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In this work we introduce an alternative model for the design and analysis of strategyproof mechanisms that
is motivated by the recent surge of work in “learning-augmented algorithms”. Aiming to complement the
traditional worst-case analysis approach in computer science, this line of work has focused on the design
and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the
predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees
when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees,
even if these predictions are inaccurate (robustness).

We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions
regarding the private information of the participating agents. To exhibit the important benefits of this
approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional
Fuclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new
strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency
and robustness. Furthermore, we also prove parameterized approximation results as a function of the pre-
diction error, showing that our mechanisms perform well even when the predictions are not fully accurate.
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1. Introduction. For more than half a century, the dominant approach for the mathematical
analysis of algorithms in computer science has been worst-case analysis. On the positive side, a
worst-case guarantee provides a useful signal regarding the robustness of the algorithm. However,
it is well-known that the worst-case analysis can be unnecessarily pessimistic, often leading to
uninformative bounds or impossibility results that may not reflect the real obstacles that arise in
practice. These crucial shortcomings of worst-case analysis are making it increasingly less relevant,
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especially in light of the impressive advances in machine learning that give rise to very effective
algorithms, most of which do not admit any non-trivial worst-case guarantees.

Motivated by this tension between worst-case analysis and machine learning algorithms, a surge
of recent work is aiming for the best of both worlds by designing robust algorithms that are
guided by machine-learned predictions. The goal of this exciting new literature on “algorithms with
predictions” is to combine the robustness of worst-case guarantees with consistency guarantees,
which prove stronger bounds on the performance of an algorithm whenever the prediction that it
is provided with is accurate.

A lot of this work has focused on dynamic settings, where the input arrives over time and the
algorithm needs to make irrevocable decisions before observing the whole input. In contrast to
traditional online algorithms, which are assumed to have no information regarding the remaining
input, learning-augmented algorithms are provided with a prediction regarding this input. An ideal
algorithm is one that performs very well if this prediction is accurate, i.e., it has good consistency,
but that also achieves a near-optimal worst-case guarantee, even when the prediction is (arbitrarily)
inaccurate, i.e., it has good robustness. A flurry of papers published during the last four years have
proposed novel algorithms that achieve non-trivial trade-offs between robustness and consistency
(see [20] for a survey of some of the initial results).

In this paper, we argue that another fertile ground for the use of predictions is in mechanism
design. In contrast to online algorithms, whose information limitations are regarding the future,
the main obstacle in mechanism design is the fact that part of the input is private information that
only the agents know. To overcome this obstacle, a mechanism can ask the agents to report this
information but, since they are strategic, they can misreport it if this leads to an outcome that they
prefer. The field of mechanism design has proposed solutions to this problem, but their worst-case
guarantees are often underwhelming from a practical perspective. However, if these mechanisms
are provided with some predictions regarding (part of) the missing information, this could allow
the designer to reach more efficient outcomes despite the incentives of the participants.

In this paper, we propose a model for designing and evaluating strategyproof mechanisms that are
enhanced with predictions, which has the potential to transform the mechanism design literature.
At the core of this research agenda lies the following fundamental question:

Can learning-augmented mechanisms achieve good robustness and consistency trade-offs?

Given a mechanism equipped with a prediction, we can parameterize the worst-case performance
guarantee of the mechanism, using the error n of the prediction. When the prediction is accurate,
i.e., n =0, then the resulting guarantee is called the consistency of the mechanism. The worst case
guarantee irrespective of the error, i.e., the worst-case over all values of 7, is called the robustness
of the mechanism. An ideal mechanism would yield guarantees that gracefully transition from
optimal performance when the prediction is correct (perfect consistency) to the best-known worst-
case performance as the error increases (perfect robustness), thus capturing the best of both worlds.
However, this is impossible in many settings: to achieve perfect consistency a mechanism needs to
“trust” the prediction, in the sense that it always outputs a solution that is optimal according to
the prediction. Yet, if the prediction is incorrect, this solution might be arbitrarily bad, causing
unbounded robustness. Our goal is to evaluate how close to this ideal mechanism we can get, i.e.,
to achieve the best possible trade-off between robustness and consistency.

To exhibit the important benefits of adapting this framework to mechanism design and to gain
some insights regarding how predictions could be used by strategyproof mechanisms, we focus on
the canonical problem of facility location. Apart from the fact that this problem has been the focus
of a very long line of literature (e.g., see [23, 1, 9, 10, 12, 13, 27, 28] and the recent survey by [6]), it
has also been previously used as a natural application domain for exhibiting the potential benefits
of new mechanism design models [23, 24]. Even though this paper focuses on facility location, the
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learning-augmented mechanism design framework can be used to revisit any mechanism design
problem (both with and without monetary payments) for which we know that strategyproofness
leads to impossibility results, with the goal of understanding how machine-learned predictions could
help overcome these impossibility results without compromising the incentive guarantees. Future
directions are further discussed in the conclusion (Section 5).

In an instance of the facility location problem in R?, we are given a set of n agents, with each
agent 7 having a preferred location p; € R?, and we need to choose at which location f € R? to build
a facility that will be serving the agents. Once the location of the facility has been determined,
each agent suffers a cost that is equal to the Euclidean distance between her preferred location
and f, and our goal is to choose f that minimizes the social cost. In this paper we consider
both the minimization of the egalitarian social cost (i.e., the maximum cost over all agents) and
the utilitarian social cost (i.e., the average cost over all agents), and the main obstacle is that
the preferred location p; of each agent ¢ is private information to the agent and they can choose
to misreport it if this could reduce their cost (e.g., by affecting the facility location choice in
their favor). To ensure that the agents will not lie, this research has restricted its attention to
strategyproof mechanisms, limiting the extent to which the social cost functions can be optimized.

1.1. Our results. Using the facility location problem as a case study, we exhibit the benefits of
adapting the learning-augmented framework in mechanism design. In the facility location problem,
the information that the designer is missing is the preferred location of each agent, so our goal
is to design practical strategyproof mechanisms that are provided with predictions regarding this
information. Rather than assuming that the prediction provides the mechanism with a detailed
estimate regarding all of the private information, i.e., the preferred location of each agent, we
instead consider a less demanding prediction that provides an aggregate signal regarding this
information. Specifically, we assume that the mechanisms are provided with only a single point 0,
corresponding to a prediction regarding the optimal location for the facility. Note that this point
could readily be computed using the predicted location of each agent, so this prediction requires less
information and is easier to estimate. Our results focus on mechanisms that are deterministic and
anonymous (they do not discriminate among agents based on their identity), which is a well-studied
class of mechanisms in the context of facility location.

Egalitarian social cost. We first focus on the problem of minimizing the egalitarian social
cost and, as a warm-up, on the single-dimensional version of the problem, where all the points lie in
R. For this version of the problem, there exists a deterministic and strategyproof mechanism that
achieves a 2-approximation, and this is the best possible approximation in this class of mechanisms.
Our result for this case is a deterministic strategyproof mechanism, augmented with a prediction
regarding the optimal location for the facility, that achieves the best of both worlds. It returns
the optimal solution whenever the prediction is correct (1-consistency), but without sacrificing
its worst-case guarantee: it always guarantees a 2-approximation irrespectively of the prediction
quality (2-robustness).

We then move on to the two-dimensional version of the problem, for which prior work has
produced an optimal deterministic strategyproof mechanism achieving a 2-approximation [1, 14].
Once again, we are able to achieve perfect consistency, but this time this comes at a small cost in
terms of the worst-case guarantee, as we achieve a robustness of 1+ /2. A natural question at this
point is whether this loss in robustness was required for us to get the strong consistency guarantee.
Our next result shows that this is indeed the case: in fact, to achieve any consistency guarantee
better than the trivial 2 bound, any deterministic anonymous and strategyproof mechanism would
have to guarantee robustness no better than 1+ /2. Therefore, our proposed mechanism provides
an optimal trade-off between robustness and consistency. Finally, we also provide a more general
approximation guarantee for our mechanism as a function of the prediction error, proving that it
maintains improved performance guarantees even when the prediction is not fully accurate.



Agrawal et al.: learning-augmented mechanism design
4 Mathematics of Operations Research 00(0), pp. 000-000, © 0000 INFORMS

Utilitarian social cost. We then study the problem of minimizing the utilitarian social cost.
The single-dimensional case of this problem can be solved optimally using a deterministic, anony-
mous, and strategyproof mechanism, so we proceed directly to two-dimensions. In this case, there
is a deterministic, anonymous, and strategyproof mechanism that achieves a v/2-approximation,
which is optimal for this class of mechanisms. We provide a family of mechanisms, parameter-
ized by a “confidence value” c € [0,1) that the designer can choose depending on how much they
trust the prediction. If the designer is confident that the prediction is of high quality, then they
can choose a higher value of ¢, which provides stronger consistency guarantees, at the cost of
deteriorating robustness guarantees. Specifically, we prove that our deterministic and anonymous
mechanism is v/2¢? 4+ 2/(1 + ¢)-consistent and v/2¢? +2/(1 — ¢)-robust (See Figure 3 for a plot of
the trade-off provided by this mechanism). This result exhibits one of the important advantages
of the learning-augmented framework, which is to provide the user with more control over the
trade-off between worst-case guarantees and more optimistic guarantees when good predictions
are available. In fact, we prove that our mechanisms are optimal: no deterministic, anonymous,
and strategyproof mechanism can achieve a better trade-off between robustness and consistency
guarantees, so our mechanisms exactly capture the Pareto frontier for this problem. Finally, we
once again extend our approximation results as a function of the prediction error, verifying that
the mechanism achieves improved worst-case guarantees even if the prediction is not fully accurate.

1.2. Related work. The learning-augmented mechanism design framework, proposed in this
paper, is part of a long literature on alternative performance measures aiming to avoid the limi-
tations of worst-case analysis. A detailed overview of such measures can be found in the “Beyond
the Worst-case Analysis of Algorithms” book edited by Roughgarden [26].

Learning-augmented algorithms. Specifically, this framework extends the recent work on
“learning-augmented algorithms” (or “algorithms with predictions”), which focuses on algorithm
design and aims to overcome worst-case bounds by assuming that the algorithm is provided with
predictions regarding the instance at hand (see [20] for a survey of the early work in this area).
Lykouris and Vassilvtiskii [17] introduced consistency and robustness, which are the two primary
metrics used to analyze the performance of algorithms in the learning-augmented design framework.
There is a long list of classic algorithmic problems that have been studied in that framework,
including online paging [17], scheduling [25], and secretary problems [7, 2|, optimization problems
with covering [4] and knapsack constraints [15], as well as Nash social welfare maximization [5]
and several graph [3] problems. We note that this line of work has also studied facility location
problems [11, 16]. However, the crucial difference is that these papers are restricted to non-strategic
settings, and the predictions are used to overcome information limitations regarding the future,
rather than limitations regarding privately held information. [18] use bid predictions in auctions to
learn reserve prices and yield revenue guarantees as a function of the prediction error, but provide
no bounded robustness guarantees.

Strategic facility location. The facility location problem in the presence of strategic agents
has been extensively studied and serves as a canonical mechanism design problem. For example, it
was used as the case study that initiated the literature on approximate mechanism design without
money [23]. For single facility location in one dimension, i.e., on the line, the mechanism that places
the facility at the median over all the preferred points reported by the agents is strategyproof, opti-
mal for the utilitarian social cost objective, and achieves a 2-approximation for the egalitarian social
cost objective, which is the best approximation achievable by any deterministic and strategyproof
mechanism [23]. In the two-dimensional Euclidean space, a generalization of this mechanism, the
“coordinatewise median” mechanism (defined in Section 2), achieves a v/2-approximation for the
utilitarian objective [19], and a 2-approximation for the egalitarian objective [14]. These approxi-
mation bounds are both optimal among deterministic and strategyproof mechanisms. Additional
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settings that have been studied include general metric spaces [1], d-dimensional Euclidean spaces
[19, 28, 8, 14], circles [1, 19], and trees [1, 10]. Finally, some fundamental results on strategic facility
location focus on characterizing the space of startegyproof mechanisms. For the single-dimensional
case, the characterization of [21] implies that all deterministic strategyproof mechanisms corre-
spond to the family of “general median mechanisms” (defined in Section 2). For the two-dimensional
case, an analogous characterization was subsequently provided by [22]. A more detailed discussion
regarding prior work on this problem is provided in the recent survey by [6].

