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Abstract. Algorithms with predictions is a recent framework that has
been used to overcome pessimistic worst-case bounds in incomplete in-
formation settings. In the context of scheduling, very recent work has
leveraged machine-learned predictions to design algorithms that achieve
improved approximation ratios in settings where the processing times of
the jobs are initially unknown. In this paper, we study the speed-robust
scheduling problem where the speeds of the machines, instead of the
processing times of the jobs, are unknown and augment this problem
with predictions.

Our main result is an algorithm that achieves a min{n*(1+«), (2+2/a)}
approximation, for any a € (0,1), where n > 1 is the prediction error.
When the predictions are accurate, this approximation outperforms the
best known approximation for speed-robust scheduling without predictions
of 2—1/m, where m is the number of machines, while simultaneously main-
taining a worst-case approximation of 2 + 2/« even when the predictions
are arbitrarily wrong. In addition, we obtain improved approximations
for three special cases: equal job sizes, infinitesimal job sizes, and binary
machine speeds. We also complement our algorithmic results with lower
bounds. Finally, we empirically evaluate our algorithm against existing
algorithms for speed-robust scheduling. The full version of the paper can
be referred to the following link https://arxiv.org/abs/2205.01247.

Keywords: Algorithms with prediction - Scheduling - Approximation
algorithm

1 Introduction

In many optimization problems, the decision maker faces crucial information
limitations due to the input not being completely known in advance. A natural
goal in such settings is to find solutions that have a good worst-case performance
over all potential input instances. However, even though worst-case analysis
provides a useful measure for the robustness of an algorithm, it is also known to
be a measure that often leads to needlessly pessimistic results.

A recent, yet extensive, line of work on algorithms with predictions models the
partial information that is often available to the decision maker and overcomes
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worst-case bounds by leveraging machine-learned predictions about the inputs
(see [22] for a survey of the early work in this area). In this line of work, the
algorithm is given some type of prediction about the input, but the predictions are
not necessarily accurate. The goal is to design algorithms that achieve stronger
bounds when the provided predictions are accurate, which are called consistency
bounds, but also maintain worst-case robustness bounds that hold even when the
predictions are inaccurate. Optimization problems that have been studied under
this framework include online paging [20], scheduling [23], secretary [10], covering
[6], matching [RI917], knapsack [16], facility location [I3], Nash social welfare
[7], and graph [4] problems. Most of the work on scheduling in this model has
considered predictions about the processing times of the jobs [23|2TIIRIGITHI2I3].

There is a large body of work considering uncertainty in the input to scheduling
problems, including whole fields like stochastic scheduling. Most of it studies
uncertainty in the jobs. A recent line of work considers scheduling problems where
there is uncertainty surrounding the available machines (e.g. [IT2124JTT]). In
particular, we emphasize scheduling with an unknown number of parallel machines,
introduced in [24] where, given a set of jobs, there is a first partitioning stage where
they must be partitioned into bags without knowing the number of machines
available and then, in a second scheduling stage, the algorithm learns the number
of machines and the bags must be scheduled on the machines without being split
up. This problem was generalized to speed-robust scheduling [I1] where there are
m machines, but speeds of the machines are unknown in the partitioning stage
and are revealed in the scheduling stage E We will use the speed robust scheduling
model in the rest of this paper, as it captures applications where partial packing
decisions have to be made with only partial information about the machines. As
discussed in [24], such applications include MapReduce computations in shared
data centers where data is partitioned into groups by a mapping function that is
designed without full information about the machines that will be available in
the data center, or in a warehouse where items are grouped into boxes without
full information about the trucks that will be available to ship the items.

In this paper, we introduce and study the problem of scheduling with machine-
learned predictions about the speeds of the machines. In the two applications
mentioned above, MapReduce computations and package shipping, it is natural
to have some relevant historical data about the computing resources or the trucks
that will be available, which can be used to obtain machine-learned predictions
about these quantities. In the scheduling with speed predictions problem, we are
given jobs and predictions about the speeds of the m machines. In the first,
partitioning stage, jobs are partitioned into m bags, using only the predictions
about the speeds of the machines. Then, in the second, scheduling stage, the
true speeds of the machines are revealed, and the bags must be scheduled on
the machines without being split up. The goal is to use the predictions to design
algorithms that achieve improved guarantees for speed-robust scheduling. The
fundamental question we ask is:

