
1172 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 3, MARCH 2024

TT-CIM: Tensor Train Decomposition for Neural
Network in RRAM-Based

Compute-in-Memory Systems
Fan-Hsuan Meng, Yuting Wu , Student Member, IEEE, Zhengya Zhang , Senior Member, IEEE,

and Wei D. Lu , Fellow, IEEE

Abstract— Compute-in-Memory (CIM) implemented with
Resistive-Random-Access-Memory (RRAM) crossbars is a
promising approach for accelerating Convolutional Neural Net-
work (CNN) computations. The growing size in the number
of parameters in state-of-the-art CNN models, however, creates
challenge for on-chip weight storage for CIM implementations,
and CNN compression becomes a crucial topic of exploration.
Tensor Train (TT) decomposition can be used to decompose a
tensor into smaller ones with fewer parameters, at the cost of
increased number of computations. In this work we propose
a technique to minimize intermediate operations across the
full convolution operation and improve hardware utilization to
implement TT-CNNs in CIM systems. We first use an iterative
decompose-and-fine-tune method to prepare TT-CNNs. We then
propose an inter-convolutional-step reuse scheme to reduce the
required operation count and post-mapping RRAM count for
TT-CNN implementation in tiled-CIM architecture. We demon-
strate that through proper mapping, pipelining, and reuse,
effective compression ratio of 12 and 20 with 0.8% and 1.4%
accuracy drop, respectively for WRN; and effective compression
ratio of 6 and 11 with 0.9% and 1.2% accuracy drop for VGG8.
We also show that around 30% higher hardware utilization than
the original CNN format can be achieved using the proposed
TT-CIM approaches.

Index Terms— Compute-in-memory, deep neural network, con-
volutional neural network, neural network compression, tensor
train decomposition.

I. INTRODUCTION

DEEP neural networks (DNNs), specifically convolutional
neural networks (CNNs) has become the most successful

machine learning method in recent years [1], [2], [3], [4].
State-of-the-art DNN models are typically large in scale,
containing tens or even hundreds of millions of parame-
ters [1], [2], [5], resulting in expensive data movements

Manuscript received 4 September 2023; revised 20 October
2023 and 3 December 2023; accepted 12 December 2023. Date of publication
29 December 2023; date of current version 28 February 2024. This work
was supported in part by the National Science Foundation (NSF) under
Award CCF-1900675 and in part by Semiconductor Research Corporation
(SRC) and Defense Advanced Research Projects Agency (DARPA) through
the Applications Driving Architectures (ADA) Research Center. This article
was recommended by Associate Editor C. Wang. (Corresponding author:
Wei D. Lu.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
fanhsuan@umich.edu; zhengya@umich.edu; wluee@umich.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2023.3344550.

Digital Object Identifier 10.1109/TCSI.2023.3344550

between the memory units and the computation units in
traditional von Neumann architectures. Compute-in-memory
(CIM)-based DNN accelerators address this challenge by
performing computation directly in the memory units that store
the weights [6]. Typical CIM implementations adopt a tiled
architecture design with all weights stored stationary across
CIM-tiles on the chip to eliminate off-chip weight access cost
during inference [11], [13].

However, in order to store all the weights on the chip,
the required chip scale will be largely affected by the size
of the targeted CNN model. Therefore, various DNN model
compression techniques, such as quantization, or pruning, have
been applied to CIM architectures to reduce model size [14],
[15], [16], [17], [18], [19]. Among these compression methods,
Tensor decomposition, such as tensor-train (TT) decomposi-
tion [21] has been gaining attention for DNN compression
of weights due to its high compression ratio, defined as
the ratio between the uncompressed parameter count and the
compressed parameter count [20], [25], [26].

CNN inference can be viewed as series of vector-matrix-
multiplication (VMM) operations. TT decomposition breaks
each matrix into smaller ones, namely, TT-cores. The advan-
tage of TT decomposed CNN (TT-CNN) is that it consists
only of regular structured VMM operations with the TT-cores.
Therefore, the implementation of TT-NN models could require
no fundamental hardware change. However, despite the
advantages, implementing TT-CNN in a practical tiled CIM
architecture still faces several challenges.

1) Increased multiply-and-accumulate (MAC) computa-
tions: Performing VMM on a decomposed matrix
(TT-VMM) would require more MAC operations than
the uncompressed format. Therefore, the area efficiency
(throughput/area) will be degraded. In addition, some
TT-cores require significantly more MAC operations
than others, resulting in the lowering of effective com-
pression ratio after pipeline balancing by storing more
copies of these slower cores.

2) Complicated pipeline design: TT decomposition intro-
duces more steps of VMMs and producing more
intermediate products (IPs) which need to be care-
fully buffered and consumed in CIM systems. How
to efficiently pipeline the intermediate results without

1549-8328 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-8927-5320
https://orcid.org/0000-0001-5963-9018
https://orcid.org/0000-0003-4731-1976

MENG et al.: TT-CIM: TT DECOMPOSITION FOR NEURAL NETWORK IN RRAM-BASED CIM SYSTEMS 1173

increasing the overall latency and SRAM buffer size
require careful consideration.

3) Difficulty of efficient parameter mapping: The TT-cores
decomposed from the original matrix can vary signifi-
cantly in size and shape. Some cores are small with very
high aspect ratios while others have very low aspect
ratios, making it challenging to map TT-CNN models
with high hardware utilization on regular tiled CIM
systems.

State-of-the-art CNNs are largely composed of convolu-
tional (CONV) layers, therefore, in this work, we focus mostly
on optimizing implementation of TT decomposed CONV
(TT-CONV) layers on traditional fully weight stationary tiled
CIM hardware. We address the challenges mentioned previ-
ously and summarize our contribution as follows.

1) Inter-CONV-step reuse: Previous work viewed steps in
a CONV operation as independent VMM operations
and minimize the required computation only within
a TT-VMM. In this work, we consider possible IP
reuse opportunities between CONV steps, discussed in
section III-A After adopting the inter-CONV-step reuse,
the required number of MAC could be even lower than
the uncompressed CNN. It also results in higher effective
compression ratio than no reuse TT-CNN by speeding
up slow TT-cores with the reuse.

2) Pipeline design for TT-CNN in tiled CIM: We demon-
strated pipeline balancing, scheduling and IP buffering
design of the TT-CNN with inter-CONV-step reuse,
in section III-B and III-C We show that despite the
increased computational stages in TT-CNN, the latency
and required SRAM buffer size between TT-cores are
comparable with the hardware or uncompressed CNN.

3) Partial crossbar read for mapping utilization: We
proposed two partial read schemes to map smaller
matrices with either very high or low aspect ratios to
increase weight memory (i.e., RRAM crossbar) utiliza-
tion, resulting in a higher effective compression ratio in
section V-A.1.

The organization of the paper is as follows: In section II,
we discuss the background including compute-in-memory
(CIM) and tensor train decomposition for CNNs. Our proposed
inter-convolutional-step reuse scheme for CIM hardware is
presented in section III. The experiment setup and the results
are shown in sections IV and V, and further discussions and
conclusions are presented in sections VI and VII, respectively.