Bayesian mechanism design. There is a loose connection between the learning-augmented
mechanism design framework and the line of work on Bayesian mechanism design, which assumes
that the agents’ private values are drawn from a distribution. This is analogous to the average case
analysis for algorithms, which assumes that the input is drawn from a distribution, and the crucial
difference with the learning-augmented framework is that it provides no robustness guarantees: in
Bayesian mechanism design, the performance of a mechanism is evaluated in expectation over this
randomness and there are no worst-case performance guarantees in general. This is in contrast to
our setting, where we seek performance guarantees even if the predictions are arbitrarily inaccurate
and also provide approximation guarantees as a function of the prediction error. Another difference
comes from the fact that a lot of the work on Bayesian mechanism design relaxes the notion of
incentives and rather than aiming for strategyproofness, which requires that reporting truthfully is a
dominant strategy, it instead aims for Bayesian incentive compatibility, which requires that truthful
reporting is an optimal strategy in expectation over the randomness, and assuming everyone else
also reports truthfully. Finally, learning these distributions requires a large amount of data about a
specific setting (e.g., data about past agents’ values for the exact same item that is currently being
sold in an auction), whereas machine learning can utilize heterogeneous data (e.g., data about past
agents’ values for similar items that were previously sold) to obtain predictions, like the ones used
in the learning-augmented framework

Finally, a recent paper by Xu and Lu [29] has also studied mechanism design problems aug-
mented with predictions, independently and concurrently from this work. One of the problems that
is studied in [29] is strategic facility location with two facilities (we focus on the single facility set-
ting). The results are thus incomparable but we note that, unlike [29], we prove optimal tradeoffs
between consistency and robustness.

2. Preliminaries. We introduce some technical background for the problem of strategic facil-
ity location with predictions.

Facility location. In the single facility location problem in the two-dimensional Euclidean
space, the goal is to choose a location f € R? for a facility, aiming to serve a group of n agents.
Each agent ¢ has a preferred location p; € R? and, once the facility location is chosen, that agent
suffers a cost d(f,p;), corresponding to the Euclidean distance between her preferred location and
the chosen location. Given a set of preferred locations P = {pi,...,p,} for the agents, the two
standard social cost functions that prior works have aimed to minimize are the egalitarian social
cost C°(f, P) = max,cpd(f,p) (ie., the maximum cost over all agents) and the utilitarian social
cost C*(f,P) =) pd(f,p)/n (ie., the average cost over all agents). Given some social cost
function, we denote the optimal facility location by o(P) = (z,(P),y,(P)), or o when P is clear
from the context.

Strategic facility location. In the strategic version of the facility location problem, the
preferred location p; of each agent ¢ is private information. Therefore, to minimize the social cost a
mechanism needs to ask the agents to report their preferred locations, P € R?", and then use this
information to determine the facility location f(P). However, the goal of each agent is to minimize
their own cost, so they can choose to misreport their preferred location if that can reduce their
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cost. A mechanism f:R?*" — R? is strategyproof if truthful reporting is a dominant strategy for
every agent, i.e., for all instances P € R?*", every agent i € [n], and every deviation p; € R? we have
d(ps, f(P)) <d(p;, f(P_i,p})), where P_; € R*"~1 denotes the reported locations of agents j # i.

Mechanisms for strategic facility location. A strategyproof mechanism that plays a cen-
tral role in the strategic facility location problem is the Coordinatewise Median (CM) mechanism.
This mechanism takes as input the locations P = {(x;,¥;) }icjn) of the n agents and determines the
facility location by considering each of the two coordinates separately. The x-coordinate of the
facility is chosen to be the median of {x;};c[n), i.e., the median of the z-coordinates of the agents’
locations, and its y-coordinate is the median of {y;}icjn) (if n is even, we assume the smaller of the
two medians is returned). The more general class of Generalized Coordinatewise Median (GCM)
mechanisms take as input the locations P of the n agents, as well as a multiset P’ of points that
are constant and independent of the locations reported by the agents, and outputs CM(PU P’). In
other words, a GCM mechanism is the coordinatewise median mechanism over the locations of the
agents and the additional constant points P’ chosen by the designer (often called phantom points).
In addition to being deterministic and strategyproof, GCM mechanisms are also anonymous and
unanimous. A mechanism is anonymous if its outcome does not depend on the identity of the
agents, i.e., it is invariant under a permutation of the agents’ identities, and it is unanimous if,
given an instance where all the agents’ locations are the same, the mechanism places the facil-
ity at that same location. Peters et al. [22] characterized the family of deterministic, anonymous,
unanimous, and strategyproof mechanisms by showing that this family of mechanisms corresponds
exactly to the family of GCM mechanisms with n — 1 constant points.

THEOREM 1 ([22]). A mechanism f:R?*" — R? for facility location is deterministic, anony-
mous, unanimous and strategyproof, if and only if it is a generalized coordinatewise median mech-
anism with n — 1 constant points.

We note that there are no constraints on the locations of the constant points.

Learning-augmented strategic facility location. In the learning-augmented mechanism
design framework proposed in this paper, before requesting the set of preferred locations P from
the agents, the designer is provided with a prediction 6 regarding the optimal facility location
o(P). The designer can use this information to choose the rules of the mechanism but, as in the
standard strategic facility location problem, the final mechanism, denoted f(P,0), needs to be
strategyproof. In essence, if there are multiple strategyproof mechanisms the designer can choose
from, the prediction can guide their choice, aiming to achieve improved guarantees if the prediction
is accurate (consistency), but retaining some worst-case guarantees (robustness).! Consistency and
robustness are the standard measures in algorithms with predictions [17]. Given some social cost
function C', a mechanism is a-consistent if it achieves an a-approximation ratio when the prediction

is correct (6 =o(P)), i.e.,
C(f(P,o(P)),P)
< .
mﬁx{ Clo(P),P) J=°
A mechanism is S-robust if it achieves a B-approximation ratio even when the predictions can be
arbitrarily wrong, i.e., if R
Clo(P),P) J =

Note that any known strategyproof mechanism that guarantees a y-approximation without predic-
tions directly implies bounds on the achievable robustness and consistency. The designer could just

max
P,6

! An alternative interpretation is that there is a single publicly known mechanism that takes as input the prediction
and the agents’ reports, and the agents know what the prediction is prior to reporting their preferred locations.
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disregard the prediction and use this mechanism to achieve y-robustness. However, this mechanism
would also be no better than -consistent, since it ignores the prediction. The main challenge is to
achieve improved consistency guarantees, without sacrificing too much in terms of robustness.

The prediction error. For an even more refined understanding of the performance of a
learning-augmented mechanism, one can also prove worst-case approximation ratios as a function
of the prediction error n > 0. In facility location, we let the error (6, P) = d(6,0(P))/C(o(P), P)
be the distance between the predicted optimal location 6 and the true optimal location o(P),
normalized by the optimal social cost. Given a bound 7 on the prediction error, a mechanism

achieves a y(n)-approximation if

C(f(P,6),P)
o moP)<n {W} <(n).

Note that for 7 = 0 this bound corresponds to the consistency guarantee and for n — oo it captures
the robustness guarantee. If this bound does not increase too fast as a function of 7, then the
mechanism may achieve improved guarantees even if the prediction is not fully accurate.

3. Minimizing the egalitarian social cost. We start by focusing on the egalitarian social
cost function, for which no deterministic and strategyproof mechanism can achieve better than a
2-approximation, even for the one-dimensional case [23]. As a warm-up, we first provide a determin-
istic, strategyproof, and anonymous mechanism that is 2-robust, thus matching the best possible
worst-case approximation guarantee, but also 1-consistent, thus combining the best of both worlds.
Then, in Section 3.2 we extend this mechanism to the two-dimensional case and we prove that it
is 1-consistent and (1+ +/2)-robust. In Section 3.3, we complement this result by showing that our
mechanism is Pareto optimal: we prove that 1+ /2~ 2.41 is the best robustness achievable by any
deterministic, strategyproof, and anonymous mechanism that achieves any consistency better than
2 (note that a consistency of 2 can be trivially achieved by disregarding the predictions and running
the coordinatewise median mechanism). Our last result, in Section 3.4, goes beyond the robustness
and consistency guarantees to provide a more refined bound as a function of the prediction error.
Specifically, the approximation achieved by our mechanism degrades linearly from 1 to 1+ /2 as
a function of the prediction error.

3.1. Warm-up: facility location on the line. As a warm-up, we first consider the single-
dimensional case of the problem, where p; € R for every agent 4. For this special case, a simple
deterministic mechanism that returns the median of the points in P is strategyproof, as well
as a 2-approximation of the egalitarian social welfare, which is the best possible approximation
among deterministic and strategyproof mechanisms [23]. Our first result in the learning-augmented
framework shows that this worst-case guarantee can be combined with perfect consistency.

Given a prediction 6 regarding the optimal facility location, we propose the MINMAXP mecha-
nism, formally defined as Mechanism 1. This mechanism uses the prediction as the default facility
location choice, unless the prediction lies “on the left” of all the points in P or “on the right” of
all the points in P. In the former case, the facility is placed at the leftmost point in P instead, and
in the latter it is placed at the rightmost point in P.

Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

Input: points (pi,...,p.) € R, prediction 6 € R
if 6 € [min; p;, max; p;] then

return o

else if 6 < min; p; then

return min; p;

else
return max; p;
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We show that MINMAXP is a deterministic, strategyproof, and anonymous mechanism that is 1-
consistent and 2-robust. This mechanism thus achieves the best of both worlds: when the prediction
is correct, it yields an optimal outcome, and when the prediction is incorrect, the approximation
factor never exceeds 2, which is the best-possible worst-case approximation. In essence, the pre-
diction provides a “focal point” that the mechanism can use, allowing it to achieve the optimal
consistency without compromising strategyproofness.

THEOREM 2. The MINMAXP mechanism is deterministic, strategyproof, and anonymous, and
it is 1-consistent and 2-robust for facility location on the line and the egalitarian objective.

Proof. To show that the mechanism is strategyproof, consider any agent i and, without loss of
generality, assume that p; < 0, i.e., that the agent’s true preferred location is weakly on the left
of the prediction. We consider two cases, depending on whether p; is weakly greater than all the
locations reported by the other agents or not. If it is, this means that if ¢ reported truthfully, the
mechanism would place the facility at p; and ¢ would clearly have no incentive to lie. If, on the other
hand, p; is not weakly greater than all the other reported locations, then the returned location f
if 4 reported the truth would be on the right of p;, i.e., f > p;. However, it is easy to verify that if
agent i reported a false point p; < p;, this would not affect the outcome, and if she reported a false
point p; > p;, this could only move f further away from p,;. Therefore, it is a dominant strategy for
1 to report the truth. An alternative way to verify the fact that this mechanism is strategyproof
is by observing that it is actually equivalent to a Generalized Coordinatewise Median (defined in
Section 2) with the set P’ of constant points containing n — 1 copies of the prediction 6. To verify
this, note that if 6 € [min; p;, max; p;], then the median of PU P’ would be 6, otherwise it would be
either the leftmost or the rightmost point of P, just like the MINMAXP mechanism.

Now, to verify the consistency guarantee, consider any instance where the prediction 6 is accu-
rate. Since the truly optimal location for the egalitarian social welfare lies halfway between the
leftmost and rightmost point in P, then we know that whenever 6 is accurate, it must be that
6 € [min, p;, max; p;]. As a result, for any such instance the mechanism will place the facility at the
optimal location, 0, leading to a consistency of 1.

Finally, to verify that this mechanism is 2-robust, note that the facility location f that the
mechanism returns always satisfies f € [min; p;, max; p;]. As a result, the egalitarian social cost by
the mechanism is at most (max;p; — min; p;). On the other hand, the optimal egalitarian social
cost is equal to (max; p; — min; p;)/2, implying the 2-robustness guarantee.

3.2. The minimum bounding box mechanism. We now move on to the two-dimensional
case, i.e., p; € R? for every agent 4, which is the main focus of the paper. We extend the MINMAXP
mechanism to this setting by running it separately for each of the two dimensions (see Mecha-
nism 2). An alternative, more geometric, description of this mechanism is that it first computes
the minimum axis-parallel bounding box of the set P of agent locations and then places the facility
at the location within that box that is closest to the predicted optimal location. We therefore call
it the MINIMUM BOUNDING BOX mechanism.

Mechanism 2: MINIMUM BOUNDING BOX mechanism for egalitarian social cost in two dimensions.

Input: points ((z1,v1),. .-, (Tn,yn)) € R?", prediction (zs,y;) € R?
x; = MINMAXP((z1,...,%,),%5)

Yr = MINMAXP((yla cee 7yn)7y6)

return (z;,y;)

We now show that the MINIMUM BOUNDING BOX mechanism is strategyproof, that it places the
facility at the optimal location when the prediction is correct (1-consistency), and that it achieves a
1++/2~2.41 approximation even when the prediction is arbitrarily incorrect (1 -+ +/2-robustness),
which is only a slight drop relative to the best achievable approximation, which is 2.
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THEOREM 3. The MINIMUM BOUNDING BOX mechanism is deterministic, strategyproof, and
anonymous and it is 1-consistent and (14 +/2)-robust for the egalitarian objective.

