
Energy-Efficient Scheduling with Predictions

Eric Balkanski
Columbia University

eb3224@columbia.edu

Noemie Perivier
Columbia University

np2708@columbia.edu

Clifford Stein
Columbia University

cliff@ieor.columbia.edu

Hao-Ting Wei
Columbia University

hw2738@columbia.edu

Abstract

An important goal of modern scheduling systems is to efficiently manage power
usage. In energy-efficient scheduling, the operating system controls the speed at
which a machine is processing jobs with the dual objective of minimizing energy
consumption and optimizing the quality of service cost of the resulting schedule.
Since machine-learned predictions about future requests can often be learned from
historical data, a recent line of work on learning-augmented algorithms aims to
achieve improved performance guarantees by leveraging predictions. In particular,
for energy-efficient scheduling, Bamas et. al. [NeurIPS ’20] and Antoniadis et. al.
[SWAT ’22] designed algorithms with predictions for the energy minimization with
deadlines problem and achieved an improved competitive ratio when the prediction
error is small while also maintaining worst-case bounds even when the prediction
error is arbitrarily large.
In this paper, we consider a general setting for energy-efficient scheduling and
provide a flexible learning-augmented algorithmic framework that takes as input an
offline and an online algorithm for the desired energy-efficient scheduling problem.
We show that, when the prediction error is small, this framework gives improved
competitive ratios for many different energy-efficient scheduling problems, in-
cluding energy minimization with deadlines, while also maintaining a bounded
competitive ratio regardless of the prediction error. Finally, we empirically demon-
strate that this framework achieves an improved performance on real and synthetic
datasets.

1 Introduction

Large data centers and machine learning models are important contributors to the growing impact
that computing systems have on climate change. An important goal is thus to efficiently manage
power usage in order to not only complete computing tasks in a timely manner but to also minimize
energy consumption. In many operating systems, this tradeoff can be controlled by carefully scaling
the speed at which jobs run. An extensive area of scheduling has studied such online (and offline)
speed scaling problems (see, e.g., [1]). Since the speed of many processors is approximately the cube
root of their power [26, 15], these works assume that the power of a processor is equal to speed to
some power ³ g 1, where ³ is thought of as being approximately 3 [29, 10] and the total energy
consumption is power integrated over time.

Online energy-efficient scheduling algorithms have mostly been evaluated using competitive analysis,
which provides robust guarantees that hold for any instance. However, since competitive analysis
evaluates algorithms over worst-case instances, it can often be pessimistic. In particular, it ignores the
fact that, in the context of scheduling, future computation requests to computing systems can often be
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estimated from historical data. A recent line of work on algorithms with predictions aims to address
this limitation by assuming that the algorithm designer is given access to machine-learned predictions
about the input. In the context of online algorithms, where this line of work has been particularly
active, the predictions are about future requests and the goal is to achieve improved competitive ratios
when the predictions are accurate (consistency), while also maintaining the benefits of worst-case
analysis with guarantees that hold even when the predictions are arbitrarily wrong (robustness).

In this framework with predictions, Bamas et al. [7] and Antoniadis et al. [4] recently studied
the energy minimization with deadlines problem, which is a classical setting for energy-efficient
scheduling (see, e.g., [29, 10]). However, there are many scenarios where the jobs do not have
strict deadlines and the goal is instead to minimize the job response time. In energy plus flow time
minimization problems, which are another family of energy-efficient scheduling problems that have
been extensively studied in the setting without predictions, the objective is to minimize a combination
of the energy consumption and the flow time of the jobs, which is the difference between their release
date and completion time (see, e.g., [2, 12, 14, 3]).

In this paper, we study a general energy-efficient scheduling problem that we augment with predictions.
This general problem includes both energy minimization with deadlines, which has been previously
studied with predictions, and energy plus flow time minimization, which has not been previously
studied with predictions, as well as many other variants and generalizations. In particular, the
flow time problem with predictions introduces challenges that require novel learning-augmented
scheduling algorithms (see Section 3 for additional discussion).

1.1 Our results

An instance of the General Energy-efficient Scheduling (GES) problem is described by a collection
J of n jobs and an arbitrary quality of service cost function F . Each job (j, rj , pj) ∈ J consists of a
release time rj , a processing time pj , and an identifier j (and potentially other parameters such as
weights vj or deadlines dj). A schedule S is specified by the speeds sj(t) at which job j is processed
by the machine at time t. The goal is to find a schedule of minimum cost E(S) + F (S,J ), where
the energy consumption of a schedule is E(S) =

∫

tg0
(
∑

j sj(t))
³dt, for some constant ³ > 0. In

the general energy-efficient scheduling with predictions (GESP) problem, the algorithm is given at
time t = 0 a collection Ĵ of n̂ predicted jobs (j, r̂j , p̂j), which is a similar prediction model as in [7].
For all our results, we assume that the quality cost function F is monotone and subadditive, which
are two mild conditions that are satisfied for the problems with flow times and with deadlines.

Near-optimal consistency and bounded robustness. Our first goal is to design an algorithm for
the GESP problem that achieves a good tradeoff between its consistency (competitive ratio when the
predictions are exactly correct) and robustness (competitive ratio when the predictions are arbitrarily
wrong). Our first main result is that for any instance of the GES problem for which there exists a
constant competitive algorithm and an optimal offline algorithm, there is an algorithm with predictions
that is 1 + ϵ consistent and O(1) robust for any constant ϵ ∈ (0, 1] (Corollary 3.5). Since problems
with the flow time and the problem with deadlines admit constant-competitive algorithms, we achieve
a consistency that is arbitrarily close to optimal while also maintaining constant robustness for these
problems (see Table 1 for a summary of problem-specific upper bounds). We complement this
result by showing that there is a necessary trade-off between consistency and robustness for the flow
time problem: for any ¼ > 0, there is no 1 + ¼-consistent algorithm that is o(

√

1 + 1/¼)-robust
(Appendix A.2).

The competitive ratio as a function of the prediction error. The second main result is that our
algorithm achieves a competitive ratio that smoothly interpolates from the 1 + ϵ consistency to the
constant robustness as a function of the prediction error (Theorem 3.4). To define the prediction error,
we denote by J + = J ∩ Ĵ the jobs that are correctly predicted. We define the prediction error
¸ = 1

OPT(Ĵ )
max{OPT(J \ J +), OPT(Ĵ \ J +)}, which is the maximum between the optimal cost

of scheduling the jobs J \ J + that arrived but were not predicted to arrive and the cost of the jobs
Ĵ \ J + that were predicted to arrive but did not arrive. This prediction error is upper bounded by the
prediction error in [7] for the problem with uniform deadlines.
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Problem Previous results Our results with predictions
without

predictions
with

predictions Consistency Robustness

Flow time 2 [3]
None (1 + (2¼)

1
³ )³ 1+22³+1¼

1
³

¼Fractional weighted
flow time 2 [14]

Integral weighted
flow time O(( ³

log³ )
2) [12] (1 + (( ³

log³ )
2¼)

1
³ )³

1+( ³
log ³

)222³¼
1
³

¼

Deadlines e³ [10] [7, 4] 1 + ¼ O( 4³
2

¼³−1 )

Table 1: The best-known competitive ratios for 4 energy-efficient scheduling problems, previous work studying
these problems in the algorithms with predictions framework, and our consistency and robustness results, for any
λ ∈ (0, 1]. Note that when λ is sufficiently small, the consistency improves over the best-known competitive
ratios, while also maintaining bounded robustness. A detailed comparison with the results of [7, 4] for deadlines
is provided in Section 1.2.

Extension to jobs that are approximately predicted correctly. We generalize our algorithm and
the previous result to allow the correctly predicted jobs J + to include jobs that are approximately
predicted correctly, where the tolerable approximation is parameterized by a parameter chosen by the
algorithm designer. The result for this extension requires an additional smoothness condition on the
quality cost F (S,J ) of a schedule. This condition is satisfied for the flow time problem, but not by
the one with deadlines.1

Experiments. In Section 5, we show that when the prediction error is small, our algorithm empiri-
cally outperforms on both real and synthetic datasets the online algorithm that achieves the optimal
competitive ratio for energy plus flow time minimization without predictions.

1.2 Related work

Energy-efficient scheduling. Energy-efficient scheduling was initiated by Yao et al. [29], who
studied the energy minimization with deadlines problem in both offline and online settings. These
offline and online algorithms were later improved in [13, 10]. Over the last two decades, energy-
efficient scheduling has been extended to several other objective functions. In particular, Albers and
Fujiwara [2] proposed the problem of energy plus flow time minimization, which has been studied
extensively (see, e.g., [3, 8, 14, 12, 18, 11, 9]).

Learning-augmented algorithms. Algorithms with predictions is a recent and extremely active
area, especially in online algorithms, where it was initiated in [23, 28]. Many different scheduling
problems have been studied with predictions (see, e.g., [19, 25, 17, 21, 6, 5, 16, 22]).

Learning-augmented energy-efficient scheduling. Energy-efficient scheduling with predictions
has been studied by Antoniadis et al. [4] and Bamas et al. [7], who focus on the problem with
deadlines, which is a special case of our setting. The prediction model in Bamas et al. [7] is the
closest to ours. For the problem with deadlines, the algorithm in [7] achieves a better consistency-
robustness tradeoff than our algorithm, but their algorithm and prediction model do not extend to
more general energy-efficient scheduling problems such as the flow time problem. In addition,
the competitive ratio as a function of the prediction error is only obtained in [7] in the case of
uniform deadlines where the difference between the deadline and release date of a job is equal for
all jobs (the authors mention that defining algorithms for general deadlines becomes complex and
notationally heavy when aiming for bounds as a function of the prediction error). Thanks to our
algorithmic framework and definition of prediction error, our bound generalizes to the non-uniform
deadlines without complicating our algorithm. Antoniadis et al. [4] propose a significantly different
prediction model that requires an equal number of jobs in both the prediction Ĵ and true set of jobs
J . Consequently, their results are incomparable to ours and those by Bamas et al. [7].

1We note that Bamas et al. [7] give an alternate approach to transform an arbitrary algorithm with predictions
for the problem with uniform deadlines to an algorithm that allows small deviations in the release time of the
jobs. This approach can be applied to our algorithm for the problem with uniform deadlines.
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Finally, we note that Lee et al. [20] also study energy scheduling with predictions, but with the
different challenge of deciding if demand should be covered by local generators or the external grid.

2 Preliminaries

In the General Energy-Efficient Scheduling (GES) problem, an instance is described by a collection
J of n jobs and a real-valued cost function F (S,J ) that takes as input the instance J and a schedule
S for J , and returns some quality evaluation of the schedule. Each job (j, rj , pj) ∈ J consists of a
release time rj , a processing time pj , and an identifier j (and potentially other parameters such as
weights vj and deadlines dj). We often abuse notation and write j ∈ J instead of (j, rj , pj) ∈ J .
For any time interval I , we let JI = {j ∈ J : rj ∈ I} be the subset of jobs of J with release time
in I . For intervals I = [0, t] or I = [t,∞], we write Jft and Jgt.

A feasible schedule for a set of jobs J is specified by S = {sj(t)}tg0,j∈Jft
, where s(t) :=

∑

j∈Jft
sj(t) is the speed at which the machine runs at time t. Thus, sj(t)/s(t) is the fraction

of the processing power of the machine allocated to job j at time t.2 During a time interval I ,
there are

∫

I
sj(t)dt units of work for job j that are completed and we let SI be the sub-schedule

{sj(t)}t∈I,j∈JI
. The cost function we consider is a combination of energy consumption and quality

cost for the output schedule. The energy consumption incurred by a schedule is E(S) =
∫

tg0
s(t)³dt,

where ³ > 1 is a problem-dependent constant, chosen so that the power at time t is s(t)³. To define
the quality of a schedule, we introduce the work profile WS

j := {wS
j (t)}tgrj of schedule S for job j,

where wS
j (t) := pj −

∫ t

rj
sj(u)du is the amount of work for j remaining at time t.

