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Background: The coronavirus disease 2019 (COVID-19) pandemic has created
more devastation among dialysis patients than among the general population.
Patient-level prediction models for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection are crucial for the early identification of
patients to prevent and mitigate outbreaks within dialysis clinics. As the COVID-
19 pandemic evolves, it is unclear whether or not previously built prediction
models are still sufficiently effective.

Methods: We developed a machine learning (XGBoost) model to predict during
the incubation period a SARS-CoV-2 infection that is subsequently diagnosed
after 3 or more days. We used data from multiple sources, including
demographic, clinical, treatment, laboratory, and vaccination information from
a national network of hemodialysis clinics, socioeconomic information from the
Census Bureau, and county-level COVID-19 infection and mortality information
from state and local health agencies. We created prediction models and
evaluated their performances on a rolling basis to investigate the evolution of
prediction power and risk factors.

Result: From April 2020 to August 2020, our machine learning model achieved an
area under the receiver operating characteristic curve (AUROC) of 0.75, an
improvement of over 0.07 from a previously developed machine learning model
published by Kidney360 in 2021. As the pandemic evolved, the prediction
performance deteriorated and fluctuated more, with the lowest AUROC of 0.6
in December 2021 and January 2022. Over the whole study period, that is, from
April 2020 to February 2022, fixing the false-positive rate at 20%, our model was
able to detect 40% of the positive patients. We found that features derived from
local infection information reported by the Centers for Disease Control and
Prevention (CDC) were the most important predictors, and vaccination status
was a useful predictor as well. Whether or not a patient lives in a nursing home was
an effective predictor before vaccination, but became less predictive after
vaccination.
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Conclusion: As found in our study, the dynamics of the prediction model are
frequently changing as the pandemic evolves. County-level infection
information and vaccination information are crucial for the success of early
COVID-19 prediction models. Our results show that the proposed model can
effectively identify SARS-CoV-2 infections during the incubation period.
Prospective studies are warranted to explore the application of such prediction
models in daily clinical practice.
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1 Introduction

In December 2019, pneumonia cases of unknown cause
emerged in Wuhan, China. Soon the virus was identified as a
type of coronavirus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) (1). The resulting acute respiratory
disease was named coronavirus disease 2019 (COVID-19). Owing
to its highly contagious nature, SARS-CoV-2 soon spread across the
globe. As of 3 January 2023, according to the WHO (2), there have
been 655,689,115 confirmed cases of COVID-19 (as reported to the
WHO) worldwide, including 6,671,624 deaths, equating to a death
rate of over 1% among the general population.

Because of older age and multiple comorbidities, dialysis
patients are at higher risk of serious complications and death
from COVID-19. A greater than 10% case fatality is observed
among dialysis patients in different studies (3-5). Considering
that patients on maintenance hemodialysis typically have an
impaired immune function and are at a higher risk from COVID-
19 than the general population, special care is required. Safety
procedures have been implemented in dialysis centers (e.g.,
temperature screenings, universal masking, isolation treatments)
to control the spread of SARS-CoV-2 and avoid outbreaks.
Specifically, all patients and staff with an elevated body
temperature or flu-like symptoms or those who have been
exposed to COVID-19 are considered “patients under
investigation” (PUI). PUI undergo multiple reverse transcription-
polymerase chain reaction (RT-PCR) tests for the detection of
SARS-CoV-2 and are treated in dedicated isolation areas (rooms,
shifts, or clinics). Although these safety procedures mitigate the
rapid spread of SARS-CoV-2 within the dialysis community, they
add a significant burden to daily clinic operations.