II. BACKGROUND

A. Compute-in-Memory

Compute-in-memory is a promising approach to com-
pute VMM directly in the memory unit storing the weight
matrix [6], [7], [8], [9]. CIM computes VMM in a fully parallel
fashion to provide high throughput and high energy efficiency.
RRAM is especially attractive for CIM due to its nonvolatility,
analog storage, compact size and low read energy. An RRAM-
CIM mapping example is shown in Fig. 1(a): the positive and
negative values are encoded by different conductance levels
and are mapped separately on the crossbar. To perform a

Fig. 1. (a) Basic principle of CIM VMM with positive and negative
values encoded by different conductance levels and mapped separately on
the crossbar. Input vector of a VMM is applied to the wordlines (WLs) of the
crossbar as input pulse trains, with current accumulated on the bitlines as the
VMM outputs. (b) Illustration of the spatial mapping of DNN on tiled CIM
architecture.

VMM, an input vector, encoded as input pulse trains, is applied
to the rows of the memory array. The product between an
input (pulses) and a weight value (conductance) results in a
current that is accumulated on the bitlines (BLs), representing
the VMM output.

RRAM-based CIM hardware usually follows a tiled archi-
tecture [9], [13], as illustrated in Fig. 1(b), with memory tiles
storing the weights of the DNN. Weights are kept stationary
on the memory tiles and the input activations are streamed
in and through the tiles, producing output activations to feed
the downstream tiles. Since all the weights are stored on
chip and the activations are produced and consumed in a
pipelined fashion between the tiles, external memory access
for weights and activations are completely eliminated. Despite
the performance and efficiency advantage of this entirely
weight stationary approach, the on-chip memory size limits
the maximum DNN size that can be supported.

Tensor decomposition methods, such as TT, allows large
models to fit in smaller memories and retains regular data
structure so that CIM can still be effectively applied. There-
fore, tensor decomposition is particularly relevant to CIM
hardware as a promising approach to allow CIM hardware
to run large DNNs while achieving a high efficiency.

B. TT Decomposition

To represent arrays of different dimensionality, we follow
the annotation in [20] and represent one-dimensional (1D)
arrays, vectors, with bold lower case letters (e.g. aaa); two-
dimensional (2D) arrays, matrices, with bold upper case letters
(e.g. AAA); and d-dimensional (d > 2) arrays, tensors, with
calligraphic bold upper case letters (e.g. AAA). An element in a
vector, a matrix and a tensor are denoted as ordinary lower case
letters (e.g. a(i)), ordinary upper case letters (e.g. A(i, j)),
and ordinary calligraphic upper case letters (e.g. A(i1, ..., id)),
respectively.

In TT decomposition, a d-dimensional tensor, WWW ∈

Rn1×n2×...×nd (where n1, n2, . . . , nd represent the size of each
dimension) is decomposed to a series of d tensor cores,
or TT-cores, GkGkGk ∈ Rrk−1×nk×rk , k ∈ [1, d], where rk is the
compression rank or TT-rank. Generally, larger rk leads to
lower compression ratio and lower approximation error, and

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

1174 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 3, MARCH 2024

Fig. 2. (a) A 4-dimensional tensor approximated with four TT-cores
using tensor train decomposition. Each rectangular represents a matrix Gi .
(b) Reshape, reorder and TT-decomposition of a matrix for TT-VMM.

vice versa for lower rk . Each 3D tensor core GkGkGk ∈ Rrk−1×nk×rk

can be viewed as a stack of nk number of rk−1 × rk matrices.
These matrices are called factors and are denoted GkGkGk[i],
i ∈ [1, nk]. To satisfy the boundary condition, r0 = rd = 1
must be imposed.

A TT decomposition of a d-dimensional array is referred
to as a rank-d TT decomposition. Take a rank-d TT decom-
position of tensor WWW as an example, after applying TT
decomposition,WWW is decomposed to 4 tensor cores, G1G1G1, G2G2G2, G3G3G3,
and G4G4G4. An element in the original tensor, W(j1, j2, j3, j4),
where j1 ∈ [1, n1], . . . , jd ∈ [1, nd], can be reconstructed by
the following equation:

W(j1, j2, j3, j4) ≈ G1G1G1[j1] × G2G2G2[j2] × G3G3G3[j3] × G4G4G4[j4].

(1)

An example of the TT decomposition and the reconstruction
of a tensor element is illustrated in Fig. 2(a). An element of
the original tensor is reconstructed by the product of 4 factors,
one from each tensor core.

C. TT-VMM

When VMM is to be computed with a TT-decomposed
matrix, it is more computational effective to perform the VMM
directly on the compressed format instead of reconstructing the
matrix back to its original form, then perform VMM. In order
to facilitate TT-VMM, the matrix, WWW ∈ RN×M should be
reshaped and decomposed with both M and N factorized into
d parameters. Consider a VMM:

yyy = xxx × WWW . (2)

We refer to vector xxx as the input vector and N as the input
dimension; vector yyy as the output vector and M as the output
dimension.

Before TT-decomposition, the original matrix WWW is reshaped
and reordered into WWW ∈ Rn1m1×n2m2×...×nd md (n1 ×

n2 × . . . × nd = N , m1 × m2 × . . . × md = M),
and each value in the reshaped tensor is represented as
WWW([i1, j1], [i2, j2], . . . , [id , jd]). After applying a rank-d TT-
decomposition, the tensor can be decomposed into d 4D cores

GkGkGk ∈ Rrk−1×mk×nk×rk , k = 1, . . . , d . Each core can also be
viewed as a 2D array of core factors, GGGk[ik, jk], where ik and
jk correlates to the relative position in the input dimension
and the output dimension respectively. The TT-VMM of (2)
on the decomposed matrix will then be:

Y(i1, i2, . . . , id) ≈
∑

j1,..., jd

X (j1, j2, . . . , jd) × GGG1[i1, j1]

× GGG2[i2, j2] × . . . × GGGd [id , jd], (3)

where YYY ∈ Rn1×n2×...×nd as reshaped yyy vector; and XXX ∈

Rm1×m2×...×md as reshaped xxx vector. A visualization of the
process is shown in Fig. 2(b).

To illustrate the computation of TT-VMM, we use a rank-4
TT-VMM example as shown in Fig. 3. We use a series of four
TT-cores, with one blue factor in each TT-core to represent
one matrix value, as shown in Fig. 3. For example, Fig. 3(a-i)
represents W([1, 1], [1, 1], [1, 1], [1, 1]) and Fig. 3(c-iii) rep-
resents W([m1, n1], [m2, n2], [m3, n3], [m4, n4]). The yellow
blocks and the red blocks represent values in input vec-
tor xxx and output vector yyy, respectively. To compute
value y(i1, i2, i3, i4), all the multiplication result between xxx
and W([i1, j1], [i2, j2], [i3, j3], [i4, j4]), j1 ∈ [1, n1], j2 ∈

[1, n2], j3 ∈ [1, n3], j4 ∈ [1, n4], should be accumulated. For
example, y(i = 1) in Fig. 3 equals (a-i) + (b-i) + . . .+ (c-i).
By analyzing the full VMM computation, it can be observed
that there are repetitive computations that could be eliminated.
Two main ways could be used to reduce the computation
count, first is reuse of intermediate products (IPs) between
TT-cores, second is contraction of IPs between TT-cores.