! This problem strictly generalizes the first problem by setting speed to 1 for actual
machines, and speed to 0 for the other (non)machines.
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Job sizes [ Speeds [ Upper bound [ Lower bound
General |General|2 4+ 2/a (Theorem [3))| 1 + (1 — a)/2cc — O(1/m) (Theorem |1
Equal-size |General|2 + 1/a (Theorem [4)| 1+ (1 — a)/2a — O(1/m) (Theorem |1
Infinitesimal[General|1 4+ 1/a (Theorem [5)[1 + (1 — a)?/4a — O(1/m) (Theorem |1
General {0,1} 2 (Theorem [6) (4 — 2a)/3 (Theorem [7)

Table 1. Robustness of deterministic 1 + a consistent algorithms, where o € (0, 1)
except for the (4 — 2a)/3 lower bound, for which a € (0,1/2).

Can speed predictions be used to obtain both improved guarantees when the
predictions are accurate and bounded guarantees when the prediction errors are
arbitrarily large?

We focus on the classical makespan (completion time of the last completed
job) minimization objective. Two main evaluation metrics for our problem, or for
any algorithms with predictions problem, are robustness and consistency. The
consistency of an algorithm is the approximation ratio it achieves when the speed
predictions are equal to the true speeds of the machines, and its robustness is its
worst-case approximation ratio over all possible machine speeds, i.e., when the
predictions are arbitrarily wrong. The main focus of this paper is on general job
processing times and machine speeds, but we also consider multiple special cases.

Without predictions, [II] achieves a (2 — 1/m)-approximation. Thus, if we do
not trust the predictions, we can ignore them and use this algorithm to achieve a
2 — 1/m consistent and 2 — 1/m robust algorithm. On the other hand, if we fully
trust the predictions, we can pretend that the predictions are correct and use
a polynomial time approximation scheme (PTAS) for makespan minimization
on related machines to obtain a 1 + € consistent algorithm, for any constant
€ > 0. However, as we show in Section [3] this approach would have unbounded
robustness. Thus, the main challenge is to develop an algorithm that leverages
predictions to improve over the best known 2 — 1/m approximation when the
predictions are accurate, while maintaining bounded robustness guarantees even
when the predictions are arbitrarily wrong.

1.1 Owur results

Our main result is a deterministic algorithm for minimizing makespan in the
scheduling with speed predictions (SSP) model that is 1+« consistent and 242/«
robust, for any o € (0,1) (Theorem [2). When the predictions are accurate, the
1 + « consistency outperforms the best-known approximation for speed-robust
scheduling without predictions of 2 — 1/m [II], while maintaining a 2 + 2/«
robustness guarantee that holds even when the predictions are arbitrarily wrong.
To obtain a polynomial time algorithm, the consistency and robustness both
increase by a 1 + € factor, for any constant € € (0,1), due to the PTAS for
makespan minimization on related machines that we use as a subroutine [14].
We extend this result to obtain an approximation ratio that interpolates
between 1+ o and 2 + 2/« as a function of the prediction error. More precisely,
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for any o € (0,1), our algorithm achieves an approximation of min{n?(1 +
«),(242/a)} (Theorem , where the prediction error 7 := max;e ] max{3;,s;}

mings;,S;
is the maximum ratio between the predicted speed §; and the true spéed 3}1
of the m machines. The following hardness result motivates this choice for the
prediction error: for any « € (0,1), any deterministic 1 + « consistent algorithm
has robustness at least 1 + 12_—;‘ — O(%), even when a single machine speed is
incorrectly predicted (Theorem . Thus, a single incorrectly predicted machine
speed can cause a strong lower bound on the approximation ratio. We also note
that the maximum ratio over all the predictions is a common definition for the
prediction error in scheduling with predictions (see, e.g., [I8I19]). Additionally,
we obtain the following results (summarized in Table :

— When the job processing times are equal or infinitesimal, the best-known
approximations without predictions are 1.8 and e/(e — 1) = 1.58 [I1], respec-
tively. For these cases, our 1 + a consistent algorithm achieves a robustness
of 2+ 1/a (Theorem [d)) and 1+ 1/c (Theorem [5), respectively.

