
observed that CIM works generally 

LABEL TECH NODE YEAR MEMORY (KB) PRECISION

Digital Eyeriss, ISSCC’16, 65 nm 65 nm 2016 Global buffer: PE buffer: 73.5 16b
Sim, ISSCC’16, 65 nm 65 nm 2016 38 SRAM 24b (16.8 format)
Moons, VLSI’16, 40 nm 40 nm 2016 144 SRAM Dynamic 1b × 16b
ENVISION, ISSCC’17, 28 nm 28 nm 2017 144 SRAM Dynamic 1xN - 16/N
Desoli, ISSCC’17, 28 nm 28 nm 2017 Microcontroller: 128, SRAM: 4000  16b
DNPU, ISSCC’17, 65 nm 65 nm 2017 280 (CNN core) + 10 (FC core) 4b, 16b
Bong, ISSCC’17, 65 nm 65 nm 2017 160 T-SRAM 16b
Yin, VLSI’17, 65 nm 65 nm 2017 348 SRAM 8b, 16b
UNPU, ISSCC’18, 65 nm 65 nm 2018 256 SRAM 1 × 16 continuous activation
Song, ISSCC’19, 8 nm 8 nm 2019 1568 SRAM 8b, 16b
Lin, ISSCC’20, 7 nm 7 nm 2020 2176 SRAM 8b, 16b, FP16

SRAM CIM Bankman, ISSCC’18, 28nm  28 nm 2018 264.5 (Weight) + 64 (activation) Binary 
Gonugondla, ISSCC’18, 65 nm 65 nm 2018 16 SRAM (512×256 array) 8b
Khwa, ISSCC’18, 65 nm 65 nm 2018 CIM SRAM: 0.5 (64×64 array) 1b
Biswas, ISSCC’18, 65 nm 65 nm 2018 CIM SRAM: 2  (256×64 array) 1b to 7b
Valavi, VLSI’18, 65 nm 65 nm 2018 295 SRAM  (64×64 array) 1b
XNOR-SRAM, VLSI’18, 65 nm 65 nm 2018 CIM SRAM: 2  (256×64 array) Binary/Ternary
Wang, ISSCC’19, 28 nm 28 nm 2019 CIM SRAM: 128  (128×256 array) 8b
Si, ISSCC’19, 55 nm 55 nm 2019 CIM SRAM: 0.47 1b, 2b, 4b, 5b
Su, ISSCC’20, 28 nm 28 nm 2020 CIM SRAM: 8  (512×128 array) 2b, 4b, 8b
Si, ISSCC’20, 28 nm 28 nm 2020 CIM SRAM: 8 4b 
Dong, ISSCC’20, 7 nm 7 nm 2020 CIM SRAM: 0.5 (64×64 array) 4b
Yue, ISSCC’20, 65 nm 65 nm 2020 Digital: 164, CIM SRAM: 0.5 

(128×128 array)
2b, 4b, 6b, 8b

Chih, ISSCC’21 22 nm 22 nm 2021 SRAM CIM: 2 KB (256×64 array) 4b, 8b
PIMCA, VLSI’21, 28 nm 28 nm 2021 SRAM CIM: 432 KB 4b, 8b
Yue, ISSCC’21, 65 nm 65 nm 2021 Digital: 294, CIM SRAM: 8 1b to 8b
Su, ISSCC’21, 28 nm 28 nm 2021 CIM SRAM: 48 4b, 8b
Wu, ISSCC’22, 28 nm 28 nm 2022 CIM SRAM: 128 4b, 8b
Fujiwara, ISSCC’22, 5 nm 5 nm 2022 CIM SRAM: 8 (256×256 array) 8b

