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Highlights
Specialized metabolic pathways are
highly regulated.

This regulation includes feedback inhibi-
tion of the transcriptional machinery by
pathway intermediates or products.

Specialized metabolites can be sensed
by numerous mechanisms, impacting
multiple levels of transcriptional regula-
tion, thus leading to major changes in
gene expression.

The regulatory effect of specialized me-
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Recent advances in our understanding of plant metabolism have highlighted the
significance of specialized metabolites in the regulation of gene expression asso-
ciated with biosynthetic networks. This opinion article focuses on the molecular
mechanisms of small-molecule-mediated feedback regulation at the transcrip-
tional level and its potential modes of action, including metabolite signal percep-
tion, the nature of the sensor, and the signaling transduction mechanisms leading
to transcriptional and post-transcriptional regulation, based on evidence available
fromplants and other kingdoms of life.We also discuss the challenges associated
with identifying the occurrences, effects, and localization of small molecule–
protein interactions. Further understanding of small-molecule-controlled meta-
bolic fluxes will enable rational design of transcriptional regulation systems in
metabolic engineering to produce high-value specialized metabolites.
tabolites involves other aspects of gene
expression, in addition to transcription.
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Central or specialized: does it matter?
Specialized metabolites (see Glossary), often small molecules, display amazing diversity in
chemical complexity resulting from distinct biosynthetic networks. To date, little is known about
how small molecules control expression of genes that are part of these networks. Due to a
general lack of understanding, the control of specialized metabolism has often been deemed
as secondary in complexity to the regulation of central metabolism. Recent developments in
the field suggest that this is unlikely to be the case. Quite oppositely, sophisticated and creative
mechanisms evolved to control specialized metabolism and integrate it with primary metabolism,
often involving pathway products in feedback regulation. As our understanding of plant metabolism
expands, it is timely and important to note that the distinction between primary and specialized
pathways is becoming more blurred in terms that the regulatory mechanisms are highly shared
and coordinated. In this opinion article, we focus on the molecular mechanisms of small-
molecule-controlled feedback regulation at the transcriptional level, and discuss the possible
modes of action, including sensing, signaling, and feedback regulation, as well as the outstanding
challenges and future directions. While we focus on feedback regulation triggered by small-
molecule specialized metabolites, we also refer to a boarder pool of publications describing sensing
of small-molecule primary metabolites, as well as signal perception for processes that are not feed-
back regulation, given that the basic mechanism can be potentially shared. While plant hormones
are small molecules and are often chemically related to specialized metabolites, we are not con-
sidering them here because feedback regulatory mechanisms controlling their accumulation
are better understood due to their central role in plant development and responses [1,2].

Specialized metabolites and their functions
For successful interaction with the surrounding environment, plants synthesize vast amounts of
chemicals referred to as specialized metabolites. By contrast to primary metabolites, which are
shared by many plant species and are crucial for fundamental functioning and survival of plants,
the specialized compounds are more species-, organ- and tissue-specific [3–7] and play
514 Trends in Plant Science, May 2024, Vol. 29, No. 5 https://doi.org/10.1016/j.tplants.2023.07.012

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0002-5258-7355
https://orcid.org/0000-0002-4720-7290
https://orcid.org/0000-0003-0777-7763
http://www.purdue.edu/hla/sites/lilab/
https://twitter.com/LiPurdue
https://doi.org/10.1016/j.tplants.2023.07.012
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tplants.2023.07.012&domain=pdf
CellPress logo