Proof. There are two ways to verify the strategyproofness of this mechanism. One intuitive way
is to observe that the mechanism treats each dimension separately, running the MINMAXP mecha-
nism for each one, so the strategyproofness of that mechanism also implies the strategyproofness of
MiNIMUM BOUNDING BoOX (since agents want the facility to be as close to their coordinate for each
dimension). Alternatively, the strategyproofness can also be verified by the fact that the MINIMUM
BouNnDING BoX mechanism is equivalent to a Generalized Coordinatewise Median mechanism if
we let P’ contain n — 1 copies of the prediction 6, as we also observed in the proof of Theorem 2.

To verify that the mechanism has perfect consistency, we first note that the optimal facility
location is always in the convex hull of the points in P (in fact, it is the center of the smallest circle
containing all points in P, and the radius of this circle corresponds to the egalitarian social cost).
This point is clearly within the minimum axis-parallel bounding box (which contains the convex
hull), so for any instance where the prediction 6 is correct, this prediction is in the bounding box,
and is thus the location returned by the mechanism, verifying its 1-consistency.

For the robustness, consider any instance with a set of preferred locations P, let o be the optimal
facility location and C*(o, P) = max,,cp d(p;,0). We now consider the circle ¢ with o as its center
and the optimal distance C¢(o, P) as its radius. Consider the axis-parallel square that has c¢ as
its inscribed circle and note that this square contains all the points in P since, by definition of
the egalitarian social cost, it must be that all the points in P are contained within the circle c,
contained in the square. As a result, the minimum axis-parallel bounding box of P is contained
in this axis-parallel square. Therefore, since f, the location returned by the mechanism, is always
within this axis-parallel square (whose center is o and whose edges are all of length 2C°(o, P)) we
have d(o, f) <+/2-C¢(o, P), because the points of the square furthest away from its center are its
vertices. By the triangle inequality we have that:

rg;g%(d(ﬂpi) <d(f,o0) —i—rg_lglgd(o,pi) < (14+v?2)-C%o, P).

3.3. Optimality of the mechanism. Since the coordinatewise median (CM) mechanism
achieves a 2-approximation for the egalitarian social cost over all instances in two dimensions [14],
it is 2-consistent and 2-robust. The MiNiMUM BOUNDING BOX mechanism achieves 1-consistency,
but that comes at the cost of the robustness guarantee, which weakens from 2 to 1+ /2~ 2.41. A
natural question is whether there exists any middle-ground between these two results, i.e, whether
some mechanism can combine consistency better than 2 with robustness better than 1+ V2.

Our next result, Theorem 4, answers this question negatively for deterministic, strategyproof,
and anonymous mechanisms. We show that any deterministic, strategyproof, and anonymous mech-
anism that guarantees a consistency better than 2 must have a robustness no better than 1+ /2,
proving the optimality of our mechanism among all the mechanisms that provide consistency guar-
antees better than 2.

THEOREM 4. There is no deterministic, strategyproof, and anonymous mechanism that is (2 —
€)-consistent and (14 /2 — €)-robust with respect to the egalitarian objective for any e > 0.

Proof. First, note that any mechanism f with a bounded robustness needs to be unanimous.
If not, then its cost would be positive, while the optimal cost is zero, by placing the facility at
the same location as all the points. Therefore, we can restrict our attention to mechanisms that
are unanimous. By Theorem 1, we know that any deterministic, strategyproof, anonymous, and
unanimous mechanism in our setting takes the form of a generalized coordinatewise median (GCM)
mechanism with n — 1 constant points in P’. Our proof first shows that in order to achieve a
consistency better than 2, this mechanism needs to use the prediction 6 in place of all these n —1
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FIGURE 1. On the left, an instance demonstrating that adding n — 1 phantom points weakly higher than the prediction
0 is necessary for consistency better than 2. On the right, an instance demonstrating that this addition results to
robustness at least 1+ v/2. Both figures are for the egalitarian social cost objective.

constant points. Then, we show that if it does use the prediction 6 in place of all these n — 1
constant points, its robustness is at least 1+ /2.

For the first part of the proof, consider any GCM mechanism for which the multiset of constant
points P’ contains at least one point that is not the same as the prediction point, 6. Without loss of
generality, assume that this point lies strictly below 0, i.e., that its y-coordinate is strictly smaller
than y, (if this point is strictly on the left, strictly on the right, or strictly above the prediction
point, we can directly adjust the argument below to prove the same result). Let § = max,e pr.y, <y, Yp
be the maximum y-coordinate among the points in P’ that are strictly below the prediction, and
€ =y, — ¥ (there exists at least one point in P’ that is strictly below the prediction, so € > 0). Then,
consider the instance where the set of actual agent points P has n — 1 points at location (z4,ys — €)
and 1 point at location (z4,ys +¢€), i.e., € below the prediction and € above it, respectively. For this
instance, 0 is the correct prediction, as it achieves the optimal egalitarian social cost of . However,
the median of the points in P U P’ with respect to the y-axis is y; — €, since there are at least n
points in PU P’ with y-coordinate equal to y; — e (n — 1 points in P and at least one point in P’)
out of a total of 2n — 1 points in P U P’. Therefore, the egalitarian social cost of the mechanism
would be at least 2¢, since the y coordinate of the facility location would be y; — €, but there is
an actual agent point on (z,,ys + €). Therefore, any such mechanism would have a consistency no
better than 2. See Figure 1 (right) for an illustration.

Now, we conclude the proof by showing that the robustness of the GCM mechanism that uses
the prediction point 6 for all the n — 1 constant points in P’ is no better than 1+ /2. Assume
that the prediction 6 is located at (1,1) and consider an instance with n =3 points in P located
at (0,1), (1,0), and (—1/v/2,—1/+/2) (see Figure 1 (left) for an illustration of this instance). In
that case, the optimal facility location would be at (0,0) and all the three points in P would have
distance 1 from it. However, the set P’ contains n —1 =2 points at (1,1), so the GCM mechanism
would place the facility at (1,1), because three of the five points in PU P’ have z-coordinate 1 and
three of the five points in P U P’ have y-coordinate 1. The distance of this facility location from
(—1/4/2,-1/4/2) is 1+ +/2, which concludes the proof.

3.4. Approximation as a function of the prediction error. We now extend the consis-
tency and robustness results for MINIMUM BOUNDING BOX to obtain a refined approximation ratio
as a function of the prediction error 7. This result shows that our mechanism achieves improved
approximation guarantees not only when 7= 0 (which corresponds to the consistency guarantee),
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but for any value of 1) less than v/2. Specifically, our bound degrades gracefully from the consistency
bound of 1 to the robustness bound of (1 +1/2) as a function of .

THEOREM 5. The MINIMUM BOUNDING BOX mechanism achieves a min{1+n,1++/2} approz-
imation for the egalitarian objective, where 1 is the prediction error.

To obtain a (1 + n)-approximation, we aim to bound the distance between the output of the
mechanism with the erroneous prediction and the output of the mechanism if it had been given the
correct prediction, i.e., the optimal location. We first show a helpful lemma to bound this distance.

LEMMA 1. Given a set of points P and two predictions 6 and o6, let f(P,6) and f(P,0) be
the respective facility locations chosen by the MINIMUM BOUNDING BoOX mechanism. Then, the
distance between these two facility locations is at most the distance between the two predictions,
i.e.,

d(f(P,0), f(P,0)) < d(0,0).

Proof. Let (z7,y;) = f(P,06) and (zf,y5) = f(P,0) be~ facility locations returned by the MINIMUM
BOUNDING BOX mechanism given predictions 6 and o, respectively, and let dx; = |z iz f| and
dys = |y; — y7| be the difference of their x and y coordinates. Similarly, let dz, = |z — 25| and
dy, = |ys — ys| be the corresponding differences for the coordinates of the two predictions. To prove
this lemma, we argue that dz; < dz, and dy; < dy,, implying the desired inequality, since

d(f(P,0), f(P,0)) = y/dz}+dy} < \/dal+dyZ = d(0,0).

We first focus on the z-coordinate and, without loss of generality, we assume that x; < x5,
i.e., that the first prediction is weakly on the left of the second one. To verify that dx; < dz,,
we proceed with a simple case analysis. If x; > max;p; or x; < min; p;, i.e., if the predictions
are both on the left of all points in P or both on the right of all points in P, then the call to
MINMAXP mechanism would return the same z-coordinate for both cases, i.e., dr; =0 < dx,.
Otherwise, x; = max{min, p;, 7} and ;= min{max; p;, ¥s}. This implies that even in this case
dry < x5 — x5 = dx,. Using the same sequence of arguments for the y-coordinate implies that
dys < dy, and concludes the proof.

Using this lemma, we are now ready to prove Theorem 5.

Proof of Theorem 5. Theorem 3 already shows that the worst-case approximation of MINIMUM
BOUNDING BOX is at most (1+1/2), so we just need to prove that it is also at most (1+7).

We first note that the error 7 in the prediction is equal to the normalized distance between the
prediction and the actual optimal facility location, i.e., d(6,0)/C*(0, P), so d(6,0) =n-C*(o,P).
Using Lemma 1 and substituting o with the actual optimal facility location o, i.e., 6 =0, we get

d(f(P,0), f(P,0)) < d(6,0) = n-C%(o,P). (1)

However, the MINIMUM BOUNDING BOX mechanism chooses the optimal facility when provided
with an accurate prediction (it is 1-consistent), so f(P,0) =o. We can therefore conclude that

C((P.6), P) = maxd(p., /(P.0)
< max (d(pi, (P,0)) +d(/(P.0). f(P,5))
< max (d(p;, 0) +7-C*(0, P))
<C%o0,P)+n-Co,P)
=1 +n)C(o, P),
where the first equation is by definition of the egalitarian social cost, the first inequality uses the

triangle inequality, the second inequality uses the fact that f(P,0) = o and Inequality (1), and the
third inequality uses the definition of the egalitarian social cost.
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4. Minimizing the utilitarian social cost. In this section, we focus on minimizing the
utilitarian social cost function. For the one-dimensional case, returning the median of the preferred
points in P is an optimal solution which is also strategyproof. For the two-dimensional case, it is
known that the coordinatewise median mechanism guarantees a v/2-approximation, and no deter-
ministic, anonymous, and strategyproof mechanism can achieve a better guarantee [19]. Our main
result in this section is a deterministic, strategyproof, and anonymous mechanism in the learning-
augmented framework that uses predictions to achieve an optimal trade-off between robustness and
consistency. This mechanism is parameterized by a “confidence value” ¢ € [0,1) (such that cn is an
integer), which is chosen by the designer, depending on how much they trust the prediction. Specif-
ically, we prove that for each choice of ¢, the induced mechanism is v/2¢? 4+ 2/(1 + ¢)-consistent and
V2¢®42/(1 — ¢)-robust. If the designer has no confidence in the prediction, setting ¢ =0 retrieves
the optimal robustness guarantee of v/2, with a consistency that is also v/2. For higher values of
¢, the consistency improves beyond /2, gradually approaching 1, at the cost of increased robust-
ness bounds (see Figure 3). In Section 4.2 we show that this trade-off between robustness and
consistency provided by our mechanism is, in fact, optimal over all deterministic, strategyproof,
and anonymous mechanisms. Finally, in Section 4.3 we once again provide a more refined bound
regarding the approximation that our mechanism achieves as a function of the prediction error.

4.1. The coordinatewise median with predictions mechanism. Our COORDINATEWISE
MEDIAN WITH PREDICTIONS (CMP) mechanism takes as input the multiset P of the preferred
locations reported by the agents, a prediction 6, and a parameter value ¢ € [0,1) which captures
the designer’s confidence in the prediction (such that cn is an integer). The mechanism creates a
multiset P’ containing cn copies of 6 and outputs CM(P U P’), i.e., the facility location chosen by
the generalized coordinatewise median mechanism whose multiset of constant points P’ contains
cn copies of the prediction. This set P’ provides an interesting way for the designer to introduce a
“bias” toward the prediction, which increases as a function of the parameter c. Specifically, a larger
value of ¢ adds more points in P’, which can move the median with respect to each coordinate
toward the prediction. We use f(P,0,c) to denote the facility chosen by CMP with a confidence
parameter value of ¢ over preferred points P and prediction 6. Note that for the special case when
the confidence parameter is set to ¢=(n—1)/n, i.e., when P’ contains exactly n — 1 copies of the
prediction, then CMP reduces to the MINIMUM BOUNDING BOX mechanism from the previous
section.

To prove the robustness and consistency guarantees achieved by this mechanism, we first show
that we can, without loss of generality, focus on the class of instances that have the following
structure: the outcome of the mechanism is at (0,0), the optimal outcome is at (0,1), and every
point of P is located either at (0,1), at (—z,0), or at (z,0), for some x > 0.

DEFINITION 1 (CLUSTERS-AND-OPT-ON-AXES INSTANCES). Given a confidence value ¢ €
[0,1), consider the class of all instances with predictions 6 and preferred points P (for any number
of agents, n), such that f(P,0o,c)=(0,0), o(P)=(0,1), and p € {(0,1), (z,0),(—=,0)} for all pe P
and some x € Rq. Let PS_(c) be the subset of these instances where 6 =o(P) and PZ, (c) be the
subset of these instances where 6 = (0,0). We refer to these classes of instances as Clusters-and-
Opt-on-Axes (COA) for consistency and robustness, respectively.