— When the machine speeds are either 0 or 1, which corresponds to the scenario
where the number of machines is unknown, the best-known approximation
without predictions is 5/3 [24]. We develop an algorithm that is 1 consis-
tent and 2 robust (Theorem [6). We also show that, for any « € [0,1/2), any
deterministic 1+« consistent algorithm has robustness at least (4—2a)/3 (The-
orem .

— Even when the prediction error is relatively large, our algorithm often empiri-
cally outperforms existing speed-robust algorithms that do not use predictions.

We note that, subsequent to our work, a scheduling with predictions problem
where the machine speeds are unknown was also studied in [I9], but in an
incomparable online setting where the speeds can be job-dependent.

1.2 Technical overview

We give an overview of the main technical ideas used to obtain our main result
(Theorem . The second stage of the SSP problem corresponds to a standard
makespan minimization problem in the full information setting, so the main prob-
lem is the first stage where jobs must be partitioned into bags given predictions
about the speeds of the machines. At a high level, our partitioning algorithm
initially creates a partition of the jobs in bags, and a tentative assignment of
the bags to machines, assuming that the predictions are the true speeds of the
machines. This tentative solution is optimal if the predictions are perfect, but
as we discuss in Section [3| if the predictions are wrong, its makespan may be
far from optimal. To address this concern, the algorithm iteratively moves away
from the initial partition in order to obtain a more robust partitioning, while also
maintaining that the bags can be scheduled to give a (14 «)-approximation of the
makespan if the predictions are correct. The parameter a € (0,1) is an input to
the algorithm that controls the consistency-robustness trade-off, i.e., it controls
how much the predictions should be trusted. Starting from a consistent solution
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and then robustifying has been used in some other algorithms with predictions.
Our main technical contribution is in designing such a robustification algorithm
for the SSP problem.

More concretely, let the total processing time of a bag be the sum of the
processing time of the jobs in that bag. The partitioning algorithm always
maintains a tentative assignment of bags to the machines. To robustify this
assignment, the algorithm iteratively reassigns the bag with minimum total
processing time to the machine that is assigned the bag with maximum total
processing time. If there are now ¢ bags assigned to this machine, we break open
these ¢ bags, and reassign the jobs to ¢ new bags using the Longest Processing
Time first algorithm, which will roughly balance the size of the ¢ bags assigned
to this machine. Thus, at every iteration, the bags that had the maximum and
minimum total processing times at the beginning of that iteration end up with
approximately equal total processing times, which improves the robustness of
the partition. The algorithm terminates when the updated partition would not
achieve a 1 + « consistency anymore.

The analysis of the 2 + 2/« robustness consists of three main lemmas. The
algorithm and analysis use a parameter 3, which is the ratio of the maximum
total processing time of a bag that contains at least two jobs to the minimum
total processing time of a bag. We use this particular parameter partly to handle
the case of very large jobs. Informally, both the algorithm and the adversary will
need to put that one job in its own bag and on its own machine, so we can just
“ignore” such jobs. We first show that if we can solve the second-stage scheduling
problem optimally, then the robustness achieved by any partition is at most
max{2, 8}. Then, we show that at each iteration, the minimum total processing
time of a bag is non-decreasing. Finally, we use this monotonicity property to
show that, for the partition returned by the algorithm, 8 < 2 4+ 2/«. Together
with the first lemma, this implies that the algorithm achieves a 2+2/« robustness.
The last lemma requires a careful argument to show that, if 5 > 2 + 2/«, then
an additional iteration of the algorithm does not break the 1 4+ « consistency
achieved by the current partition. To obtain a polynomial-time algorithm, we
pay an extra factor of 1 + € in the scheduling stage by using the PTAS of [14].

Finally, we provide an empirical evaluation of our algorithm that shows that,
even when the prediction error is relatively large, it often outperforms existing
speed-robust algorithms that do not use predictions.

2 Preliminaries

We first describe the speed-robust scheduling problem, which was introduced
by [1I] and builds on the scheduling with an unknown number of machines
problem from [24]. There are n jobs with processing times p = (p1,...,p,) >0
and m machines with speeds s = (s1,..., ;) > 0 such that the time needed to
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process job j on machine 7 is p;/ le| The problem consists of the following two
stages. In the first stage, called the partitioning stage, the speeds of the machines
are unknown and the jobs must be partitioned into m (possibly empty) bags
Bi,..., By, such that Ujc Bi = [n] (where [n] = {1,...,n}) and B;, N B;, =
for all 41,45 € [m], i1 # i2. In the second stage, called the scheduling stage, the
speeds s are revealed to the algorithm and each bag B; created in the partitioning
stage must be assigned, i.e., scheduled, on a machine without being split up.