Memristive CIM Chen, ISSCC’18, 65 nm 65 nm 2018 CIM RRAM: 128 Binary
Mochida, ISSCC’18, 40 nm 40 nm 2018 CIM RRAM: 512(40 nm) 1b × 8b
Mochida, ISSCC’18, 180 nm 180 nm 2018 CIM RRAM: 256(180 nm) 1b × 8b
Xue, ISSCC’19, 55 nm 55 nm 2019 CIM RRAM: 128 (256×512 array) 16, 2b, 3b
Chen, ISSCC’19, 22 nm 22 nm 2019 CIM RRAM: 128 Binary/Ternary
Xue, ISSCC’20, 22 nm 22 nm 2020 CIM RRAM: 256 (512×512 array) 1b, 2b, 4b
Liu, ISSCC’20, 130 nm 130 nm 2020 CIM RRAM: 19.85 1b × 3b
Wan, ISSCC’20, 130 nm 130 nm 2020 CIM RRAM: 8 (256×256 array) 1b act, 7 level weight
Xue, ISSCC’21, 22 nm 22 nm 2021 CIM RRAM: 512 (1024×512 array) 1b, 2b, 8b
Yoon, ISSCC’21, 40 nm 40 nm 2021 CIM RRAM: 8 1b to 8b
Hung, Nature’21, 22 nm 22 nm 2021 CIM RRAM: 512 8b
HERMES Core, VLSI’21, 14 nm 14 nm 2021 CIM RRAM: 8 (512×512 array) 1b, 2b, 4b
Xue, VLSI’21, 14 nm 14 nm 2021 CIM RRAM: 256 (512×512 array) 8b
Hung, ISSCC’22, 22 nm 22 nm 2022 CIM RRAM: 1024 (1024×256 array) 1b to 8b
Khwa, ISSCC’22, 40 nm 40 nm 2022 CIM RRAM: 256 (256×1024) 1b, 2b, 4b, 8b
Spetalnick, ISSCC’22, 40 nm 40 nm 2022 CIM RRAM: 8 Binary
Correll, VLSI’22, 65 nm 65 nm 2022 CIM RRAM: 8 (256×64 array) 8b × 4b
Chang, ISSCC’22, 40 nm 40 nm 2022 SRAM: 768, CIM RRAM:2304 Binary

T A B L E  1   List of DLA works included in the analysis.
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report higher TOPS/mW. On the other 
hand, the reported digital DLAs tend to 
offer higher power and higher through-
put, which is expected since CIM based 
DLAs prototypes are relatively smaller in 
size as a relatively new technology. We 
also include the memory size of the CIM 
based DLAs in the inset of Figure 2. It 
is shown that memristive-based DLAs, 
although at a very early research stage, 
already demonstrated larger memory 
macro for CIM. This could be an indi-
cation of the higher memory density 
compared to SRAM provided by current 
technology.

EFFECTS OF DRAM ACCESS
ENERGY EFFICIENCY CONSIDERING 
DRAM ACCESS
The data evaluated in the previous sec-
tion only consider the on-chip power 
consumption. With previous DLAs 
demonstrating smaller throughput, it’s 
unlikely for the DLAs, both digital and 
CIM based, to keep all required data, 
including weight and intermediate acti-

vations, during DNN computations 
on chip. However, for DLAs of smaller 
scale, it is unrealistic to keep all weights 
and intermediate activations on-chip dur-
ing computation, and frequent off-chip 
DRAM access is needed. In this section, 

we examine the effects of DRAM access 
for traditional digital as well as CIM 
architectures and discuss the importance 
for CIM based DLA to keep all weights 
stationary on-chip in order to exploit the 
CIM benefits.

FIGURE 3  Box plots of estimated power consumption with and without 0.5 GBps DRAM access 
at 400 GOPS, for reported DLAs with multiplication precision above 8b.

FIGURE 2  Scatter plot of throughput (GOPS) vs. power (mW) for digital, SRAM-CIM, and memristive-CIM based DLAs.
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In the following, to avoid large scal-
ing error resulting from large overheads 
when scaling systems with very low pre-
cision weights, we use the total multipli-
cation (i.e., activation × weight) precision 
as a parameter and only consider report-
ed silicon data from implementations 
with total multiplication precision over 
8b (e.g. 4 2b b×  or higher). Of these 
54% of the GOPS reported falls between 
10 to 400, with 29% under 10 GOPS and 
17% above 400 GOPS. For comparison, 
we estimate the required power (mW) for 
400 GOPS operations for each system, 
based on their reported performance 
and energy numbers. Our analysis shows 
digital DLAs, SRAM CIM, and mem-
ristive CIM to have an average power 
consumption of 176.9  mW, 81.6  mW, 
and 31.1 mW respectively, for the hypo-
thetical 400 GOPS operations. Note this 
analysis does not consider DRAM access 
costs. The box charts of the data points 
are shown as the without-DRAM access 
items in Figure 3.