Trends in Plant Science
OPEN ACCESS

Glossary
ACT-like domain: structurally related
to the aspartokinase, chorismate
mutase, and TyrA domain that is known
to be involved in allosteric regulation of
enzymes by amino acid biosynthesis
pathway intermediates; present in ~30%
of plant basic helix–loop–helix (bHLH)
TFs.
Chromatin-modifying protein (CMP):
any protein known to affect chromatin
conformation. CMPs include histone-
modifying enzymes, adding or removing
post-translational modifications
(e.g., methylation, acetylation, and
ubiquitination) to histones; DNA-
modifying enzymes such as DNA
methyltransferases and demethylases
that alter DNA methylation; and
chromatin remodelers that change local
chromatin landscapes.
Post-translational modifier (PTM):
an enzyme involved in adding or
removing post-translational modifications
of proteins, including phosphorylation
(e.g., kinase and phosphatase),
acetylation, SUMOylation, ubiquitination,
and methylation.
Specialized metabolites: plant
metabolites that are produced in a
lineage- and spatiotemporal-specific
manner to allow plants to communicate
with their surrounding environment, for
example: responding to abiotic/biotic
stresses, attracting pollinators/seed
dispersers, and interacting with
neighboring plants. Specialized
metabolites are also known as secondary
metabolites – by contrast with primary
metabolites that are produced by most
plant lineages and are essential for plant
growth and development – and as natural
products in the context of medicinal and
industrial applications.
Transcription factor (TF): a regulatory
protein that binds DNA in a sequence-
specific manner (i.e., by binding specific
cis-regulatory elements or CREs) to
control the rate of expression of the genes
located in close vicinity of the CREs.
important roles in above- and below-ground plant defense, attraction of pollinators and seed
dispersal, shaping plant–microbiome interactions, plant allelopathy, and protection against biotic
and abiotic stresses [8–13]. In addition to acting for plant benefits, these metabolites have much
broader impacts by modifying the surrounding ecosystem via plant–plant, plant–insect, and
plant–microbe interactions. They also provide powerful nutraceutical ingredients to our diet,
and have been extensively used as drugs, pharmaceuticals, insecticides, cosmetics, and food
additives [3,14,15].

Most specialized compounds are small, with a molecular weight <1500 Da. They are often synthe-
sized in specific anatomical structures, cell types, and/or subcellular organelles devoted to their
production and storage. Specialized metabolites are synthesized using precursors produced by
the primary metabolic pathways [16]. Based on their biosynthetic origin, plant specialized com-
pounds are divided into several major classes, including terpenoids, alkaloids, phenylpropanoids,
fatty acid derivatives, and amino acid derivatives, with some metabolites containing structural
moieties derived from two or more of these classes (e.g., capsaicinoid alkaloids) [16].

While some specializedmetabolites accumulate under a variety of spatiotemporal contexts, many
are inducible by developmental cues and environmental signals, including biotic or abiotic factors
[17]. For example, a subset of specializedmetabolites is present in plants at a substantial concen-
tration serving as a primary defense mechanism against herbivores and pathogens, while the
induced metabolites, in addition to performing repellent and deterrent functions, could attract
natural enemies of the attacking herbivores to protect plants via tritrophic interactions and also
inform neighboring plants about the pathogen, thus priming their defenses [11,18]. Since specialized
metabolites rely on primary metabolic pathways for precursors, redox power, and energy, their bio-
synthesis must be carefully coordinated with primary metabolism to minimize the impact on essential
cellular functions. How this coordination, particularly in response to developmental and environmental
signals, is achieved remains largely unknown. Moreover, the buildup of specialized metabolites can
be toxic to plant cells [19,20]. To minimize such detrimental effects, plants efficiently neutralize the
potential toxicity of specialized metabolites by chemically modifying them, or physically separating
them from other cellular components [20]. Importantly, the overproduction of specializedmetabolites
could lead to feedback inhibition of their own biosynthetic pathways, including both primary and
specialized metabolic pathways, to limit the resources allocated to the production and prevent
harmful buildup. Increasingly, studies are demonstrating the existence of crosstalk between
metabolites and gene expression, conveying the metabolic information via a feedback regulation of
gene transcription [21–24].

