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Background: The coronavirus disease 2019 (COVID-19) pandemic has created

more devastation among dialysis patients than among the general population.

Patient-level prediction models for severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection are crucial for the early identification of

patients to prevent and mitigate outbreaks within dialysis clinics. As the COVID-

19 pandemic evolves, it is unclear whether or not previously built prediction

models are still sufficiently effective.

Methods: We developed a machine learning (XGBoost) model to predict during

the incubation period a SARS-CoV-2 infection that is subsequently diagnosed

after 3 or more days. We used data from multiple sources, including

demographic, clinical, treatment, laboratory, and vaccination information from

a national network of hemodialysis clinics, socioeconomic information from the

Census Bureau, and county-level COVID-19 infection and mortality information

from state and local health agencies. We created prediction models and

evaluated their performances on a rolling basis to investigate the evolution of

prediction power and risk factors.

Result: From April 2020 to August 2020, our machine learningmodel achieved an

area under the receiver operating characteristic curve (AUROC) of 0.75, an

improvement of over 0.07 from a previously developed machine learning model

published by Kidney360 in 2021. As the pandemic evolved, the prediction

performance deteriorated and fluctuated more, with the lowest AUROC of 0.6

in December 2021 and January 2022. Over the whole study period, that is, from

April 2020 to February 2022, fixing the false-positive rate at 20%, our model was

able to detect 40% of the positive patients. We found that features derived from

local infection information reported by the Centers for Disease Control and

Prevention (CDC) were the most important predictors, and vaccination status

was a useful predictor as well. Whether or not a patient lives in a nursing homewas

an effective predictor before vaccination, but became less predictive after

vaccination.
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Conclusion: As found in our study, the dynamics of the prediction model are

frequently changing as the pandemic evolves. County-level infection

information and vaccination information are crucial for the success of early

COVID-19 prediction models. Our results show that the proposed model can

effectively identify SARS-CoV-2 infections during the incubation period.

Prospective studies are warranted to explore the application of such prediction

models in daily clinical practice.
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1 Introduction

In December 2019, pneumonia cases of unknown cause

emerged in Wuhan, China. Soon the virus was identified as a

type of coronavirus named severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) (1). The resulting acute respiratory

disease was named coronavirus disease 2019 (COVID-19). Owing

to its highly contagious nature, SARS-CoV-2 soon spread across the

globe. As of 3 January 2023, according to the WHO (2), there have

been 655,689,115 confirmed cases of COVID-19 (as reported to the

WHO) worldwide, including 6,671,624 deaths, equating to a death

rate of over 1% among the general population.

Because of older age and multiple comorbidities, dialysis

patients are at higher risk of serious complications and death

from COVID-19. A greater than 10% case fatality is observed

among dialysis patients in different studies (3–5). Considering

that patients on maintenance hemodialysis typically have an

impaired immune function and are at a higher risk from COVID-

19 than the general population, special care is required. Safety

procedures have been implemented in dialysis centers (e.g.,

temperature screenings, universal masking, isolation treatments)

to control the spread of SARS-CoV-2 and avoid outbreaks.

Specifically, all patients and staff with an elevated body

temperature or flu-like symptoms or those who have been

exposed to COVID-19 are considered “patients under

investigation” (PUI). PUI undergo multiple reverse transcription-

polymerase chain reaction (RT-PCR) tests for the detection of

SARS-CoV-2 and are treated in dedicated isolation areas (rooms,

shifts, or clinics). Although these safety procedures mitigate the

rapid spread of SARS-CoV-2 within the dialysis community, they

add a significant burden to daily clinic operations.

In the general population, machine learning prediction models

have been applied successfully and have reduced economic burden

and pandemic control costs (6–9). These COVID-19 prediction

models can provide a supportive diagnosis of COVID-19 and

prediction of mortality risk and severity using readily available

electronic health records (8, 10–12). These efforts add another layer

of protection for the general public on top of standard epidemic

control procedures, such as social distancing and isolation.

Among the dialysis community, the application of such

Artificial Intelligence (AI) supported solutions is still very limited.