We consider general objective functions of the form cost(S,J ) = E(S)+F (S,J ) and the goal is to
compute a feasible schedule of minimum cost. F (S,J ) = f((WS

1 , j1), . . . , (W
S
n , jn)) is an arbitrary

quality cost function that is a function of the work profiles and the jobs’ parameters. In the energy
minimization with deadlines problem, F (S,J ) =∞ if there is a job j with completion time cSj such
that cSj > dj , and F (S,J ) = 0 otherwise. In the energy plus flow time minimization problem, we
have F (S,J ) =∑j∈J cSj − rj (see Section 3.3 for additional functions F ). A function F (S,J )
is subadditive if for all sets of jobs J1 and J2, we have F (S,J1 ∪ J2) f F (S,J1) + F (S,J2).
F is monotone if for all sets of jobs J and schedules S and S′ such that wS

j (t) f wS′

j (t) for all
j ∈ J and t g rj , we have that F (S,J ) f F (S′,J ). We assume throughout the paper that F is
monotone subadditive, which holds for the deadlines and flow time problems. We let S∗(J ) and
OPT(J ) := cost(S∗(J ),J ) be an optimal offline schedule and the optimal objective value.

The general energy-efficient scheduling with predictions problem. We augment the GES prob-
lem with predictions regarding future job arrivals and call this problem the General Energy-Efficient
Scheduling with Predictions problem (GESP). In this problem, the algorithm is given at time t = 0 a
prediction Ĵ = {(j, r̂j , p̂j)} regarding the jobs J = {(j, rj , pj)} that arrive online. An important
feature of our prediction model is that the number of predicted jobs |Ĵ | can differ from the number
of true jobs |J |.
Next, we define a measure for the prediction error which generalizes the prediction error in [7] for
the problem with uniform deadlines to any GES problem. With J + = J ∩ Ĵ being the correctly
predicted jobs, we define the prediction error as

¸(J , Ĵ ) = 1

OPT(Ĵ )
max{OPT(J \ J +), OPT(Ĵ \ J +)},

where OPT(J \ J +) is the optimal cost of scheduling the true jobs (j, rj , pj) such that either the
prediction for j was wrong or there was no prediction for j and that OPT(Ĵ \ J +) is the optimal
cost of scheduling the predicted jobs (j, r̂j , p̂j) such that either the prediction for j was wrong or j
never arrived. The prediction error ¸(J , Ĵ ) is then the maximum of these costs, normalized by the
optimal cost OPT(Ĵ ) of scheduling the predicted jobs. We assume that Ĵ ̸= ∅ to ensure that ¸(J , Ĵ )

2For ease of notation, we allow the machine to split its processing power at every time step t over multiple
jobs. In practice, this is equivalent to partitioning time into arbitrarily small time periods and splitting each time
period into smaller subperiods such that the machine is processing one job during each subperiod.
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is well-defined. This prediction error is upper bounded by the prediction error ||wtrue − wpred||³³
considered in [7] for the problem with uniform deadlines, which we prove in Appendix F.1. Here
wtrue and wpred are the true and predicted workload at each time step t, i.e., the sum of the processing
times of the jobs that arrive at t.

We note that in the above error model, a job j is in the set of correctly predicted jobs J + only if all
the parameters of j have been predicted exactly correctly. To overcome this limitation, we introduce
in Section 4 a more general error model where some small deviations between the true and predicted
parameters of a job j are allowed for the correctly predicted jobs J +. In Appendix F.1, we provide
further discussion of this prediction model in comparison with [7, 4].

Performance metrics. The standard evaluation metrics for an online algorithm with predictions
are its consistency, robustness, and competitive ratio as a function of the prediction error [24, 23].
The competitive ratio of an algorithm ALG as a function of a prediction error ¸ is

c(¸) = max
J ,Ĵ : ¸(J ,Ĵ )f¸

costALG(J , Ĵ )
OPT(J ) .

ALG is Ä-robust if for all ¸ g 0, c(¸) f Ä (competitive ratio when the error is arbitrarily large) and
µ-consistent if c(0) f µ (competitive ratio when the prediction is exactly correct). The competitive
ratio of ALG is called smooth if it smoothly degrades from µ to Ä as the prediction error ¸ grows.

3 The Algorithm

In this section, we develop a simple and general algorithmic framework for GESP and analyze the
resulting consistency, robustness, and competitive ratio as a function of the prediction error. We
first note that the algorithm with predictions from [7] for the problem with deadlines does not easily
generalize to some of the other problems that we consider, including the flow time problem (see
Appendix F.3 for additional discussion). A major difference is that our algorithm consists of two
distinct phases.

Predictions cannot be completely trusted. We also note that a first natural approach is to assume
that the predictions are exactly correct and aim for a 1-consistent algorithm. For the problem with
deadlines, Bamas et al. [7] showed that there is no 1-consistent algorithm with bounded robustness.
In Appendix A.1, we show that this approach would also fail for the flow time problem because the
algorithm might start by processing jobs too fast and consume too much energy when trusting the
predictions. More generally, in Appendix A.2, we show that there is a necessary trade-off between
consistency and robustness for the flow time problem by proving that any 1 + ¼-consistent algorithm
must be O(

√

1 + 1/¼)-robust.

3.1 Description of the algorithm

The algorithm, called TPE, takes as input an arbitrary quality of service cost function F , predictions
Ĵ , a confidence level ¼ ∈ (0, 1] in the predictions, an offline algorithm OFFLINEALG for F ,
and an online algorithm ONLINEALG for F (without predictions). We denote by OFF(J ) :=
cost(OFFLINEALG(J ),J ) the objective value achieved by OFFLINEALG over J .

The algorithm proceeds in two phases. In the first phase (Lines 1-5), TPE ignores the predictions
and runs the auxiliary online algorithm ONLINEALG over the true jobs Jft that have been released
by time t. More precisely, during the first phase of the algorithm, sj(t) is the speed according to
the online algorithm ONLINEALG for all jobs. The first phase ends at the time t¼ when the cost of
the offline schedule computed by running OFFLINEALG on jobs Jft reaches the threshold value
¼ · OFF(Ĵ ). As we will detail in the analysis section, this first phase guarantees a bounded robustness
since we ensure that the offline cost for the true jobs reaches some value before starting to trust the
predictions (hence, TPE does not initially ‘burn’ too much energy compared to the optimal offline
cost, unlike the example described in Appendix A.1).
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Algorithm 1 Two-Phase Energy Efficient Scheduling (TPE)

Input: predicted and true sets of jobs Ĵ and J , quality of cost function F , offline and online
algorithms (without predictions) OFFLINEALG and ONLINEALG for problem F , confidence level
¼ ∈ (0, 1].

1: for t g 0 do
2: if OFF(Jft) > ¼ · OFF(Ĵ ) then
3: t¼ ← t
4: break
5: {sj(t)}j∈Jft

← ONLINEALG(Jft)(t)

6: {ŝj(t)}tgt¼,j∈Ĵgt¼

← OFFLINEALG(Ĵgt¼)

7: for t g t¼ do

8: {sj(t)}j∈Jft\Ĵgt¼

← ONLINEALG(Jft \ Ĵgt¼)(t)

9: {sj(t)}j∈J[t¼,t]∩Ĵgt¼

←{ŝj(t)}j∈J[t¼,t]∩Ĵgt¼

10: return {sj(t)}tg0,j∈J

In the second phase (Lines 6-9), TPE starts leveraging the predictions. More precisely, TPE needs to
set the speeds for three different types of jobs: (1) the remaining jobs that were correctly predicted
(i.e., Jgt¼ ∩ Ĵgt¼) (2) the remaining jobs that were not predicted (i.e., Jgt¼ \ Ĵgt¼) (3) the jobs
that were not correctly scheduled in the first phase and still have work remaining at the switch point
t¼ (which are a subset of J<t¼). To schedule these jobs, TPE combines two different schedules.
The first one is the offline schedule Ŝ := OFFLINEALG(Ĵgt¼) for the jobs Ĵgt¼ that are predicted
to arrive in the second phase. Each future job in the true set that was correctly predicted (i.e.,
j ∈ J[t¼,t] ∩ Ĵgt¼ on Line 9) will then be scheduled by following Ŝ. The second schedule is an

online schedule for the set of jobs J \ Ĵgt¼ = J<t¼ ∪ Jgt¼ \ Ĵgt¼ , which includes all jobs that
have not been completed during the first phase (¦ J<t¼) and the incorrectly predicted jobs that are
released during the second phase (J[t¼,t] \ Ĵgt¼). This online schedule is constructed by running

ONLINEALG on the set J \ Ĵgt¼ (Line 8). Note that the total speed of the machine at each time step
is the sum of the speeds of these two online and offline schedules.

3.2 Analysis of the algorithm

We analyze the competitive ratio of TPE as a function of the prediction error ¸, from which the
consistency and robustness bounds follow. Missing proofs are provided in Appendix B. We separately
bound the cost of the algorithm due to jobs in J<t¼ , Jgt¼ \ Ĵgt¼ and Jgt¼ ∩ Ĵgt¼ . We do this by
analyzing the costs of schedules Son := ONLINEALG(J \ Ĵgt¼) and Ŝ := OFFLINEALG(Ĵgt¼).
In the next lemma, we first analyze the cost of combining, i.e., summing, two arbitrary schedules.

Lemma 3.1. Let J1 be a set of jobs and S1 be a feasible schedule for J1, let J2 be a set of
jobs and S2 be a feasible schedule for J2. Consider the schedule S := S1 + S2 for J1 ∪ J2
which, at each time t, runs the machine at total speed s(t) = s1(t) + s2(t) and processes each
job j ∈ J1 at speed s1,j(t) and each job j ∈ J2 at speed s2,j(t). Then, cost(S,J1 ∪ J2) f
(

cost(S1,J1)
1
³ + cost(S2,J2)

1
³

)³

.

We next upper bound the cost of the schedule output by TPE as a function of the prediction error ¸,

which we decompose into ¸1 = OPT(J\Ĵ )

OPT(Ĵ )
and ¸2 = OPT(Ĵ \J )

OPT(Ĵ )
. The proof uses the previous lemma

repeatedly, first to analyze the cost of the schedule Son := ONLINEALG(J \ Ĵgt¼) for the set of
jobs J \ Ĵgt¼ = (J<t¼) ∪ (Jgt¼ \ Ĵgt¼), then to analyze the cost of the final schedule, which
combines Son and Ŝ := OFFLINEALG(Ĵgt¼).

Lemma 3.2. Assume that OFFLINEALG is µoff-competitive and that ONLINEALG is µon-competitive.
Then, for all ¼ ∈ (0, 1], the schedule S output by TPE run with confidence parameter ¼ satisfies

cost(S,J ) f OPT(Ĵ )
(

µ
1
³

off + µ
1
³

on((¼µoff)
1
³ + ¸

1
³

1 )
)³

.
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Proof. We start by upper bounding cost(Son,J \ Ĵgt¼). First, by the algorithm, we have that
OFF(J<t¼) f ¼ · OFF(Ĵ ). Since OFFLINEALG is µoff-competitive, we get

OPT(J<t¼) f OFF(J<t¼) f ¼ · OFF(Ĵ ) f ¼µoff · OPT(Ĵ ).

We also have that OPT(Jgt¼ \ Ĵgt¼) f OPT(J \ Ĵ ) f ¸1OPT(Ĵ ) where the first inequality is since
Jgt¼ \ Ĵgt¼ ¦ J \ Ĵ and the second is by definition of ¸1. Recall that S∗(.) denotes the optimal
offline schedule for the problem and consider the schedule S′ = S⋆(J<t¼) + S⋆(Jgt¼ \ Ĵgt¼) for
J \ Ĵgt¼ = J<t¼ ∪ (Jgt¼ \ Ĵgt¼). We obtain that

OPT(J \ Ĵgt¼) f cost(S′,J \ Ĵgt¼) f
(

OPT(J<t¼)
1
³ + OPT(Jgt¼ \ Ĵgt¼)

1
³

)³

f
(

(¼µoffOPT(Ĵ ))
1
³ + (¸1OPT(Ĵ ))

1
³ )
)³

= OPT(Ĵ )
(

(¼µoff)
1
³ + ¸

1
³

1

)³

,

where the second inequality is by Lemma 3.1. Since we assumed that ONLINEALG is µon-competitive,

cost(Son,J \ Ĵgt¼) f µon · OPT(J \ Ĵgt¼) f µon · OPT(Ĵ )
(

(¼µoff)
1
³ + ¸

1
³

1

)³

.