Feedback transcriptional regulation: possible mechanisms
One well-known mechanism for how small molecules regulate metabolic flux is through allosteric
feedback inhibition (Figure 1), wheremetabolites bind enzymes within the biosynthetic pathway to
reduce their activity and thus the flux through the pathway [25]. On the other hand, the production
of specialized metabolites is believed to be regulated primarily at the transcriptional level [22].
Compared to allosteric inhibition of enzymes, which usually suppresses individual steps within
the biosynthetic pathways, transcriptional control can affect multiple genes in the metabolic
pathways (Figure 1). Such a mechanism allows the timely regulation of multiple biosynthetic
steps in the same pathway by turning on as few as a single transcription factor (TF), therefore
achieving global coordination and balancing of the metabolic processes [26–28]. For example, in
petunia flowers, cellular volatile organic compounds (VOCs) accumulate, caused by a reduction in
thickness of the cuticle that acts as a VOC sink/concentrator, triggering feedback inhibition of the
expression of genes involved in the VOC biosynthetic network [19]. Highlighting examples of
indirect mechanisms by which specialized metabolites influence widespread changes in gene
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Figure 1. Pathway regulation by small
molecules. Transcriptional regulation of
a simplified biosynthetic pathway could
be triggered by the pathway-produced
metabolites (red arrows), acting in parallel
with the allosteric inhibition of the
biosynthetic enzymes (blue curves).
Transcriptional regulation could be positive
or negative. Abbreviations: Pol II, RNA
polymerase II; TF, transcription factor.
Figure created with BioRender.com.
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expression: endogenous flavonols have been shown to inhibit auxin transporters [29,30].
Similarly, a reduction in arabidopsis (Arabidopsis thaliana) flavonoid levels led to enhanced
mRNA accumulation of jasmonic acid biosynthetic and signaling genes uponwounding, suggest-
ing their buffering roles in stress-induced responses [31]. These examples provide evidence that
specialized metabolites can impact gene expression directly or indirectly. Another example
of gene regulation triggered by small molecules is retrograde signaling. Indeed, multiple small
molecules – such as 3′-phosphoadenosine 5′-phosphate (PAP) [32,33], Mg-protoporphyrin
(MgProto) [34,35], as well as specialized metabolite precursors such as 2-C-methyl-d-
erythritol-2,4-cyclopyrophosphate (MEcPP) [36] – function as retrograde signals to impact
nuclear genome expression [34]. Overall, the specific molecular underpinnings of small-
molecule-mediated gene regulation remain largely unclear. From a theoretical perspective,
small molecules can regulate transcript abundance at the level of de novo transcription or post-
transcriptional degradation (Figure 2A). For de novo transcription, small molecules could affect
every step of mRNA biosynthesis, including chromatin remodeling, TF-mediated protein–DNA
and protein–protein interactions, as well as function of the general transcriptional machinery
(Figure 2A, red arrows I–III).

Small-molecule regulation of transcription factors
In general, transcriptional regulation is controlled largely by TFs, sequence-specific DNA-binding
proteins that represent 5–7% of all plant protein-coding genes [37]. TFs recognize conserved cis-
regulatory elements in the promoters of target genes, thus coordinately regulating transcription of
genes within biosynthetic pathways. More often, combinations of TFs collaboratively regulate the
516 Trends in Plant Science, May 2024, Vol. 29, No. 5
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Figure 2. Possible mechanisms involved in the feedback regulation of gene expression triggered by sensing
excess amounts of small-molecule specialized metabolites. (A) The metabolites control de novo gene transcription
(red arrows) through affecting transcription factors (TFs) (I), chromatin modifying proteins (CMPs) (II), or general and/or
specific transcriptional machinery (III) (Med or Mediator shown as an example). The metabolites could also directly affect
mRNAs (blue arrows) through small RNA pathway (IV) or by directly affecting the RNA processing, translation and
degradation process (V). Specifically, the metabolites could be sensed by TFs (B), biosynthetic enzymes (C), post-
translational modifiers (PTMs) (D), CMPs (E), transporters (F), RNA (G), or ribosomal complex (H). In these scenarios, either
the proteins involved in biosynthesis and transport develop the moonlighting function of signal transduction (C,F), or the
proteins involved in transcriptional, post-transcriptional, or translational processes evolve the ligand-binding ability to sense
the metabolites (B,D,E,H). Alternatively, the sensor could be an RNA molecule rather than protein (G). In most scenarios,
the signaling cascade functions across the cytoplasm and nucleus. Abbreviation: Pol II, RNA polymerase II. Figure created
partially with BioRender.com.
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expression of metabolic pathway genes [22,38], and such combinatorial control increases the
specificity and affinity of regulatory complexes for target genes.