To estimate the required DRAM 
bandwidth for the 400 GOPS opera-
tions, we extract data reported in Eyer-
iss, which is a (scaled to 8 8b b× ) 336 
GOPS DLA with dataflow designs to 
optimize energy efficiency by limiting 
data movement, including minimizing 
off-chip DRAM access. With the MAC 
and DRAM access breakdowns for lay-
ers in AlexNet and VGG16 reported in 
Eyeriss, we estimated that the theoreti-
cal average DRAM access for the DLA 
to support 400 GOPS is 0.29 and 0.36 
GBps for AlexNet and VGG16, respec-
tively. Based on this analysis, we assume 
0.5 GBps DRAM bandwidth is needed 
for a hypothetical 400 GOPS DLA for 
convolutional neural network (CNN) 
inference. The associated energy for 
the DRAM access is estimated as 100 
mW [24]

With-DRAM access costs, in Fig-
ure  3 show that the power of digital 
DLA is estimated to be 1.6× of the 
chip-only power. If DRAM access 

cannot be eliminated in CIM systems 
either, the power of CIM based archi-
tectures increases to 2.2× and 4.2× 
of chip-only power; and becomes less 
impressive 0.66× and 0.47× of that 
of traditional digital DLA architec-
tures, for SRAM-based and memris-
tive-based CIM systems, respectively. 
However, if CIM based architecture 
is designed to completely eliminate 
DRAM access, the power consump-
tion is brought down to 0.3× and 
0.11× of the digital DLA systems, 
respectively, showing the potential for 
CIM systems to drastically improve 
energy eff iciency and the necessity for 
CIM systems to have enough on-chip 
memory capacity to store all weights 
on chip.

THROUGHPUT AND THE DRAM 
MEMORY BOTTLENECK
In tradit ional digital architectures, 
separate memory units and comput-
ing units (CUs) are implemented, and 
weights are loaded on chip layer-by-layer 
from off-chip memory. Each time a set 
of new weights is loaded on chip, the 
corresponding activations are prepared. 
Batching of inputs is often employed to 
help reduce the required weight reads 
for computation. To model the per-
formance considering such cross-chip 
data-movement of weights, the Roofline 
performance model used in high-per-
formance computing (HPC) is adopted,  
following [18].

The roofline model plots through-
put (TOPS) vs. operation intensity (OI). 
There are two types of OIs, one is the 
intrinsic OI of a model, defined as the 
number of MACs per weight. The intrin-
sic OI is thus a measure of the intrinsic 
reuse factor of a given weight. The other 
is the computational OI, which considers 
the intrinsic OI and the batching done 
for a given workload; The computational 
OI can be defined as, MAC

weight
batch× , 

i.e., the larger the batch size the larger 
the computational OI, leading to larger 
reuse of the weights. As illustrated in 
Figure 4, the roofline typically consists 
of two parts, a f lat part on the right 
and a slanted part on the left. The flat 
part (red) marks the max throughput 

FIGURE 4  Roofline analysis of throughput vs. computational operation intensity.

In traditional digital architectures, separate 
memory units and computing units (CUs) are 
implemented, and weights are loaded on chip 

layer-by-layer from off-chip memory. Each time 
a set of new weights is loaded on chip, the 

corresponding activations are prepared.
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provided by the DLA compute unit(s) 
while the slanted part (blue) marks the 
memory-bounded throughput, i.e. when 
the CUs are starved of data.

A given hardware would have a spe-
cific roofline profile, and different work-
loads would fall in different regions of 
the roofline. For example, consider a 
perfect case corresponding to the hol-
low dots that sit on the roofline in Fig-
ure  4. If the throughput is limited by 
the memory bandwidth, the point could 
be pushed to the right and gets higher 
TOPS by increasing the batch size of a 
DNN workload; However, a larger batch 
size means longer latency, and inference 
applications usually have response time 
requirements [18] and therefore restricts 
the points to be pushed too far out right.

The memory-bounded slant in the 
roof line illustrates the fundamen-
tal diff iculty of obtaining optimal 
throughput and response time in a 
traditional fully digital DLA for a tar-
geted workload. Oftentimes the work-

load is memory bandwidth limited, 
preventing the system from achieving 
high utilization of the CU(s) and thus 
high throughput. As shown below, this 
problem could be eliminated complete-
ly with a fully-weight-stationary (FWS) 
CIM architecture.