We now bound the cost of schedule S. First, note that cost(Ŝ, Ĵgt¼) = OFFLINEALG(Ĵgt¼) f
µoff · OPT(Ĵgt¼) f µoff · OPT(Ĵ ), where the first inequality is since OFFLINEALG is µoff-competitive
and the last one since Ĵgt¼ ¦ Ĵ . Therefore, by applying again Lemma 3.1, we get:

cost(S,J ) f
(

cost(Ŝ, Ĵgt¼)
1
³ + cost(Son,J \ Ĵgt¼)

1
³

)³

f
(

(µoff · OPT(Ĵ ))
1
³ +

(

µon · OPT(Ĵ )
(

(¼µoff)
1
³ + ¸

1
³

1

)³) 1
³
)³

= OPT(Ĵ )
(

µ
1
³

off + µ
1
³

on((¼µoff)
1
³ + ¸

1
³

1 )
)³

.

We next state a simple corollary of Lemma 3.1.

Corollary 3.3. OPT(J ∩ Ĵ ) g
(

1− ¸
1
³

2

)³

OPT(Ĵ ), and, assuming that OFFLINEALG is µoff-

competitive, we have: if OFF(J ) f ¼OFF(Ĵ ), then ¸2 g
(

1− (¼µoff)
1
³

)³

.

We are ready to state the main result of this section, which is our upper bound on the competitive
ratio of TPE.

Theorem 3.4. For any ¼ ∈ (0, 1], TPE with a µon-competitive algorithm ONLINEALG and a
µoff-competitive offline algorithm OFFLINEALG achieves a competitive ratio of



















µon if OFF(J ) f ¼OFF(Ĵ )
(

µ
1
³

off
+µ

1
³

on ((¼µoff)
1
³ +¸

1
³
1 )

)³

max

{

¼
µoff

,¸1+

(

1−¸
1
³
2

)³} otherwise.

The consistency and robustness immediately follow (for simplicity, we present the results in the
case where OFFLINEALG is optimal). Additional discussion on this competitive ratio is provided in
Appendix 3.4.

Corollary 3.5. For any ¼ ∈ (0, 1), TPE with a µon-competitive algorithm ONLINEALG and an

optimal offline algorithm OFFLINEALG is 1 + µon2
³¼

1
³ competitive if ¸1 = ¸2 = 0 (consistency)

and max{µon,
1+µon2

2³¼
1
³

¼ }-competitive for all ¸1, ¸2 (robustness). In particular, for any constant
ϵ > 0, with ¼ = ( ϵ

µon2³
)³, TPE is 1 + ϵ-consistent and O(1)-robust.
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3.3 Results for well-studied GES problems

We apply the general framework detailed in Section 3 to derive smooth, consistent and robust
algorithms for a few classically studied objective functions.

Energy plus flow time minimization. Recall that cjS denote the completion time of job j. The
quality cost function is defined as: F (S,J ) =∑j∈J (cjS − rj), with total objective cost(S,J ) =
F (S,J ) +E(S). By a direct application of Corollary 3.5, we get that for all ¼ ∈ (0, 1], Algorithm 1
run with the 2-competitive online algorithm from [3] and confidence parameter ¼ is (1 + 2

1
³¼

1
³ )³-

consistent and 1+2·22³¼
1
³

¼ -robust.

Energy plus fractional weighted flow time minimization. In this setting, each job has a weight
vj . The quality cost is F (S,J ) =

∑

j∈J vj
∫

tgrj
wS

j (t)dt. We can use as ONLINEALG the 2-
competitive algorithm from [14].

Energy plus integral weighted flow time minimization. In this setting, each job has a weight vj .
The quality cost function is defined as: F (S,J ) =∑j∈J vj(c

j
S − rj). We can use as ONLINEALG

the O((³/ log³)2)-competitive algorithm from [12].

Energy minimization with deadlines. In this setting, there is also a deadline dj for the completion
of each job. By writing the quality cost as F (S,J ) =

∑

j∈J ¶cj
S
>dj

, where ¶cj
S
>dj

= +∞ if

cjS > dj and 0 otherwise, the total objective can be written as cost(S,J ) = E(S) + F (S,J ). We
can use as ONLINEALG the AVERAGE RATE heuristic [29] (which is 2³-competitive for uniform
deadlines [7]). In particular, for uniform deadlines, and for all ϵ ∈ (0, 1], by setting ¼ = ( ϵ

C2³ )
³, we

obtain a consistency of (1 + ϵ) for a robustness factor of O(4³
2

/ϵ³−1).

3.4 Discussion on the competitive ratio

We assume in this section that OFFLINEALG is optimal. Note that for small ¸1 and ¸2, the competitive

ratio is upper bounded as

(

1+µ
1
³

on (¼
1
³ +¸

1
³
1 )

)³

¸1+

(

1−¸
1
³
2

)³ , which smoothly goes to (1 + µ
1
³

on¼
1
³ )³ (consistency

case) when ¸1, ¸2 go to 0. Moreover, our upper bound distinguishes the effect of two possible sources
of errors on the algorithm: (1) when removing jobs from the prediction (¸1 = 0 and ¸2 goes to 1), the
upper bound degrades monotonically to O( 1¼ ). (2) when adding jobs to the prediction (¸2 = 0 and ¸1
goes to +∞), the upper bound first degrades, then improves again, with an optimal asymptotic rate of
µon. This is since our algorithm mostly follows the online algorithm when the cost of the additional
jobs dominates.

4 The Extension to Small Deviations

Note that in the definition of the prediction error ¸, a job j is considered to be correctly predicted
only if rj = r̂j and pj = p̂j . In this extension, we consider that a job is correctly predicted even
if its release time and processing time are shifted by a small amount. We also allow each job to
have some weight vj > 0, that can be shifted as well. Assuming an additional smoothness condition
on the quality cost function F (., .), which is satisfied for the energy plus flow time minimization
problem and its variants, we propose and analyze an algorithm that generalizes the algorithm from
the previous section.

The algorithm, called TPE-S and formally described in Appendix C, takes the same input parameters
as Algorithm TPE, with some additional shift tolerance parameter ¸shift ∈ [0, 1) that is chosen by the
algorithm designer. Two main ideas are to artificially increase the predicted processing time p̂j of
each job j (because the true processing time pj of job j could be shifted and be slightly larger than
p̂j) and to introduce small delays for the job speeds (because the true release time rj of some jobs j
could be shifted and be slightly later than r̂j). Details can be found in Appendix C.
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Figure 1: The competitive ratio achieved by our algorithm, TPE-S, and the benchmark algorithm, as a function
of the error parameter σ (from left-most to the second from the right), and the competitive ratio of TPE-S for a
larger range of σ, as a function of σ (right-most).

Figure 2: The competitive ratio achieved by our algorithm, TPE-S, as a function of the shift tolerance parameter
ηshift (left) and as a function of the confidence parameter λ (right).

5 Experiments

We empirically evaluate the performance of Algorithm TPE-S on both synthetic and real datasets.
Specifically, we consider the energy plus flow time minimization problem where F (S,J ) =
∑

j∈J cj − rj and consider unit-work jobs (i.e., pj = 1 for all j) and fix ³ = 3.

5.1 Experimental setting

Benchmarks. TPE-S is Algorithm 2 with the default setting ¼ = 0.02, ¸shift = 1 and Ã = 0.4,
where Ã is a parameter that controls the level of prediction error, that we call the error parameter.
2-COMPETITIVE is the 2-competitive online algorithm from [3] that sets the speed at each time t

to n(t)
1
³ , where n(t) is the number of jobs with rj f t unfinished at time t, and uses the Shortest

Remaining Processing Time rule.

Data sets. We consider two synthetic datasets and a real dataset. For the synthetic data, we first
generate a predicted set of jobs Ĵ and we fix the value of the error parameter Ã > 0. To create
the true set of jobs J , we generate, for each job j ∈ Ĵ , some error err(j) sampled i.i.d. from
N (0, Ã). The true set of jobs is then defined as J = {(j, r̂j + err(j)) : j ∈ Ĵ }, which is the
set of all predicted jobs, shifted according to {err(j)}. Note that for all j ∈ J , j ∈ J shift only if

|r̂j − rj | = |err(j)| < ¸shift

´(Ĵ )
· OPT(Ĵ )

|Ĵ | . Hence, a larger Ã > 0 corresponds to a larger prediction error

¸g . For the first synthetic dataset, called the periodic dataset, the prediction is a set of n = 300 jobs,
with ith job’s arrival ri = i/³. For the second synthetic dataset, we generate the prediction by using
a power-law distribution. More precisely, for each time t ∈ {1, . . . , T}, where we fix T = 75, the
number of jobs’ arrivals at time t is set to M(1 − p(a)), where p(a) is sampled from a power law
distribution of parameter a, and M is some scaling parameter. In all experiments, we use the values
a = 100, M = 500.

We also evaluate the two algorithms on the College Message dataset from the SNAP database [27],
where the scheduler must process messages that arrive over 9 days, each with between 300 and 500
messages. We first fix the error parameter Ã > 0, then, for each day, we define the true set J as the
arrivals for this day, and we create the predictions Ĵ by adding some error err(i) to the release time
of each job i, where err(i) is sampled i.i.d. from N (0, Ã).
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5.2 Experiment results

For each of the synthetic datasets, the competitive ratio achieved by the different algorithms is
averaged over 10 instances generated i.i.d., and for the real dataset, it is averaged over the arrivals for
each of the 9 days.

Experiment set 1. We first evaluate the performance of the algorithms as a function of the error
parameter Ã. In Figure 1, we observe that TPE-S outperforms 2-COMPETITIVE when the error
parameter is small. In the right-most figure of Figure 1, the competitive ratio of TPE-S plateaus
when the value of Ã increases, which is consistent with our bounded robustness guarantee.

Experiment set 2. In the second set of experiments, we study the impact of the parameters ¸shift and
¼ of the algorithm for the periodic dataset (results for the other datasets can be found in Appendix E)
and fix Ã = 0.4. In the left plot of Figure 2, we observe the importance of allowing some shift in
the predictions as the performance of our algorithms first rapidly improves as a function of ¸shift

and then slowly deteriorates. The rapid improvement is because an increasing number of jobs are
treated by the algorithm as being correctly predicted when ¸shift increases. Next, in the right plot, we
observe that the competitive ratio deteriorates as a function of ¼, which implies that the algorithm can
completely skip the first phase that ignores the predictions and run the second phase that combines
the offline and online schedules when the prediction error is not too large. Note, however, that a
larger value of ¼ leads to a better competitive ratio when the predictions are incorrect. Hence, there is
a general trade-off here.

6 Limitations

The results in Section 3 and Section 4 require the quality cost function F to be monotone subadditive,
which holds for the flow time problem and the problem with deadlines but might not hold for some
other energy-efficient scheduling problems. The results in Section 4 require an additional smoothness
assumption on F , which holds for the flow time problem but not for the problem with deadlines.
Finally, we have only tested our algorithm on the three datasets described in Section 5.
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Appendix

A Consistent algorithms are not robust

In this section, we show that any learning-augmented algorithm for the (GSSP) problem must incur
some trade-off between robustness and consistency. Note that some impossibility results for general
objective functions of the form cost(S,J ) = E(S)+F (S,J ) given in Section 2 follow immediately
from [7], since the problem of speed scaling with deadline constraints was studied there is a special
case of (GSSP) (see Section 3.3).

We prove here some impossibility results for a different family of objective functions, where the
objective is to maximize the total energy plus flow time. This is one of the most widely studied
objectives of the form in cost(S,J ) = E(S) + F (S,J ) given in Section 2 (see for instance[2, 3, 12,
14]). Here, for all j ∈ J , we let cjS denote the completion time of job j while following schedule
S. The quality cost function studied in the remainder of this section is defined as: F (S,J ) =
∑

j∈J (cjS − rj) and the total objective is cost(S,J ) = F (S,J ) + E(S). We recall that for this
problem, the best possible online algorithm is the 2-competitive algorithm from [3].

A.1 Warm-up: no 1-consistent algorithm is robust

We show in this section that no algorithm that is perfectly consistent (i.e., achieves an optimal cost
when the prediction is totally correct) can have a bounded competitive ratio in the case the prediction
is incorrect. To show this property, we build an instance where a lot of jobs are predicted, but only
one of them arrives. To achieve consistency, any online algorithm must ‘burn’ a lot of energy during
the first few time steps; however, in the case where only one job arrives, the algorithm ends up
having wasted too much energy. This illustrates the necessity of a trade-off between robustness and
consistency.