The paper on speed-robust scheduling, [11], considers the classical makespan
minimization objective. Let M, be the bags assigned to machine 4; the goal is to
minimize maXiem) (X e, 2o jeB p;)/si. An algorithm for speed-robust schedul-
ing is B-robust if it achieves an approximation ratio of 5 compared to the optimal
schedule that knows the speeds in advance, i.e., maxp s alg(p,s)/opt(p,s) < 8
where alg(p,s) and opt(p, s) are the makespans of the schedule returned by the
algorithm (that learns s in the second stage) and the optimal schedule (that
knows s in the first stage).

We augment the speed-robust scheduling problem with predictions about
the speeds of the machines and call this problem Scheduling with Speed Predic-
tions (SSP). The difference between SSP and speed-robust scheduling is that,
during the partitioning stage, the algorithm is now given access to, potentially
incorrect, predictions § = (§1,...,8,,) > 0 about the speeds of the machines (see
Appendix A.1 of the full version of the paper for additional discussion about how
we learn the machine speeds and obtain §). The true speeds of the machines s are
revealed during the scheduling stage, as in the speed-robust scheduling problem.
We also want to minimize the makespan.

Consistency and robustness are two standard measures in algorithms with
predictions [20]. An algorithm is c-consistent if it achieves a ¢ approximation
ratio when the predictions are correct, i.e., if maxy, ¢ alg(p,s,s)/opt(p,s) < ¢
where alg(p,$,s) is the makespan of the schedule returned by the algorithm
when it is given predictions § in the first stage and speeds s in the second
stage. An algorithm is S-robust if it achieves a [ approximation ratio when the
predictions can be arbitrarily wrong, i.e., if maxp s alg(p,$,s)/opt(p,s) < B.
We note that a S-robust algorithm for speed-robust scheduling is also a -robust
(and S-consistent) algorithm for SSP which ignores the speed predictions.

The main challenge in algorithms with predictions problems is to simultane-
ously achieve “good” consistency and robustness, which requires partially trusting
the predictions (for consistency), but not trusting them too much (for robustness).
In particular, the goal is to obtain an algorithm that achieves a consistency that
improves over the best known approximation without predictions (2 — 1/m for
speed-robust scheduling), ideally close to the best known approximation in the
full information setting (1 + ¢, for any constant ¢ > 0, for makespan minimization
on related machines), while also achieving bounded robustness.

2 The non-zero speed assumption is for ease of notation. Having a machine with speed
si = 0 is equivalent to s; = € for € arbitrarily small since in both cases no schedule
can assign a job to ¢ without the completion time of this job being arbitrarily large.
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Even though consistency and robustness capture the main trade-off in SSP, we
are also interested in giving approximation ratios as a function of the prediction
error. It is important, in any algorithms with predictions problem, to define the
prediction error appropriately, so that it actually captures the proper notion of
error in the objective. It might seem that, for example, L; distance between the
predictions and data is natural, but for many problems, including this one, such
a definition would mainly give vacuous results. We define the prediction error
1 > 1 to be the maximum ratidﬂ between the true speeds s and the predicted

A . . ~ o max{§;,8;} /. .
speeds 8, or vice versa, i.e., 7(8,8) = maX;e[m] Y I (see Appendix A.2 of
the full version for further discussion on the choice of error measure). Given a
bound 7 on the prediction error, an algorithm achieves a «(n) approximation if
maxp s s:n(8,s)<n alg(p7 é7 S)/Opt(pa S) < 7(77)

Given arbitrary bags Bj,..., By, the scheduling stage corresponds to a
standard makespan minimization problem in the full information setting, for
which polynomial-time approximation schemes (PTAS) are known [I4]. Thus, the
main challenge is the partitioning stage. We define the consistency and robustness
of a partitioning algorithm Ap to be the consistency and robustness achieved by
the two-stage algorithm that first runs Ap and then solves the scheduling stage
optimally. If we want to require that algorithms be polynomial time, we may
simply run the PTAS for makespan minimization in the scheduling stage, and
the bounds increase by a (1 + ¢€) factor. We will not explicitly mention this in
the remainder of the paper.