To alleviate the challenges imposed on daily clinic operations,

machine learning prediction models were studied (13, 14). One

advantage of adopting these AI models is the possibility of a swift

response. AI models can aggregate patient information to detect

SARS-CoV-2 infection several days before the RT-PCR test result is

available [e.g., 3 days ahead (13)]. The combination of different data

sources allows the discovery of features specific to dialysis patients

other than general symptoms of COVID-19 (e.g., fever and

coughing). Therefore, it may be possible to detect asymptomatic

patients during the incubation period.

As the COVID-19 pandemic evolves, it is unclear whether or

not previously identified predictors [e.g., residing in a nursing home

in (14, 15), clinical and laboratory parameters in (15–17)] are still

predictive and previously built machine learning models [e.g.,

XGBoost in (13)] are still effective for the early detection of

COVID-19 cases. Not only has the original virus undergone

mutations that have resulted in multiple variants with different

clinical presentations (18–20), but also the social environment has

significantly changed. For example, lockdowns and social distancing

rules have been lifted and vaccination programs have been

implemented. Therefore, in contrast to previous studies, we

leveraged multiple data sources to study how these changes

affected COVID-19 prediction modeling over a much longer

period, that is, from January 2020 to February 2022. A longer

study period and versatile data sources allowed us to explore the

continuous dynamics of COVID-19 prediction and thus provide

more reliable and time-tested insights. Ultimately, by combining

these insights with AI modeling, we hope to reduce the frequency of

false-positive and false-negative predictions, and, consequently,

assist dialysis clinics with improving operational efficiency.

2 Materials and methods

2.1 Data collection

Fresenius Kidney Care (FKC) is a large dialysis organization

that comprises about 2,400 dialysis clinics in all but one state in the
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United States and provides dialysis treatments for approximately

one-third of all US dialysis patients. Clinical, treatment, and

laboratory information are routinely collected and stored

electronically. We identified FKC patients with treatment records

from November 2019 to March 2022. Patients suspected of having a

SARS-CoV-2 infection at the outpatient dialysis clinics universally

underwent RT-PCR testing to diagnose COVID-19. Demographic

and socioeconomic information, such as age, dialysis vintage, race,

gender, education, employment status, and comorbidities, including

hypertension, diabetes, congestive heart failure, and chronic

obstructive pulmonary disease, were extracted for each patient.

Vaccination information such as the vaccine type (Pfizer, Moderna,

or Johnson & Johnson) and administration date were recorded for

each patient. Clinical data such as pre- and post-dialysis body

temperature, pre- and post-dialysis systolic blood pressure, and

interdialytic weight gain (IDWG), treatment data such as treatment

time, ultrafiltration volume, ultrafiltration rate, and Kt/V, and

intradialytic data, such as intradialytic blood pressure, heart rate,

and ultrafiltration rate, were extracted from electronic health

records. Laboratory variables such as creatinine, blood urea

nitrogen (BUN) and albumin levels, and neutrophil-to-

lymphocyte ratio were measured about once a month;

hemoglobin levels were measured weekly.

Based on each patient’s home zip code, their county-level

infection information (including daily new COVID-19 cases and

daily COVID-19 deaths) was extracted from the New York Times

COVID-19 tracker (21). Other county information, including total

population, population density, and percentage of population in

poverty, was obtained from the Census Bureau (22). Another

feature, “percentage of contracting (PoC) COVID-19”, was

estimated for each county in the US using a COVID-19

transmission model (23), which represented the daily risk of a

susceptible individual contracting COVID-19 in that county.

This study was performed under a protocol reviewed by the

Western Institutional Review Board (WIRB; protocol #20212859).

WIRB determined that this analysis of deidentified patient data was

exempt and did not require informed consent. The analysis was

conducted in accordance with the Declaration of Helsinki.

2.2 Confirmed cases and controls

We identified 41,390 COVID-19-positive dialysis patients

between 21 January 2020 and 28 February 2022. These positive

patients had at least one confirmed positive RT-PCR COVID-19

test during the study period. Only the first confirmed positive date

was used in this study. A total of 115,510 negative patients were

randomly sampled from all active FKC patients. These COVID-19-

negative patients had either a negative or no RT-PCR test during the

observation period. Random sampling was performed such that the

number of negative patients was approximately three times the total

number of positive patients (Figure 1).