Our next result is an important technical lemma showing that, if the CMP mechanism with
confidence parameter c is a-consistent and S-robust with respect to the classes PS_ (c) and PE_ (c),
respectively, then it is a-consistent and S-robust over all instances. In other words, for any value
of ¢, there always exists a worst-case instance within these classes. The structure of our proof
resembles an argument used by [14] to analyze the worst-case approximation ratio of the standard
coordinate-wise median mechanism as a function of n for instances where n is odd (for instances
where n is even, a tight bound of v/2 was already known). However, our argument requires several
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FIGURE 2. On the left, the consistency and robustness achieved by the CMP mechanism as a function of the confidence
parameter c. On the right, the optimal trade-off between robustness and consistency, which is matched by CMP.
Both figures are for the utilitarian social cost objective.

new ideas to address the fact that the CMP mechanism also depends on the prediction, and to
provide bounds not only for robustness, but also for consistency. The resulting argument comprises
multiple steps, so we defer the complete proof to Section 4.4. We use r(P,0,c) to denote the
approximation ratio achieved by CMP with parameter ¢ given a multiset of preferred points P
and a prediction 6.

LEMMA 2. For any c€[0,1), the CMP mechanism with confidence ¢ is a-consistent and [3-
robust, where & =maxpepc (o) T(P,0=0(P),c) and f=maxpcpr () 7(F,0=/(0,0),c).

Note that, the P$, (c) and PE, (c) classes contain instances with an arbitrary number of agents,
yet our robustness and consistency bounds are independent of n. We henceforth assume, without
loss of generality, that n (the total number of agents) and cn (the number of points in P’) are both
multiples of 4 to avoid integrality issues. Indeed, given any parameter value ¢ and any instance
where one of these quantities is not a multiple of 4, we can produce another instance that satisfies
both of these conditions and has the same approximation ratio. Specifically, we can achieve this
by making four copies of each point in P and P’; this would not affect the optimal outcome, nor
would it affect the outcome of the mechanism, so the approximation ratio would be the same.
Next, we show that there exists an instance in P (c) such that the CMP mechanism obtains a
V2¢% 4+ 2/(1 + ¢)-approximation when the prediction is correct and an instance in P (c) where it

coa
obtains a v/2¢? +2/(1 — ¢)-approximation for some incorrect prediction.

LEMMA 3. For CMP with confidence c € [0,1), there exists an instance P € PS (c) such that
r(P,6=0(P),c) =~ fij and an instance Q € PE (¢) such that r(Q,6=(0,0),c) =¥ fi”

Proof. For the first statement (the consistency bound), consider a multiset of points P that

is partitioned into three sets, L, R, and U, such that p; = ( —1%<, 0) for i € L with |L| = 1<
pi= <}J_r2, O) for i € R with |R| = *“n, and p; = (0,1) for ¢ € U with |U| = :5¢n. The optimal loca-

2
tion is at (0,1), i.e., o(P) = (0,1), and the optimal cost is C*(o(P), P) = F<n/1+ <}—f6) . Since
f(P,6=0(P),c)=(0,0), we also have C*(f(P,6=o(P),c),P)= %n ii + “5¢n - 1. Therefore,
the consistency, r(P,6=o0(P),c), of this instance P is:

n,

1+c 14c 1—c
v 22 12
r(Po=o(P),c)= 2 e 2 VAT

2 1+¢
ey 1 (E)

o
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FIGURE 3. On the left, a worst-case instance for consistency given a confidence parameter c¢. On the right, a worst-
case instance for robustness given a confidence parameter c. Both figures are for the utilitarian social cost objective.

For the second statement (the robustness bound), consider the following multiset of points Q). Let
L, R, and U be subsets of agents such that p; = ( e 0) for i € L with |L| = ;= (ﬁz, 0)

for i € R with |R| = 3<n, and p; = (0,1) for i € U with |U| = 1£4n. Note that 1nstances P and Q
are very similar, except for the locations of the clusters on the x-axis and the number of points
on each cluster. Given again o(Q) = (0,1) and f(Q,6 = (0,0),c) = (0,0), we have C*(0(Q),Q) =

2
v/ (};i) and C"(f(Q,0=(0,0),¢),Q) =*5°n" hc + <n, leading to a robustness of

l1—c 1—c 14c

S 27 12

(@o=(00.0= L2 s
1+<1+c)

We can now combine Lemma 2 and Lemma 3 to obtain the consistency and robustness bounds
of the CMP mechanism with respect to the utilitarian objective.

THEOREM 6. The CMP mechanism with parameter ¢ € [0,1) is ~ 2CQC+2-consistent and 7v2i2+2-
robust for the utilitarian objective.

Proof. We first argue the consistency guarantee. From Lemma 2 we know that for any confidence
value c € [0, 1) and given any instance, we can always find an instance with weakly worse consistency
in PE, (c), i.e., amultiset P such that o(P) = (0,1), f(P,6=o0(P),c) = (0,0) and there exist z € Rx
such that p € {(0,1),(x,0),(—=z,0)} for all p € P. Note that for any value of z, the consistency is
maximized when the number of agents on (0, 1) is maximized. To see this, note that each agent on
(0,1) suffers no cost according to the optimal solution but a cost of 1 according to the mechanism
output, whereas each agent on (z,0) or (—z,0) suffers a cost of v/2?+1 >z according to the
optimal solution and a cost of = according to the mechanism output. Since f(P,6=o(P),c) = (0,0)

and there are cn predicted points on (0, 1), the number of agents on (0,1) in the worst case should

_ CU(f(P,6=0(P),c),P) =

‘n l—c+(1+c)r

CPLE) T VT @rovite
Taking the first derivative with respect to x we get:

do l4c—(1—-o)x

dr (14c¢)(14+22) VI +a?

. Notice that the denominator of “ is always positive and for any
1+C , the numerator is negative, we therefore have

Solving 42 = 0 we get that z = 1+¢

T < 1+C the numerator is posmve and for any x >
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that o is maximized at « = 1*¢. Since the agents on (x,0) and (—z,0) are equidistant from both

o(P) and f(P,6=o0(P),c), the instance is identical to the lower bound instance P in Lemma 3.
Therefore we have

2c¢2+2

1+c °

The proof for the robustness guarantee is similar. From Lemma 2 we know that for any confi-
dence value ¢ € [0,1) and given any instance, we can always find an instance with weakly worse
robustness in PE_(c), i.e., a multiset of points @ such that o(Q)=(0,1), f(Q,6=1(0,0),c) = (0,0)
and there exist z € R>q such that ¢ € {(0,1), (,0),(—x,0)} for all ¢ € Q. Note that,by the exact
same reasoning as for consistency, for any value of z, the approximation ratio is maximized when
the number of agents on (0,1) is maximized. Since again f(Q,6 = (0,0),¢) = (0,0) and there are
cn predicted points on (0,0), the number of agents on (0,1) in the worst case should be £<n. We
can then write the robustness as follows:

C'(f(Q,0=(0,0),0),Q) *Fn-z+Fn l+ct+(l—c)

a=r(P,6=0(P),c)=

PETT00Q0Q) LIz (—oviie
Taking derivative with respect to  and setting it to 0 we get
g l—c—(1+0o)x

@_(1—0)(1”2)\/1”2'

Solving ;iz =0 we get that T = 15 always positive and for any

T <47,
that 3 is maximized at o = {7¢. Since the agents on (x 0) and (—z,0) are equidistant from both
o(Q) and f(Q,6=(0,0),c), the instance is identical to the lower bound instance @) in Lemma 3.
Therefore we have

2¢2 42

B=r(Q.0=(0,0).0) =

4.2. Optimality of the mechanism. The CMP mechanism allows us to achieve consistency
better than v/2, trading it off against robustness. Our next result shows that the trade-off achieved
by CMP is optimal.

THEOREM 7. For cmy deterministic, strategyproof, and anonymous mechanism that guamntees

Y Y= f07’ the

a consistency of 1+C
utilitarian objective.

for some constant c € (0,1), its robustness is no better than

Proof. We first note that any mechanism f with a bounded robustness needs to be unanimous.
If not, then its cost would be positive, while the optimal cost is zero, by placing the facility at
the same location as all the points. Therefore, we can restrict our attention to mechanisms that
are unanimous. By Theorem 1, we know that any deterministic, strategyproof, anonymous, and
unanimous mechanism in our setting takes the form of a generalized coordinatewise median (GCM)

mechanism with a set P’ of n — 1 constant points. The rest of our proof first shows that in order to

achieve a consistency of fi” for some constant ¢ € (0,1), the set of n — 1 points P’ used by the

GCM mechanism would need to satisfy the following condition: the number of points in P’ that
are weakly above 0 (i.e., their y-coordinate is at least y;) need to be at least ¢n more than the
number of points in P’ that are strictly below it (i.e., their y-coordinate is less than y;). Then, we

show that if P’ satisfies this condition, then the robustness is no better than 302;2

Consider any GCM mechanism that uses a set P’ of n — 1 points and let g, be the number of
these points that are weakly above 6 (i.e., their y-coordinate is at least y,) and g, be the number of
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points that are strictly below 6 (i.e., their y-coordinate is less than y;). Assume that g, — ¢, = kn
where k < ¢ and let € > 0 be a constant such that the maximum y-coordinate among the ¢, points
that are strictly below the prediction is y; — €. Then, consider the instance where the set of actual
agent points P has (1— k:?n/ 2 points at 0, and the remaining (14 k)n/2 points are divided equally
between points (2, — (111126, ys—€) and (x5 + (111126, Y, — €)?. Using the same steps that we used in
the proof of Lemma 3, we can verify that the optimal facility location in this case would be at 6
(so the prediction is correct). However, the location where the mechanism places this facility has a
y-coordinate at most y, — €. This is because the number of constant and actual agent points (i.e.,
points in PU P’) whose y-coordinate is at most y; — € are ¢, + (14 k)n /2, while the remaining points
are ¢, + (1 —k)n/2. Using the fact that g, — ¢, = kn, the median with respect to the y-coordinate is

2 7/ 2¢2
at most y, — €. This leads to a consistency of fﬁ;z which is worse than 12i0+2 (since k < ¢ and

\/ 2c242

1+c 7

the latter is an decreasing function of ¢ on [0,1)). Therefore, to achieve a consistency of
the mechanism needs to have q, — g, > cn.

We now consider any GCM mechanism with g, — g, = kn where k > ¢ and show that its robustness

is going to be worse than ~ fi”. To verify this, consider the instance whose set of actual agent

points P contains (1 + k)/2 points on (x5, ys — 1) and the remaining (1 — k)/2 points divided
equally between (z,; — %’;, Ys) and (zs+ %’;, Ys). Using the same steps that we used in the proof
of Lemma 3, we can verify that the optimal facility location in this case would be at (x5, y; — 1)
(so the prediction is incorrect), but the outcome of the mechanism will have a y coordinate of at

least y;, leading to a robustness of ~ fiH, which is worse than ~ 120;?2 (since k > ¢ and the latter
is an increasing function of ¢).

Therefore, the only way to achieve the two desired guarantees is to have ¢, — ¢, = cn which
(running through the same argument and replacing k with ¢) gives you consistency no better than
V242 1 nd robustness no better than Y2<+2.

14c 1—c

4.3. Approximation as a function of the prediction error. We extend the consistency
and robustness results for CMP to obtain an approximation ratio as a function of the prediction

vV 2¢242

1+c

error 7. This approximation gracefully degrades from the consistency bound when n=0 to

\/ 2¢24-2

1—c

LEMMA 4. Given a set of points P and two predictions 6 and o, let f(P,0) and f(P,0) be the

respective facility locations chosen by the CMP mechanism. Then, the distance between these two
facility locations is at most the distance between the two predictions, i.e.,

d(f(P,0), f(P,0)) < d(0,0).

Proof. Let (z7,y7) = f(P,0) and (zf,y7) = f(P,0) be facility locations returned by the CMP
mechanism given predictions 6 and 0, respectively,and let dr; = |z; — x| and dy; = [y; — y;| be
the difference of their x and y coordinates. Similarly, let dzx, = |z, — x5 and dy, = |ys — ys| be the
corresponding differences for the coordinates of the two predictions. To prove this lemma, we argue
that dxy < dzx, and dy; < dy,, implying the desired inequality, since

d(f(P,0), f(P,6)) = \/da?+dy? < \/da2+dy2 = d(6,6).

the robustness bound

as a function of 7.