1) TT-VMM With Reuse: There are duplicate computations
in the TT-VMM, for example, for value Fig. 3(a-i) and (a-ii),
the computations are:

W (i = 1, j = 1) × x(1)

= G1G1G1[1, 1] × G2G2G2[1, 1]
× G3G3G3[1, 1] × G4G4G4[1, 1] × x(j = 1) (4)

and

W (i = 2, j = 1) × x(1)

= G1G1G1[2, 1] × G2G2G2[1, 1]
× G3G3G3[1, 1] × G4G4G4[1, 1] × x(j = 1). (5)

It can be observed, the IP of G2G2G2[1, 1]×G3G3G3[1, 1]×G4G4G4[1, 1]×
x(j = 1) can be reused in both computations. This type
of reuse can be achieved across different input and output
dimensions and has been demonstrated in [25].

2) TT-VMM With Contraction: Another type of duplicate
computation is like the one between Fig. 3(a-i) and (b-i), the
two computations can be expressed as:

x(j = 1) × W (i = 1, j = 1)

= x(j = 1) × G1G1G1[1, 1]
× G2G2G2[1, 1] × G3G3G3[1, 1] × G4G4G4[1, 1] (6)

and

x(j = 2) × W (i = 1, j = 1)

= x(j = 2) × G1G1G1[1, 2]
× G2G2G2[1, 1] × G3G3G3[1, 1] × G4G4G4[1, 1]. (7)

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: TT-CIM: TT DECOMPOSITION FOR NEURAL NETWORK IN RRAM-BASED CIM SYSTEMS 1175

Fig. 3. Illustration of computations included in a TT-VMM. Yellow and red blocks represent the input and output vectors respectively. Blue blocks represent
the factors used to reconstruct a specific weight value.

It can be observed that the computations after the first TT-core
are the same, and since these two values will both contribute to
y(j = 1), the IPs after the first TT-core could be accumulated
immediately and duplicated computation could be avoided.

The computation can then be viewed as a series of d-stage
VMMs, one for each TT-core. To illustrate this process, take a
rank-3 TT-VMM in Fig. 4(a) as example, the process consists
of 3 VMM stages, at each stage, the matrix is a large matrix
combined from all the factors lined up in the order of mk ×nk ,
denoted as GcbkGcbkGcbk ∈ Rrk mk×rk−1nk , k = 1, 2, 3. A factor in the
TT-core will then be a slice of GcbkGcbkGcbk as follows:

GcbkGcbkGcbk[ik : ik + rk][jk : jk + rk−1] = GkGkGk[ik, jk], (8)

In the first VMM stage, input vector will be xxx[j3][j2]
[1 : n1], and it will take n2 × n3 VMMs to finish computing
the entire input space, producing the intermediate product of
V1V1V1 ∈ Rm1×n2×n3 . It can be observed that in the process, the
output of the VMM contract in n1 and expand in m1.

A similar process continues in the next stage of operation
corresponding to TT-core 2, where the IP V1V1V1 is reshaped into
n2×m1×n3 to align with the input dimension n2 of the second
VMM stage, and it will take m1×n3 VMMs in total to process
the full input IP. In this stage, the IP contract in n2 and expand
m2, therefore the output IP will be V2V2V2 ∈ Rm1×m2×n3 . Same
process applies to the last stage for TT-core 3 and the end
result will be the final output of the TT-VMM with the size of
size M = m1×m2×m3. This type of computation is inherently
a better fit for CIM hardware because the contraction combines
cores into larger sized matrix and will result in better crossbar
mapping utilization. The same principle has been demonstrated
in [26] with SRAM.

D. TT-Decomposition for CNNs

CNNs are largely composed of CONV and FC layers.
Inference over a FC layer is effectively a vector-matrix-
multiplication of size N × M (i.e., with matrix of N rows and

Fig. 4. Contraction process of VMM operated on a rank-3 TT-decomposed
tensor in (a) forward and (b) backward computational direction.

M columns), where N being the size of the input activation
and M being the size of the output activation. The matrix is the
trainable weights of the FC layer. Prior work has successfully
demonstrated compressing FC layers in DNNs [20].

The inference over a CONV layer can be viewed as a
series of VMMs as the filter sweeps across the full feature
map. We refer to each of these VMM as a CONV step
in following discussions. Consider a convolutional weight of
kernel size l × l, with C number of channel and S number
of filters. Each VMM has input dimension N = l2C and
output dimension M = S. The input vector is segmented
and reshaped from the full input feature map, and the matrix
is the trainable weights of the CONV layer. A CNN with
TT-decomposed weights is referred to as a TT-CNN. Prior
work has demonstrated rank-4 TT-decomposition where the
input dimension is factorized as n1 × n2 × n3 × n4, n1 =

l2, C = n2n3n4 can achieve high compression ratio at low
accuracy drop for CNN compression [22], [23], [24].

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

1176 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 3, MARCH 2024

III. PROPOSED TT-CIM SCHEME IN TILED CIM
STRUCTURES

Prior works on TT-CNN implementation only optimize the
computation of TT-CONVs by identifying reuse opportunities
within one CONV step. In this section, we proposed a com-
putation scheme for contractional TT-VMM which includes
inter-CONV-step IP reuse to achieve complete reuse in the
scope of the full CONV operation. We then demonstrate the
implementation of such computation in traditional tiled CIM
architectures, mentioned in II-A without specific hardware
changes.

A. Contractional TT-CONV With Inter-CONV-Step IP Reuse

There are two ways to compute contractional TT-VMM,
forward and backward. The forward computation is discussed
previously in Fig. 4(a); however, due to the property of
multiplication of transposed matrices:

x × AAA × BBB = x × BBBT
× AAAT , (9)

the computation could also be computed backward, as shown
in Fig. 4(b), where all the GcbGcbGcbs are transposed and the input
and output dimension order is reversed. Different computation
directions would affect the total number of computations
required to finish the full TT-VMM, in addition, it could also
affect reuse opportunities between each TT-VMM in the full
TT-CONV operation.

By choosing the computational direction with contractional
TT-VMM that results in kernel-space-last computational
sequence, i.e., the TT-cores that are computed later are
factorized in the filter kernel row and column dimension,
opportunities to reuse IPs across different CONV steps exists.
Usually, kernel dimensions (row and column) are factorized in
TT-core 3 or 4 [22], [23], [24]. Therefore, to achieve kernel-
space-last computational, Contractional TT-VMM should be
in backward sequence. The reuse opportunities are explained
in an example shown below.