Small molecules can modify the activities of TFs to control the expression of a target gene
[Figure 2A(I)]. This has been reported in bacteria, yeast, and humans [23,24,39,40]. For example,
one of the best characterized bacterial TFs is cAMP receptor protein (CRP), which binds cAMP
and regulates the expression of hundreds of genes involved in carbon metabolism [41,42]. In
animals, transcriptional regulators BAZ1B, PSIP1, and TSN were shown to sense the level of
L-arginine to promote T cell survival [39]. By contrast, similar studies are relatively scarce in plants,
especially for specializedmetabolites [43–45]. In plants, the green leaf volatiles have been shown to
trigger a signaling cascade through theWRKY family TFs to repress gene expression [44] (Table 1).
Trends in Plant Science, May 2024, Vol. 29, No. 5 517

Image of &INS id=
http://BioRender.com
CellPress logo


Table 1. Signaling modules involving small molecules and transcriptional regulators in plants

Plant small molecule Transcriptional regulator Class of regulator Refs

Green leaf volatiles WRKY6/40 Transcription factor [44]

Nitrate NLP7 Transcription factor [47]

Glucose Putative TF partners in
SCARECROW and MYB families

Transcription factor (through
interaction with hexokinase 1)

[45]

Oleoyl-CoA RAP2.12 Transcription factor [56]

Monoterpene β-ocimene HACs and HDA6 Chromatin-modifying protein –

histone-modifying enzymes
[58]

Cyclic hydroxamic acids
(DIBOA and DIMBOA)

HDAC Chromatin-modifying protein –

histone-modifying enzymes
[59]

Volatile organic compounds (VOCs) TOPLESS-like proteins (TPLs) Transcriptional machinery [43]

Lignin pathway metabolites Mediator 5a (Med5a) Transcriptional machinery [62]

Glucosinolate pathway metabolites Mediator 5 Transcriptional machinery [63]

Trends in Plant Science
OPEN ACCESS
The effect of specialized metabolites on TFs could occur through direct binding to the TFs, or
indirectly affecting the activity of a TF. For the former scenario, as TFs contain DNA-binding and
transcriptional effector domains, small molecules could physically interact with either one to affect
the recognition of the promoter or alter the protein–protein interactions with coregulator partners. In
Escherichia coli, recent integration of transcriptomics and metabolomics data collected during the
growth–starvation–growth switch identified putative metabolite effectors for 71 TFs, and validated
direct interactions between five pairs of metabolites and TFs in vitro [46]. In plants, the transcrip-
tional regulators that can directly bind and sense internal metabolite levels are largely unknown,
and information about small-molecule binding pockets in TFs is scarce. The identification of such
relations is further complicated by the noncovalent nature of TF–metabolite interactions. A relevant
example from primary metabolism is NIN-like protein 7 (NLP7), the master regulator TF of nitrogen
assimilation, which was shown recently to directly bind nitrate in a ligand-binding pocket [47]
(Table 1). Thus, we propose that similar mechanisms could be involved in sensing intracellular
specialized metabolites (Figure 2B). Indeed, one third of the basic helix–loop–helix (bHLH) family,
one of the largest TF families in plants, contain a C-terminal ACT-like domain [48–50], which is
known in enzymes to be involved in allosteric regulation by pathway intermediates. It raises the
question of whether ACT-like domains in the bHLH TFs can also sense the levels of metabolites,
thus modulating the ability of the bHLH TF to bind DNA and regulate gene expression [51].
Given the recent developments in protein structure predictions [52], it will be interesting to deter-
mine howmany other structurally conserved domains are present in plant TFs that could potentially
serve as docking sites for small molecules.