We defined a patient’s index date as the date of the positive RT-

PCR test. For patients who had never reported a positive RT-PCR

result, the index date was randomly sampled from the positive

patients’ index dates.

We included only patients with (1) at least one hemoglobin test

done both 1–14 days and 31–60 days before the individual’s

prediction date (i.e., 3 days before the index date) and (2) at least

one dialysis treatment done both 1–7 days and 31–60 days

preceding the prediction date. This was done to ensure that we

included only patients who were active, as hemoglobin

measurements are done weekly among FKC in-center

dialysis patients.

2.3 Data processing and
feature engineering

We followed a similar timeline setup to (13). Specifically, we

used data from only up to 4 days (see Figure 2) before the index date

(expected RT-PCR test date). First, we eliminated outliers from

laboratory and treatment measures, which were likely due to

manual input errors (e.g., body temperature less than 70°F or

greater than 120°F). Second, we created features by taking an

average of a variable over two different periods, the normal

period and the incubation period. We also used the difference

between the mean value in the normal period and the incubation

period (the variable name is followed by “_diff”). For treatment and

county infection variables, the incubation period was set to 1–7 days

before the prediction date. For laboratory measurements, the

incubation period was set to 1–14 days before the prediction date

due to its less frequent schedule. The normal period is 31–60 days

before the prediction date for every variable. Third, since vaccinal

immunization decays over time (24), we also calculated the time

from the prediction date to the latest vaccination date to reflect this

effect. Lastly, the infection or death rate (number of infections or

deaths per million people due to COVID-19) at the county level was

also calculated to reflect the local epidemic characteristics.

2.4 Models

2.4.1 Training and testing
We selected 116 features, including demographic, treatment,

laboratory, and local county variables, up to 4 days before the index

FIGURE 1

Patients’ distribution across the whole study period.
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date. We used these features to predict the risk of a SARS-CoV-2

infection being identified in the next 3 or more days (i.e., on or after

the index date). We used a monthly updating strategy to emulate

implementation in dialysis clinics. For example, for the prediction

in August 2020, we used data before 1 August 2020 as the training

sample. Thus the prediction performance on August 2020 was out

of the training sample and close to the real-world performance. We

compared two types of training as shown in Figure 3, one that used

only data within 3 months before the testing period, and another

that used all data from the beginning of 2020. The hyperparameters

of XGBoost were tuned on the training dataset using cross-

validation. The training used binary cross-entropy as the loss

function, with weights set as the ratio of positive to negative

patients to solve the class imbalance problem.

2.4.2 Evaluation metric
We used the monthly out-of-sample area under the receiver

operating characteristic curve (AUROC) to evaluate the

performance over the period April 2020 to February 2022. We

also calculated the overall AUROC and precision–recall curve

(PRC) with aggregated monthly predictions.

2.4.3 Feature importance
We used SHapley Additive exPlanations (SHAP) values to identify

the influential variables on monthly testing predictions (25, 26). For

each specific prediction, the SHAP value was computed for every

variable, which measures how much the predicted value is affected by

each variable used in the XGBoost model. The overall feature

importance of each variable can be quantified by the mean absolute

value of SHAP values for each variable across all observations.

3 Results

3.1 Model performance

To assess the impact of different training strategies on model

performance, we compared overall AUROC and PRC in Figure 4,

and monthly AUROC in Figure 5.

Overall, testing performance in Figure 4 was calculated by

aggregating all monthly predictions. For instance, overall

precision was computed as the ratio of correctly predicted

positive COVID-19 cases to the total number of positive COVID-

19 cases over the entire testing period, that is, from April 2020 to

February 2022. As shown in Figure 4, there is minimal difference

between the 3-month rolling and cumulative models. In both cases,

with the false-positive rate fixed at 20%, the true-positive rate is

slightly above 40%.

In Figure 5, we find the two training strategies exhibit only

slight variations in their monthly performance. The 3-month rolling

models are more responsive to recent changes, such as sudden

waves. In Figure 5, the AUROC started at around 0.75 and dropped

slightly to 0.70 on August 2020. After that, the performance

fluctuates between 0.60 and 0.70. Multiple reasons may cause this

trend of performance degradation. First, predictive features may

become unproductive over time for various reasons, which will be

discussed later when investigating feature importance. Second, as

the reopening policy was rolled out, pandemic characteristics have

changed. Third, data quality is degrading over time due to under-

reporting because of asymptomatic cases and less frequent updates

of county infection reports by CDC
1.