Consider a TT-CONV example of input feature map (IFM)
and output feature map (OFM) size of 5 × 5 , filter ker-
nel size of 3 × 3 and input depth of 2, with filters
factorized in the input dimension with the order of filter
row, filter column and then filter depth (corresponding to
TT-core 1 to 3) for the TT decomposition. Fig. 5(a) to (d)
shows parts of the computations involved in four differ-
ent VMMs in the full TT-CONV operation, contributing to
O F M(2, 1, 1), (3, 1, 1), (2, 2, 1) and O F M(3, 2, 1) respec-
tively. Blue blocks indicate the weight value in the filter and
the corresponding factors for said weight; light yellow blocks
represent values in the input feature map which will contribute
to one output value; dark yellow blocks represent the actual
input used for the CONV step. Each multiplication sequence
illustrates the computation of one filter value multiplied by one
IFM value. For example, in Fig. 5(a), filter value F(2, 2, 1) is
multiples with I F M(2, 1, 1) and is a part of O F M(2, 1, 1).
Previous computation reduction only exists within each VMM
step, while the inter-step IP reuse for contractional TT-VMM
can be achieved between CONV-steps (contributing in differ-
ent outputs) when they use the same input pixel. The reuse

Fig. 5. Example steps of a TT-CONV. Step (a)-(d) all share the same sets
of input and contribute to different output values.

opportunity exist before the IP accumulated in the kernel
dimension with a mismatch. We would use the example in
Fig. 5 to further illustrate this point.

1) Reuse Type I - Reuse of Channel Direction Contraction:
Compared to the operation in Fig. 5(a) and (b), the two
CONV steps result in different outputs but use the same
inputs. Although the two illustrated operations use different
weights, their TT operations are the same up till the TT-cores
with kernel space factorization. Same with Fig. 5(c) and (d).
Therefore, the IPs between TT-core 2 and TT-core 3 can be
reused between TT-CONV steps.

2) Reuse Type II - Reuse of Channel & Row/Col Direction
Contraction: Another type of reuse opportunity is between
(a) & (c), and (b) & (d); by applying the same concept, IPs
between TT-core 2 and 1 can be reused. Compared to reuse
type I, the computation of an extra core with row factorization
can be included before the IPs are reused. This is because,
in the two operations, the weight value used is of the same
row. The core reused could also be the column core if the
factorization order is reversed.

In conclusion, because of the dataflow hardware archi-
tecture required for fully weight stationary CIM, TT-VMM
using tensor contraction must be implemented. However, when
computing TT-CONV, an extra inter-CONV-step reuse can
be implemented to possibly reduce the number of operations
required to below the original VMM. This reuse is fundamen-
tally similar to the reuse implemented in TIE [25] but was
added on top of contractional-TT-VMM and only applied for
IPs sharing the same input values in a convolutional operation.

B. TT-CNN TT-Core Throughput Balancing in Tiled CIM

When mapping a traditional CNN to RRAM-based CIM,
balancing the layers is very important. The feature map sizes
for deeper layers are often smaller than the shallow layers
due to downsampling. For example, consider a popular model,
Wide ResNet (WRN) 16×8 [28] trained on CIFAR-100 [29].
The input size of the dataset is 32×32 . It goes through three

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: TT-CIM: TT DECOMPOSITION FOR NEURAL NETWORK IN RRAM-BASED CIM SYSTEMS 1177

downsampling, and the feature map shrinks from 32 to 16,
to 8, and finally to 1 after a global pooling layer, before the
final fully connected layer. So, the number of VMM cycles
required to process one input image will be 32 × 32, 16 ×

16, 8 × 8 . The pipeline can be balanced by storing copies
of weights to speed up the computation in the earlier layers.
The goal of a pipeline design is to find the trade-off between
hardware utilization and hardware size. If enough copies are
stored to achieve maximum hardware utilization, the overall
memory size would be overwhelmingly large; on the other
hand, if not enough copies are stored for slower layers, the
hardware utilization will be low for the faster layers, as they
wait for previous layers to finish their computations. As shown
in Fig. 6(a), a reasonable approach is to match all stages to the
throughput of a medium-sized layer so that only some deep
layers are underutilized. We refer to this as a mapping sweet
spot.

In TT-CNN, pipeline balancing becomes more complicated
because four factors contribute to the number of VMMs each
core needs to finish to process one input frame of the NN
model, factorization scheme, input feature map size, stride
of the CONV, and the level of IP reuse in each TT-core.
Consider a rank-4 input factorization scheme where the kernel
row and column dimensions are factorized in TT-core 3 and
4 respectively.

The first TT-core has n2n3n4 VMMs for each CONV step.
Since no kernel row or column factorization has been included,
the IPs of TT-core 1 can be reused l2 times. Therefore, the
number of VMMs on GcbGcbGcb required to finish one input frame
will be,

W × H × n2n3n4

l2 , (10)

where W and H are the input feature map width and height.
For TT-core 2, the IP has contracted in n1 and expanded

in m1, thus the number of VMMs for each CONV step will
be m1n3n4. Since no kernel row or column factorization has
been included in neither TT-core 1 nor 2, the IPs of TT-core
2 can be reused l2 times as well. The total number of VMMs
required to finish one input frame will be,

W × H × m1n3n4

l2 (11)

In TT-core 3, the row dimension in the kernel space is
factorized but not the column dimension, therefore the IPs
could only be reused l times. In addition, striding in the row
dimension should be taken into account, therefore, the number
of VMMs required will be,

W × H × m1m2n4

l × stride
(12)

The last TT-core has no reuse opportunity available, thus the
total VMM count will be,

W × H × m1m2m3

stride
(13)

When implementing TT-CNN on RRAM-based CIM, all the
cores across all layers need to have their respective number
of copies to achieve better performance. An example of a
TT-decomposed WRN is shown in Fig. 6(b). As shown, most

Fig. 6. Pipeline stage balancing for (a) WRN layers and (b) TT-WRN cores.

TT-cores are balanced to the same computation throughput
except for a few very fast TT-cores.

C. TT-Core Pipelining With Inter-CONV-Step Reuse

In traditional CNN, in the case of a l × l padded CONV
layer with a row-by-row computational order, a layer can start
as soon as there are (l − 2)W + (l − 1) pixels (full IFM
depth) available [11]. Consider all the TT-cores are balanced to
produce one pixel (all channels included) in the output feature
map every Torg cycles, then for 3×3 convolutional operations,
the layer-to-layer latency will be:

(W + 2) × Torg. (14)

Compared to traditional CNN, core-to-core pipelining in
TT-CNN is more complicated. To design the proper pipelining
process, it is important to understate what information each of
the IPs carries in each of the corresponding TT-CONV stages.
In every TT-core, the IP is contracted in one input dimension
and expanded in one output dimension, therefore, stage-by-
stage, the IP keeps accumulating information of the input
activation until it has all the input dimension accumulated and
becomes the final output activation. To further illustrate this
process let’s use an example in Fig. 7. Information on the
CONV layers is provided in the inset table in Fig. 7. For a
kernel-space-last computation order, the complete tensor space
of the IPs will be V1V1V1 ∈ RW×H×n2×m1 , V2V2V2 ∈ RW×H×1×(m1m2)

and V3V3V3 ∈ RW×
H

stride×1×(m1m2m3) for TT-core 1, 2 and 3,
respectively; and the final core’s output will be the layer’s
output activation, YYY ∈ R

W
stride×

H
stride×M .