In the general population, machine learning prediction models
have been applied successfully and have reduced economic burden
and pandemic control costs (6-9). These COVID-19 prediction
models can provide a supportive diagnosis of COVID-19 and
prediction of mortality risk and severity using readily available
electronic health records (8, 10-12). These efforts add another layer
of protection for the general public on top of standard epidemic
control procedures, such as social distancing and isolation.
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Among the dialysis community, the application of such
Artificial Intelligence (AI) supported solutions is still very limited.
To alleviate the challenges imposed on daily clinic operations,
machine learning prediction models were studied (13, 14). One
advantage of adopting these AI models is the possibility of a swift
response. AI models can aggregate patient information to detect
SARS-CoV-2 infection several days before the RT-PCR test result is
available [e.g., 3 days ahead (13)]. The combination of different data
sources allows the discovery of features specific to dialysis patients
other than general symptoms of COVID-19 (e.g., fever and
coughing). Therefore, it may be possible to detect asymptomatic
patients during the incubation period.

As the COVID-19 pandemic evolves, it is unclear whether or
not previously identified predictors [e.g., residing in a nursing home
in (14, 15), clinical and laboratory parameters in (15-17)] are still
predictive and previously built machine learning models [e.g.,
XGBoost in (13)] are still effective for the early detection of
COVID-19 cases. Not only has the original virus undergone
mutations that have resulted in multiple variants with different
clinical presentations (18-20), but also the social environment has
significantly changed. For example, lockdowns and social distancing
rules have been lifted and vaccination programs have been
implemented. Therefore, in contrast to previous studies, we
leveraged multiple data sources to study how these changes
affected COVID-19 prediction modeling over a much longer
period, that is, from January 2020 to February 2022. A longer
study period and versatile data sources allowed us to explore the
continuous dynamics of COVID-19 prediction and thus provide
more reliable and time-tested insights. Ultimately, by combining
these insights with AI modeling, we hope to reduce the frequency of
false-positive and false-negative predictions, and, consequently,
assist dialysis clinics with improving operational efficiency.

2 Materials and methods
2.1 Data collection

Fresenius Kidney Care (FKC) is a large dialysis organization
that comprises about 2,400 dialysis clinics in all but one state in the
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United States and provides dialysis treatments for approximately
one-third of all US dialysis patients. Clinical, treatment, and
laboratory information are routinely collected and stored
electronically. We identified FKC patients with treatment records
from November 2019 to March 2022. Patients suspected of having a
SARS-CoV-2 infection at the outpatient dialysis clinics universally
underwent RT-PCR testing to diagnose COVID-19. Demographic
and socioeconomic information, such as age, dialysis vintage, race,
gender, education, employment status, and comorbidities, including
hypertension, diabetes, congestive heart failure, and chronic
obstructive pulmonary disease, were extracted for each patient.
Vaccination information such as the vaccine type (Pfizer, Moderna,
or Johnson & Johnson) and administration date were recorded for
each patient. Clinical data such as pre- and post-dialysis body
temperature, pre- and post-dialysis systolic blood pressure, and
interdialytic weight gain (IDWG), treatment data such as treatment
time, ultrafiltration volume, ultrafiltration rate, and Kt/V, and
intradialytic data, such as intradialytic blood pressure, heart rate,
and ultrafiltration rate, were extracted from electronic health
records. Laboratory variables such as creatinine, blood urea
nitrogen (BUN) and albumin levels, and neutrophil-to-
lymphocyte ratio were measured about once a month;
hemoglobin levels were measured weekly.

Based on each patient’s home zip code, their county-level
infection information (including daily new COVID-19 cases and
daily COVID-19 deaths) was extracted from the New York Times
COVID-19 tracker (21). Other county information, including total
population, population density, and percentage of population in
poverty, was obtained from the Census Bureau (22). Another
feature, “percentage of contracting (PoC) COVID-19”, was
estimated for each county in the US using a COVID-19
transmission model (23), which represented the daily risk of a
susceptible individual contracting COVID-19 in that county.

This study was performed under a protocol reviewed by the
Western Institutional Review Board (WIRB; protocol #20212859).
WIRB determined that this analysis of deidentified patient data was
exempt and did not require informed consent. The analysis was
conducted in accordance with the Declaration of Helsinki.

2.2 Confirmed cases and controls

We identified 41,390 COVID-19-positive dialysis patients
between 21 January 2020 and 28 February 2022. These positive
patients had at least one confirmed positive RT-PCR COVID-19
test during the study period. Only the first confirmed positive date
was used in this study. A total of 115,510 negative patients were
randomly sampled from all active FKC patients. These COVID-19-
negative patients had either a negative or no RT-PCR test during the
observation period. Random sampling was performed such that the
number of negative patients was approximately three times the total
number of positive patients (Figure 1).