In the study of Monaghan et al. (13), FKC patients’ data from

27 February 2020 to 8 September 2020 was used to build a machine

learning model for early prediction of COVID-19 cases. Their

model focused on biological changes in clinical biomarkers and

achieved a testing AUROC of 0.68. Compared with Monaghan et al.

(13), we achieved a higher testing AUROC at around 0.75 (Figure 5)

before 31 August 2020. The performance improvement is due to

additional data being included; local county infection information

in particular played an important role. After 2021, as vaccination

was rolled out, we identified that vaccination become a crucial

predictor, which only our study was able to investigate..

3.2 Feature importance

After ranking the mean absolute value of SHAP values, the top

40 features were identified and summarized. They are shown in

Tables 1, 2. The top nine features are shown in Figure 6.

1 CDC COVID-19 surveillance switched to the weekly report on October

20, 2022

FIGURE 3

Two types of training strategy: 3-month rolling and cumulative.

FIGURE 2

Data extraction and prediction timeline.
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The top two features that remained important throughout the

whole time period were the average number of new COVID-19

cases per million population in the incubation period

(“covid_new_cases_incubation_rate”) and the difference in the

average number of new COVID-19 cases per million population

between the incubation period and the normal period

(covid_new_cases_diff_rate). In Figure 7, “covid_new_cases_

incubation_rate” and “covid_new_-cases_diff_rate” have a

positive correlation with COVID-19 cases. These two features

were derived from local county COVID-19 cases reports. Another

important feature of local information is population density

(“population_density”), as high population densities can increase

the risk of spreading SARS-CoV-2. In areas with high population

densities, such as cities or densely populated neighborhoods, it can

be difficult to maintain physical distancing and limit close contact

with others.

FIGURE 4

Overall testing performance is calculated with aggregated monthly predictions.

FIGURE 5

Monthly AUROC.

TABLE 1 Demographics and categorical features of hemodialysis patients with and without a severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection.

Variable Unaffected patients COVID-19-positive patients

Number of patients on HD 115,510 41,503

Male, n (%) 67,717 (59) 22,857 (55)

Hispanic or Latino, n (%) 15,748 (14) 7,625 (19)

Diabetes, n (%) 48,928 (45) 19,256 (49)

Nursing home, n (%) 6,025 (6) 5,290 (15)

Race, n (%)

American Indian or Alaska Native 877 (1) 587 (1)

Asian 4,063 (4) 988 (2)

Black people or African American 38,664 (35) 13,632 (34)

Native Hawaiian or Other Pacific Islander 1,285 (1) 481 (1)

(Continued)
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TABLE 2 Numerical features in top 40 most important features of hemodialysis patients with and without a severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection.

Variable Unaffected patients, COVID-19-positive patients,

mean ± SD mean ± SD

Age (years) 64.1 ± 4.15 62.84 ± 4.32

Height (cm) 168.96 ± 1.37 168.21 ± 1.38

BMI (kg/m2) 28.82 ± 7.49 29.77 ± 7.86

Number of days since last vaccination 123.46 ± 99.16 144.13 ± 104.49

Dialysis vintage (days) 1,481.85 ± 501.48 1,530.17 ± 466.68

County-level local information per million population

Daily infected COVID cases 642.25 ± 863.73 755.07 ± 868.42

Change in daily infected COVID cases 380.69 ± 872.24 487.99 ± 883.68

Change in daily COVID death 186.15 ± 98.99 197.52 ± 76.73

Treatment information

Pre-HD body temperature (°F) 97.36 ± 0.61 97.45 ± 0.64

Post-HD body temperature (°F) 97.45 ± 0.52 97.51 ± 0.56

Change in post-HD body temperature (°F) –0.01 ± 0.45 0.05 ± 0.49

Change in pre-HD weight loss (kg) –0.21 ± 2.42 –0.4 ± 2.51

Change in weight (kg) 0.04 ± 13.54 0.04 ± 15.42

Change in IDWG (kg) 0.02 ± 0.87 –0.11 ± 0.96

Change in pre-HD pulse (BPM) 0.04 ± 7.46 0.76 ± 7.51

Change in Post-HD pulse (BPM) –0.05 ± 7.34 0.98 ± 7.60

Change in max-HD pulse (BPM) 0.07 ± 8.05 1.07 ± 8.34

Min-HD pulse (BPM) 65.8 ± 10.52 66.8 ± 10.60

(Continued)