CIM DLA PERFORMANCE 
BENCHMARKS: A TOP-DOWN 
ANALYSIS
Since most reported CIM prototypes 
are too small to map full CNN models, 
to analyze CIM DLA performance for 
practical CNN workloads, we performed 
top-down analysis using a hypothetical, 
generic CIM DLA system. The goal is 
to use real-world applications to bench-
mark CIM DLA performance and to 
help identify important future directions 
of CIM research. We choose the Tensor 
Processing Unit (TPU) hardware [18] as 
the digital baseline to compare against 
the CIM architecture, and use similar 
workloads deployed in Google’s data-

center to evaluate the performance of the 
different architectures.

METHOD
ARCHITECTURE
TPU is Google’s inference-only DLA 
and has been deployed in its data-cen-
ters since 2015  [18]. TPU uses a typi-
cal weight stationary design with a large 
enough SRAM buffer to keep intermedi-
ate activations on chip. The heart of the 
TPU is a 256×256 8-bit integer systolic 
matrix multiplier array that offers a peak 
throughput of 92 TOPS, and a large 
24 MB SRAM buffer for storing inter-
mediate activations. A simplified illustra-
tion of the TPU is shown in Figure 5(a).

For the hypothetical CIM DLA, we 
assume it is based on the fully-weight-
stationary (FWS) design principle with 
tiled CIM computation components that 
share data through a mesh network-on-
chip (NoC). In this approach, the weights 
of a CNN model are fully stationary dur-
ing inference without being rewritten or 

FIGURE 5  Schematic of high-level architecture of (a) TPU and (b) FWS-tiled CIM.

  WEIGHT ACTIVATION COMPUTATION
  STORAGE MOVEMENT STORAGE MOVEMENT

TPU ●  Off-chip DRAM
●  On-chip FIFO and buffer

●  WS
● � Rewrite for each 

layer each batch

Full feature map in large 
centralized SRAM buffer

Between MAC array and 
buffer

Centralized MAC array 
temporally shared between 

NN layers
CIM ●  On-chip CIM unit

●  Distributed
●  FWS
● � No rewrites  

during runtime

Partial feature map in  
distributed SRAM buffers

Passed with hierarchical 
interconnect to down-

stream tiles

Distributed CIM units com-
puting only parts of the 

NN each

T A B L E  2   Comparison of TPU and FWS-CIM architectures.
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moved. The inputs are streamed into the 
tiles and the mesh NoC moves the result-
ing intermediate activations to the cor-
responding downstream tiles. The main 
differences between the two approaches 
are listed in Table 2.

In our analysis, we assume a generic 
CIM architecture, shown in Figure 5(b). 
A CU includes a set of crossbar (Xbar)-
based processing elements (PEs) work-
ing together through a shared SRAM 

buffer. Here for brevity, we assume the 
crossbars are based on resistive random-
access memory (RRAM), although other 
memristive crossbars can be used instead 
without losing generality. A number 
of CU are connected through a shared 
BUS, forming a tile; where a set of tiles 
form the complete CIM chip through 
NoC routers. The CIM chip is linked 
to the outside through an input/out-
put (IO) interface. In order to facilitate 

a comparison between CIM and digital 
TPU, we examine prior works [19], [20], 
[21] and selected the architectural specs 
for the FWS-CIM as shown in Table 3. 
The peak TOPS is set to 92 TOPS to 
match the TPU baseline performance. 
Most RRAM CIM PE-related numbers 
are extracted from [Hung, ISSCC’22, 
22nm], with TOPS/RRAM scaled up 
to match TPU throughput under accept-
able total area. With these parameters, 
the 92 TOPS CIM chip requires 56 MB 
total on-chip RRAM.

NN WORKLOADS FOR EVALUATION
For evaluation, we consider the NN 
models reported in the TPU work 
which represent 95 %  of the NN infer-
ence workload in Google’s data-center 
at that time. The benchmarked models 
in TPU include 2 multi-layer percep-
tron (MLP) layers, 2 CNN layers, and 
2 long short-term memory (LSTM) lay-
ers. The inference of MLP and CNN 
models has been extensively studied, 
therefore we chose one of each (MLP0 
and CNN0) for the analysis in this sec-
tion. Although the exact model archi-
tecture was not released, some model 
information including weight size, 
MAC size, and total number of lay-
ers was reported, listed in Section 1 
of Table  4. Since the exact NN model 
architecture is needed to estimate DLA 
performance, we created two pseudo 
models that match the model specifica-
tions of MLP and CNN, listed in the 
second section of Table 4.
• � MLP - Five fully connected (FC) lay-

ers with input and output size of each 
layer ranging from 512 to 2816 and a 
total of 19.5 M weights.