2 We assume kn is a multiple of 4 to avoid integrality issues. If kn is not multiple of 4, we can modify the instance
such that there are [(1—k)n/2] agents at 6 and the remaining agents are divided between the given two points such
that each point has at least one agent. It is easy to verify that the optimal facility location would be at 6 and the
mechanism output would have a y-coordinate at most ys — €. A similar argument also holds for robustness.
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We first focus on the z-coordinate and, without loss of generality, we assume that z, < x; and
Ys < s, 1.e., that the first prediction is weakly on the left and bottom of the second one. When
the prediction is 0, we have at least half points with z-coordinate smaller than or equal to z ;. As
we move the prediction to 6, we move some points by at most d,,, we have at least £+ 1 points
with z-coordinate smaller than or equal to z; +d,,. Thus, we have d,, = |df —dj| <d,,. Using the
same sequence of argument for the y-coordinate implies that d,, <d,, and concludes the proof.

THEOREM 8. The CMP mechanism with parameter c € [0,1) achieves a min{ v fsz +1n, Y fiﬂ }_

approximation, where n is the prediction error, for the utilitarian objective.

Proof. Theorem 6 already shows that the worst-case approximation of the CMP mechanism is

\/202-1-2 \/202+2 +77

at most Y5——, so we just need to prove that it is also at most Y

We first note that the error 7 in the prediction is equal to the normalized distance between the
prediction and the actual optimal facility location, i.e., d(6,0)/C"(o, P), so d(6,0) =n-C"(o,P).
Using Lemma 4 and substituting 6 with the actual optimal facility location o, i.e., 6 =0, we get

d(f(P,é,C),f(P,O,C)) < d(é’o) = H'Cu((%P)- (2>

By Theorem 6, we also know that the CMP mechanism is ~ 2626+2—consistent, ie., C“(f(P,o,c),P)<

[
v fij C"(0, P). We can therefore conclude that

CH(f(P,6,0),P) == 3 d(pi, /(P,6,0)

i€[n]
<3 W (P.0.e) + A (P.0,0). f(Po6.)
< C;?[]?%P, o0,¢),P)+n-C"o0,P)

< <\/2c2+2

) o)

where the first equation is by definition of the utilitarian social cost, the first inequality uses the
triangle inequality, the second inequality uses Inequality (2) and the definition of the utilitarian
social cost, and the last inequality uses the consistency guarantee of the mechanism, i.e., that

C"(f(P,o,c), P) < @CU(O,P).

4.4. Proof of Lemma 2. In this section we prove Lemma 2, which shows that for any
confidence parameter ¢ there exists a worst-case multiset of points P for the performance of CMP
within the family of Clusters-and-Opt-on-Axes (COA) instances, defined in Definition 1. At a high
level, we argue that for any multiset of points P, there exists a multiset of points @ in COA
such that the CMP mechanism achieves an approximation ratio on @ that is no better than the
approximation it achieves on P. We construct () via a series of transformations that starts at an

arbitrary P and moves points in a manner that weakly increases the approximation ratio.

This high level approach is similar to the one used by [14] to obtain a /2 nnjf l—approximation

for the coordinate-wise median mechanism in R? and the special case where n is odd; the analysis of
several of our lemmas is similar to the analysis of this previous result (e.g., Lemmas 12 and 14), but
a crucial difference in our analysis is the impact of the prediction on the mechanism. In particular,
as we move points to transform an instance into another instance, this can end up moving the
optimal location as well as the outcome of the CMP mechanism in non-trivial ways. To address
this issue we introduce multiple new ideas (e.g. Lemmas 9, 11, 15, and 16).
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FIGURE 4. Overview of instance transformations used to prove Lemma 2.

We now provide an overview of the series of transformations (see Figure 4 for an illustration).
In Section 4.4.1, we define the family of CA instances, where the points are all located at four
clusters, one on each half-axis, and then the family of OA instances, where the points and the
optimal location are all located on one of the axes. In Section 4.4.2, we introduce some helpful
lemmas. In Section 4.4.3, we show that an arbitrary instance P can be transformed into either
an instance in CA or an instance in OA (without improving the approximation ratio). We then
show in Section 4.4.4 that an instance in OA can be transformed to an instance in COA. The
main difficulty is then to transform an instance in CA to an instance in COA, which we do in
Section 4.4.5. Finally we combine all these steps to prove Lemma 2 in Section 4.4.6.

Throughout this section, we consider instances that consist of a multiset of points P and a
prediction 6 such that the output of CMP is at the origin and the optimal location lies weakly
in the top right quadrant. To verify that this is without loss of generality, note that given any
instance, if we move all the points and the prediction in the same direction and by the same
distance, we get an instance where both the CMP mechanism and the optimal facility location
have also moved along this same direction and by the same distance. Therefore, the approximation
factor is invariant to such changes. As a result, given any instance, we can always generate a new
instance such that the output of CMP is at the origin, without affecting the approximation factor.
Similarly, given any instance, the points can be reflected across the horizontal and/or the vertical
axes to generate a new “flipped” instance such that the optimal location lies weakly in the top right
quadrant without affecting the approximation factor (e.g., if it lies in the bottom left quadrant
originally, we can first reflect across the horizontal axis and then the vertical one). We also assume
that the prediction is such that 6 = (0,0) for the robustness analysis. To verify that this is without
loss of generality as well, first note that we have already restricted our attention to instances such
that the output of the mechanism is at the origin, and then observe that changing the prediction
to also be at the origin does not change the output of the CMP mechanism (if the coordinatewise
median of PU P’ is the origin when 6 # (0,0), it will remain the coordinatewise median if we let
0=(0,0)).This statement is also implied by Lemma 5. Therefore, this does not affect the outcome
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of the mechanism and, since it also does not affect the optimal facility location, the robustness
remains the same.

4.4.1. The CA and OA families. We define the CA and OA families of points P. Let
A, ={(2,0):2>0} and A7, = {(x,0) : 2 >0} be the set of all points on the positive and strictly-
positive x-axis. We also define A_,, A<, A,,, A7 , A_,, A< similarly. We define CA to be the
family of instances of points P that satisfy multiple useful properties, the most important of which
are that the points are all located at four clusters, one on each half-axis and that the optimal
location is not on an axis. We denote these families for the consistency and robustness analysis by
PE (c) and PE(c) respectively. Note that these two families are different since, for the consistency
analysis, the prediction is at 6 = o, for the robustness analysis, the prediction is at 6 = (0,0).

DEFINITION 2. Consider, for some confidence ¢, and prediction 6, the family of multisets of
points P s.t.

1. Output at origin: f(P,06,c)=(0,0),

2. Opt in top-right quadrant: y,(P) > z,(P) >0,

3. No move towards opt: for all p; € P and e € (0,1], f((P-;,p; +€(o(P) —p;)),0,¢) # f(P,0o,c),
4. There exists x1,Z2,y1,Yy2 > 0 such that:

(a) Clusters on axes: for all pe P, p € {(—x1,0), (z2,0),(0,—y1),(0,92),0(P)},

(b) Less points in left: [{pe P:pe A=} <|{peP:pec A7, U{o(P)}}|,

c) Less points in bottom: [{pe€ P:pe A< }|<|{pe P:p€ A7, U{o(P)}}|,

(d) z-clusters equidistant from opt: if (—zy,0), (z2,0) € P, then z, 4+, = 23 — z,, and

(e) y-clusters equidistant from opt: if (—y;,0), (y2,0) € P, then y, +y; = Y2 — Yo.

Let PS(c) and PE(c) be this family when 6 = o(P) and 6= (0,0) respectively. These families are
called the Clusters-on-Axes (CA) families for consistency and robustness.

We define OA to be the family of multisets of points P such that all the points are on one of
the two axes (not necessarily in clusters) and the optimal location is on one of the axes (without
loss of generality, the +y half axis). The main difference between the CA and OA families is the
location of the optimal location, either on an axis or not.

DEFINITION 3. Consider, for some confidence ¢, and prediction 6, the family of multisets of
points P such that (1) Output at origin: f(P,6,c) = (0,0), (2) Opt on +y axis: z,(P) =0, y,(P) >0,
and (3) Points on axes: for all pe P, pe A, UA,. Let PS(c) and PE(c) be this family when
0=o0(P) and 6= (0,0) respectively. These families are called the Optimal-on-Axes (OA) families
for consistency and robustness.

4.4.2. Helper Lemmas. The following lemma from [14] states that moving a point either
away or towards the optimal location (without going past it) does not change the optimal location.

LEMMA 5 ([14]). For any n points P and i € [n], if p; # o(P) and p; € {o(P)+t(p; —o(P))|t €
RZO}7 th’en O(Pfiapg) = O(P)

The next lemma uses Lemma 5 to show that moving a point towards the optimal location strictly
worsens the approximation ratio if this movement does not cause the mechanism’s output to change
and if this output is not optimal. This lemma is used to move points at arbitrary locations to one
of the axes.

LEMMA 6. For any n points P, prediction 6 and confidence c € [0,1), i € [n], p; € (p;,0(P)], if
f(P,é,C) = f((P,i,p;),é,C) and T(Pvévc) > 1} then r((Pfiap/i)v(% C) > T(P7 6) C)‘

Proof. Let Q = (P_;,p}). From P to @, we only move one point towards o(P) (but not going
past it) without changing the output of the mechanism. By definition, f(P,06,c)= f(Q,0,c), and
o(P)=0(Q) by Lemma 5.
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Since the o, f locations are not changed, the amount of decrease in the social cost with respect to
the optimal location is d(p;, p;) > 0. If the social cost of the mechanism’s output does not change or
increase, then we have r(Q, 6, c¢) > r(P, 0, c). If the social cost of the mechanism’s output decreases,
then the amount of decrease is |d(f(P,0,c),p.) —d(f(P,0,c),p;)|. By triangle inequality, d(p;,p}) >
|d(f(P,0,c),p;) —d(f(P,o,c),p;)|- This means that the decrease in social cost with respect to the
optimal location is larger than or equal to the decrease with respect to the mechanism’s output
location. If 7(P,0,c) > 1, then we have (@, 6,c) > r(P,0,c).

The next lemma uses the convexity of the distance function to show that if two points move
closer to each other, then the sum of their distance to a third point decreases.

LEMMA 7. Consider three distinct points pi,pa, and ps, then for any e € (0,1), d(p1,p3) +
d(p2,ps) > d(py + €(p2 — p1),p3) +d(p2 + €(p1 — p2),p3). Moreover, if p1,p2, and ps are not collinear,
d(p1,p3) + d(p2,p3) > d(p1 + €(p2 — p1),p3) + d(p2 + €(p1 — p2), p3)-

Proof. Note that d(p; +€(p2 —p1),p3) =d((1 — €)p1 + €p2, p3) < (1 —€)d(p1,p3) + €d(p2, p3) where
the inequality is by the convexity of the distance function and is strict if p;,p,, and ps3 are not
collinear. Similarly, d(ps + €(p1 — p2),p3) < (1 —€)d(p2, p3) + €d(p1, p3) and we conclude that d(p; +
€(p2—p1),p3) +d(p2 +€(p1 — p2), p3) > d(p1,p3) +d(p2, p3) (with the inequality being strict if p,ps,
and p3 are not collinear).

4.4.3. The worst-case instance is in CA or OA. The main lemma in this subsection
shows that an arbitrary instance of a multiset P can be transformed into either an instance in
CA or an instance in OA without improving the approximation ratio of CMP on that instance
(Lemma 10).

We first show that if two points are at different locations on the same half-axis and the optimal
location is not on an axis, then there is an instance () with a strictly worse approximation. This
lemma is used to obtain the clusters on axes property 4.a. for the CA family.

LEMMA 8. For any points P and confidence c € [0,1) s.t. f(P,6(P),c)=(0,0), if there are two
non-overlapping points p;,p; € P, p; # p; that are on the same half axis, i.e., Ay, A_,, Ay, or
A_,, and z,(P),y,(P) >0, then there exists points Q such that r(Q,6(Q),c) > r(P,6(P),c) with
predictions 6(P) = o(P) and 6(Q) = o(Q). This inequality also holds with predictions 6(P) = 6(Q) =
(0,0).

Proof. Assume p;,p; € A, are two non-overlapping points on the +z-axis, i.e., p; = (x;,0) and
p; = (z;,0) with z; > z; > 0. Let @ be the instance obtained by moving p; and p; towards each other
by a distance of €(z; — ;) where € is sufficiently small so that the optimal location remains strictly
in the top-right quadrant, i.e., z,(Q),y,(Q) > 0. Since p; and p; are on the same half-axis, they
remain on this same half-axis when we move them towards each other. Since p; and p; remain in
the same half-axis and the optimal location remains in the same quadrant, we have that the output
of the mechanism does not change, i.e., f(P,6(P),c) = f(Q,6(Q),c) both when the predictions are
6(P)=o0(P) and 6(Q) = o(Q) and when they are 6(P)=06(Q) = (0,0).

Since p; has distance to the origin which increases by € and p; has distance to the ori-
gin that decreases by € and since the output of the mechanism does not change, we have
C*(f(Q,0(Q),c),Q)=C"(f(P,6(P),c),P) both when the predictions are 6(P) = o(P) and 6(Q) =
0(Q) and when they are 6(P)=4(Q) = (0,0).