We defined a patient’s index date as the date of the positive RT-
PCR test. For patients who had never reported a positive RT-PCR
result, the index date was randomly sampled from the positive
patients’ index dates.
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FIGURE 1
Patients’ distribution across the whole study period.

We included only patients with (1) at least one hemoglobin test
done both 1-14 days and 31-60 days before the individual’s
prediction date (i.e., 3 days before the index date) and (2) at least
one dialysis treatment done both 1-7 days and 31-60 days
preceding the prediction date. This was done to ensure that we
included only patients who were active, as hemoglobin
measurements are done weekly among FKC in-center
dialysis patients.

2.3 Data processing and
feature engineering

We followed a similar timeline setup to (13). Specifically, we
used data from only up to 4 days (see Figure 2) before the index date
(expected RT-PCR test date). First, we eliminated outliers from
laboratory and treatment measures, which were likely due to
manual input errors (e.g., body temperature less than 70°F or
greater than 120°F). Second, we created features by taking an
average of a variable over two different periods, the normal
period and the incubation period. We also used the difference
between the mean value in the normal period and the incubation
period (the variable name is followed by “_diff”). For treatment and
county infection variables, the incubation period was set to 1-7 days
before the prediction date. For laboratory measurements, the
incubation period was set to 1-14 days before the prediction date
due to its less frequent schedule. The normal period is 31-60 days
before the prediction date for every variable. Third, since vaccinal
immunization decays over time (24), we also calculated the time
from the prediction date to the latest vaccination date to reflect this
effect. Lastly, the infection or death rate (number of infections or
deaths per million people due to COVID-19) at the county level was
also calculated to reflect the local epidemic characteristics.

2.4 Models

2.4.1 Training and testing
We selected 116 features, including demographic, treatment,
laboratory, and local county variables, up to 4 days before the index
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Data extraction and prediction timeline

date. We used these features to predict the risk of a SARS-CoV-2
infection being identified in the next 3 or more days (i.e., on or after
the index date). We used a monthly updating strategy to emulate
implementation in dialysis clinics. For example, for the prediction
in August 2020, we used data before 1 August 2020 as the training
sample. Thus the prediction performance on August 2020 was out
of the training sample and close to the real-world performance. We
compared two types of training as shown in Figure 3, one that used
only data within 3 months before the testing period, and another
that used all data from the beginning of 2020. The hyperparameters
of XGBoost were tuned on the training dataset using cross-
validation. The training used binary cross-entropy as the loss
function, with weights set as the ratio of positive to negative
patients to solve the class imbalance problem.

2.4.2 Evaluation metric

We used the monthly out-of-sample area under the receiver
operating characteristic curve (AUROC) to evaluate the
performance over the period April 2020 to February 2022. We
also calculated the overall AUROC and precision-recall curve
(PRC) with aggregated monthly predictions.

2.4.3 Feature importance

We used SHapley Additive exPlanations (SHAP) values to identify
the influential variables on monthly testing predictions (25, 26). For
each specific prediction, the SHAP value was computed for every
variable, which measures how much the predicted value is affected by

116 features
116 features Train Test

3-month
rolling: )
116 features Train S
20/01 20/02 20/03 20/04 20/05 20/06 20/07
116 features Train Test
cumulative:
116 features Train Test
116 features Train Test
20/01 20/02 20/03 20/04 20/05 20/06 20/07
FIGURE 3

Two types of training strategy: 3-month rolling and cumulative.
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each variable used in the XGBoost model. The overall feature
importance of each variable can be quantified by the mean absolute
value of SHAP values for each variable across all observations.

3 Results
3.1 Model performance

To assess the impact of different training strategies on model
performance, we compared overall AUROC and PRC in Figure 4,
and monthly AUROC in Figure 5.