Proposition A.1. For the objective of minimizing total energy plus (non-weighted) flow time, there
is no algorithm that is 1-consistent and o(

√
n)-robust, even if all jobs have unit-size work and if

J ¦ Ĵ .

Proof. Set ³ = 2 and consider an instance (Ĵ ,J ′) where Ĵ contains n jobs of unit-size work such
that the first job arrives at time t = 0 and the remaining n− 1 jobs arrive at time t = 1√

n
, and J ′

contains only the job that arrives at time t = 0.

By using results from [2], the optimal offline schedule for Ĵ is to schedule each job i ∈ [n] at speed√
n− i+ 1. Moreover, processing the first job any slower leads to a strictly worse cost. Hence,

any algorithm that is 1-consistent (i.e, achieves an optimal competitive ratio when the realization is
exactly Ĵ ) must process the first job at speed s1(t) =

√
n for all t ∈ [0, 1√

n
]. In this case, the total

objective is at least
√
n
2 · 1/√n+ 1/

√
n =
√
n+ 1/

√
n.

However, by using results from [2], the optimal objective for J ′ is 2 (with the speed of the single job
arriving at time t = 0 being set to 1). Hence, in the case where the realization is J ′, any algorithm
that schedules the first job at speed s1(t) =

√
n has a competitive ratio at least

√
n+1/

√
n

2 .

Therefore, any 1-consistent algorithm must have a robustness factor of at least
√
n+1/

√
n

2 .

A.2 Consistency-robustness trade-off

In this section, we quantify more precisely the necessary trade-off between robustness and consistency.
More precisely, we prove that there is a constant C > 0 such that for any ¼ small enough, any

algorithm that is at most (1 + ¼) consistent must be at least C
√

1
¼ + 1 robust. Moreover, letting

nft(J ) = |{j ∈ J : rj f t}| be the number of jobs of J that arrived before time t, we show that
for the following natural notion of error:

˜̧(J ,J ′) =
1

max{|J |, |J ′|} max
tg0
{|nft(J )− nft(J ′)|},
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which mimics the probability density function of the predicted and realized jobs, this property
remains true even if we assume a small prediction error ˜̧(J , Ĵ ). Hence, one cannot obtain a smooth
algorithm relatively to this notion of error. This motivates the introduction of the more refined notion
of error from Section 2. More specifically, we show the following lemma.

Lemma A.2. For the objective of minimizing total energy plus (non-weighted) flow time, there are
¼′ ∈ (0, 1] and C > 0 such that for any ϵ > 0, there is M ∈ N such that for all ¼ f ¼′ and n gM ,

there is an instance (Ĵn,¼,ϵ,Jn,¼,ϵ) such that |Ĵn,¼,ϵ| = n and ˜̧(Ĵn,¼,ϵ,Jn,¼,ϵ) f ϵ, and such that
for any algorithm A,

• either costA(Ĵ = Ĵn,¼,ϵ,J = Ĵn,¼,ϵ) > (1 + ¼) · OPT(Ĵn,¼,ϵ) (large consistency factor)

• or costA(Ĵ = Ĵn,¼,ϵ,J = Jn,¼,ϵ) g C
√

1
¼ + 1 · OPT(Jn,¼,ϵ) (large robustness factor).

The rest of this section is dedicated to the proof of Lemma A.2.

We first describe our lower bound instance. In the remainder of this section, we set ³ = 2.

Lower bound instance. Let ¼ ∈ (0, 1], n ∈ N and ϵ > 0. We construct an instance (Ĵn,¼,ϵ,Jn,¼,ϵ)
where the jobs in Ĵn,¼,ϵ can be organized in three different groups.

1. Group An,¼,ϵ is composed of 4
3¼ϵn jobs that all arrive at time 0.

2. Group Bn,¼,ϵ is composed of ϵn jobs that all arrive at time tA := 4¼ϵn

3
√

ϵn(1+ 4
3¼)

.

3. Group Cn,¼,ϵ consists of n dummy jobs, where, for some t′ >> 0, each job j ∈ [n] arrives
at time t′ + j.

Next, we define Jn,¼,ϵ as the union of jobs in An,¼,ϵ and Cn,¼,ϵ. Note that by construction, we have
˜̧(Ĵn,¼,ϵ,Jn,¼,ϵ) f ϵ.

We now state and prove a few useful lemmas.

Lemma A.3. Let K be a set of n jobs that all arrive at some time t g 0. Then, we have

4

3
n3/2 f OPT(K) f 4

3
n3/2 + o(n3/2).

Proof. By [2], the optimal schedule is to run each job i at speed si =
√
n− i+ 1. The total cost is

as follows:

cost(S∗(K)) = F (S∗(K)) + E(S∗(K))

=

n
∑

i=1

i
∑

j=1

1√
n− j + 1

+

n
∑

i=1

1√
n− i+ 1

√
n− i+ 1

2

=
n
∑

j=1

1√
n− j + 1

n
∑

i=j

1 +
n
∑

i=1

√
n− i+ 1

= 2

n
∑

i=1

√
n− i+ 1

Hence we have

2

∫ n

0

√
xdx f cost(S∗(K)) f 2

∫ n+1

1

√
xdx

⇒ 4

3
n3/2 f cost(S∗(K)) f 4

3
[(n+ 1)3/2 − 1] =

4

3
[n3/2 + o(n3/2)]
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Lemma A.4. Let K = {j1, . . . , j|K|} be a set of |K| jobs such that for all i ∈ [|K|], |ri+1 − ri| g 1.
Then, we have

OPT(K) = 2|K|.

Proof. By using [2], the optimal solution is to run each job at speed 1. The result follows immediately.

Lemma A.5. Let ¼ ∈ (0, 1], n ∈ N. Then, the optimal cost for jobs in Ĵn,¼,ϵ is upper bounded as
follows:

OPT(Ĵn,¼,ϵ) f
4

3
(ϵn)3/2(1 + ¼+ o(¼) + o(1))

as ¼→ 0 (independently of ϵ), n→ +∞ (for a fixed ϵ).

Proof. Consider the schedule S which runs jobs in An,¼,ϵ at speed
√

ϵn(1 + 4
3¼), and jobs in Bn,¼,ϵ

at the optimal speeds for ϵn jobs arriving at the same time, and jobs in Cn,¼,ϵ at speed 1. Consider the
cost of S for all jobs in An,¼,ϵ. Note that all the jobs in An,¼,ϵ are finished by time tA = 4¼ϵn

3
√

ϵn(1+ 4
3¼)

.

Hence, we have

cost(S[0,tA], An,¼,ϵ) f F (S[0,tA], An,¼,ϵ) + E(S[0,tA])

f tA
4

3
¼ϵn+ tA

(

√

ϵn(1 +
4

3
¼)

)2

f
4
3¼ϵn · 43¼ϵn
√

ϵn(1 + 4
3¼)

+
4

3
¼ϵn

√

ϵn(1 +
4

3
¼)

= (ϵn)3/2o(¼) + (ϵn)3/2(
4

3
¼

√

(1 +
4

3
¼))

= (ϵn)3/2[
4

3
¼+ o(¼)].

Let tB be the time at which S finishes all jobs in Bn,¼,ϵ. Recall that all n jobs in Bn,¼,ϵ arrive at time
tA. By Lemma A.3, we have

cost(S[tA,tB ], Bn,¼,ϵ) f
4

3
(ϵn)3/2 + o((ϵn)3/2),

Since all jobs in Cn,¼,ϵ arrive at time t′ >> tB , we have

cost(SgtB , Cn,¼,ϵ) = 2n = o((ϵn)3/2).

Therefore, when ¼ goes to 0 and n goes to +∞, the total cost of S is upper bounded as follows:

cost(S, Ĵn,¼,ϵ) = cost(S[0,tA], An,¼,ϵ) + cost(S[tA,tB ], Bn,¼,ϵ) + cost(SgtB , Cn,¼,ϵ)

f 4

3
(ϵn)3/2[1 + ¼+ o(¼) + o(1)].

Lemma A.6. There is ¼′ ∈ (0, 1] such that for any ϵ > 0, there is M ∈ N such that for all ¼ f ¼′

and n g M , and for any schedule S for Ĵn,¼,ϵ which has at least ¼ϵn units of jobs from An,¼,ϵ

remaining at time tA, we have

cost(S, Ĵn,¼,ϵ)
OPT(Ĵn,¼,ϵ)

>

(

1 +
1

4
¼

)

.
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Proof. Let ¼ ∈ (0, 1] and ϵ > 0, and let S be a schedule for Ĵn,¼,ϵ which has at least ¼ϵn units of
jobs from An,¼,ϵ remaining at time tA.

Note that the cost of S for times t g tA is at least the cost of an optimal schedule for the remaining
¼ϵn units of jobs from An,¼,ϵ and the ϵn units of job from Bn,¼,ϵ. By Lemma A.3, we thus get that:

cost(S, Ĵn,¼,ϵ) g cost(S,An,¼,ϵ ∪Bn,¼,ϵ) g
4

3
((1 + ¼)ϵn)3/2.

Now, by Lemma A.5, we get that when ¼ goes to 0 (independently of ϵ) and n goes to +∞,

cost(S∗(Ĵn,¼,ϵ)) f
4

3
(ϵn)3/2(1 + ¼+ o(¼) + o(1)).

Hence,

cost(S, Ĵn,¼,ϵ)
cost(S∗(Ĵn,¼,ϵ))

g
4
3 ((1 + ¼)ϵn)3/2

4
3 (ϵn)

3/2(1 + ¼+ o(¼) + o(1))

=

(

1 +
3

2
¼+ o(¼)

)

· (1− ¼− o(¼)− o(1))

= 1 +
1

2
¼− o(¼)− o(1).

Hence, there is ¼′ ∈ (0, 1] and M ∈ N (note that ¼′ ∈ (0, 1] is independent of ϵ while M depends on
it) such that if ¼ f ¼′ and n gM , then

cost(S, Ĵn,¼,ϵ)
cost(S∗(Ĵn,¼,ϵ))

>

(

1 +
1

4
¼

)

.

Lemma A.7. Let ¼ ∈ (0, 1], n ∈ N. Assume that S schedules at least 1
3¼ϵn units of jobs from An,¼,ϵ

from time 0 to tA. Then, there is a constant C > 0 such that

cost(S,Jn,¼,ϵ) g C(ϵn)3/2¼
√
1 + ¼.

Proof. For convenience of exposition, assume that S schedules exactly 1
3¼ϵn units of jobs from

An,¼,ϵ from time 0 to t (note that if S schedules more work from An,¼,ϵ, then the cost can only be

higher). By using [2], the optimal solution is to schedule each job i at speed si =
√

ϵ¼n
3 − i+ c+ 1,

where c is the unique constant such that
ϵ¼n
3
∑

i=1

1
√

ϵ¼n
3 − i+ c+ 1

= tA.

To lower bound c, note that we then have

tA g
ϵ¼n
3
∑

i= 1
2

ϵ¼n
3

1
√

ϵ¼n
3 − 1

2
ϵ¼n
3 + c+ 1

=
ϵ¼n

6

1
√

ϵ¼n
6 + c+ 1

.

By definition of tA, we get
4¼ϵn

3
√

ϵn(1 + 4
3¼)
g ϵ¼n

6

1
√

ϵ¼n
6 + c+ 1

⇐⇒ (
4

3
6)2(

ϵ¼n

6
+ c+ 1) g (1 +

4

3
¼)ϵn

⇐⇒ c g c2ϵn− c3ϵ¼n− 1. with c2 = 1
64 , c3 = − 1

48 + 1
6
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And the corresponding energy consumption is:

ϵ¼n
3
∑

i=1

√

ϵ¼n

3
− i+ c+ 1

g
ϵ¼n
6
∑

i=1

√

ϵ¼n

3
− ϵ¼n

6
+ c2ϵn− c3ϵ¼n

g ϵ¼n

6

√

ϵ¼n

3
− ϵ¼n

6
+ c2ϵn+ (

1

48
− 1

6
)ϵ¼n

=
ϵ¼n

6

√

c2ϵn+
1

48
ϵ¼n

g C(ϵn)3/2¼
√
1 + ¼. (for some constant C > 0)

Therefore, any schedule S that completes ¼ϵn jobs before time t has cost lower bounded as:

cost(S,Jn,¼,ϵ) g C(ϵn)3/2¼
√
1 + ¼.