Since o(P) is not on one of the axes, p;, p;, and o(P) are not collinear. By Lemma 7, we get
that d(pi,o(P)) +d(p;,0(P)) > d(p; + €(p; — pi),0(P)) + d(p; + €(p; — p;),0(P)). This implies that
C*(o(P),P) > C"(o(P),Q) = C*(0(Q),Q). Since C"(f(Q,0(Q),c),Q) = C*(f(P,6(P),c),P) and
C"(0(Q),Q) < C*(o(P),P), r(Q,6(Q),c) > r(P,6(P),c). The cases where p; and p; are both on
one of the three other half axis follow identically by symmetry.
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The next lemma shows that if the points are on the axes and the optimal location, if there are
at least as many points with xz-coordinate that is negative than points with x-coordinate that is
positive, then there is an instance () with a strictly worse approximation. The same property holds
for the y-coordinate.

LEMMA 9. For any points P and confidence c € [0,1) such that f(P,o(P),c) = (0,0), y,(P) >
zo(P) >0, and pe A, UA, U{o(P)} for all pe P, if either {pe P:pec A, }|>{peP:pc
A7, U{o(P)}} or {pe P:pc A< }| > {pe P:pc A7, U{o(P)}}|, then there exists points Q such
that 7(Q,06(Q),c) > r(P,6(P),c) with predictions 6(P) = o(P) and 6(Q) = o(Q). This inequality
also holds with predictions 6(P) =6(Q) = (0,0).

Proof. Assume P ={py,...,p,} is a multiset of n points that satisfies the lemma assumptions
and is also such that [{pe P:pc A< }| > {pe P:pec A7, U{o(P)}}|. Note that the points are
either on the axes or on the optimal location, which is in the top-right quadrant. We consider
the instance Q ={qi,qa, ..., ¢, } such that if p, € A,, then we have ¢; =p; and if p; ¢ A,, we have
qi = pi — (€,0) for a small enough e such that the optimal locations remains in top-right quadrant
(Yo(P),x,(P) > 0) and such that ¢ <min;p,¢a, |2;].

Since o(Q) stays in the top-right quadrant as o(P) and the points ¢; remain on the same half-
axes as p;, we have f(Q,6(Q),c) = f(P,6(P),c) = (0,0) both when the predictions are 6(P) =
o(P),6(Q) =o0(Q) and when they are 6(P)=0(Q) = (0,0).

We now consider the location ¢* = o(P) — (¢,0). First, note that 3. ., . pd(pi,o(P)) =
> G Ay, 0 €Q d(q;,q*) because every point that is not on the y axis has been moved to the left by
e, and ¢* is also obtained from moving o(P) to the left by e. Additionally, note that we have
D pieaypep Ui 0(P) >0 o4 1cqd(di,q") because the points on the y axis are not moved while
¢* moves closer to the y axis. Therefore, we obtain that C*(¢*,Q) < C*(o(P), P), and we have
C*(0(Q), Q) < C*(¢",Q) < C*(o(P), P).

Now we look at the social cost with respect to the mechanism’s output location, which is the
same for P and Q). Note that there is the assumption that [{pe P:pe A< }[>|{peP:pe A7, U
{o(P)}}]. We let n<, = [{pe P:p€ A=,}|, n7, = [{p€ P:pe A7,} and n, = [{p€ P:p—o(P)}.
Then we have n=, >nz_ +n,. For the points on the y axis, those points do not move at all when
we create () from P, so their social costs do not change. On the left hand side of y axis, we have
increased the social cost of the mechanism by n<_e. On the right hand side of y axis, the social
costs of the points are decreased by at most (n7, +n,)e because the movement of each point to the
left by an € distance can improve the mechanism’s cost by at most e. Therefore, because we have
n<, >n7, +n,, the social cost with respect to the mechanism’s output location does not decrease,
so we have C"(f(Q,0(Q),c),Q) > C*(f(P,6(P),c), P). Combined with C*(0o(Q),Q) < C*(o(P), P),
we get that 7(Q,0(Q),c) > r(P,6(P),c) both when the predictions are 6(P) = o(P),o(Q) = o(Q)
and when they are 6(P) = 6(Q) = (0,0). By symmetry, the case where [{p€ P:pec A< }| > [{p€
P:pe A7, U{o(P)}}| follows from the same argument.

We combine Lemma 8 and Lemma 9 to obtain that the instances for which CMP obtains the
worst consistency and robustness guarantees are in the CA and OA families.

LEMMA 10. For any confidence ¢ € [0,1), let a = max r(P,o(P),c) and let B =
PePS,(c)uPE,(c)

max r(P,(0,0),c). CMP with confidence c is a-consistent and [3-robust.
PePE (c)UPL(c)

Proof. Let P and 6 be an arbitrary instance of a multiset of n points and a prediction and let ¢ €
[0,1). We assume without loss of generality that f(P,0,c) = (0,0) and y,(P) > z,(P) > 0. First, note
that since f(P,0,c) = (0,0), we also have that f(P,(0,0),c)=(0,0). Thus, r(P,06,c) =r(P,(0,0),c).
If there exists a point p € P such that p ¢ A, UA, U {o(P)}, then p can be moved towards o(P)
without changing the outcome of the mechanism. Thus, by Lemma 6, either r(P,6,¢) =1 or there
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exists @ such that r(Q,6(Q),c) > r(P,o,c) both when the predictions are 6(Q) = o(Q),06 = o(P)
and when they are 6(Q) = o6(P) = (0,0).

We now assume that p € A, U A, U {o(P)} for all p e P. If z,(P) =0, then note that p €
A, UA,U{o(P)} =A,UA, for all pe P*. Thus P € PS(c) when 6 =0(P) and P € PE(c) when
6= (0,0). We now assume that x,(P) >0, so y,(P) > z,(P) > 0. If there is a point p that can be
moved towards o(P) without changing the outcome of the mechanism, then, again, by Lemma 6,
either 7(P,6,c) =1 or there exists @ such that r(Q,0(Q),c) > r(P,0,c). Next, we consider the five
subproperties of property (4) for the CA family.

Assume that there is no xy,22,y1,¥2 > 0 such that p € {(—z1,0), (x2,0),(0,—v1),(0,y2),0(P)}
for all p € P. Since pe A, UA, U{o(P)} for all p € P, there are two points p;,p; on the same
half-axis and by Lemma 8, there is an instance @) such that r(Q,06(Q),c) > r(P,0,c) both when
the predictions are 6(Q) = 0(Q),6 = o(P) and when they are 6(Q) = o6(P) = (0,0). Next, assume
that p € {(—z1,0), (22,0),(0,—y1),(0,y2),0(P)} for all pe P. If {pe P:pe A= }| > |{peP:pc
A7, U{o(P)}} or {pe P:pe A< }| >[{pe P:pe A7, U{o(P)}}], then by Lemma 9 there is an
instance @ such that r(Q,o6(Q),c) > r(P,6,c) both when the predictions are 6(Q) = 0(Q),6 = o(P)
and when they are 6(Q) = o(P) = (0,0).

For the fourth subcondition, assume that there is a pair of points p; = (—x;,0) € P and p; =
(2,0) € P such that x, + x; # x5 — z,. Without loss of generality, we assume z, + 21 < T2 — x,.
Then we construct an instance () by moving this pair of points in P to the left by e. That is, we let
¢; = (—z1 —€,0) and ¢; = (z2 —€,0) for € small enough so that the optimal location remains in the
top right quadrant, and let g, = py for any k # ¢, 5. This improves the optimal cost. Meanwhile, the
mechanism’s output and social cost remain unchanged. Therefore, we have found an instance @
such that 7(Q,6(Q),c) > r(P,0,c) both when the predictions are 6(Q) = 0(Q),6 = o(P) and when
they are 6(Q) =o(P) = (0,0). The fifth subcondition follows identically by symmetry.

We conclude that for any instance P and prediction 6 = o(P) such that P ¢ P (c) UPS(c), we
have found an instance @ such that 7(Q,0(Q),c) > r(P,o(P),c), i.e., Q has a worse approximation
ratio. Thus the worst-case instance P for the consistency of CMP is such that P € P (c) UP(c),
which implies that o = maxpepc (oupg ) (P 0(P),c). Similarly, for any instance P and prediction
o such that P ¢ P (c)UPE(c), we have found an instance @ such that r(Q, (0,0)c) > r(P,(0,0),c) =
7(P,0,c), thus f=maxpepr oupk e 7(P;(0,0),c).

4.4.4. The worst-case instance in OA is also in COA. We show that the worst-case

instance in OA is no worse than the worst-case instance in COA for the consistency and robustness
of CMP.

LEMMA 11. For any confidence c € [0,1) and points P € PS (c), there exists Q such that
either r(Q,0(Q),c) > r(P,o(P),c) or Q € PS (c) and r(Q,0(Q),c) > r(P,o(P),c). Similarly, for
any P € PE(c), there exists Q such that either 7(Q,(0,0),¢) > r(P,(0,0),c) or Q € PE (c) and

(@, (0,0),¢) > r(P,(0,0),c). coa

Proof. Let ¢ € [0,1) and consider an instance P € PS (¢) with n points, so y,(P) > 0 and
peA,UA, forall pe P. Let d, = Z(xi,O)GPﬂAI |z;| /| P N A.| be the average distance of the points
on the A, axis from the origin. Consider the instance @ = (¢i,...,q,) where the points p; € PN A,
are replaced by two clusters, one at (—d,,0) and one at (d,,0), each containing |P N A,|/2 points
¢;. For the remaining points p; € PN A, \ {(0,0)}, we maintain their positions and set ¢; = p;.

Since the points are perfectly symmetric with respect to the y axis, we have z,(Q) =0 =
Z,(P). Since the y-coordinate of the points are identical in P and ) and since z,(Q) = z,(P),
we also have y,(Q) = y,(P). Thus, o(Q) = o(P). Let f(P,o(P),c) = (x;(P,o(P),c),ys(P,o(P),c)),
and £(Q,0(Q), ) = (2/(@:0(Q), ), yr(@>0(Q), ). Since 7,(Q) =0 and |{(z:,y:) € Q : 2, < 0} =
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H(zi,y:) € Q:x; >0}, 24(Q,0(Q),c) =0, and this also holds with 6(Q) = (0,0). Since the y-
coordinate of the points are identical in P and @ and since y,(Q) = y.(P), y;(Q,0(Q),c) =
y¢(P,0(P),c). Thus, f(Q,0(Q),c)= f(P,o(P),c)=(0,0), and this also holds with 6(Q) = (0, 0).

In addition, the social cost of the mechanism does not change, because the average distance of the
points on the z axis from the origin remained the same, d,. On the other hand, using the convexity
of the distance measure, the optimal social cost weakly improves, so 7(Q,0(Q),c) > r(P,o(P),c),
and this is also the case with 6(Q) = (0,0). If y =y,(Q) for all (0,y) € @, then by scaling @ to Q’
so that y,(Q") =1, we get Q' € P, (c) such that r(Q’,0(Q’),c) > r(P,o(P),c).

Since z,(Q) = 0, if there exists (0,y) € Q with y # y,(Q), this point can be moved towards y,(Q)
by an arbitrary small € and this would strictly worsens the approximation factor (so there exists
Q' such that r(Q’,0(Q’),c) > r(P,o(P),c)) because it either improves both the social cost of the
mechanism and the optimal social cost by € or it improves the optimal social cost by € and worsens
the social cost of the mechanism by e.

Thus, we have shown that there exists Q' such that r(Q’,0(Q’),c) > r(P,o(P),c) or Q" € PE,(c)
and 7(Q’,0(Q"),c) >r(P,0(P),c). The analysis for P € P (c) follows identically.

4.4.5. The worst-case instance in CA is also in COA. In this subsection, we show that
the worst-case instance in CA is no worse than the worst-case instance in COA for the consistency
(Lemma 17) and robustness (Lemma 18) guarantees of CMP.

The next lemma shows that if we have an instance P in the CA family, then we can construct
another instance @ in the CA family without points on the —y half axis while weakly increasing
the approximation ratio, for both the consistency and robustness guarantees.

LEMMA 12. For any confidence c € [0,1), and points P € PS(c), there exists points Q such that
either 1(Q,0(Q),c) > r(P,o(P),c) or Q € PG(c), r(Q,0(Q),c) > r(P,o(P),c), and ¢ € A, UA,, U
{0(Q)} for all q € Q. Similarly, for any confidence c € [0,1), and points P € PE(c), there exists
points Q such that either r(Q,(0,0),c) >r(P,(0,0),c) or Q € PE(c), r(Q,(0,0),¢) > r(P,(0,0),c),
and g€ A, UA,,U{0o(Q)} for all g€ Q.