Overall, testing performance in Figure 4 was calculated by
aggregating all monthly predictions. For instance, overall
precision was computed as the ratio of correctly predicted
positive COVID-19 cases to the total number of positive COVID-
19 cases over the entire testing period, that is, from April 2020 to
February 2022. As shown in Figure 4, there is minimal difference
between the 3-month rolling and cumulative models. In both cases,
with the false-positive rate fixed at 20%, the true-positive rate is
slightly above 40%.

In Figure 5, we find the two training strategies exhibit only
slight variations in their monthly performance. The 3-month rolling
models are more responsive to recent changes, such as sudden
waves. In Figure 5, the AUROC started at around 0.75 and dropped
slightly to 0.70 on August 2020. After that, the performance
fluctuates between 0.60 and 0.70. Multiple reasons may cause this
trend of performance degradation. First, predictive features may
become unproductive over time for various reasons, which will be
discussed later when investigating feature importance. Second, as
the reopening policy was rolled out, pandemic characteristics have
changed. Third, data quality is degrading over time due to under-
reporting because of asymptomatic cases and less frequent updates
of county infection reports by CDC"

In the study of Monaghan et al. (13), FKC patients’ data from
27 February 2020 to 8 September 2020 was used to build a machine
learning model for early prediction of COVID-19 cases. Their
model focused on biological changes in clinical biomarkers and
achieved a testing AUROC of 0.68. Compared with Monaghan et al.
(13), we achieved a higher testing AUROC at around 0.75 (Figure 5)
before 31 August 2020. The performance improvement is due to
additional data being included; local county infection information
in particular played an important role. After 2021, as vaccination
was rolled out, we identified that vaccination become a crucial
predictor, which only our study was able to investigate..

3.2 Feature importance
After ranking the mean absolute value of SHAP values, the top

40 features were identified and summarized. They are shown in
Tables 1, 2. The top nine features are shown in Figure 6.

1 CDC COVID-19 surveillance switched to the weekly report on October
20, 2022
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The top two features that remained important throughout the
whole time period were the average number of new COVID-19
cases per million population in the incubation period
(“covid_new_cases_incubation_rate”) and the difference in the
average number of new COVID-19 cases per million population
between the incubation period and the normal period
(covid_new_cases_diff_rate). In Figure 7, “covid_new_cases_
incubation_rate” and “covid_new_-cases_diff_rate” have a

positive correlation with COVID-19 cases. These two features
were derived from local county COVID-19 cases reports. Another
important feature of local information is population density
(“population_density”), as high population densities can increase
the risk of spreading SARS-CoV-2. In areas with high population
densities, such as cities or densely populated neighborhoods, it can
be difficult to maintain physical distancing and limit close contact
with others.

TABLE 1 Demographics and categorical features of hemodialysis patients with and without a severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection.

Variable Unaffected patients COVID-19-positive patients
Number of patients on HD 115,510 41,503
Male, n (%) 67,717 (59) 22,857 (55)
Hispanic or Latino, n (%) 15,748 (14) 7,625 (19)
Diabetes, n (%) 48,928 (45) 19,256 (49)
Nursing home, n (%) 6,025 (6) 5,290 (15)
Race, n (%)
American Indian or Alaska Native 877 (1) 587 (1)
Asian 4,063 (4) 988 (2)
Black people or African American 38,664 (35) 13,632 (34)
Native Hawaiian or Other Pacific Islander 1,285 (1) 481 (1)
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TABLE 1 Continued

Variable Unaffected patients COVID-19-positive patients
White people 65,717 (59) 24,434 (61)

Education, n (%)
8 or less years of school 8,592 (7) 4,289 (10)
Current student 78 (0) 31 (0)
GED 2,951 (3) 1,142 (3)
Graduated from 2- or 4-year college 17,563 (15) 4,871 (12)
Graduated high school 44,257 (38) 16,113 (39)
Graduate school 4,960 (4) 1,135 (3)
More than 8 years but less than 12 years 14,252 (12) 6,390 (15)
Some college 18,677 (16) 6,156 (15)
Vocational/technical school 4,074 (4) 1,364 (3)
Other 106 (0) 12 (0)

COVID-19, coronavirus disease 2019; GED, general educational development.