We are now ready to present the proof of Lemma A.2.

Proof of Lemma A.2. By Lemma A.6, we have that there is a constant ¼′ ∈ (0, 1] such that for
all ϵ > 0, there is M ∈ N such that for any algorithm A and n g M , and when running A with
predictions Ĵ = Ĵn,¼,ϵ and realization J ∈ {Ĵn,¼,ϵ,Jn,¼,ϵ}, then either A schedules at least 1

3¼ϵn
units of jobs of An,¼,ϵ before time t, or the schedule S output by A satisfies:

cost(S, Ĵn,¼,ϵ)
cost(S∗(Ĵn,¼,ϵ))

>

(

1 +
1

4
¼

)

.

Hence, if A achieves a consistency of at most
(

1 + 1
4¼
)

, A must schedule at least 1
3¼ϵn units of jobs

of An,¼,ϵ before time t. However, we then have, by Lemma A.7, that for some constant C > 0,

costA(Ĵ = Ĵn,¼,ϵ,J = Jn,¼,ϵ) g C(ϵn)3/2¼
√
1 + ¼.

On the other hand, assuming that J = Jn,¼,ϵ, we get by Lemma A.3 and Lemma A.4 that

OPT(Jn,¼,ϵ) f
4

3
(¼ϵn)3/2 + o((ϵn)3/2) + 2n.

Hence, we get that for some constant C ′′ > 0 and n large enough,

costA(Ĵ = Ĵn,¼,ϵ,J = Jn,¼,ϵ)
OPT(Jn,¼,ϵ)

g C(ϵn)3/2¼
√
1 + ¼

4
3 (¼ϵn)

3/2 + o((ϵn)3/2) + 2n
g C ′′

√

1

¼
+ 1.

B Missing analysis from Section 3

Lemma 3.1. Let J1 be a set of jobs and S1 be a feasible schedule for J1, let J2 be a set of
jobs and S2 be a feasible schedule for J2. Consider the schedule S := S1 + S2 for J1 ∪ J2
which, at each time t, runs the machine at total speed s(t) = s1(t) + s2(t) and processes each
job j ∈ J1 at speed s1,j(t) and each job j ∈ J2 at speed s2,j(t). Then, cost(S,J1 ∪ J2) f
(

cost(S1,J1)
1
³ + cost(S2,J2)

1
³

)³

.
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Proof. We first upper bound the quality cost F (S,J1 ∪ J2) of the proposed schedule S. In each
infinitesimal time interval [t, t+ dt] and for all j ∈ J1, S processes s1,j(t)dt units of work of job j,
and for each j ∈ J2, S processes s2,j(t)dt units of work of job j. Hence S processes exactly the
same amount of work for each job j ∈ J1 (resp. j ∈ J2) as S1 (resp. S2). We thus get that for all
t g 0,

wS
j (t) = wS1

j (t) for all j ∈ J1 and wS
j (t) = wS2

j (t) for all j ∈ J2. (1)

Therefore,

F (S,J1 ∪ J2) f F (S,J1) + F (S,J2) (F is sub-additive)

= f
(

{(WS
j , j)}j∈J1

)

+ f
(

{(WS
j , j)}j∈J2

)

= f
(

{(WS1
j , j)}j∈J1

)

+ f
(

{(WS2
j , j)}j∈J2

)

(by (1))

= F (S1,J1) + F (S2,J2).
Next, we upper bound the energy consumption E(S) of the proposed schedule S.

E(S) =

∫

(s1(t) + s2(t))
³dt

=

³
∑

i=0

(

³

i

)∫

(s1(t)
³)

i
³ (s2(t)

³)
³−i
³ dt

f
³
∑

i=0

(

³

i

)(∫

(s1(t))
³dt

)
i
³
(∫

(s2(t))
³dt

)
³−i
³

(Hölder’s inequality)

= E(S1) + E(S2) +

³−1
∑

i=1

(

³

i

)

E(S1)
i
³E(S2)

³−i
³

f E(S1) + E(S2) +
³−1
∑

i=1

(

³

i

)

cost(S1)
i
³ cost(S2)

³−i
³ .

Therefore, the total cost of schedule S can be upper bounded as follows:

cost(S,J1 ∪ J2) = F (S,J1 ∪ J2) + E(S)

f F (S1,J1) + E(S1) + F (S2,J2) + E(S2) +
³−1
∑

i=1

(

³

i

)

cost(S1)
i
³ cost(S2)

³−i
³

=
(

cost(S1,J1)
1
³ + cost(S2,J2)

1
³

)³

.

Corollary 3.3. OPT(J ∩ Ĵ ) g
(

1− ¸
1
³

2

)³

OPT(Ĵ ), and, assuming that OFFLINEALG is µoff-

competitive, we have: if OFF(J ) f ¼OFF(Ĵ ), then ¸2 g
(

1− (¼µoff)
1
³

)³

.

Proof. We prove the first part of the Corollary by contradiction. Assume that OPT(J ∩ Ĵ ) <
(

1− ¸
1
³

2

)³

OPT(Ĵ ). Next, by definition of the error ¸2, we have OPT(Ĵ \J ) = ¸2 ·OPT(Ĵ ). Hence,

by Lemma 3.1, there exists a schedule S for (J ∩ Ĵ ) ∪ (Ĵ \ J ) = Ĵ such that

cost(S, Ĵ ) f
(

OPT(Ĵ \ J ) 1
³ + OPT(J ∩ Ĵ ) 1

³

)³

<

(

(¸2OPT(Ĵ ))
1
³ +

((

1− ¸
1
³

2

)³

OPT(Ĵ )
)

1
³

)³

= OPT(Ĵ ),
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which contradicts the definition of OPT(Ĵ ) and ends the proof of the first result.

We now show the second part of the Corollary.

Assume that OFF(J ) f ¼OFF(Ĵ ). Then, since OFFLINEALG is µoff-competitive, we have

OPT(J ) f OFF(J ) f ¼OFF(Ĵ ) f ¼µoffOPT(Ĵ ).

In particular, OPT(J ∩ Ĵ ) f ¼µoffOPT(Ĵ ). Next, assume by contradiction, that ¸2 <
(

1− (¼µoff)
1
³

)³

, which implies that OPT(Ĵ \J ) <
(

1− (¼µoff)
1
³

)³

OPT(Ĵ ). Then, by Lemma 3.1,

there exists a schedule S for (J ∩ Ĵ ) ∪ (Ĵ \ J ) = Ĵ such that

cost(S, Ĵ ) f
(

OPT(Ĵ \ J ) 1
³ + OPT(J ∩ Ĵ ) 1

³

)³

<

(

((¼µoff)OPT(Ĵ ))
1
³ +

((

1− (¼µoff)
1
³

)³

OPT(Ĵ )
)

1
³

)³

= OPT(Ĵ ),

which contradicts the definition of OPT(Ĵ ). Hence, ¸2 g
(

1− (¼µoff)
1
³

)³

.

Theorem 3.4. For any ¼ ∈ (0, 1], TPE with a µon-competitive algorithm ONLINEALG and a
µoff-competitive offline algorithm OFFLINEALG achieves a competitive ratio of



















µon if OFF(J ) f ¼OFF(Ĵ )
(

µ
1
³

off
+µ

1
³

on ((¼µoff)
1
³ +¸

1
³
1 )

)³

max

{

¼
µoff

,¸1+

(

1−¸
1
³
2

)³} otherwise.

Proof. First, assume that that for all t g 0, OFF(Jft) f ¼OFF(Ĵ ) (i.e., TPE never goes through
lines 6-10). Then, the schedule S returned by the algorithm is obtained by running the µon-competitive
algorithm ONLINEALG on J , hence

cost(S,J ) f µon · OPT(J ). (2)

Next, assume that there is t¼ g 0 such that OFF(Jft¼) > ¼OFF(Ĵ ). Since OFFLINEALG is
µoff-competitive, we immediately get:

OPT(J ) g OPT(Jft¼) g
OFF(Jft¼)

µoff
>

¼

µoff
OFF(Ĵ ) g ¼

µoff
OPT(Ĵ ).

By Corollary 3.3 and by definition of the error ¸1, we also get the following lower bound on the
optimal schedule:

OPT(J ) g OPT(J \ Ĵ ) + OPT(J ∩ Ĵ ) g ¸1OPT(Ĵ ) +
(

1− ¸
1
³

2

)³

OPT(Ĵ ).

Therefore,

OPT(J ) g max

{

¼

µoff
, ¸1 +

(

1− ¸
1
³

2

)³
}

OPT(Ĵ ). (3)

Now, by Lemma 3.2, the cost of the schedule S output by TPE is always upper bounded as follows:

cost(S,J ) f OPT(Ĵ )
(

µ
1
³

off + µon
1
³ ((¼µoff)

1
³ + ¸

1
³

1 )
)³

. (4)
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Hence, we get the following upper bound on the competitive ratio of TPE:

cost(S,J )
OPT(J )

= 1
OFF(J )f¼OFF(Ĵ )

cost(S,J )
OPT(J ) + 1

OFF(J )>¼OFF(Ĵ )

cost(S,J )
OPT(J )

f 1
OFF(J )f¼OFF(Ĵ )µon + 1

OFF(J )>¼OFF(Ĵ )

(

µ
1
³

off + µon
1
³ ((¼µoff)

1
³ + ¸

1
³

1 )
)³

max
{

¼
µoff

, ¸1 +
(

1− ¸
1
³

2

)³} . by (2),(3),(4)

Corollary 3.5. For any ¼ ∈ (0, 1), TPE with a µon-competitive algorithm ONLINEALG and an

optimal offline algorithm OFFLINEALG is 1 + µon2
³¼

1
³ competitive if ¸1 = ¸2 = 0 (consistency)

and max{µon,
1+µon2

2³¼
1
³

¼ }-competitive for all ¸1, ¸2 (robustness). In particular, for any constant
ϵ > 0, with ¼ = ( ϵ

µon2³
)³, TPE is 1 + ϵ-consistent and O(1)-robust.

Proof. We start by the consistency. Since we assumed that OFFLINEALG is optimal, by Corollary 3.3,
we have that for all ¼ ∈ (0, 1), OFF(J ) > ¼OFF(Ĵ ), when ¸2 = 0. The result follows by an
immediate upper bound on the competitive ratio in this case.

We now show the robustness. First note that if OFF(J ) f ¼OFF(Ĵ ), then cost(S,J )
OPT(J ) f µon f

max{µon,
1+µon2

2³¼
1
³

¼ } for any ¼ ∈ [0, 1]. Now, assume that OFF(J ) > ¼OFF(Ĵ ). We then have

cost(S,J )
OPT(J ) f

(

1 + µon
1
³ (¼

1
³ + ¸

1
³

1 )
)³

max
{

¼, ¸1 +
(

1− ¸
1
³

2

)³} f

(

1 + µon
1
³ (¼

1
³ + ¸

1
³

1 )
)³

max{¼, ¸1}
.

If ¸1 f ¼, we get:

cost(S,J )
OPT(J ) f

(

1 + µon
1
³ (2¼

1
³ )
)³

¼
f 1 + µon2

2³¼
1
³

¼
,

and if ¸1 g ¼, we get:

cost(S,J )
OPT(J ) f

(

1 + µon
1
³ (2¸

1
³

1 )
)³

¸1
f 1 + µon2

2³ max{¸1, ¸
1
³

1 }
¸1

.

Since the above function reaches its maximum value over [¼,+∞[ for ¸1 = ¼, this immediately
yields the result.

C The Extension with Job Shifts (Full version)

Note that in the definition of the prediction error ¸, a job j is considered to be correctly predicted
only if rj = r̂j and pj = p̂j . In this section, we consider an extension where a job is considered to be
correctly predicted even if the release time and processing time are shifted by a small amount. In
this extension, we also allow each job to have some weight vj > 0, that can be shifted as well. We
propose and analyze an algorithm that generalizes the algorithm from the previous section.