Small molecules can affect the activities of TFs in an indirect manner. In this scenario, the meta-
bolic enzymes, for example, could serve as sensors of excessive levels of metabolites and as a
result move from the cytoplasm to the nucleus to interact with TFs and regulate gene expression
(Figure 2C). Such examples, borrowed from primary metabolism, include arabidopsis hexokinase
1, which senses glucose levels inside a cell and forms a regulatory complex in the nucleus with
other proteins including TFs, to alter gene expression [45] (Table 1). Indeed, most glycolytic
enzymes in animals moonlight in the nucleus to link metabolism and gene expression [24,53].
In plants, a few studies have provided evidence that specialized metabolism enzymes can be
found in the nucleus [54,55]; however, the scope of this nuclear localization of enzymes has yet
to be fully explored. Moreover, small molecules also have the potential to control gene expression
by interacting with TF post-translational modifiers (PTMs) – such as kinases, phosphatases,
518 Trends in Plant Science, May 2024, Vol. 29, No. 5
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transferases, ligases, and proteases – which in turn modulate TF activities (Figure 2D). Finally,
small molecules could interact with TF-interacting proteins to modulate TF activities. For example,
the central metabolite acyl-coenzyme A (CoA) binds Acyl-CoA-binding protein (ACBP), which
releases the interaction between ACBP and TF RAP2.12, thus allowing the TF to move from
the plasma membrane to the nucleus [56] (Table 1).

Small-molecule regulation of chromatin regulators
Small molecules can directly interact with chromatin-modifying proteins (Figure 2E) to alter the
chromatin landscape of pathway biosynthesis genes to affect their transcription [Figure 2A(II)].
Such a mechanism has been reported in cellular oncogenic transformations, where chromatin-
modifying proteins (such as histone acetyltransferases and histone deacetylases) are inhibited
by naturally occurring or synthetic small molecules, which have been tested as anticancer
drugs [57]. In plants, it was recently shown that monoterpene β-ocimene, released from
herbivore-damaged plants, controls expression of defense genes via specific histone acetyltrans-
ferases and histone deacetylases [58] (Table 1). Moreover, in plant allelopathy, cyclic hydroxamic
acids 2,4-dihydroxy-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-
benzoxazin-3-one (DIMBOA) were shown to directly bind histone deacetylase to affect histone
acetylation and gene expression [59] (Table 1).

Small-molecule regulation of transcriptional machinery
The effects of specialized metabolites on gene regulation can implicate other players in the tran-
scriptional machinery [Figure 2A(III)]. TOPLESS-like proteins (TPLs) are a class of well-studied
cosuppressors bridging TFs and chromatin regulators [60]; they possess binding capacity for
sesquiterpenes and are involved in sensing VOCs and regulating stress-responsive gene expres-
sion [43] (Table 1). Recently, it was shown that TPLs interact with specific Mediator subunits
Med10 and Med21, and this interaction was essential for gene repression [61]. Interestingly,
the involvement of Mediator complex in sensing specialized metabolites was also proposed for
controlling the accumulation of an important plant compound, lignin. In the lignin biosynthetic
network, cell-wall-bound or soluble phenylpropanoid metabolites are likely sensed as a signal
to maintain phenylpropanoid homeostasis [62] (Table 1). When the metabolic homeostasis
is disrupted (e.g., in a lignin-deficient mutant), lignin biosynthesis is repressed, and plants show
a pleiotropic stunt growth phenotype, which could be viewed as the ‘toxic effect’ of metabolic im-
balance [62]. This repressive signaling cascade involves the Mediator component Med5a, be-
cause mutation in this Mediator component restores the normal growth phenotype of the
‘stunt’ plants [62]. On a related note, Med5 was involved in activating the expression of KFB
genes in response to the accumulation of metabolite intermediates in the glucosinolate biosynthetic
pathway [63]. The increased activity of KFB proteins then facilitate the degradation of PAL, the
committing enzyme of the phenylpropanoid metabolic pathways [63]. In this case, one specialized
metabolite (glucosinolate) intermediate controls the activity of another specialized metabolic
pathway (phenylpropanoid) using a crosstalk mechanism involving Med5-mediated gene expres-
sion as well as post-translational modification of key enzymes [63] (Table 1).