TABLE 2 Numerical features in top 40 most important features of hemodialysis patients with and without a severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection.

Variable Unaffected patients, COVID-19-positive patients,
mean = SD mean * SD

Age (years) 64.1 + 4.15 62.84 + 4.32

Height (cm) 168.96 + 1.37 168.21 + 1.38

BMI (kg/mz) 28.82 +7.49 29.77 +7.86

Number of days since last vaccination 123.46 + 99.16 144.13 + 104.49

Dialysis vintage (days) 1,481.85 + 501.48 1,530.17 + 466.68

County-level local information per million population

Daily infected COVID cases 642.25 + 863.73 755.07 + 868.42
Change in daily infected COVID cases 380.69 + 872.24 487.99 + 883.68
Change in daily COVID death 186.15 + 98.99 197.52 + 76.73

‘ Treatment information

Pre-HD body temperature (°F) 97.36 + 0.61 97.45 + 0.64
Post-HD body temperature (°F) 97.45 + 0.52 97.51 + 0.56
Change in post-HD body temperature (°F) -0.01 + 0.45 0.05 + 0.49
Change in pre-HD weight loss (kg) -0.21 +2.42 0.4 + 251
Change in weight (kg) 0.04 + 13.54 0.04 + 15.42
Change in IDWG (kg) 0.02 + 0.87 -0.11 + 0.96
Change in pre-HD pulse (BPM) 0.04 + 7.46 0.76 + 7.51
Change in  Post-HD pulse (BPM) -0.05 + 7.34 0.98 + 7.60
Change in max-HD pulse (BPM) 0.07 + 8.05 1.07 + 8.34
Min-HD pulse (BPM) 65.8 +10.52 66.8 + 10.60
(Continued)
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TABLE 2 Continued

Variable Unaffected patients, COVID-19-positive patients,
mean = SD mean = SD

Max-HD sitting SBP (mmHg) 155.58 + 22.68 158.13 + 22.89
Post-HD sitting SBP (mmHg) 139.33 £ 21.03 141.4 + 21.38
Change in pre-HD sitting SBP (mmHg) 0.19 + 15.69 -0.87 + 16.56
Change in pre-HD sitting DBP (mmHg) 0.1 £9.07 -0.43 +9.43

Laboratory measurements
Albumin (g/dL) 3.82 +0.42 3.73 + 0.44
Calcium (mg/dL) 8.94 + 0.68 8.85 + 0.69
Change in % of monocytes 0+1.24 0.15 + 1.42
Change in  WBC count (10'%/L) -0.05 +2.92 -0.14 * 2.05
Hgb (g/dL) 10.73 +1.25 10.64 +1.23
TSAT (%) 32.63 + 14 31.7 + 14.18
URR 74.58 + 6.63 74.82 + 6.34
WBC count (10'%/L) 6.96 + 3.59 6.85 + 3.00
% of eosinophils 4.33 + 2.66 4.09 + 2.62

COVID-19, coronavirus disease 2019; BMI, body mass index; HD, hemodialysis; IDWG, interdialytic weight gain; TSAT, transferrin saturation; URR, urea reduction ratio.

Whether or not a patient lives in a nursing home Clinical (treatment) and demographic information such as body

(“nursing_home”) was a robust top predictor before 2021, but its ~ mass index (“BMI”), interdialytic weight gain between the

significance has gradually declined. Following the implementation of
vaccination in 2021, a substantial decrease was observed. As shown in
Figure 7, “nursing_home” was ranked as the second most significant
factor that positively correlated with COVID-19 cases in July 2020.
However, by July 2021 it had dropped out of the top five features.

incubation period and normal period (“IDWG_diff”), and vintage
appeared among the top nine features, which confirms the findings
in Chaudhuri et al. (16) that clinical and laboratory variables are
predictive. As shown in Figure 7, pre-dialysis body temperature
during the incubation period (“pre_temperature_incubation”) was