Motivating example. Consider the objective of minimizing energy plus flow time with ³ = 2. Let
(Ĵ ,J ) be an instance where J has n jobs with weight w = 1.01 and processing time p = 0.99, all
released at time r = 0.1, and Ĵ has n jobs with weight w = 1 and processing time p = 1, all released
at time r = 0. Since Ĵ \ J = Ĵ , we have here that ¸1 = OPT(Ĵ \ J ) = OPT(Ĵ ) = Ω(n3/2) (by
Lemma A.3), whereas it seems reasonable to say that Ĵ was a ’good’ prediction for instance J , since
it accurately represents the pattern of the jobs in J .
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In this section, we assume that the quality of cost function F is such that the total cost function E+F
satisfies a smoothness condition, which we next define.

Smooth objective function. Let J denote the collection of all sets of jobs. We say that a function
´ : J −→ R is smooth if for all J ∈ J, {r′j}j∈J g 0 and {¸j}j∈J g 0, we have ´(J ′) f
(1 +maxj ¸j)´(J ), where J ′ = {(j, r′j , pj(1 + ¸j), vj(1 + ¸j)}. ´ is monotone if for all J ′′ ¦ J ,
we have ´(J ′′) f ´(J ).
We say that a cost function cost(., .) is ´-smooth if there is a smooth monotone function ´(.) g 1
such that for all ¸, ¸′ ∈ [0, 1], J1,J2 with |J1| = |J2| and bijection Ã : J1 −→ J2, and for all S1

and S2 feasible for J1 and J2:

• (smoothness of optimal cost). If for all j ∈ J1, |rj − rÃ(j)| f ¸′, pj f pÃ(j)(1 + ¸) and
vj f vÃ(j)(1 + ¸), then

OPT(J1) f (1 + ´(J1)¸)OPT(J2) + ´(J1)|J1|¸′.
• (shifted work profile for dominated schedule.) If for all j ∈ J , pj f pÃ(j), vj f vÃ(j),

rj g rÃ(j) − ¸′ and for all t g rÃ(j) + ¸′, wj
S1
(t) f w

Ã(j)
S2

(t − ¸′), where wj
S1
(t) (resp.

wj
S2
(t)) denotes the remaining amount of work for j a time t for S1 (resp. S2), then

F (S1,J1) f F (S2,J2) + ´(J1)|J1|¸′.

In other words, if J1 and J2 are close to each other, then the optimal costs for J1 and J2 are close,
and if schedules S1, S2 induce similar but slightly shifted work profiles for J1 and J2, then the
quality costs for S1 and S2 are close.

We show in Appendix D that for the classically studied energy plus weighted flow time minimization
problem with ³ g 1, the cost function is max(4maxj vj , 2

³ − 1)-smooth. Note that for energy
minimization with deadlines, the objective introduced in Section 3.3 is not smooth for any bounded
function ´(.), since a small shift in the work profiles can induce a large increase in the objective
function (in the case we miss a job’s hard deadline). However, [7] (Section F.2) shows that it is also
possible to transform any prediction-augmented algorithm for the energy plus deadline problem into
a shift-tolerant algorithm.

Shift tolerance and error definition. In this extension, we allow each job in the prediction to be
perturbed by a small amount. Past this tolerance threshold, the perturbed job is treated as a distinct job.
We assume here that when a job arrives, it is always possible to identify which job of the prediction
(if any) it corresponds to. More specifically, for each job j, we write (j, rj , pj , vj) for the real values
of the parameters associated with j and (j, r̂j , p̂j , v̂j) for their predicted values (with the convention
that (j, rj , pj , vj) = ∅ if the job didn’t arrive and (j, r̂j , p̂j , v̂j) = ∅ if the job was not predicted).

Next, we let ¸shift ∈ [0, 1) be a shift tolerance parameter, that is initially set by the decision-
maker, and we assume that the objective function is ´-smooth for some smooth monotone function
´(.) g 1. We now define the set of ’correctly predicted’ jobs as J shift = {(j, rj , pj , vj) : |rj − r̂j | f
¸shift

´(Ĵ )
· OPT(Ĵ )

|Ĵ | , |pj − p̂j | f ¸shift

´(Ĵ )
· p̂j , |vj − v̂j | f ¸shift

´(Ĵ )
· v̂j}, which is the set of jobs whose release

time, weights and processing times have only been slightly shifted as compared to their predicted
values. The amount of shift we tolerate depends on the smoothness function ´(.) of the objective
function F and on the predicted instance Ĵ . In addition, note that the allowed shift in release time
is proportional to the average cost per job (the intuition here is that for most objective functions,
the average cost per job is at least the average completion time per job). We underscore the fact
that J \ J shift contains both the predicted jobs that have past the shift tolerance and additional
jobs in the realization. Finally, we let Ĵ shift = {(j, r̂j , p̂j , v̂j) : (j, rj , pj , vj) ∈ J shift}. The error
¸g = 1

OPT(Ĵ )
·max{OPT(J \ J shift), OPT(Ĵ \ Ĵ shift)} is now defined as the optimal cost for both the

additional and missing jobs (similarly as in the previous sections) and the jobs that have past the shift
tolerance, normalized by the optimal cost for the prediction.

Algorithm description. The Algorithm, called TPE-S and formally described in Algorithm 2,
takes the same input parameters as Algorithm TPE, with some additional shift tolerance parameter
¸shift ∈ [0, 1), from which we compute the maximum allowed shift in release time ¯̧ (Line 8).
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TPE-S globally follows the structure of TPE, with a few differences, that we now detail. First, we
start by slightly increasing the predicted weight and processing time of each job to obtain the set

of jobs Ĵ up := {(j, r̂j , p̂j(1 + ¸shift

´(Ĵ )
), v̂j(1 +

¸shift

´(Ĵ )
))} (Line 1). Note that by the first smoothness

condition, the optimal schedule for Ĵ up has only a slightly higher cost than OPT(Ĵ ).
Then, similarly as TPE, TPE-S starts with a first phase where it follows the online algorithm
ONLINEALG until the time t¼ where the optimal offline has reached some threshold value ¼OPT(Ĵ up)
(Lines 3-7). In the second phase (Lines 9-13), it again combines two schedules, this time, for (1)
the jobs in J shift

gt¼
that are within the shift tolerance (2) the jobs in J \ J shift

gt¼
, which include the

remaining jobs from phase 1 and the non-predicted jobs (or jobs that have past the shift-tolerance)
that are released after time t¼. To schedule the jobs in J shift

gt¼
, we first compute an offline schedule

Ŝ for Ĵ up (Line 9). One small difference with TPE is that we will delay the schedule Ŝ by ¯̧ time
steps backwards when we schedule jobs in J shift

gt¼
. More precisely, each job (j, rj , pj , vj) ∈ J shift

gt¼
is

scheduled on the same way the job with the same identifier j in Ĵ up is scheduled by Ŝ at time t− ¯̧
(Line 12). The intuition here is that we need to wait a small delay of ¯̧ in order to identify which jobs
of the predictions indeed arrived. Finally, and similarly as TPE, the speeds for jobs in J \ J shift

gt¼
are

set by running ONLINEALG on the set J \ J shift
gt¼

(Line 13).

Algorithm 2 Two-Phase Energy Efficient Scheduling with Shift Tolerance (TPE-S)

Input: predicted and true sets of jobs Ĵ and J , quality of cost function F , offline and online
algorithms (without predictions) OFFLINEALG and ONLINEALG for problem F , confidence level
¼ ∈ (0, 1], shift tolerance ¸shift > 0.

1: Ĵ up ← {(j, r̂j , p̂j(1 + ¸shift

´(Ĵ )
), v̂j(1 +

¸shift

´(Ĵ )
))}

2: ˆOPT← OPT(Ĵ up)
3: for t g 0 do
4: if OPT(Jft) > ¼ · ˆOPT then
5: t¼ ← t
6: break
7: {sj(t)}j∈Jft

← ONLINEALG(Jft)(t)

8: ¯̧← ¸shift

´(Ĵ )
· OPT(Ĵ )

|Ĵ |
9: {ŝj(t)}tg0,j∈Ĵ up ← OFFLINEALG(Ĵ up)

10: for t g t¼ do
11: for j : (j, rj , pj , vj) ∈ J shift

gt¼
do

12: sj(t)← ŝj(t− ¯̧)
13: {sj(t)}j∈Jft\J shift

gt¼

← ONLINEALG(Jft \ J shift
gt¼

)(t)

14: return {sj(t)}tg0,j∈J

Analysis. We now present the analysis of TPE-S. All missing proofs are provided in Appendix D.
In the following lemma, we start by upper bounding the cost of the schedule output by TPE-S for
the jobs that were released in the second phase and were correctly predicted (i.e., within the shift
tolerance). The proof mainly exploits the two smoothness conditions of the cost function.

Lemma C.1. Assume that cost(., .) is ´-smooth. Consider the schedule Sshift, which, for all t g t¼
and (j, rj , pj , vj) ∈ J shift

gt¼
, processes job j at speed

sj(t) = ŝj

(

t− ¸shift

´(Ĵ )
· OPT(Ĵ )
|Ĵ |

)

.

Then,

cost(Sshift,J shift

gt¼
) f (1 + 2¸shift(1 + ¸shift))OPT(Ĵ ).

22



We now show some slightly modified version of Corollary 3.3. Similarly as before, we write

¸1 = OPT(J\J shift)

OPT(Ĵ )
to denote the error corresponding to additional jobs in the prediction, and ¸2 =

OPT(Ĵ \Ĵ shift)

OPT(Ĵ )
for the error corresponding to missing jobs.

Corollary C.2. Assume that cost(., .) is ´-smooth, then

OPT(J shift) g
[ (

1− ¸
1
³

2

)³

− ¸shift
]/

(1 + ¸shift)OPT(Ĵ ).

Corollary C.3. Assume that cost(., .) is ´-smooth. If OPT(J ) f ¼OPT(Ĵ ), then

¸2 g
(

1− (¼(1 + ¸shift) + ¸shift)
1
³

)³

.

We now state the main result of this section, which is our upper bound on the competitive ratio of the
shift-tolerant Algorithm TPE-S.

Theorem C.4. Assume that cost(., .) is ´-smooth. Then, for any ¼ ∈ (0, 1], ¸shift ∈ [0, 1), the
competitive ratio of TPE-S run with trust parameter ¼, a µ-competitive algorithm ONLINEALG, an
optimal offline algorithm OFFLINEALG, and shift tolerance ¸shift is at most



















µ if OPT(J ) f ¼OPT(Ĵ )
(

(1+2¸shift(1+¸shift))
1
³ +µ

1
³

(

¼
1
³ +¸

1
³
1

))³

max

{

¼,¸1+

((

1−¸
1
³
2

)³

−¸shift

)

(1+¸shift)−1

} otherwise.

In particular, we deduce the following consistency and robustness guarantees.

Corollary C.5. (consistency) For any ¼ ∈ (0, 1] and ¸shift ∈ [0, 1), if ¸1 = ¸2 = 0 (all jobs
are within the shift tolerance and there is no extra or missing jobs), then the competitive ratio
of TPE-S run with trust parameter ¼ and shift tolerance parameter ¸shift is upper bounded by

min( 1¼ ,
(1+¸shift)
(1−¸shift) ) ·

(

(1 + 2¸shift(1 + ¸shift))
1
³ + µ

1
³¼

1
³

)³

f (1+2¸shift(1+¸shift))2

(1−¸shift) · (1 + µ2³¼
1
³ ).

Corollary C.6. (robustness) For any ¼ ∈ (0, 1] and ¸shift ∈ [0, 1), the competitive ratio of Al-
gorithm 1 run with trust parameter ¼ and shift tolerance parameter ¸shift is upper bounded by

(1+2¸shift(1+¸shift))(1+µ22³¼
1
³ )

¼ .

D Missing analysis from Appendix C

Lemma D.1. For the objective of minimizing total integral weighted flow time plus energy with
³ g 1, the cost function is max(4 ·maxj vj , 2

³ − 1)-smooth.

Proof. Let J1,J2 with |J1| = |J2|, a bijection Ã : J1 −→ J2 and S1 and S2 feasible for J1 and
J2.

We start with the first smoothness condition. Assume that for some ¸, ¸′ ∈ [0, 1] and for all j ∈ J1,
|rj − rÃ(j)| f ¸′, pj f pÃ(j)(1 + ¸) and vj f vÃ(j)(1 + ¸). Let S∗ be an optimal schedule for J2
and consider the schedule S = {sj(t) := (1 + ¸) · s∗Ã(j)(t− ¸′)}j∈J1 for J1.