Consider all the TT-cores are balanced to produce one
pixel (all channels included) in the output feature map every
T cycle. For the first TT-core to have enough data to start
computing, n1 data in the depth dimension needs to be ready.
Since this is the first layer, consider these data are ready from
the start, therefore the latency is 1. At each VMM cycle, the
core produces c1m1 IPs where c1 is the number of copies
stored for the first TT-core.

The second core requires n2c2 IPs to be ready to start (c2 is
the number of copies stored for TT-core 2), and since the
TT-cores are balanced to the same pixel-wise throughput T ,
the latency for this core to start will be T . The IPs produced by
TT-core 2 would have the input depth dimension completely

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

1178 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 3, MARCH 2024

Fig. 7. Rank-4 TT-CONV pipelining with layer information in the inset table. The different colored cubes represent the tensors involved in the pipelining
stages, demonstrating when each stage can start and what should be buffered between stages.

accumulated, ready to be contracted in the kernel space in the
following cores.

The kernel-row dimension is accumulated in the third
TT-core, and the inputs are streamed row-by-row, there-
fore, the TT-core will have to wait for V2(1, 1, 1, 1) and
V2(1, 2, 1, 1) to be ready before it can start. It means it requires
the previous TT-core to finish a whole row first. therefore,
the latency for TT-core 3 is W × T + 1. In the last core,
the input information is accumulated in the kernel dimension,
the IPs required to start the computation is V3(1, 1, 1, 1) and
V3(2, 1, 1, 1), making the latency for this core to start, T + 1.

IV. EXPERIMENT

A. Training Method

To achieve a high compression ratio with minimum accu-
racy drop, we proposed an iterative decompose and fine-tune
method to train the TT-CNN model. The training method
is shown in Fig. 8(a) for WRN. The process starts with an
untrained original WRN model and in each iteration, replace
one traditional CONV layer with TT-CONV and fine-tune until
a certain level of accuracy is met. After all the targeted layers
are replaced with TT layers, the whole model is further trained
to increase accuracy. We also tried training the TT-DNN from
scratch directly and training from a decomposed pre-trained
DNN. In Fig. 8(b), we show that this method achieves higher
accuracy on CIFAR-100 [29] WRN-16× 8 than the other two
methods with fewer training epochs.

B. Factorization Scheme

The choice of ns and ms when factorizing a CONV layer
would affect the performance of the TT-CNN. We follow
prior works and choose rank-4 TT-decomposition and pick

Fig. 8. (a) Iterative decompose and fine-tune method for TT-CNN and
(b) preparation of TT-WRN with 3 different methods.

the TT-core ranks (r1, r2, r3) with values from 16 to 32 [20],
[21], [22], [23] for our experiment.

The effective compression ratio of the TT-CNN when
implemented in tiled CIM would be different from the intrin-
sic compression ratio - which is the reduction in the number
of parameters - because copies of parameters have to be stored
to balance the pipeline. We select a few sets of factorization
parameters (ns and ms) following a few principles: Firstly, fac-
torization parameters are chosen to be close to each other [22];
secondly, to reduce computation count, we keep larger input
factorization parameters in the earlier cores, so more IPs
get contracted earlier in a forward computational sequence,
on the contrary, the larger output factorization parameters are
placed in later TT-cores; Lastly, we make sure the kernel
space dimensions are factorized in later TT-cores for input
factorization to maximize reuse.

We compare three types of input factorization schemes
shown in Table I for the input dimension. The four depth sizes,
64, 128, 256, 512, are chosen because they are commonly used
in state-of-the-art CNNs. Scheme A prioritizes keeping earlier
factorization parameters larger; scheme B prioritizes keeping

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: TT-CIM: TT DECOMPOSITION FOR NEURAL NETWORK IN RRAM-BASED CIM SYSTEMS 1179

TABLE I
DECOMPOSITION SCHEMES FOR TT-CNN INPUT DIMENSION

TABLE II
DECOMPOSITION SCHEME FOR TT-CNN OUTPUT DIMENSION

Fig. 9. WRN accuracy under different compression ratio for (a) different
input factorization schemes and (b) different output factorization schemes.

the parameters closer to each other; and scheme C prioritizes
maximizing reuse by factorizing the kernel space in the last
TT-core only.

Accuracy comparison of the three schemes using output
scheme I in II shown in Fig. 9(a) shows that scheme A achieves
the highest effective compression ratio at low accuracy drop.

Factorization of the output dimension is relatively simple.
We use scheme A for input factorization and compare perfor-
mance between output scheme I and II. Fig. 9(b) shows that
scheme I gives better performance.

V. RESULT

To evaluate the performance of the design points proposed
in this work, we use a simulator, using parameters extracted
from the sources as follows: The crossbar array properties
are from [30]; the performance of the digital components is
evaluated using parameters extracted from Verilog simulation
with TSMC 22 nm process. The ADC parameters are extracted
from an in-house low-power ADC, designed specifically for
NN acceleration [31]. The system operates at 500M Hz fre-
quency with the ADC and RRAM read operating at a different
frequency of 50 MHz.

The simulator also includes a Pytorch-based [32] front-end
layer for NN decomposition and CIM mapping estimation
based on targeted throughput. Nonideality is included by
adding random values in the forward pass of the Pytorch
model. We experimented on WRN and a small VGG model
VGG8 [1]. We were able to achieve an effective compression
ratio of 12 (r=16) and 20 (r=24) with 0.8% and 1.4% accuracy

drop respectively for WRN; and an effective compression ratio
of 6 (r=16) and 11 (r=24) with 0.9% and 1.2% accuracy drop
for VGG8.

A. TT-CNN Mapping on Tiled CIM

Tiled CIM architecture requires a properly designed system
to handle data movement between CIM tiles [9], [11], [12].
Each CIM tile has an SRAM buffer shared by multiple CIM
units to store the input/output activations required for the CIM
units. Each CIM units has a crossbar array and peripheral
circuits.

Our CIM unit follows the spec in [30] and consists of a
64 × 64 crossbar array with 2-bit RRAM-cells and 8 ADCs.
For 8-bit serial inputs, each CIM unit will take 8 × 8
cycles to finish one VMM. 16 CIM units share one SRAM
buffer with 128 read width. Positive and negative weights are
mapped on the same crossbar, therefore, an 8-bit weight will
require 8 RRAM cells to store, making the base VMM size
64 × 8. The mapping of NN on tiled architecture involves
mapping the weights of the NN on the RRAM crossbars
and allocating enough buffering storage for intermediate
activations.