3 Consistent Algorithms are not Robust

A natural first question is whether there is an algorithm with optimal consistency
that also achieves a good robustness. We answer this question negatively and
show that there exists an instance for which any 1-consistent algorithm cannot be
o(n)-robust. This impossibility result is information-theoretic and is not due to
computational constraints. The proofs in this section can be found in Appendix B
of the full version.

Proposition 1. For any n > m, there is no algorithm that is 1-consistent and

”(;7;# -robust, even in the case of equal-size jobs. In particular, for m = n/2,

there is no algorithm that is 1-consistent and o(n)-robust.

More generally, we show that there is a necessary non-trivial trade-off between
consistency and robustness for the SSP problem. In particular, the robustness
of any deterministic algorithm for SSP must grow inversely proportional as a
function of the consistency.

Theorem 1. For any « € (0, 1), if a deterministic algorithm for SSP is (14 «)-

consistent, then its robustness is at least 1 + 12_—;‘ - O(%), even in the case where

3 We scale s,§ such that max; s; = max; §; before computing 7, to make sure the
speeds are on the same scale.
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the jobs have equal processing times. In the special case where the processing times
are infinitesimal, the robustness of a deterministic (1 + «)-consistent algorithm

is at least 1 + % —0(2).

m

Recall that in the setting without predictions, the best known algorithm is
(2 — 1/m)-robust (and thus also (2 — 1/m)-consistent) [II]. Since we have shown
that algorithms with near-optimal consistency must have unbounded robustness,
a main question is thus whether it is even possible to achieve a consistency that
improves over (2 — 1/m) while also obtaining bounded robustness. We note that
the natural idea of randomly choosing to run the (2 — 1/m)-robust algorithm
or an algorithm with near-optimal consistency (with unbounded robustness),
aiming to hedge between robustness and consistency, does not work since the
resulting algorithm would still have unbounded robustness due to SSP being a
minimization problem.

4 The Algorithm

In this section, we give an algorithm for scheduling with speed predictions with
arbitrary-sized jobs that achieves a min{n?(1 + €)(1 + «), (1 + €)(2 + 2/a)}
approximation for any constant ¢ € (0,1) and any « € (0,1). The proofs in this
section can be found in Appendix C of the full version.

4.1 Description of the algorithm

Our algorithm, called IPR and formally described in Algorithm [I} takes as
input the processing times of the jobs p, the predicted speeds of the machines
S, an accuracy parameter €, a consistency goal 1 + «, and a parameter p that
influences the ratio between the size of the smallest and largest bags. For general
job processing times and machine speeds, we use p = 4. For some special cases in
Section |5} we use p = 2. IPR first uses the PTAS for makespan minimization [14]
to construct a partition of the jobs into bags By, ..., By, such that scheduling
the jobs in B; on machine ¢ achieves a 1 + € approximation when the predictions
are correct. In other words, it initially assumes that the predictions are correct
and creates a (1 + €)-consistent partition of the jobs into bags. In addition, it
also creates a tentative assignment My = {B1},..., M,, = {By,} of the bags
Bi, ..., B, on the machines.

Even though this tentative assignment achieves a good consistency, its robust-
ness is arbitrarily poor. To improve the robustness, IPR iteratively rebalances this
partition while maintaining a (1 + €)(1 + «) bound on its consistency. The design
and analysis of such an iterative rebalancing procedure is the main challenge.

At each iteration, the subroutine LPT-REBALANCE rebalances the bags and
modifies My, ..., M,,. We define the processing time p(B) of a bag to the total
processing time of the jobs in that bag, i.e., p(B) = Z]EB p;j- The algorithm
terminates either when scheduling the bags in each M; on machine ¢ violates the
desired (1+¢)(14a) consistency bound or when the ratio of the largest processing
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time of a bag containing at least two jobs to the smallest processing time of a
bag is at most p. To verify the consistency bound, the algorithm compares the
makespan of the new tentative assignment to the makespan OPT¢ of the initial
assignment, assuming that the speed predictions are correct.