Small-molecule regulation of RNA processing and RNA translation
The effect of small molecules on mRNA levels can function through post-transcriptional regulation of
mRNAs, including RNA splicing, RNA translation, and RNA degradation. Apigenin, a flavonoid pro-
duced in fruits and vegetables, can directly bind human ribonucleoproteins to affect mRNA splicing
and stability, thus modulating the expression levels of a wide range of downstream genes [64]. In
arabidopsis, the communication between specialized metabolic pathways (anthocyanin) and small
interference RNA (siRNA) pathways has been uncovered [Figure 2A(IV)]. When the anthocyanin
pathway was interrupted, mutants in the siRNA pathway (RDR6/SG3/DCL4) led to increased
Trends in Plant Science, May 2024, Vol. 29, No. 5 519
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carbon flux into the flavonoid pathway, suggesting that the siRNA pathways can sense either the
end product or intermediates of the anthocyanin pathway and modulate the expression of genes
involved in directing flux into the flavonoid pathways [65]. Evidence on the role of another class of
small RNA, microRNAs, in regulating plant specialized metabolism has begun to accumulate and
was reviewed recently [66]. However, whether specialized metabolites in turn affect miRNA function
is barely understood in plants. In cancer biology, natural products such as curcumin (from turmeric
root extracts) was shown to exerts its anticancer effects by affecting a range of miRNAs [67].
Additionally, small molecules have been found to interact directly with RNA [Figure 2A(V) and 2G]
to affect transcript abundance. Riboswitches, a class of RNA sensors, bind small molecules with
a certain degree of specificity, and such interactions affect biosynthesis, processing, translation,
and/or degradation of mRNAs [68]. To date, riboswitches have been shown to regulate primary
metabolism in bacteria, algae [68], and plants [69]. For example, the 3′ untranslated region (UTR)
of the thiamin biosynthetic gene THIC contains a riboswitch that senses the level of vitamin B1

derivative thiamin pyrophosphate (TPP) in arabidopsis [70]. The interaction between TPP and the
riboswitch affects the RNA splicing of the THIC gene, thus leading to altered RNA stability [68].
This mechanism seems to be highly conserved among plants [68], and has recently been reported
for cassava [71] and oil palm [72]. Whether this mechanism is implicated in sensing levels of
specialized metabolites is yet to be determined, by uncovering small-molecule–RNA interactions
using a combination of in silico predictions and biochemical approaches [73]. Finally, metabolites
have been shown to control mRNA translation via upstream open reading frame (uORF) and
ribosomal stalling as reviewed in [74], including a recent study showing that thermospermine affects
the translation of TF-encoding genes SAC51 and SACL3 [75]. In this case, it was proposed
that thermospermine interacts with ribosomal proteins to alter the translation of target genes
(Figure 2H) [75]. Indeed, the concept of ribosomal proteins functioning as metabolite sensors has
been considered for several decades in microorganisms and animals [76].

What is being sensed, and by whom?
Thus far, we have discussed different levels of transcriptional as well as post-transcriptional
regulation by small molecules, which highlights two key questions: first, what is being sensed,
and second, what is the sensor? To monitor the activity of a specialized metabolic pathway, it
is possible that the flux through the pathway, or the metabolite levels of the pathway, are being
monitored. In the latter scenario, either the end products, or specific intermediates, could be the
targets of cellular surveillance mechanisms (Figure 1). Alternatively, the physical or physiological
effects caused by the changes in specialized metabolites may trigger feedback regulation. For
example, it is possible that cell-wall rigidity – which is influenced mainly by primary metabolites
such as cellulose, but is also affected by specialized metabolites – is monitored by mechanosensors
that sense cell-wall integrity [77–79] to regulate the flux through lignin biosynthesis pathways.