1) Weight and Factor Mapping: Mapping of factors is more
challenging because the factors in the first and last TT-core
are often small, with the first and last TT-cores having high
and low aspect ratios, respectively, resulting in lower mapping
utilization. We propose two types of partial read in the CIM
units to address this challenge. The first type is the partial
column read illustrated in Fig. 10(a). In the CIM process,
after a crossbar read, the output in different bit-lines will be
latched with a sample and hold (S&H) unit and converted in
turns by shared ADCs. Therefore, since the bottleneck of the
process is the ADC and not the crossbar read, we activate
parts of the sourceline (SL) to achieve partial crossbar read.
A different type of partial crossbar read is illustrated in
Fig. 10(b). Compared to 8 1-bit serial inputs, by applying input
to only half the rows with 4 2-bit serial inputs, 1 VMM can
finish within half the time for one partial read, therefore the
total time to finish the full VMM remains the same.

To summarize, Fig. 10(c) shows regular full-crossbar-read
VMM, where after applying 1 input bit to the crossbar, the
ADCs take 8 cycles to finish the conversion, and the same
process is repeated 8 times. In Fig. 10(d), after each read, the
ADCs only need 4 cycles to finish and are repeated 8 times for
one partial read. In Fig. 10(e), after each read, the ADC works
for 8 cycles but only repeats 4 times for one partial read. The
two partial read schemes require negligible hardware overhead.
By implementing partial read, the total RRAM size needed to
map WRN can be reduced by 25.9%.

2) Inter-Core SRAM Buffering: In tiled CIM design, the
size of the SRAM buffers needs to be chosen to be large
enough to buffer the input needed by the CIM units that
access the buffer. In traditional NN, the minimum inter-layer
buffering size will be ((l−1)W +l)×C . In TT-CNN, the core
that requires most IP buffering is the core that accumulates in
the kernel-row dimension, e.g., the third TT-Core in Fig. 7.
The required buffering size is now ((l − 1))W + 1)×m1m2r2
times the channel size factorization in n3 (i.e., n3/ l), which

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

1180 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 3, MARCH 2024

Fig. 10. Illustration of (a) partial column read and (b) partial row read of
crossbar arrays. Crossbar read for different input bits and ADC conversion
pipeline for (c) full crossbar read, (b) partial column read, and (e) partial row
read.

is typically 2-3 times larger than the buffering requirement of
the original CONV layer.

However, when mapping a layer on tiled architecture, it is
common for a layer to cross multiple CIM tiles. In an original
CONV operation, these tiles that work together to produce
the set of output usually operate on a highly overlapped
input space, meaning copies of activations need to be buffered
across the tiles. However, for TT-CONV, the tiles that work
together to produce the same layer output operates on different
input space. A way to view this is to consider TT-core 3 in
the previous example, which requires 4 copies of factors to
match the target throughput, the entire input space is of size
W H × m1m2r2, where the workload can be split into m1m2
independent input space.

Mapping examples of the third convolutional layer in
WRN with depth of 128 and 128 output channels in
its uncompressed and TT-decomposed format are provided
in Fig. 11. The minimum IFM buffering required is
(2 × 32 + 3) × 128 = 8576(Bytes) with 8 byte activations,
split over 2 SRAM buffers, therefore, each SRAM buffer has
to be at least 4288 Bytes. The largest buffering size required
for the TT-cores is 16640 Bytes. In order to speed up the core
to match targeted throughput, 4 sets of core values have to be
stored and the activations buffered can be split into 4 SRAM
buffers, therefore, each on is 4160 Bytes and is comparable to
the requirement of the uncompressed layer.

B. Performance

When mapping CNN or TT-CNN on tiled CIM, the trade-off
between total area size and the required number of VMM
cycles for each frame is non-linear. Fig. 12(a) shows the
required CIM-unit count at different throughputs for WRN
and the duty rate distribution of the CIM-units. When the
layers are not balanced to match a certain throughput, i.e.,
no additional weight copies are stored, the frame rate is low,
and many CIM-units are underutilized. However, to double
the frame rate, the total number of CIM-units only needs to
increase by 6.8 % for uncompressed WRN. This is because

Fig. 11. (a) Illustration of a single CIM tile with 16 CIM units sharing
one SRAM buffer. (b) Dimension of the WRN layer in TT format with rank
of 16 through in 4 TT-cores. (c) Mapping of the uncompressed WRN layer
with depth of 128 and output size of 128. (d) Mapping of the corresponding
TT-decomposed layer.

only a few small layers (or cores) are slow, causing stalls in the
pipeline. The area increment required to increase the frame rate
increases at a higher frame rate and will eventually be directly
correlated once the duty rate for all CIM-units reaches 100%.

The required CIM-unit count and average duty rate at
different frame rates for TT-WRN (r=16) without and with
inter-CONV-step reuse are shown in Fig. 12(b) and Fig. 12(c)
respectively. The CIM-unit count is normalized with the
unbalanced original model. The same trend is observed in
the original CNN mapping. At a lower frame rate, expo-
nential increment in frame rate can be achieved with little
area increment: 4.8% for TT-WRN (no reuse), and 0.2% for
TT-WRN (with reuse). In addition, in comparison with the
original model, high hardware utilization can be achieved at
a lower area overhead. For example, to achieve an 80% duty
rate, uncompressed WRN requires 75% additional RRAM for
mapping, TT-WRN(no reuse) requires 29% and TT-WRN(with
reuse) requires 59%.

A direct comparison of throughput vs post-mapping RRAM
capacity between the original CNN and TT-CNN in tiled
CIM is shown in Fig. 13(a) and (b) for WRN and VGG8,
respectively. The hollow dots indicated the smallest CIM
architecture size required to map the model. It can be observed
that the smallest size for the mapped uncompressed WRN is 8,
and 4 times larger than the TT-WRN (with reuse) models under
the same throughput for r = 16 and r = 24, respectively; For
VGG8, the numbers are 15, and 8 times larger for r = 16 and
r = 24, respectively. The TT-CNN sweet spot for achieving
high hardware utilization with minimal required RRAM are
the points right before the linear curve in Fig. 13. The
corresponding RRAM capacities required for TT-WRN with
r = 16 and r = 24 are 0.69 MB and 1.4 MB, respectively; the
required capacity for TT-VGG8 with r = 16 and r = 24 are
0.6 MB, 1.2 MB, respectively. An RRAM-based CIM work

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: TT-CIM: TT DECOMPOSITION FOR NEURAL NETWORK IN RRAM-BASED CIM SYSTEMS 1181

Fig. 12. (a) Required CIM-unit count at different frame rate for WRN,
and the duty rate distribution of the CIM-units. Required CIM-unit count and
average duty rate at different frame rate for TT-WRN (r=16) (b) without and
(c) with inter-CONV-step reuse.

Fig. 13. Required number of VMM cycles vs required RRAM capacity for
(a) WRN and (b) VGG8.

based on TSMC 22nm technology provides 1 MB RRAM at
a die area of 18 mm2 [10], comparable to the size required
to map TT-WRN and TT-VGG8. The corresponding uncom-
pressed WRN and VGG8 require 13 MB and 11.8 MB RRAM
at the mapping sweet spot. Projecting from the reported area
from [10], the required RRAM storage will be 234 mm2 and
210.6 mm2, respectively, which is unrealistically large.