Algorithm 1 ITERATIVE-PARTIAL-REBALANCING (IPR)
Input: predicted machine speeds 1 > --- > §,,, job processing times pi,...,Dn,
consistency 1 + «, accuracy € € (0,1), maximum bag size ratio p > 1.
{B1,...,Bm} + a (1 + e)-consistent partition such that p(B1) > ... > p(Bmn)
mc <— maxie[m] p(BZ)/§Z
Mh...,Mm — {B1}7...,{Bm}
while maxpeu, m; | B)>2 P(B)>pmingeu, m; p(B):
1yeey My, < LPT-REBALANCE(My, ..., M.y,)
if max;e(m ZBGM;p(B)/éi > (1 + a)0PTc :
{B1,...,Bm} < UscpmMi
return {B1,...,Bn}
M, ..., M, <—./\/l,1,‘..7/\/l;w
: {Bl, ey Bm} «— Uig[m]Mi
: return {B1,...,Bn}

—
OO XN OOt Wy

—_

The LPT-Rebalance subroutine. This subroutine first moves the bag
Bin with the smallest processing time to the collection of bags My, that
contains the bag with the largest processing time among the bags that contain
at least two jobs. Let £ be the number of bags in M.y, including Bi,. The
subroutine then balances the processing time of the bags in M.« by running
the Longest Processing Time first (LPT) algorithm over all jobs in bags in M.y,
i.e. jobs in Ugem,,,, B, to create £ new, balanced, bags that are placed in Mpax.
LPT-REBALANCE finally returns the updated assignment of bags to machines
My, ..., M;,. We note that among these m collections of bags, only two, My
and My, are modified. We use Figure[I] to illustrate this rebalancing procedure.

(M) T (M)

Fig. 1. Illustration of one iteration of the IPR algorithm on an example with m = 3
bags and machines and n =5 jobs.
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Algorithm 2 LPT-REBALANCE

Input: assignments of bags Mi,..., My,

1: Buin < argminge, o, P(B)

2: Mumin < the collection of bags M such that Byin € M

3: Mupmax «— ATGMAX \y, e (] MAXBEM, 1| B|>2 p(B)

4: Mmax  Mmax U {Bmin }, Mmin < Mmin \ {Bmin }
5: Jmax ¢ UBeMumax By £+ | Mumax|
6
7
8

: Bi,...,By+—{},...,{}
: while |Jmax| > 0 do
N e argmax;cy - pj
9: B+ argminBe{Bi,.“,Bé}p(B)
10 B+ B'U{j'}, Jmax < Jmax \ {J'}
11: Mmax < {B1,..., By}
12: return My,..., M,,

4.2 Analysis of the algorithm

We first show that IPR with parameter p = 4 in the general case is a (1 +
€)(1 + a)-consistent and (2 + 2/«a)-robust partitioning algorithm (Lemma [1| and
Theorem . Then, we use these consistency and robustness guarantees to obtain
the min{n?(1+ €)(1 + «), (1 + €)(2 + 2/)} approximation as a function of the
prediction error i (Theorem [3)). Finally, we analyze the running time (Lemma [5).
The main challenge is to analyze IPR’s robustness.

The consistency The consistency almost comes from the definition of IPR.

Lemma 1. For any constants a,e € (0,1), IPR is a (1 + €)(1 + «)-consistent
partitioning algorithm.

Proof. To prove the consistency, we consider the final tentative assignment of
the bags on the machines My, ..., M,, when IPR terminates. With true speeds
s, the makespan of this schedule is max;c(ym) > e pq, P(B)/si- When the speed
predictions are correct, i.e., s = §, we have

ZBeMi p(B) ax ZBEM;, p(B)

max = m
i€[m] S; i€[m] S;
< (14 a)0PTe
< (14 a)(1+ €)opt(p,s).

Line [6] of IPR enforces the first inequality. For the second inequality, observe
that when s = §, OPT( is the makespan of the initial assignment, which is a 1+ ¢
approximation to the optimal makespan opt(p, s). Since there exists an assignment
of the bags returned by IPR that achieves a (1 + €)(1 4+ «) approximation when
s =8, IPR is a (1 4+ €)(1 + a)-consistent partitioning algorithm.
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The robustness The main part of the analysis is to bound the algorithm’s

. . _ maxpeg,|B|>2 P(B)
robustness. First, we show that the ratio 5(B) = W
total processing time of a bag containing at least two jobs to the minimum total

processing time of a bag can be used to bound the robustness of any partition .

of the maximum

Lemma 2. Let B = {By, -+ ,Bn} be a partition of n jobs with processing
times p1,...ppn into m bags. Then B is a max{2, B(B)}-robust partition, where
_ maxpeg,|B|>2 P(B)
BB) = —imnzenim)
- mingep p(B) -

By Lemma 2] it remains to bound the ratio 8 of the bags B returned by IPR.
Let B® denote the collection of all bags B at iteration ¢ of the algorithm and
define bifl)in = mingcpm p(B) to be the minimum processing time of a bag at
each iteration . To bound the ratio 3, we first show in Lemma |3| that bffl)in is
non-decreasing in 1.