As for the sensors, due to the daunting diversity of specializedmetabolites, the existence of singular-
function sensor proteins dedicated for each individual small molecule is rather unlikely. Instead,
proteins already involved in biosynthesis or transport of specialized metabolites (Figure 2C and F,
respectively) could potentially evolve moonlighting functions as sensors, as seen in glycolytic
enzymes [24,53] and nutrient transporters [80]. Under such amechanism, the specific and efficient
ability to bind to a small molecule is dually used by enzymes to sense the level of metabolites and
trigger feedback gene regulation, either directly by functioning as part of transcriptional regulatory
complexes, or indirectly by participating in the post-translational modification (e.g., acetylation or
phosphorylation) of components involved in gene regulation. On a related note, proteins that are
already involved in the signaling and (post-)transcriptional regulation of metabolic pathways –

such as TFs, chromatin regulators, post-translational modifying enzymes, or ribosomal proteins –
could acquire ligand-binding capacities to sense metabolites, hence conveniently linking the
520 Trends in Plant Science, May 2024, Vol. 29, No. 5
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Outstanding questions
What is the real metabolic cost to plants
of making specialized metabolites?

Are there ‘sentinel metabolites’ that are
sensed by the cell, or is feedback a
characteristic feature shared by most
pathway products/intermediates?

While gene regulation occurs largely
within the nucleus, the biosynthesis
of specialized metabolites often takes
place in the cytoplasm in a highly
compartmentalized manner (e.g., in
the plastid, or in the endoplasmic
reticulum). How does the signaling
cascade relay information across
multiple cellular compartments? Do
metabolites move into the nucleus,
and if so, how?

Within a metabolic network, what is the
rule governing the choice of targeted
metabolic steps to be regulated?

How did the regulation of specialized
metabolism evolve?
metabolite levels to the signaling regulatory cascade (Figure 2B, D, E, and H). In support of this,
indole-3-carbinol, a breakdown product of glucosinolates, was proposed to interact with the
auxin receptor [81], providing a potential mechanism for how glucosinolates are sensed to trigger
downstream regulation [82,83].

Concluding remarks and future perspectives
From data presented here it is evident that the abundance and diversity of plant specialized
metabolites are associated with an equivalent number of opportunities for regulation. There
are, however, significant challenges associated with such research, including that mutations
affecting the accumulation of specialized metabolites can go largely unnoticed unless plants
are grown in the appropriate conditions (which is usually not a growth chamber or greenhouse).
Protein–small molecule interactions can also be difficult to demonstrate, because: (i) dissociation
constants are often in the micromolar or even millimolar range; (ii) identification of the compounds
involved in such interactions is challenging due to their minute quantities in plant cells; (iii) as their
biological activities are tightly linked to the structures, developing the knowledge about decorations
of the specialized metabolites (e.g., glycosylation, methylation, and acetylation) is crucial yet rather
demanding; and (iv) testing such interactions in vitro is complicated, as most specialized metabo-
lites are unavailable commercially. Moreover, demonstrating that the small molecule and the poten-
tial sensor protein colocalize involves a number of technical challenges, given that the currently
available analytical methods to detect small molecules in situ, such as imagingmass spectrometry,
lack the necessary spatial resolution [84]. Finally, even after the interaction of the small molecule
with a protein has been well demonstrated, establishing how it affects protein function, if not
an enzyme, can involve significant challenges. Various tools exist for determining the in vitro
effects of small molecules on modulating protein–protein or protein–DNA interactions; however,
determining their in planta functions is more difficult. Many of our currently unsuccessful metabolic
engineering efforts to produce high yields of specialized metabolites are the result of poor under-
standing of regulation at the transcriptional level. Understanding the mode of small-molecule
action in the regulation of gene expression will provide the foundation for rationally designing
transcriptional regulation systems in metabolic engineering with predicted expression strengths
(see Outstanding questions).
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