• � CNN - A VGG-like model with  
12 3×3 convolutional (CONV) lay-
ers with filter count ranging from 
64 to 512 and 2 FC layers. The 
model has a total of 11.7 M weights 
and 3277 M MAC.

EVALUATION
From the roof line analysis, we know 
that for traditional DLA with sepa-
rate memory and computing units, the 
computational OI limits the maximum 
throughput a DLA can achieve. The 
computational OI is determined by the 

MODEL WEIGHT MAC # OF LAYERS BATCH SIZE MAPPED WEIGHTS

MLP0 (TPU) 20 M 20 M 5 200 N/A
CNN0 (TPU) 8 M 2888 M 16 8 N/A
MLP (pseudo) 19.5 M 19.5 M 5 1 55.9M1)

CNN (pseudo) 11.7 M 3277 M 14 1 55.8M2)

1) Three copies of all weights
2) �192/192/48/48/12/12/3/3/1/1/1 copies for CONV layers; 1/1 copies for FC layer

T A B L E  4   �Parameters of MLP0 and CNN0 for TPU bench marking, and relative pseudo 
models.

FIGURE 6  Roofline analysis of the generic CIM chip vs. TPU for the two DNN model  
workloads.

CIM TPU

Frequency 200 MHz Frequency 700 MHz
Tech node 22 nm Tech node 28 nm
Crossbar (Xbar) size 256×256 MAC unit (8b×8b) 256×256
Cell/Weight 8 DRAM type DDR3
Compute 32 Xbar/CU, 4 CU/tile DRAM size 8 GB
# of Tiles 56 DRAM BW 34 GBps
Total RRAM 56 MB Weight buffering 128 KB
SRAM buffer 14 MB (64 KB) SRAM buffer 24 MB
Peak TOPs 92 TOPs Peak TOPs 92 TOPS
Area   672 mm2 Die area < 331 mm2

T A B L E  3   TPU and FWS-CIM specs used for analysis in this work.
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batch size and the intrinsic OI of the 
targeted DNN model. The larger the 
batch size the better the TOPS (for 
memory-bound cases), and the lower 
the DRAM access power (for computa-
tion-bounded cases). However, in real-
world applications, the latency of the 
computation largely affects a user’s sat-
isfaction with the service. Since batch-
ing increases latency, the number of 
batches selected in a workload during 
NN inference is thus normally restricted 
below a certain level. In [18] batch sizes 
of 200 and 8 are selected for MLP0 
and CNN0 after latency considerations 
(including the server time as well as 
accelerator time).

For FWS-CIM, throughput can be 
maximized by leveraging pipelining. To 
avoid stalling in the pipeline stages, cop-
ies of the slower layers can be mapped to 
additional PEs to accelerate these slower 
layers. After mapping the models on 
chip with the optimal number of copies 
for different layers to maximize over-
all throughput, MLP and CNN require 
55.9  M and 55.8  M weight storage, 
respectively.

RESULTS
As shown in Figure  6, the two models 
mapped on the hypothetical FWS-CIM 
architecture can utilize 91.6 TOPS and 
83 TOPS, respectively, out of the total 
92 theoretical TOPS with no batch-
ing (i.e. batch size of 1). For compar-
ison, the max utilization for TPU is 
0.068 TOPs and 19 TOPs, respectively, 
at batch size of 1. It is clear that both 
models are in the memory-bounded 
region and lead to signif icant under-
utilization of the TPU. After increas-
ing the batch numbers as suggested by 

the TPU paper, the CNN model with 
a batch size of 8 can be moved to the 
computation-bounded region. However, 
the MLP model even with an aggres-
sive batch size of 200 is still memory-
bounded, as shown in Figure 6.