Additional performance metrics are provided in Fig. 14
for TT-WRN and TT-VGG8 implemented using the proposed
TT-CNN approach at two rank values, normalized against
results from implementing the uncompressed models. The
main benefit of TT-CNN is to allow an NN model to be
mapped on a much smaller chip compared to its uncompressed
counter, as can be seen in Fig. 14(a). The power required
to run the models is also significantly reduced, as shown in
Fig. 14(b). Since the proposed inter-CONV-step reuse method
also reduces the required computation for running the model,
the per area frame rate increases for TT-CNNs, and the latency
is reduced, as shown in Fig. 14(c) and (d).

Fig. 14. Performance evaluation results of (a) area, (b) power, (c) frame rate
per area and (d) latency per area, for implementing WRN and VGG8 using the
proposed TT-CNN approach. The results are normalized against those from
uncompressed models.

VI. DISCUSSION

A. Non-Idealities in RRAM Devices

RRAM device non-idealities are known to induce error
in CIM-based computing systems [33], [34]. Methods to
minimize the error including optimizing RRAM programming
methods, and variation-aware training are proposed in prior
works [33], [34], [35], [36]. We conducted tests on WRN with
quantization-aware and variation-aware training to evaluate
the effect of device variations on TT-CIM vs. uncompressed
models. The weights are quantized to 8-bit and the standard
deviation of the normal distributed variations is set to be
0.05× of the quantized weight range. We picked the best result
out of 5 training processes (trained from scratch) for both
uncompressed WRN and TT-WRN. The uncompressed model
suffers a 1.41% accuracy drop while the TT-decomposed
model suffers a comparable 1.99% drop. We hypothesize
that though breaking one VMM into multiple VMMs could
potentially lead to higher errors due to increased computing
steps, the smaller matrix size in each TT core on the other
hand helps reduce the accumulated error during CIM-based
VMM. Additionally, the smaller matrix size helps contain the
quantized weight range in a lower level since the variation
caused during weight programming is proportional to the
quantization range.

B. Comparison With Prior Work

A number of prior works related to hardware acceleration
on compressed DNNs have been proposed. Reference [27] was
one of the earliest works reported on TT-DNNs. The work pre-
sented a three-dimensional multilayer CMOS-RRAM architec-
ture for the implementation of TT-decomposed fully connected
layers. Reference [25] develops a computation-efficient infer-
ence scheme for TT-format DNN that aims to eliminate
redundant computation within each VMM. The results were
demonstrated on CNNs and RNNs in addition to fully con-
nected layers. Reference [26] demonstrated an SRAM-based
CIM chip for TT-DNN inference with the contractional

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

1182 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 3, MARCH 2024

TABLE III
PERFORMANCE COMPARISON

TT-VMM discussed in II-C. With TT decomposition, all
off-chip weight accesses are eliminated despite the small chip
size. In comparison, this work proposed an extra level of reuse
on top of matrix contraction and demonstrated the mapping
and organization of implemented TT-CNN on a traditional
fully weight stationary tiled-based CIM architecture.

Table III summarizes the performance of this work and
related works, including two RRAM-CIM architectures, one
with a relatively large RRAM capacity of 1 MB [10] and
another one employing the ADCs used in this work for per-
formance evaluation [31], and two TT-CNN related works [25]
and [26]. For this work, we considered 2 configurations,
a smaller one to map the models with rank=16 with 84 tiles,
and a larger one with 176 tiles to map models of rank=24.
With the TT scheme presented in this work, fully weight
stationary CIM architectures can support DNN models with
sizes up to 16x more than the original RRAM capacity,
enabling the CIM system to eliminate the need for off-chip
weight access while supporting medium-to-large DNN models.
Unlike many DNN compression techniques, TT-CIM requires
no hardware specifications and can be supported by traditional
tiled CIM. In addition, the TOPs/W and TOPs performance
are improved with the proposed reuse scheme. In comparison
to digital TT-DNN accelerators, TT-CIM enables fully weight
stationary CIM by eliminating off-chip DRAM access and
thus preserves the energy and throughput benefits of FWS
CIM. In addition, with the mapping and pipelining schemes
presented, no hardware overhead is required to support
TT-CIM.

VII. CONCLUSION

Tensor train decomposition is a promising technique for
compressing CNN models and maintaining the computa-
tional structure to deal with the challenge of large on-chip
weight storage requirements in fully weight stationary CIM.
Prior work related to TT-CNN optimizes computation within
each CONV step and views each CONV step as indepen-
dent VMMs. In the proposed TT-CIM theme, we view a
TT-CONV as a whole and optimized reuse across CONV
steps. To efficiently implement TT-CNN in tiled CIM, more
stages of pipelining need to be implemented, requiring
optimization of the balancing, scheduling, and buffering
of the pipeline. Combining mapping techniques to achieve
higher RRAM utilization, we show the proposed TT-CIM
can achieve a high effective compression ratio reducing

the required RRAM capacity drastically in fully weight
stationary CIM systems compared to the original CNN
model.

ACKNOWLEDGMENT

The authors would like to thank Ziyu Wang, Yongmo Park,
and Sangmin Yoo for insightful discussions.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[3] C. Szegedy et al., “Going deeper with convolutions,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[4] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern
Recognit., vol. 77, pp. 354–377, May 2018.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[6] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics
based on memristive systems,” Nature Electron., vol. 1, no. 1, pp. 22–29,
Jan. 2018.

[7] A. Sebastian, M. Le Gallo, and E. Eleftheriou, “Computational phase-
change memory: Beyond von Neumann computing,” J. Phys. D, Appl.
Phys., vol. 52, no. 44, Oct. 2019, Art. no. 443002.

[8] P. Yao et al., “Fully hardware-implemented memristor convolu-
tional neural network,” Nature, vol. 577, no. 7792, pp. 641–646,
Jan. 2020.

[9] X. Wang et al., “TAICHI: A tiled architecture for in-memory computing
and heterogeneous integration,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 69, no. 2, pp. 559–563, Feb. 2022.

[10] J.-M. Hung et al., “An 8-Mb DC-current-free binary-to-8b precision
ReRAM nonvolatile computing-in-memory macro using time-space-
readout with 1286.4-21.6TOPS/W for edge-AI devices,” in IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 65, Feb. 2022,
pp. 1–3.

[11] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Comput.
Archit. News, vol. 44, no. 3, pp. 14–26, 2016.

[12] X. Liu et al., “RENO: A high-efficient reconfigurable neuromorphic
computing accelerator design,” in Proc. 52nd ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Jun. 2015, pp. 1–6.

[13] Q. Wang, X. Wang, S. H. Lee, F.-H. Meng, and W. D. Lu, “A deep neural
network accelerator based on tiled RRAM architecture,” in IEDM Tech.
Dig., Dec. 2019, pp. 14.4.1–14.4.4.

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.