Lemma 3. At each iteration i of IPR with p =4, bg’l?;ll) > bf:l)in.

Using Lemma[3] we bound the size ratio 2 needed for Lemma [2}

Lemma 4. Let Bipr = {B1,...,Bm} be the partition of the n jobs returned by
IPR with p = 4. Then, we have that 3(Bipr) < 2+ 2/a.

We are now ready to show the algorithm’s robustness.

Theorem 2. For any constants o, e € (0,1), IPR with p =4 is a (2+2/a)-robust
partitioning algorithm.

Proof. Let Bipr = {Bi,- .., Bm} be the partition of the n jobs returned by IPR
with p = 4. By Lemma [d] we have that 8(Bipr) < 2+ 2/a. Thus, by Lemma2]
the robustness of IPR with p =4 is 2+ 2/a.

The approximation as a function of the prediction error We extend the
consistency and robustness results for IPR to obtain our main result. We show
that for the SSP problem, the algorithm that runs IPR in the partitioning stage
and then a PTAS in the scheduling stage achieves an approximation ratio that
gracefully degrades as a function of the prediction error n from (1 + €)(1 + «) to
1+e€e)(2+2/w).

Theorem 3. Consider the algorithm that runs IPR with p = 4 in partitioning
stage and a PTAS for makespan minimization in scheduling stage. For any
constant € € (0,1) and any o € (0,1), this algorithm achieves a min{n?(1+¢€)(1+
a),(1+€)(2+2/a)} approzimation for SSP where 1 = max;e[m] % is the
prediction error.

If we do not care about the computation runtime; that is, we can solve each
scheduling problem optimally including the initial step of IPR in the partition
stage and the scheduling stage, then our result improves to a min{n?(1 + «), (2 +
2/a)} approximation.
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The running time of IPR We show that the main algorithm performs O(m?)
iterations, which implies that its running time is polynomial in n and m.

Lemma 5. At most O(m?) iterations are needed for IPR with p = 4 to termi-
nate.

5 Improved Trade-offs for Special Cases

When all job processing times are either equal or infinitesimal, t the IPR algorithm
with p = 2 achieves an improved robustness. The proofs of this section can be
found in Section 5 of the full version.

Theorem 4. Ifp; =1 for all j € [n], then, for any constant € € (0,1) and any
a € (0,1), IPR with p =2 is (1 + €)(1 + «)-consistent and (2 + 1/«)-robust.

Theorem 5. If all jobs are infinitesimal, then, for any constant € € (0,1) and
any o € (0,1), IPR with p = 2 is (1 4 €)(1 + «)-consistent and (1 + 1/a)-robust.

When the machine speeds are in {0, 1}, we propose a different partitioning
algorithm that is (1 + €)-consistent and 2(1 + €)-robust for this special case.

Theorem 6. For any constant € > 0, there is a (1 + €)-consistent and 2(1 + €)-
robust partitioning algorithm for the {0,1}-speed SSP problem.

We also provide a robustness lower bound for {0,1} speeds.

Theorem 7. For any o € [0,1/2), if a deterministic algorithm for the {0,1}-
speed SSP problem is (1 + «)-consistent, then its robustness is at least (4 — 2a) /3.

6 Experiments

We empirically evaluate the performance of TPR on synthetic data against
benchmarks that achieve either the best-known consistency or the best-known
robustness for SSP.