06 covid_new_cases_incubation_rate covid_new_cases_diff rate nursing_home
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FIGURE 6

Monthly average absolute SHAP value for the top nine important features. For each feature, the black line is for the 3-month rolling model, and the
red line is for the cumulative model. The vertical blue line at the end of 2020 is a separation of whether or not vaccination is available (U.S. HHS,
Vaccination in the US began on 14 December 2020). (Note that the x-axis is the date in "yy/mm” format).
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Top five features ranked by absolute SHAP value. (A) The model was trained with the data from 1 April to 30 June in 2020 and tested on data from 1
July to 31 July, 2020. (B) The model was trained with data from 1 September to 30 November in 2021 and tested on data from 1 December to 31

December, 2021.

also identified as one of the top five predictive features in July 2020
and had a positive correlation with COVID-19 cases. However,
similar to “nursing_home”, it had dropped out of the top five
features by July 2021.

The variable “last_vaccination_to_pcr_date” is defined as the
difference between a patient’s prediction date and the latest
vaccination date. As illustrated in Figure 7, “last_vaccination_to
_pcr_date” emerged as a significant predictor in the middle of 2021,
ranking first in importance, and had a positive correlation with
COVID-19 cases. Specifically, a missing or large value in
“last_vaccination_to_pcr_date” implied that the patient had a
higher chance of being identified as a positive COVID-19 case.
However, by the end of 2021 its significance was reduced Figure 6,
possibly due to a decrease in the efficacy of vaccination-induced
antibodies over time. Similarly, another vaccination-related feature,
“get_vaccination”, which was defined as whether or not a patient
had received vaccines before the prediction date, has a negative
correlation with positive COVID-19 cases, as shown in Figure 7
compare before after vaccination.

Comparing the two training strategies, the 3-month rolling
models (represented by black lines) generally produced rougher

Frontiers in Nephrology 08

curves for SHAP values, as they were quicker to respond to rapid
changes. In contrast, camulative models (represented by red lines)
utilized accumulated data, making them less responsive to changes
such as the introduction of vaccination.

4 Discussion

We have successfully developed a machine learning model that
utilizes multiple data sources to detect early COVID-19 infections
in maintenance hemodialysis patients. We demonstrated that the
proposed machine learning model achieved clinically meaningful
performance by monthly testing throughout the COVID-19
pandemic. Overall, the model was able to identify 40% of
COVID-19 patients (with a 20% false-positive rate) before they
were identified by an RT-PCR COVID-19 test. This can
significantly aid dialysis clinics in preventing the spread of the
virus by implementing targeted procedures for identified patients.

More importantly, apart from the patient’s laboratory and
treatment information (e.g., body temperature) used by
Monaghan et al. (13), we identified two other sources of
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information that are more critical for such prediction models. The
first is local county infection data provided by CDC. County-level
COVID-19 infection information reflects how likely SARS-CoV-2 is
to spread within the patient’s community. The second is the
patient’s vaccination record, which reflects how likely SARS-CoV-
2 will infect a patient after contact. As the dynamics of COVID-19
change, previously important features, such as whether or not a
patient lives in a nursing home, become less predictive.

There are limitations to our study. First, the positive COVID-19
diagnosis labels are limited to the positive patients’ specific RT-PCR
test date. As the COVID-19 pandemic is a continuous and dynamic
process, there are dates before and after the RT-PCR test date that
should also be annotated as positive labels. However, without
enough information, it is difficult to select these periods.
Furthermore, the timing of the RT-PCR test relative to infection
can vary based on symptom presentation and other factors, adding
additional variability to the RT-PCR test dates. It is worth further
investigating the cutoft dates to further improve COVID-19 early
detection. Second, as limited by anticipated data availability and
model integration into clinical systems, the prediction date was set
to 3 days before the index date. Ideally, with real-time data
aggregation, one could set the prediction date to the index date.
This will likely improve the detection performance as the most
recent laboratory and treatment data can be used. In addition, more
advanced methods such as deep learning could potentially further
improve the accuracy of COVID-19 detection (27-30). This avenue
will be explored in future research endeavors.
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