Note that for all j ∈ J1 and t g 0, s∗Ã(j)(t − ¸′) > 0 only if t − ¸′ > rÃ(j). Since we assumed
|rj − rÃ(j)| f ¸′, we get that sj(t) > 0 only if t g rj , hence S is feasible for J1. Next, note that

E(S) = E(S∗)(1 + ¸)³ f E(S∗)(1 + (2³ − 1)¸).

Recall that cSj denotes the completion time of j by S. Since pj f (1+¸)pÃ(j), and since we assumed

that |rj − rÃ(j)| f ¸′, we have, by definition of S, that for all j, cSj f ¸′ + cS
∗

Ã(j).
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Hence,

F (S,J1) =
∑

j∈J1

vj(c
S
j − rj)

f
∑

j∈J1

vÃ(j)(1 + ¸)(cS
∗

Ã(j) + ¸′ − (rÃ(j) − ¸′))

= (1 + ¸)F (S∗,J2) + 2max
j

vj |J1|(1 + ¸)¸′

f (1 + ¸)F (S∗,J2) + 4max
j

vj |J1|¸′ ¸ ∈ [0, 1]

f (1 + (2³ − 1)¸)F (S∗,J2) + 4max
j

vj |J1|¸′ ³ g 1.

Therefore,

OPT(J1) f cost(S,J1)
= E(S) + F (S,J1)
f (E(S∗) + F (S∗,J2)) · (1 + (2³ − 1)¸) + 4max

j
vj |J1|¸′

= cost(S∗,J2)(1 + (2³ − 1)¸) + 4max
j

vj |J1|¸′

= OPT(J2)(1 + (2³ − 1)¸) + 4max
j

vj |J1|¸′.

We now show the second smoothness condition. Assume that for all j ∈ J1, pj f pÃ(j), vj f vÃ(j),

rj g rÃ(j) − ¸′ and that for all t g rÃ(j) + ¸′, wj
S1
(t) f w

Ã(j)
S2

(t − ¸′). Then, in particular

wj
S1
(cS2

Ã(j) + ¸′) f w
Ã(j)
S2

(cS2

Ã(j)) = 0, hence cS1
j = min{t g rj : wj

S1
(t) = 0} f cS2

Ã(j) + ¸′. By a
similar argument as above, we conclude that:

F (S,J1) f F (S2,J2) + 4max
j

vj |J1|¸′.

Lemma C.1. Assume that cost(., .) is ´-smooth. Consider the schedule Sshift, which, for all t g t¼
and (j, rj , pj , vj) ∈ J shift

gt¼
, processes job j at speed

sj(t) = ŝj

(

t− ¸shift

´(Ĵ )
· OPT(Ĵ )
|Ĵ |

)

.

Then,

cost(Sshift,J shift

gt¼
) f (1 + 2¸shift(1 + ¸shift))OPT(Ĵ ).

Proof. For simplifying the exposition, in the remainder of the proof, we write ¯̧ instead of ¸shift

´(Ĵ )
·

OPT(Ĵ )

|Ĵ | .

We first analyse the energy cost.

E(Sshift) =

∫

tgt¼







∑

j∈J shift
gt¼

ŝj (t− ¯̧)







³

dt =
∫

tgt¼− ¯̧







∑

j∈J shift
gt¼

ŝj (t)







³

dt

f
∫

t





∑

j∈Ĵ up

ŝj (t)





³

dt = E(Ŝ). (5)
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Next, we analyze the quality cost. Note that by definition of Sshift, we have that for all j ∈ J shift
gt¼

and
t g r̂j + ¯̧ , the same amount of work for (j, rj , pj , vj) has been processed by Sshift at time t as the

amount of work for (j, r̂j , p̂j
(

1 + ¸shift

´(Ĵ )

)

, v̂j
(

1 + ¸shift

´(Ĵ )

)

) processed by Ŝ at time t− ¯̧. Hence, for all

t g r̂j + ¯̧,

w
(j,rj ,pj ,vj)

Sshift (t) = w
(j,r̂j ,p̂j

(

1+ ¸shift

´(Ĵ )

)

,v̂j

(

1+ ¸shift

´(Ĵ )

)

)

Ŝ
(t− ¯̧) .

By definition of J shift
gt¼

, we also have that for all (j, rj , pj , vj) ∈ J shift
gt¼

, |rj − r̂j | f ¯̧, pj f
p̂j
(

1 + ¸shift

´(Ĵ )

)

and vj f v̂j
(

1 + ¸shift

´(Ĵ )

)

. Hence, we can apply the second smoothness condition with

J1 = J shift
gt¼

and J2 = {(j, r̂j , p̂j
(

1 + ¸shift

´(Ĵ )

)

, v̂j
(

1 + ¸shift

´(Ĵ )

)

) : (j, rj , pj , vj) ∈ J shift
gt¼
} ¦ Ĵ up. This

gives:

F (Sshift,J shift
gt¼

) f F (Ŝ,J2) + ¯̧´(J shift
gt¼

)|J shift
gt¼
|

f F (Ŝ, Ĵ up) + ¯̧´(J shift
gt¼

)|J shift
gt¼
|

= F (Ŝ, Ĵ up) +
¸shift

´(Ĵ )
· OPT(Ĵ )
|Ĵ |

· ´(J shift
gt¼

)|J shift
gt¼
|

f F (Ŝ, Ĵ up) +
¸shift

´(Ĵ )
· OPT(Ĵ )
|Ĵ |

· ´(Ĵ )
(

1 +
¸shift

´(Ĵ )

)

|Ĵ |

= F (Ŝ, Ĵ up) + ¸shift

(

1 +
¸shift

´(Ĵ )

)

OPT(Ĵ )

f F (Ŝ, Ĵ up) + ¸shift(1 + ¸shift)OPT(Ĵ ), (6)

where the first inequality is by the second smoothness condition, the second one is is by monotonicity
of F , the equality is by definition of ¯̧, and the third inequality is by the smoothness and monotonicity
of ´. The last inequality is since ´ g 1.

Therefore, we get

cost(Sshift,J shift
gt¼

) = E(Sshift) + F (Sshift,J shift
gt¼

)

f E(Ŝ) + F (Ŝ, Ĵ up) + ¸shift(1 + ¸shift)OPT(Ĵ )
= OPT(Ĵ up) + ¸shift(1 + ¸shift)OPT(Ĵ )

f
(

1 + ´(Ĵ up)
¸shift

´(Ĵ )

)

OPT(Ĵ ) + ¸shift(1 + ¸shift)OPT(Ĵ )

f
(

1 + ´(Ĵ )
(

1 +
¸shift

´(Ĵ )

)

¸shift

´(Ĵ )

)

OPT(Ĵ ) + ¸shift(1 + ¸shift)OPT(Ĵ )

f (1 + ¸shift(1 + ¸shift))OPT(Ĵ ) + ¸shift(1 + ¸shift)OPT(Ĵ )
= (1 + 2¸shift(1 + ¸shift))OPT(Ĵ ),

where the first inequality is by (5) and (6), the second inequality is by the first smoothness condition
with J1 = Ĵ up and J2 = Ĵ , the third inequality is by smoothness of ´ and the last inequality since
´ g 1.

Corollary C.2. Assume that cost(., .) is ´-smooth, then

OPT(J shift) g
[ (

1− ¸
1
³

2

)³

− ¸shift
]/

(1 + ¸shift)OPT(Ĵ ).
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Proof. We prove the result by contradiction. Assume that OPT(J shift) <
[ (

1− ¸
1
³

2

)³

−¸shift
]/

(1+

¸shift)OPT(Ĵ ). Then, we have:

OPT(Ĵ shift) f
(

1 + ´(Ĵ shift) · ¸
shift

´(Ĵ )

)

OPT(J shift) + ´(Ĵ shift)|Ĵ shift| · ¸
shift

´(Ĵ )
· OPT(Ĵ )
|Ĵ |

f
(

1 + ´(Ĵ ) · ¸
shift

´(Ĵ )

)

OPT(J shift) + ´(Ĵ )|Ĵ shift| · ¸
shift

´(Ĵ )
· OPT(Ĵ )
|Ĵ |

f (1 + ¸shift)OPT(J shift) + ¸shiftOPT(Ĵ )

<
(

1− ¸
1
³

2

)³

OPT(Ĵ ).

where the first inequality is by the first smoothness condition with J1 = Ĵ shift, J2 = J shift, and the
second one is by monotonicity of ´.

Next, by definition of the error ¸2, we have OPT(Ĵ \ Ĵ shift) = ¸2 · OPT(Ĵ ). Hence, by Lemma 3.1,
there exists a schedule S for Ĵ shift ∪ (Ĵ \ Ĵ shift) = Ĵ such that

cost(S, Ĵ ) f
(

OPT(Ĵ \ Ĵ shift)
1
³ + OPT(Ĵ shift)

1
³

)³

<

(

(¸2OPT(Ĵ ))
1
³ +

((

1− ¸
1
³

2

)³

OPT(Ĵ )
)

1
³

)³

= OPT(Ĵ ),

which contradicts the definition of OPT(Ĵ ).

Corollary C.3. Assume that cost(., .) is ´-smooth. If OPT(J ) f ¼OPT(Ĵ ), then

¸2 g
(

1− (¼(1 + ¸shift) + ¸shift)
1
³

)³

.

Proof. Assume that OPT(J ) f ¼OPT(Ĵ ). Since J shift ¦ J , we get OPT(J shift) f ¼OPT(Ĵ ). Hence,
we have:

OPT(Ĵ shift) f
(

1 + ´(Ĵ shift) · ¸
shift

´(Ĵ )

)

OPT(J shift) + ´(Ĵ shift)|Ĵ shift| · ¸
shift

´(Ĵ )
· OPT(Ĵ )
|Ĵ |

f
(

1 + ´(Ĵ ) · ¸
shift

´(Ĵ )

)

OPT(J shift) + ´(Ĵ )|Ĵ shift| · ¸
shift

´(Ĵ )
· OPT(Ĵ )
|Ĵ |

f (1 + ¸shift)OPT(J shift) + ¸shiftOPT(Ĵ )
f (¼(1 + ¸shift) + ¸shift)OPT(Ĵ ).

where the first inequality is by the first smoothness condition with J1 = Ĵ shift, J2 = J shift, and the
second one is by monotonicity of ´.

Next, assume by contradiction, that ¸2 <
(

1− (¼(1 + ¸shift) + ¸shift)
1
³

)³

, which implies that

OPT(Ĵ \ Ĵ shift) <
(

1− (¼(1 + ¸shift) + ¸shift)
1
³

)³

OPT(Ĵ ).

Then, by Lemma 3.1, there exists a schedule S for Ĵ shift ∪ (Ĵ \ Ĵ shift) = Ĵ such that

cost(S, Ĵ )
f
(

OPT(Ĵ \ Ĵ shift)
1
³ + OPT(Ĵ shift)

1
³

)³

<

(

((¼(1 + ¸shift) + ¸shift)OPT(Ĵ )) 1
³ +

((

1− (¼(1 + ¸shift) + ¸shift)
1
³

)³

OPT(Ĵ )
)

1
³

)³

= OPT(Ĵ ),
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which contradicts the definition of OPT(Ĵ ). Hence, ¸2 g
(

1− (¼(1 + ¸shift) + ¸shift)
1
³

)³

.

Theorem C.4. Assume that cost(., .) is ´-smooth. Then, for any ¼ ∈ (0, 1], ¸shift ∈ [0, 1), the
competitive ratio of TPE-S run with trust parameter ¼, a µ-competitive algorithm ONLINEALG, an
optimal offline algorithm OFFLINEALG, and shift tolerance ¸shift is at most



















µ if OPT(J ) f ¼OPT(Ĵ )
(

(1+2¸shift(1+¸shift))
1
³ +µ

1
³

(

¼
1
³ +¸

1
³
1

))³

max

{

¼,¸1+

((

1−¸
1
³
2

)³

−¸shift

)

(1+¸shift)−1

} otherwise.

Proof. Similarly as in the proof of Theorem 3.4, we have that if OPT(J ) f ¼OPT(Ĵ ), then

cost(S,J ) f µ · OPT(J ). (7)

Next, we assume that there is t¼ g 0 such that OPT(Jft¼) > ¼OPT(Ĵ ). Hence we immediately have:

OPT(J ) g OPT(Jft¼) > ¼OPT(Ĵ ).