[15] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

MENG et al.: TT-CIM: TT DECOMPOSITION FOR NEURAL NETWORK IN RRAM-BASED CIM SYSTEMS 1183

[16] C. Chu et al., “PIM-prune: Fine-grain DCNN pruning for crossbar-
based process-in-memory architecture,” in Proc. 57th ACM/IEEE Design
Autom. Conf. (DAC), Jul. 2020, pp. 1–6.

[17] J. Meng, L. Yang, X. Peng, S. Yu, D. Fan, and J.-S. Seo, “Structured
pruning of RRAM crossbars for efficient in-memory computing accel-
eration of deep neural networks,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 68, no. 5, pp. 1576–1580, May 2021.

[18] F.-H. Meng, X. Wang, Z. Wang, E. Y. Lee, and W. D. Lu, “Exploring
compute-in-memory architecture granularity for structured pruning of
neural networks,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 12,
no. 4, pp. 858–866, Dec. 2022.

[19] L. Liang et al., “Crossbar-aware neural network pruning,” IEEE Access,
vol. 6, pp. 58324–58337, 2018.

[20] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 28, 2015,
pp. 442–450.

[21] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, Jan. 2011.

[22] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov, “Ultimate
tensorization: Compressing convolutional and FC layers alike,” 2016,
arXiv:1611.03214.

[23] D. Wang, G. Zhao, G. Li, L. Deng, and Y. Wu, “Compressing
3DCNNs based on tensor train decomposition,” Neural Netw., vol. 131,
pp. 215–230, Nov. 2020.

[24] D. Liu, L. T. Yang, P. Wang, R. Zhao, and Q. Zhang,
“TT-TSVD: A multi-modal tensor train decomposition with its appli-
cation in convolutional neural networks for smart healthcare,” ACM
Trans. Multimedia Comput., Commun., Appl., vol. 18, no. 1s, pp. 1–17,
Feb. 2022.

[25] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “TIE: Energy-
efficient tensor train-based inference engine for deep neural network,”
in Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2019, pp. 264–277.

[26] R. Guo et al., “A 5.99-to-691.1 TOPS/W tensor-train in-memory-
computing processor using bit-level-sparsity-based optimization and
variable-precision quantization,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 242–244.

[27] H. Huang, L. Ni, K. Wang, Y. Wang, and H. Yu, “A highly parallel and
energy efficient three-dimensional multilayer CMOS-RRAM accelerator
for tensorized neural network,” IEEE Trans. Nanotechnol., vol. 17, no. 4,
pp. 645–656, Jul. 2018.

[28] S. Zagoruyko and N. Komodakis, “Wide residual networks,” 2016,
arXiv:1605.07146.

[29] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, 2009.

[30] F. Cai et al., “A fully integrated system-on-chip design with scalable
resistive random-access memory tile design for analog in-memory
computing,” Adv. Intell. Syst., vol. 4, no. 8, Aug. 2022, Art. no. 2200014.

[31] J. M. Correll et al., “An 8-bit 20.7 TOPS/W multi-level cell ReRAM-
based compute engine,” in Proc. IEEE Symp. VLSI Technol. Circuits
(VLSI Technol. Circuits), Jun. 2022, pp. 264–265.

[32] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Pro-
cessing Systems. Red Hook, NY, USA: Curran Associates, 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[33] C.-C. Chang et al., “Device quantization policy in variation-aware
in-memory computing design,” Sci. Rep., vol. 12, no. 1, pp. 1–12,
Jan. 2022.

[34] G. Krishnan et al., “Robust RRAM-based in-memory computing in
light of model stability,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS),
Mar. 2021, pp. 1–5.

[35] Y. Wu et al., “Bulk-switching memristor-based compute-in-memory
module for deep neural network training,” 2023, arXiv:2305.14547.

[36] K.-D. Suh et al., “A 3.3 V 32 Mb NAND flash memory with incremental
step pulse programming scheme,” IEEE J. Solid-State Circuits, vol. 30,
no. 11, pp. 1149–1156, Nov. 1995.

Fan-Hsuan Meng received the B.S. degree in elec-
trical engineering and the M.S. degree in electronics
engineering from National Tsing Hua University,
Hsinchu, Republic of China, in 2014 and 2016,
respectively. She is currently pursuing the Ph.D.
degree with the Department of Electrical Engineer-
ing and Computer Science, University of Michigan,
Ann Arbor, MI, USA. She was an Engineer in
process integration for 7 nm FinFET devices with
TSMC, Hsinchu, from 2016 to 2017. Her research
interests include memristive devices, and its appli-

cation for neuromorphic computing. She is also working on system level
optimization for in-memory computing-based neural network accelerators.

Yuting Wu (Student Member, IEEE) received the
B.S. degree in microelectronics from Peking Uni-
versity, Beijing, China, in 2017, and the Ph.D.
degree in electrical engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2023. She is
currently working on developing machine learning
models for edge devices with Ambarella Inc., Santa
Clara, USA. Her research interests include efficient
machine learning models and hardware accelerator.

Zhengya Zhang (Senior Member, IEEE) received
the B.A.Sc. degree in computer engineering from
the University of Waterloo in 2003 and the M.S.
and Ph.D. degrees in electrical engineering from the
University of California at Berkeley (UC Berkeley)
in 2005 and 2009, respectively.

He has been a Faculty Member with the Univer-
sity of Michigan, Ann Arbor, since 2009, where
he is currently a Professor with the Department
of Electrical Engineering and Computer Science.
His research interests include low-power and high-

performance VLSI circuits and systems for computing, communications,
and signal processing. He was a recipient of the University of Michigan
College of Engineering Neil Van Eenam Memorial Award in 2019, the
Intel Early Career Faculty Award in 2013, the National Science Foundation
CAREER Award in 2011, and the David J. Sakrison Memorial Prize from
UC Berkeley in 2009. He has been serving on the Technical Program
Committee of the IEEE Custom Integrated Circuits Conference (CICC) since
2019. He served as an Associate Editor for IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS from 2015 to 2022,
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS
from 2013 to 2015, and IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
II: EXPRESS BRIEFS from 2014 to 2015. He served on the Technical Program
Committee of the IEEE VLSI Symposium on Technology and Circuits
from 2019 to 2022. He is an IEEE Solid-State Circuits Society Distinguished
Lecturer from 2023 to 2024.

Wei D. Lu (Fellow, IEEE) received the B.S.
degree in physics from Tsinghua University, Beijing,
China, in 1996, and the Ph.D. degree in physics
from Rice University, Houston, TX, USA, in 2003.
From 2003 to 2005, he was a Post-Doctoral Research
Fellow with Harvard University, Cambridge, MA,
USA. He joined the Faculty of the University of
Michigan in 2005. He is currently a Professor with
the Electrical Engineering and Computer Science
Department, University of Michigan. His research
interests include resistive-random access memory

(RRAM), memristor-based logic circuits, neuromorphic computing systems,
aggressively scaled transistor devices, and electrical transport in low dimen-
sional systems. He was a recipient of the NSF CAREER Award.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2024 at 13:31:07 UTC from IEEE Xplore. Restrictions apply.