Proof. Let P € P& (c) be a multiset of n points. First of all, if pe A,UA,,U{o(P)} for all p € P,
then let Q = P and we are done. Now we consider the case where there is some p € P such that p ¢
A, UAL,U{o(P)}, which means that there exists p € P such that p € A< . Because P € P& (c), there
exist 1, xa,y1,y2 > 0 such that for all p € P, we have p € {(—x,,0), (22,0),(0,—y1), (0,42),0(P)}.
Additionally, we have {pe P:pec AS }| <|{pe P:pe A7, U{o(P)}| and that [{pe P:pe

I <HpeP:peA;,U{o(P)}}| from the definition of PS (c). We now create another instance
P* from P by moving one point (0,—y;) to (—y1,0) in P, and keeping all other points in P the
same. Note that the optimal location of P* can move elsewhere and it may or may not satisfy
Yo(P*) > x,(P*) > 0. But we can still show that f(P*,o(P*),c)= f(P,o(P),c)=(0,0).

Because f(P,o(P),c)=(0,0), we know that [{pe P:pc A7 U{o(P)}}| <[ 1+°)"] cn. There-
fore, {pe P:pec A=} <|{peP:pc A7, U{o(P)}}| < (@W —cn. Even if the the cn points on
the predicted location are now to the left of the y-axis in P*, we would still have |{p* € P*:p* €

S HAen <] HC)"] Thus, the xz-coordinate of the mechanism’s output location would still be zero
on P*. Using a similar argument and the condition of PS(c) that {pe P:pe A< }| <|{peP:pe
A7, U{o(P)}], we can show that the y-coordinate of the mechanism’s output location is still zero
in P*. Thus we conclude that f(P*,o(P*),c) = f(P,o(P),c) =(0,0), and C*(f(P,o(P),c),P) =
C(f(P,o(P),c), P*)=C"(f(P*,0(P%),c), P*).

Now consider the optimal location o(P) of the instance P, and note that y,(P) > z,(P) >
0 because P € PS(c). We have d((0,—y;),0(P)) > d((—y1,0),0(P)) because y,(P) > z,(P) > 0.
Therefore, we have C*(o(P*), P*) < C"(o(P),P*) < C*(o(P),P). We discuss two cases based on
whether the optimal location moves when we create P* from P.
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We first discuss the case where o(P*) # o( P). In this case, we would simply have C*(o(P*), P*) <
C"(o(P),P*) < C"(o(P), P) and that r(P*,0(P*),c) > r(P,o(P),c). Therefore, once the optimal
location moves, we can find an instance with strictly worse approximation ratio.

We now discuss the remaining case where o(P*) = o(P). Then, from the above we already have
that y,(P*) > z,(P*) >0 and that r(P*,o(P*),c) > r(P,o(P),c). If we further have y; # x;, then
there are points (—z1,0),(—y;,0) € P* and we can apply Lemma 8 on the instance P* to find
an instance @ such that 7(Q,0(Q),c) > r(P*,o(P*),c) > r(P,o(P),c). Otherwise, we have y; = x;.
In this case, because we are only moving a point from a cluster to another cluster, we have p* €
{(=x1,0), (x2,0),(0,—v1), (0,y2),0(P*)} for each p* € P*. Now the instance P* has satisfied the
first two properties of the CA family that f(P*,o(P*),c)=(0,0) and that y,(P*) > z,(P*) > 0. If
we do not satisfy property (3) of the CA family, then by Lemma 6 we can construct an instance
@ by moving some point p € P* towards o(P) without changing the mechanism’s output location
and achieve r(Q,0(Q),c) > r(P*,o(P*),c) > r(P,o(P),c). We now verify the five subproperties of
property (4) of the CA family. Since we just move one point from the cluster on the —y half axis
to the cluster on the —z half axis, all the five subconditions clearly hold true except for the second
one, which we will verify now. Because P € PS(c), we have that [{pe P:pe A<, }|<|{peP:pe
Az, U{o(P)}|. Therefore, after moving one point from the —y half axis to the —z half axis, we
would clearly have [{p* € P*:p* € A< }| < |{p* € P*:p* € A7, U {o(P*)}|. If we end up with an
equality, then we can apply Lemma 9 and find an instance Q) with 7(Q,0(Q),c) > r(P*,0(P*),c) >
r(P,o(P),c). Thus, the second subcondition is also verified. We then conclude that in this case
when o( P*) = o(P), either P* € PS(c) with r(P*,0(P*),c) > r(P,o(P),c), or we can find @ such
that r(Q,0(Q),c) > r(P,o(P),c). Therefore, if the optimal location doesn’t move, moving a point
from the —y half axis cluster to the —x half axis cluster will create a new instance again in the CA
family with weakly worse approximation ratio, or we can simply find an instance @ with strictly
worse approximation ratio. While the optimal location doesn’t move, we can iteratively move
points from the —y axis cluster to the —z axis cluster while weakly increasing the approximation
ratio, until we have no points to move on the —y axis, i.e. we end up with points Q € P (c),
r(Q,0(Q),c) >r(P,o(P),c), and g€ A, UA,,U{o(Q)} for all ¢ € Q. Therefore we have proved the
lemma when P € PS(c). If P € PE(c), the proof follows almost identically.

Using the above lemma, given an instance in the CA family, we can remove all the points that
are located on the —y half axis. The following lemma shows that for the consistency guarantee, if
an instance in the CA family does not contain any points on the —y half axis, then the number of
points on the —z axis is larger than or equal to the number of points at the optimal location.

LEMMA 13. For any confidence c € [0,1), consider P € P (c) such that pe A, UA,, U{o(P)}
forallpe P. Then, {peP:pcA_,}|>|{peP:p=0(P)}|.

Proof. Let ¢ € [0,1) and P € PS(c) be a multiset of n points such that pe A, U A, U {o(P)}
for allpe P. Let k=|{pe P:p€ A_,}|. Since P € P%(c), moving any p € P towards o(P) would
move f(P,o(P),c). Thus, {peP:pe A_,UA  }=|{peP:pcA ,UA }=[1+c¢)n/2] and
we get that {pe P:pe A }|={peP:UA}=[(14+c¢c)n/2] —k and [{pe P:p=o(P)}| =
n—2([(1+c¢)n/2] — k) —k=n—2[(1 + c)n/2] + k. Finally, note that n — 2[(1 4+ ¢)n/2] + k <
n—2n/2)+k=k=|{pe P:pe A_,}| and we get the desired result.

Consider again an instance P in the CA family without any points on the —y half axis for the
consistency guarantee. Lemma 14 shows that we can convert P to an instance @ in the CA family
with weakly worse approximation ratio and points on either the z-axis or the 4y half axis.

LEMMA 14. For any confidence c € [0,1) and points P € PS(c) such thatpe A,UA,,U{o(P)}
for all p € P, there exists points Q such that either r(Q,0(Q),c) > r(P,o0(P),c) or Q € PS(c),
H(Q,0(Q),) = r(P,0(P),c) and g€ A, UA., for all g€ Q.
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Proof. The main idea is that we can move one point from o(P) to the +y axis, while also
moving one point from the —x axis to the +z axis. The new instance will either have a strictly
worse approximation ratio, or the ratio is weakly worse but the instance remains in the CA family,
so we can apply this paired movement iteratively until there are no points on the optimal location
(which means all points are on the axes). Also, note that by Lemma 13, we have [{p€ P:p¢€
A_.}| > {pe€ P:p=o(P)}|, so there are enough points on —z axis for us to perform the paired
movement and remove all points on the optimal location.

We now formalize the above argument. Let P = {pi,...,p,} € P%(c) such that pe A, UA,, U
{o(P)} for all p € P. By Lemma 13 we have [{pe P:pc A_,}| > |{p€ P:p=o0(P)}|. To simplify
notation, we let x, = x,(P) and y, = y,(P). We now define another instance @ = {q,...,¢,} to be
the instance such that for some z >0 and i,,i5 € N, we have

e p;, =(—2,0) and ¢;, = (z + 2z,,0),
e p,, =0(P)=(z,,y,) and ¢;, = (0, /22 +y2), and
o for i #1110, p; =q;.

We will now argue that either @ € PS(c) with 7(Q,0(Q),c) > r(P,0(P),c) and g€ A, UA,,, for
all ¢ € Q), or we can find an instance with strictly worse approximation ratio than that of P.

We first claim that f(Q,0(Q),c) = (0,0). Since P € P%(c), we have f(P,o(P),c) = (0,0),
Yo(P) > z,(P) > 0, and that there exist z1,xq,y;1,y2 > 0 such that for all p € P, we have p €
{(=x1,0), (22,0),(0,—y1),(0,42),0(P)}. Additionally, we have [{pe P:pe A<} <|{peP:pe€
A7, U{o(P)}}| and {pe P:pe A<} <|{p€ P:pe€ A7, U{o(P)}}|. This means that [{p =
(xp,yp) € P, <0} < |{p= (xp,yp) eP:xz,>0}< [(HC)"] — cn. Otherwise, after we count
the cn points at the predicted location o(P), the output location of the mechanism f(P,o(P),c)
will have a positive x-coordinate. Note that the instances P and @ only differ at iy,i,. If 0(Q)
stays in the top-right quadrant, then it’s clear that f(Q,o(Q),c) = (0,0). However, even if o(Q)
moves to the left of the y-axis, we have |{q = (z,,y,) € Q: 2, <0} +en< [%1 and clearly
also that |{¢ = (z4,y,) € Q:2,>0}| < (%] Thus, the algorithm’s output f(Q) must have its
r-coordinate equal to zero. By a similar argument using the fact that [{pe P:pec A< }[ <|{p€
P:pe A7, U{o(P)}} <] HC)"] cn, we can prove that f(Q,0(Q),c) has a y-coordinate equal to
zero as well. Therefore we conclude that f(Q,0(Q),c) = f(P,o(P),c)=(0,0), even if the location
of o(Q) can be different from that of o(P).

Next, we prove that 7(Q,0(Q),c) > r(P,o(P),c). Let A=3_,. d(p;, f(P,0(P),c)) and B =
> s d(pi,0(P)) =, ;, d(pi;o(P)). The approximation ratio of CMP with a correct prediction
(6 =0(P)) is at least as good as the approximation of the coordinatewise median mechanism
(without predictions), so at most /2. Thus, A+d(p;,, f(P,0(P),c)) <+/2B. Therefore,

[A+d(pi,, f(P,0(P),¢))ld(gi,, 0(P)) < V2Bd(gi,, o(P)). (3)
But we have y, > z,, so d(gi,,0(P)) < v/2x,. Therefore, from inequality (3) we have
[A+d(pi,, f(P,o(P),c))|d(qi,, 0(P)) < 2Bz, = B(d(qi,, f (P, 0(P),c)) — d(pi,, f(P,0(P),c))). (4)
Using inequality (4), we have

[A+d(pi,, f(P,0(P),c))][B +
= AB—{—Bd(p”’f(P,O(P 70)) + [A+d(pz1vf(P7O(P)7C))]d(Qi270(P))
< AB+ Bd(p;,, f(P,o(P),c)) +
o(P),¢))

)

) B(d(gi,, f(P,o(P),c)) = d(pi,, f(P,0(P),c)))
= AB+ Bd(qi,, f(P,0(P),c)

)B

~ (A dlgy, f(Po(P) e . (5)

d(giy, 0(P))]
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Note that A = Z#il d(pi, f(P,o(P),c)) = Z#Zl d(q:, f(Q,0(Q),c)) because f(P,o(P),c) =
f(Qa O(Q)v C) and d(pzzaf(Qa O(Q),C)) = d(q227f(Q>0(Q) )) Addltlonau}/v B= Zz #ig (p“O(P)) =
Diziy iy Wi 0(P)) +d(piy,0(P)) =22, ;. 4, A, 0(P)) + d(qiy, 0(P)) = 3, .;, d(gi, o(P)).

Thus, using inequality (5), we have

H(Po(P).c) = ‘4”@”’@ 0lP),))
A+d(%17 ( (P)7C))
= iy
_ Z'L;ézl (qu ( ( ),C))+d(qi1,f(Q,0(Q),C))
217512 d(Qw (P)) +d(Qi270(P))
Q)
¢(o(P), Q)
— C(0(Q),Q)
=7(Q,0(Q),¢). (7)

The inequality (6) is strict unless o(P) = o(Q). Therefore, if o(P) # o(Q) we immediately have
r(P,0(P),c) < r(Q,o0(Q),c), and we are done. Otherwise, we have o(P) = o(Q), so the instance
@ now already satisfies the first two properties of the CA family that f(Q,o0(Q),c) = (0,0) and
o(Q) =o(P) = (x,,y,) with y, > x, > 0. If property (3) of the CA family does not hold true, then
we have a point g € @ such that moving it towards o(Q) would not change the output location
of the mechanism. Then by Lemma 6 we can move g towards o(Q) to create an instance @’
with r(Q’,0(Q"),c) > r(Q,0(Q),c) > r(P,o(P),c), and we are done again. We now verify the five
subproperties of property (4) for the CA family. If the points are not clustered anymore on the
axes in @ after the paired movements, we can apply Lemma 8 to find an instance )’ such that
r(Q',0(Q"),c) >r(Q,0(Q),c) >r(P,o(P),c). Therefore, we can assume that the paired movements
move points from an existing cluster to another cluster, so the first, the fourth and the fifth
subconditions clearly hold true. The second and the third subconditions can also be verified easily
because we only reduce the number of points with negative z-coordinate, and we do not change the
number of points with negative y-coordinate. Therefore, we conclude that by performing the paired
movements, we can find an instance Q either with r(Q, 0(Q),c) > r(P,0(Q), c) or we have Q € P5(c)
with 7(Q,0(Q),c) > r(P,0(Q),c). We can then iteratively remove points from the optimal location
and will finally reach an instance @ € P (c) such that there are no points on the optimal location,
i.e. we find an instance Q € PS(c), r(Q,0(Q),c) > r(P,o(P),c) and g€ A, UA,, for all g € Q. Note
that we have enough points on the —z half axis to eliminate all points on the optimal location
because we have argued before that [{pe P:pe A_,}| >|{p€ P:p=o0(P)}|, and this concludes
the proof of the lemma.