By Corollary C.2 and by definition of the error ¸1, we also get the following lower bound on the
optimal schedule:

OPT(J ) g OPT(J \ J shift) + OPT(J shift)

g ¸1OPT(Ĵ ) +
[ (

1− ¸
1
³

2

)³

− ¸shift
]/

(1 + ¸shift)OPT(Ĵ ).

Therefore,

OPT(J ) g max
{

¼, ¸1 +
[ (

1− ¸
1
³

2

)³

− ¸shift
]/

(1 + ¸shift)
}

OPT(Ĵ ). (8)

We now upper bound the cost of the schedule output by our algorithm. By the same argument as in
the proof of Lemma 3.2, we get:

cost(Son,J \ J shift
gt¼

) f µ · OPT(Ĵ )
(

¼
1
³ + ¸

1
³

1

)³

.

Now, from Lemma C.1, we have

cost(Sshift,J shift
gt¼

) f (1 + 2¸shift(1 + ¸shift))OPT(Ĵ ).

Therefore, by applying Lemma 3.1, we get:

cost(S,J ) f
(

cost(Sshift,J shift
gt¼

)
1
³ + cost(Son,J \ Sshift)

1
³

)³

f OPT(Ĵ )
(

(1 + 2¸shift(1 + ¸shift))
1
³ + µ

1
³ (¼

1
³ + ¸

1
³

1 )
)³

. (9)

Hence, we get the following upper bound on the competitive ratio of Algorithm 2:

cost(S,J )
OPT(J )

= 1
OPT(J )f¼OPT(Ĵ )

cost(S,J )
OPT(J ) + 1

OPT(J )>¼OPT(Ĵ )

cost(S,J )
OPT(J )

f 1
OPT(J )f¼OPT(Ĵ ) · µ + 1

OPT(J )>¼OPT(Ĵ )

(

(1 + 2¸shift(1 + ¸shift))
1
³ + µ

1
³ (¼

1
³ + ¸

1
³

1 )
)³

max
{

¼, ¸1 +
[ (

1− ¸
1
³

2

)³

− ¸shift
]/

(1 + ¸shift)
} .
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Figure 3: The competitive ratio achieved by our algorithm, TPE-S and the benchmark algorithm as a
function of the shift tolerance ¸shift (row 1) and as a function of the confidence parameter ¼ (row 2).

E Additional Experiments

Here, we also evaluate the impact of setting the parameters ¸shift and ¼ on the two other datasets
(power law and real datasets). The result are presented in Figure 3. We observe similar behaviors as
for the periodic dataset.

F Comparison with [7, 4]

In [7, 4], the authors consider the energy minimization problem with deadlines, which, as detailed in
Section 3.3, is a special case of our general framework. For this problem, they propose two different
learning-augmented algorithms. We present here some elements of comparison with our algorithm
for (GESP). We first show in Section F.1 and F.2 that our prediction model and results generalize
the ones in [7]: they are similar in the case of uniform deadlines and generalize the ones in [7] for
general deadlines. We also note that they are incomparable to those in [4]. In Section F.3, we then
discuss the algorithmic differences with [7] for the special case of energy with uniform deadlines.

F.1 Discussion about the prediction and error model in comparison to [7, 4]

At a high level, the prediction models considered in [7] and [4] are qualified by [4] as ’orthogonal’. In
[4], the number of jobs is known in advance, as well as the exact processing time for each job, however,
the release time and deadlines are only revealed when a job arrives, and the error is proportional to
the maximal shift in these values. On the contrary, in [7], the release times and deadlines are known
in advance, and the prediction regards the total workload at each time step. The error is then defined
as a function of the total variation of workload, which is the analog of additional and missing jobs in
our setting. Note that in the model in [4], the predicted and true set of jobs need to contain exactly
the same number of jobs, whereas the model in [7] and our model allow for extra or missing jobs.

Comparison with the prediction model and the error metrics in [7] for energy minimization
with uniform deadlines. Note that the prediction model used in [7] for the energy minimization
with deadlines problem is slightly different than ours: the prediction is the total workload wpred

i that
arrives at each time step i and needs to be scheduled before time i+D, and the error metric is defined
as

err(wreal, wpred) :=
∑

i

||wreal
i − wpred

i ||³, (10)

where wreal denotes the real workload at each time step.

However, in the specific case of energy minimization under uniform deadline constraints, our
prediction model and error metric and the ones from [7] are comparable: a workload wreal

i that
arrives at time i is equivalent in our setting to receiving wreal

i unit jobs with release time r = i and a
common deadline d = i+D. Moreover, we prove the following lemma, which shows that a small
error in the sense of [7] induces a small error ¸(J , Ĵ ) in the sense defined in Section 2.

Lemma F.1. For any constant D > 0, and any instance (J , Ĵ ), where at each time i, J is composed

of wreal
i jobs of one time unit with deadline i+D and Ĵ is composed of wpred

i jobs of one time unit
with deadline i+D, we have:

¸(J , Ĵ ) · OPT(Ĵ ) = max{OPT(J \ Ĵ ), OPT(Ĵ \ J )} f D · err(wreal, wpred).
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Proof. For convenience, we write ∆i = ||wreal
i − wpred

i ||. We can then write (J \ Ĵ ) ∪ (Ĵ \ J ) as
the instance which, at each time step i, is composed of ∆i unit size jobs with a common deadline
i+D.

We now upper bound the optimal cost for (J \ Ĵ ) ∪ (Ĵ \ J ) by the cost obtained by the Average
Rate heuristic (AVR) (first introduced in [29]). For each j, The AVR algorithm schedules uniformly
the ∆j units of work arriving at time j over the next D time steps. This is equivalent to setting the
speed sj(t) for each workload ∆j at time t ∈ [j, . . . , j +D] to ∆j

D and set sj(t) = 0 everywhere
else. For all t g 0, the machine then runs at total speed

∑

j sj(t).

Letting EAVR denote the total cost of the AVR heuristic, we get:

max{OPT(J \ Ĵ ), OPT(Ĵ \ J )} f OPT((J \ Ĵ ) ∪ (Ĵ \ J ))
f EAVR((J \ Ĵ ) ∪ (Ĵ \ J ))

=

∞
∑

t=1





∑

j

1sj(t) ̸=0sj(t)





³

f
∞
∑

t=1

|{j : sj(t) ̸= 0}|³
(

max
j:sj(t) ̸=0

sj(t)

)³

f
∞
∑

t=1

D³

(

max
j:sj(t) ̸=0

sj(t)

)³

f
∞
∑

t=1

D³
∑

j:sj(t) ̸=0

sj(t)
³

=
∑

j

D³sj(t)
³
∑

t

1sj(t) ̸=0

f
∑

j

D³sj(t)
³D

=
∑

j

∆³
j D

= D · err(wreal, wpred),

where the fourth and sixth inequalities are since by definition of the AVR algorithm, each workload
∆j > 0 has only positive speed on time steps [j, . . . , j +D].

Comparison of the error metrics for general objective functions. We illustrate here that for a
more general GESP problem, the error metric we define can be tighter than the one in [7] (in the sense
that there are instances (J , Ĵ ) and quality cost functions F such that ¸(J , Ĵ ) << err(wreal, wpred))
and that it may better adapt to the specific cost function under consideration.

To illustrate this point, consider an instance where the prediction is the realization plus an additional
workload of k jobs that all arrive at time 0, and consider the objective of minimizing total energy plus
flow time. In this case, the error computed in (10) is k³, whereas the error ¸(J , Ĵ ) we define is the
optimal cost for the k extra jobs. By using results from [3], this is equal to k

2³−1
³ (<< k³ when ³

grows large). Hence our error metric is tighter in this case.

F.2 Comparison with the theoretical guarantees in [7]

We compare below the theoretical guarantees in Theorem 3.4 and the ones shown in [7] for the
specific problem of energy minimization with uniform deadlines. We note that we also generalize
these results to the case of general deadlines to obtain the first guarantee that smoothly degrades
as a function of the prediction error in that setting. Note that for general deadlines, [7] only obtain
consistency and robustness, but not smoothness.
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Comparison in the case of uniform deadlines. For convenience of the reader, we first recall below
the guarantee proven in [7].

Theorem F.2 (Theorem 8 in [7]). For any given ϵ > 0, algorithm LAS constructs, for the
energy minimization with deadlines problem, a schedule of cost at most min{(1 + ϵ)OPT +
O((³ϵ )

³)err, O((³ϵ )
³)OPT}, where

err(wreal, wpred) :=
∑

i

||wreal
i − wpred

i ||³,

which is a similar dependency in ϵ as the one proved in Theorem 3.4. In particular, for all ϵ > 0,
Algorithm LAS achieves a consistency of (1 + ϵ) for a robustness factor of O((³ϵ )

³). On the other
hand, when running Algorithm 1 with parameter ¼ = ( ϵ

C2³ )
³ and the AVERAGE RATE heuristic [29]

as ONLINEALG (which was proven to have a 2³ competitive ratio in [7]), we obtain, by plugging
¼ = ( ϵ

C2³ )
³ in the bounds provided in Corollary 3.5, a consistency of (1 + ϵ) for a robustness factor

of O( 4³
2

ϵ³−1 ).

F.3 Comparison with the algorithm (LAS) in [7]

In this section, we discuss the technical differences with the algorithm (LAS) proposed in [7] for
the energy with deadlines problem. We first note that [7] only shows smoothness, consistency and
robustness in the uniform deadline case, where all jobs must be completed within D time steps from
their release time. For the general deadline case, [7] presents a more complicated algorithm and only
show consistency and robustness. The authors note that "one can also define smooth algorithms for
general deadlines as [they] did in the uniform case. However, the prediction model and the measure
of error quickly get complex and notation heavy". On the contrary, Algorithm 1 remains simple,
captures the general deadline case, and is also endowed with smoothness guarantees. We now discuss
more specifically the technical differences.

Robustification technique. [7] uses a convolution technique for the uniform deadline case, and a
more complicated procedure that separates each interval into a base part and an auxiliary part for
the general deadline case. On the other hand, our robustification technique is based on a simpler
two-phase algorithm.

We now give some intuition about why a direct generalisation of the techniques in [7] to general
objective functions does not seem straightforward. The main technical difficulty is that in [7], each
job j must be completed before its deadline dj , which is revealed to the decision maker at the time the
job arrives and is used by the algorithm. For a general objective function, we do not have a deadline ;
however, one could think about using the total completion time cj of each job instead. The issue is
that cj may depend on all future job arrivals and is not known at the time the job arrives, hence it
cannot be used directly by the algorithm.

To illustrate this point, consider the objective of minimizing total energy plus flow time with ³ = 2.
Consider two instances, where the first one has 1 job arriving at time 0 and the second one has 1 job
arriving at time 0 and n− 1 jobs arriving at time 1√

n
. In the first case, the optimal is to complete the

first job in 1 unit of time, whereas it is completed in 1√
n

unit of time in the second case. Furthermore,
this can be only deduced after the n − 1 other jobs have arrived. Hence, the completion times for
the first job significantly differ in the two cases. Since it is not immediate how to generalize the
technique in [7] without knowing cj at the time each job j arrives, this motivated our choice of a
different robustification technique.

Smoothness and consistency technique. To obtain smoothness and consistency guarantees, we
use a similar technique as in [7] (summing the speeds obtained by computing an offline schedule for
the predicted jobs and an online schedule for the extra jobs), with two main differences:
(1) In [7], the extra jobs arriving at each time i are scheduled uniformly over the next D time units.
On the other hand, our algorithm computes the speeds for all extra jobs by following an auxiliary
online algorithm given as an input to the decision maker. In fact, the technique from [7] can be
interpreted as a special case of our algorithm, where the auxiliary algorithm is the AVERAGE RATE
heuristic [29].
(2) The offline schedule we compute is conceptually identical to the one used in [7], however, our

30



online schedule differs, as it needs to integrate two different types of extra jobs: (1) the extra jobs
that arrive during the second phase of the algorithm (t g t¼), and (2) the jobs that were not finished
during the first phase of the algorithm. [7] only needs to handle the first type of extra jobs. This
results in a different analysis.
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