DISCUSSION
Our survey of reported silicon data and 
our top-down analysis of a generic CIM 
DLA verify that CIM based DLAs have 
clear advantages over traditional digital 
DLAs, especially for highly memory-
bound NN workloads. This advantage 
comes in two folds, the power saved 
by eliminating DRAM access, and the 
higher throughput achieved by remov-
ing the constraint of the memory bot-
tleneck. However, these advantages 
are only achieved if all the weight of a 
model can be stored on-chip. Figure  7 
shows the number of parameters vs. 
ImageNet top-1 accuracy [27] of recent 
DNN models  [1], [2], [3], [5], [6], [7], 
[8], [9], [10], [11], [12], [28]. It can be 
observed that state-of-the-art models 

can easily hold over tens of millions of 
parameters. In our previous mapping 
example shown in Table  4, it is shown 
that to minimize pipeline stalls duplica-
tion of weights needs to be employed 
for CIM, further increasing the need-
ed on-chip memory size, as shown in 
Figure  6. The limited on-chip memory 
capacity, combined with the increasing 
model size, thus becomes a major chal-
lenge for CIM deployments, and storage 
density will be the most important spec 
when evaluating potential memory tech-
nologies for CIM applications.

Key specs of various memory technol-
ogies including mainstream memory and 
emerging memory are listed in Table 5. 
In general, emerging memories shown in 
the table can offer higher density com-
pared to SRAM, and some have demon-
strated multi-level-storage making them 
attractive for CIM. Another factor to 
consider is energy proportionality, i.e., 
power consumption with respect to the 
amount of work being processed.  [25] 
shows that servers are rarely 100% busy; 

FIGURE 7  Weight size and ImageNet top-1 accuracy for popular CNN models.

MAINSTREAM MEMORIES EMERGING MEMORIES
  SRAM DRAM NOR FLASH NAND FLASH FEFET STT MRAM PCRAM RRAM

Cell area >100 F2 6–8 F2 10 F2 <4 F2 (3D)   6–30 F2 6–30 F2 4–30 F2 4–12 F2

Bit/cell 1 1 ~2 ~3   1 1 ~2 ~2
Voltage 1 V ~1 V 10 V 10 V   3.5 V 1.5 V 3 V 3 V
Read time ~1 ns ~10 ns ~50 ns ~10mu s   100 ns ~10 ns 100 ns 100 ns
Write time ~1 ns ~10 ns ~1 mu s ~100 mu s   100 ns ~10 ns ~50 ns 100 ns
Retention N/A ~64 ms ~10 years ~10 years   ~10 years ~10 years ~10 years ~10 years
Endurance 1016 1016 105 104   105 1015 109 109

Write energy ~1 fJ ~10 fJ ~100 pJ ~10 fJ   ~1 fJ ~0.1 pJ ~10 pJ ~1 pJ

T A B L E  5   Comparison of different memory technologies. Data collected from [29], [30], [31].
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therefore, good energy proportionality 
can help reduce the overall system power. 
With many emerging devices being non-
volatile, the power of unused PEs can be 
completely turned off. From these points 
one can see memristive CIMs are more 
attractive than SRAM CIMs, and mate-
rial, device, and architecture co-opti-
mizations that can further improve the 
CIM crossbar density, energy efficiency, 
and reliability will help bring the CIM 
DLAs to practice.

CONCLUSION
CIM based DLA is a promising f ield 
of study due to its potential of high 
throughput and high energy efficiency 
by eliminating the memory bottleneck. 
Reviewing recently published CIM sili-
con data verified that CIM DLAs indeed 
showed an advantage over digital DLAs 
even at this early development stage. 
When normalized to 400 GOPS opera-
tions, SRAM and memristive based CIM 
DLAs consume on average 81.6  mW 
and 31.1  mW, respectively, as opposed 
to 176.9  mW for conventional digital 
DLAs. However, noting the power con-
sumption of required DRAM access is 
similar, the benefits of CIM-DLAs can 
only be fully achieved when DR AM 
access is completely eliminated.

To highlight the effects of DRAM 
bandwidth on DLA performance 
(throughput), we analyzed a hypotheti-
cal CIM DLA and benchmarked its per-
formance against TPU for reported NN 
workloads. The elimination of DRAM 
bottleneck allows CIM DLA to achieve 
very high utilization even without batch-
ing. However, like energy efficiency 
gains, this performance gain can only be 
realized if all weights can be stored fully 
stationary on-chip. These results high-
light the benefits of CIM DLA over digi-
tal DLAs and the importance of memory 
density when choosing memory technol-
ogies for CIM-DLA implementations.
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