6.1 Experiment settings

Benchmarks We compare three algorithms. IPR. is Algorithm [I] with p = 4
and a = 0.5. The Largest Processing Time first partitioning algorithm, which we
call LPT-PARTITION, creates m bags by adding each job, in decreasing order
of their processing time, to the bag with minimum total processing time. LPT-
PARTITION is 2-robust (and 2-consistent since it ignores the predictions) [IT].
The 1-CONSISTENT algorithm completely trusts the prediction and generates
a partition that is 1-consistent (but has arbitrarily poor robustness due to our
lower bound in Proposition . In practice, PTAS algorithms for scheduling are
extremely slow. Instead of using a PTAS for the scheduling stage, we give an
advantage to the two benchmarks by solving their scheduling stage via integer
programming (IP). However, since we want to ensure that our algorithm has
a polynomial running time, we use the LPT algorithm to compute a schedule
during both the partitioning and scheduling stage of IPR, instead of a PTAS or
an IP and we use IP to compute the optimal solution.
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Data sets In the first set of experiments, we generate synthetic datasets with
n = 50 jobs and m = 10 machines and evaluate the performance of the dif-
ferent algorithms as a function of the standard deviation of the the prediction
error distribution. The job processing times p; are generated i.i.d. either from
U(0,100), the uniform distribution in the interval (0, 100), or (50, 5), the normal
distribution with mean p, = 50 and standard deviation o, = 5. The machine
speeds s; are also generated i.i.d., either from (0, 40) or N'(20,4). We evaluate
the performance of the algorithms over each of the 4 possible combinations
of job processing time and machine speed distributions. The prediction error
err(i) = §; — s; of each machine is sampled i.i.d. from N(0,z) and we vary =
from = 0 to = us (the mean of machine speeds).

In the second set of experiments, we fix the distributions of the processing
times, machine speeds, and prediction errors to be N (50,0,), N'(20,05), and
N(0,4) respectively, with default values of o, = 5 and o5 = 4. We evaluate the
algorithms’ performance as a function of (1) the number n of jobs, (2) the number
m of machines, (3) op, and (4) os. For each figure, the approximation ratio
achieved by the different algorithms are averaged over 100 instances generated
i.i.d. as described above. Additional details of the experiment setup are provided
in Appendix D of the full version.

6.2 Experiment results

Experiment set 1 From the first row of Figure 2] we observe that, in all four
settings, when we vary the magnitude of the prediction error, IPR outperforms
LPT-PARTITION when the error is small and outperforms 1-CONSISTENT when the
error is large. Since LPT-PARTITION does not use the predictions, its performance
remains constant as a function of the prediction errors. Since 1-CONSISTENT
completely trusts the predictions, it is optimal when the predictions are exactly
correct but its performance deteriorates quickly as the prediction errors increase.

IPR combines the advantages of LPT-PARTITION and 1-CONSISTENT: when
the predictions are relatively accurate, it is able to take advantage of the predic-
tions and outperform LPT-PARTITION. When the predictions are increasingly
inaccurate, IPR has a slower deterioration rate compared to 1-CONSISTENT.
It is noteworthy that, in some settings, IPR simultaneously outperforms both
benchmarks for a wide range of values of the standard deviation o, of the
prediction error distribution. When the distributions of job processing times and
machine speeds are N (50,5) and A(20,4) respectively, IPR achieves the best
performance when o¢../p1s > 0.2. When they are N'(50,5) and U(0,40), IPR
outperforms both benchmarks when o,/ > 0.4.

Experiment set 2 The number of jobs has almost no impact on the performance
of any of the algorithms. However, the approximations achieved by the algorithms
do improve as the number of machines m increases, especially for LPT-PARTITION.
The reason is that m is also the number of bags, so when the number of bags
increases, there is more flexibility in the scheduling stage, especially when the
total processing times of the bags are balanced.
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Fig. 2. The approximation ratio achieved by our algorithm, IPR, and the two bench-
marks as a function of the standard deviation of the prediction error .., for different
job processing time and true speed distributions (row 1) and as a function of the number
of jobs n, the number of machines m, the standard deviation o, of the job processing
time distribution, and the standard deviation o, of the true speed distribution (row 2).

IPR is the algorithm most sensitive to the standard deviation o, of the job
processing times. It has performance close to that of 1-CONSISTENT when o),
is small, and similar to LPT-PARTITION when o, is large. The approximation
ratio of LPT-PARTITION increases as o, increases, while our algorithm and the
1-CONSISTENT partitioning algorithm are relatively insensitive to the change in
0. Since the LPT-PARTITION algorithm generates balanced bags of similar total
processing times, it performs well when the machine speeds are all almost equal,
but its performance then quickly degrades as o, increases. An additional set of
experiments that studies the impact of the o parameter in the performance of
the IPR algorithm can be found in Section 6 of the full version.
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