The next lemma shows that for an instance P in the CA family with points only on the z-
axis and the +y half axis, there exists another instance in the COA family with weakly worse
approximation ratio than that of P for the consistency guarantee.

LEMMA 15. For any confidence ¢ € [0,1) and points P € PS(c) such that p € A, U Ay, for
all p € P, there exists either Q € PE (¢) such that r(Q,0(Q),c) > r(P,o(P),c) or Q' such that

r(@,0(@),¢) > r(P,o(P),c).

Proof. Let P € PS(c) be a multiset of n points such that p € A, UA,, for all p € P, so the points
are all on (—z,0), (0,2”), or (2/,0) for some z,z’, 2" > 0. Without loss of generality, by rescaling,
assume that x” =1. Let L, R,U C P be the points on ( x,0), (0,1), and (z',0) respectively Since
f(P,o(P),c)=(0,0), we have |L|=cn, |U|=|R| =
P for all i ¢ U, has ¢;=0(P) for all i € U.
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First note that by Lemma 5 we have o(Q) = o(P). By Lemma 3 we know that for any ¢ € [0,1)
there exists an instance @’ such that 7(Q’,0(Q’),c¢) > ~ 2 Ifr(P o(P),c) <~ 2742 , then we have
(

e 1+c

r(Q',0(Q"),c) >r(P,o(P),c). Now assume r(P,o(P), ) > V2242 o Ay denote the cost decrease
of the algorithm, ie., Ay = C*(f(P,0(P),c),P)) — C*(f (Q, (Q), ¢),Q), similarly, we let A,
C"(o(P),P)) — C*(0(Q),Q). Showing that r(Q,o(Q),c) > r(P,o(P),c) is equivalent to Showing

that fsz — % > 0. To simplify the presentation of the lemma, we let (1 —y,) denote the points

movement on y—(z;xis and A(1 —y,) denote the points movement on z-axis. Then

1-c 1-c
Af—?n-)\(l—yo)—cn)\(l—yo)+Tn(1—yo)

1—-c
AL =40))? + (1= 40)? = —5—nV1+ X (1 ~y,)
Let g(e,\) = Y2242 A _ V242 (1-8oai(o)

-1 = . Taking the first and second derivative w.r.t A

14+c¢ Ao 1+c (lic)\/lJr)\Q
we get
dg cA—A+1-3c and @__—2&% + 222 —|—9C£L‘—313+C—1
dx  (1-c)(X+ 1) VA +1 X’ (—c+1) (a2 +1)8

Solving 42 = 0 we get that A= 1=3¢ If ¢ > %, we have A <0 and since second derivative at \ = =3¢

is positive we get that for any ¢ > 3, g(c, )\) is minimized at A = 0. Which means that the movement
on x-axis is 0. In this case, we have z,(P) =0 and thus P € P% (c). By Lemma 11, we then get that
there exists @’ such that either r(Q’,0(Q’),c) > r(P,o(P),c) or Q' € P, (c) and r(Q',0(Q’),c) >
r(P,o(P),c).
Now if ¢ < 7, we have A > 0, and the second derivative of g(c,A) is positive, therefore given a

specific ¢, A = _CC is the minimizer. We then rewrite the function:

V2c2+2 /102 —8c+2
1+¢ 1—c ’

g(c) =

Again we take the derivative and set it to 0,
dg 2c—-2 6c—2
de (14+¢)°vV242 (1—¢)° V102 —8c+2

Again checking the second derivative we get that ¢ =0 is a minimizer and ¢ = 0.301263 is a
maximizer. Plug in ¢ =0 we get that
2
g(0) = ifi -0 = A; SM-
1 1 A, 1+4+c¢
and r(Q,0(Q),c) > r(P,o(P),c). By shifting all the points by (—z,(P),0) to have x¢(Q) = z,(Q) =
0, we obtain that Q € PS_(c).

We now shift our focus back to the robustness guarantee. The next lemma states that, for the
robustness guarantee, if we have an instance P in the CA family where points are located only
on the z-axis, +y half axis or at the optimal location, then there is another instance @ in the
COA family with weakly worse approximation ratio. Note that such an instance P is the result of
Lemma 12.

=0 =c¢=0,c=0.301263

LEMMA 16. For any confidence c € [0,1) and points P € PE(c) such that pe A, UA,,U{o(P)}
for all p € P, there exists either Q € PE (c¢) such that 7(Q,(0,0),¢) > r(P,(0,0),¢) or Q" and
prediction 0 such that r(Q’,0,c) >r(P,(0,0),c).
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Proof. Let P € PZ(c) be a multiset of n points such that pe A, U A,, U {o(P)} for all p € P,
so the points are all on (—z,0), (0,2"), (2',0), or o(P) for some x,z’',z” > 0. Without loss of
generality, by rescaling, assume that z” = 1. Let L, R,U,O C P be the points on (—z,0), (0,1),
(2',0), and o(P) respectively. Let k € [0, 1] be such that |O| = kn. Since f(P,(0,0),c) = (0,0), we
have |U| = |R| = (< —k)n and |L| = (k — ¢)n. Let Q be the instance that is the same as P for all
1¢ U, and has ¢; =o(P) for all i € U.

First note that by Lemma 5 we have o(Q) = o(P). By Lemma 3 we know that for any c € [0,1)
. . , .. ~ ;oA vV 2c242 vV 2e2+2
there exists an instance Q' and prediction 6 such that 7(Q’,6,c) > ¥=——. If r(P,(0,0),¢c) < ¥7——,

then we have r(Q’,6,c) > r(P,(0,0),c). Now assume r(P,(0,0,c) > 7Vfi+2 let A; denote the cost

decrease of the algorithm, i.e., Ay = C*(f(P,(0,0),c), P) — C"(f(Q, (0,‘0),0),62), similarly, we let

e " . . vV 2c242 A . .
A, =C"(o(P),P)—C"(0(Q),Q). The lemma statement is equivalent to ¥—— > Z-. To simplify

the presentation of the lemma, we let d denote the points movement on y-axis. Then

1
A, = ( ;C—k)m/xgm?

Note that since Manhattan distance is a v/2 approximation of the Euclidean distance, we have

r+d<+2- /22 +d?2. We get:

1 1
re ;c—k)n-xo—(k:—c)n‘xo

Ay (B =Fkn-(d+r)—(k—c)n-xz,

A, (L€ —k)ny/a2 + d?
<(%—k:)n-\/i(\/xg—kd?)—(k:—c)n-xo
(5 R/

(k—c)n-z,
<V2-—
N ERIGET
<2

Since (P, (0,0,¢) > fiﬂ > /2, we get that 7(Q, 0(Q), c) > r(P,o(P),c). By shifting all the points
by (—z,(P),0) to have z;(Q) = z,(Q) =0, we obtain that Q € PE (c).

Finally, the following two lemmas combine the above lemmas and show how to convert an
instance P in the CA family to an instance @) in the COA family while weakly increasing the

approximation ratio for the consistency and robustness guarantees, respectively.

LEMMA 17.  For any confidence c € [0,1) and points P € PS(c), there exists points Q such that
cither 1(Q,0(Q),¢) > r(P,o(P),¢) or @ € PL(c) and r(Q.o(@)rc) > r(P.o(P), ).

Proof. Let ¢ € [0,1). Consider an instance P € P (c) of n points. By Lemma 12, there exists
Q; such that either r(Q1,0(Q1),c) >7(P,0(P),c) or Q; € PS(c) and 7(Q1,0(Q1),c) > r(P,o(P),c),
and ¢ € A, UA,, U{o(Q)} for all ¢ € ;. By Lemma 14, there exists @, such that either
7(Qa,0(Q2),¢) >1(Q1,0(Q1),c) or Q2 € P (c) and 7(Qa,0(Q2),¢) > r(Q1,0(Q1),c) and g € A,UA,,
for all ¢ € Q,. By Lemma 15, there exists @3 such that either 7(Q3,0(Q3),c) > r(Q2,0(Q2),c) or
Q3 € PS, () and r(Q3,0(Q3),¢) > r(Q2,0(Q2),c). Thus, we have that there either exists n points
Q such that r(Q,0(Q),c) > 7(P,0(P),c) or that maxgepc () 7(Q,0(Q),c) > (P, 0(P),c).

coa

LEMMA 18. For any confidence c € [0,1) and points P € PE(c), there exists points Q and pre-
diction 0 such that either r(Q,06,c) > r(P,(0,0),c) or Q € PE (c) and r(Q,(0,0),c) > r(P,(0,0),c).

coa
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Proof. Let ¢ € [0,1). Consider an instance P € PZ(¢) of n points. By Lemma 12, there exists
@, such that either r(Qy,(0,0),c) >r(P,(0,0),c) or Q; € PE(c) and r(Q1,(0,0),c) >r(P,0(P),c),
and g€ A, UA, U{o(Q)} for all ¢ € ;. By Lemma 16, there exists () and prediction 6 such
that either r(Qs,0,c) > r(Q1,(0,0),c) or Q2 € PE (c) and r(Q2,(0,0),¢) > r(Q1,(0,0),c). Thus, we
have that there either exists n points ) and prediction 6 such that (@, 6,c) > r(P,(0,0),c) or that
maxgepr (o) 7(Q,(0,0),¢) >7(P,(0,0),c).

4.4.6. The worst-case instance is in COA. We are now ready to prove our main lemma,
i.e. Lemma 2.

Proof of Lemma 2. Let o/ =maxpepg oupg (o TP 0(P),¢), a =maxpepe (o) 7(P,0(P),c), ' =
MaxXpepk (upk (o) T( P (0,0),¢), and B =maxpcpr () (P, (0,0),c). By Lemma 10, CMP with con-
fidence ¢ is o’-consistent and 3’-robust.

By Lemma 17 and Lemma 11, there exists a multiset of points @) such that either 7(Q,o(Q),c) >
o or QePE (c) and 7(Q,0(Q),c) > . If r(Q,0(Q),c) >, this is a contradiction with the o/~
consistency of the mechanism. Otherwise, @ € PS, (c) and a > r(Q,0(Q),c) > o« and CMP is
a-consistent. Similarly, by Lemma 18 and Lemma 11, there exists a multiset of points @) and
prediction 6 such that either r(Q,6,¢) > 3 or Q € P2 (c) and r(Q,(0,0),¢) > 3. If r(Q,0,c) > 3,
this is a contradiction with the $’-robustness of the mechanism. Otherwise, Q € PE (¢) and 3 >
r(Q,(0,0),c) > " and CMP is S-robust.

5. Conclusion and Future Directions. Our main thesis in this paper is that the learning-
augmented design framework, which has motivated a surge of recent work on “algorithms with
predictions”, can have a transformative impact on the design and analysis of mechanisms in multi-
agent systems. Such mechanisms face crucial information limitations that hinder the designer from
reaching desired outcomes: the most obvious among them is that the designer does not know the
participating agents’ private information, and these agents may choose to strategically misreport it.
Therefore, machine-learned predictions have the potential to address these information limitations
and help mechanisms achieve improved performance when the predictions are accurate. To support
our thesis, we focused on the canonical problem of facility location and proposed new mechanisms
that leverage predictions to achieve a trade-off between robustness and consistency. Depending
on how confident the designer is regarding the prediction, our mechanisms provide her with a
parameterized menu of options that yield Pareto optimal robustness and consistency guarantees.

The impact of the learning-augmented framework on the design of mechanisms is largely unex-
plored, so there are multiple important open problems along this research direction. For example,
one can revisit any mechanism design problem (both with and without monetary payments) for
which we know that strategyproofness leads to impossibility results, aiming to better understand
how predictions could help us overcome these obstacles, without compromising the incentive guar-
antees. We therefore anticipate that this framework will give rise to an exciting new literature that
studies classic mechanism design problems from a new perspective.
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