TABLE 1 Continued

Variable Unaffected patients COVID-19-positive patients

White people 65,717 (59) 24,434 (61)

Education, n (%)

8 or less years of school 8,592 (7) 4,289 (10)

Current student 78 (0) 31 (0)

GED 2,951 (3) 1,142 (3)

Graduated from 2- or 4-year college 17,563 (15) 4,871 (12)

Graduated high school 44,257 (38) 16,113 (39)

Graduate school 4,960 (4) 1,135 (3)

More than 8 years but less than 12 years 14,252 (12) 6,390 (15)

Some college 18,677 (16) 6,156 (15)

Vocational/technical school 4,074 (4) 1,364 (3)

Other 106 (0) 12 (0)

COVID-19, coronavirus disease 2019; GED, general educational development.
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Whether or not a patient lives in a nursing home

(“nursing_home”) was a robust top predictor before 2021, but its

significance has gradually declined. Following the implementation of

vaccination in 2021, a substantial decrease was observed. As shown in

Figure 7, “nursing_home” was ranked as the second most significant

factor that positively correlated with COVID-19 cases in July 2020.

However, by July 2021 it had dropped out of the top five features.

Clinical (treatment) and demographic information such as body

mass index (“BMI”), interdialytic weight gain between the

incubation period and normal period (“IDWG_diff”), and vintage

appeared among the top nine features, which confirms the findings

in Chaudhuri et al. (16) that clinical and laboratory variables are

predictive. As shown in Figure 7, pre-dialysis body temperature

during the incubation period (“pre_temperature_incubation”) was

TABLE 2 Continued

Variable Unaffected patients, COVID-19-positive patients,

mean ± SD mean ± SD

Max-HD sitting SBP (mmHg) 155.58 ± 22.68 158.13 ± 22.89

Post-HD sitting SBP (mmHg) 139.33 ± 21.03 141.4 ± 21.38

Change in pre-HD sitting SBP (mmHg) 0.19 ± 15.69 –0.87 ± 16.56

Change in pre-HD sitting DBP (mmHg) 0.1 ± 9.07 –0.43 ± 9.43

Laboratory measurements

Albumin (g/dL) 3.82 ± 0.42 3.73 ± 0.44

Calcium (mg/dL) 8.94 ± 0.68 8.85 ± 0.69

Change in % of monocytes 0 ± 1.24 0.15 ± 1.42

Change in WBC count (1010/L) –0.05 ± 2.92 –0.14 ± 2.05

Hgb (g/dL) 10.73 ± 1.25 10.64 ± 1.23

TSAT (%) 32.63 ± 14 31.7 ± 14.18

URR 74.58 ± 6.63 74.82 ± 6.34

WBC count (1010/L) 6.96 ± 3.59 6.85 ± 3.00

% of eosinophils 4.33 ± 2.66 4.09 ± 2.62

COVID-19, coronavirus disease 2019; BMI, body mass index; HD, hemodialysis; IDWG, interdialytic weight gain; TSAT, transferrin saturation; URR, urea reduction ratio.

FIGURE 6

Monthly average absolute SHAP value for the top nine important features. For each feature, the black line is for the 3-month rolling model, and the

red line is for the cumulative model. The vertical blue line at the end of 2020 is a separation of whether or not vaccination is available (U.S. HHS,

Vaccination in the US began on 14 December 2020). (Note that the x-axis is the date in “yy/mm” format).
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also identified as one of the top five predictive features in July 2020

and had a positive correlation with COVID-19 cases. However,

similar to “nursing_home”, it had dropped out of the top five

features by July 2021.

The variable “last_vaccination_to_pcr_date” is defined as the

difference between a patient’s prediction date and the latest

vaccination date. As illustrated in Figure 7, “last_vaccination_to

_pcr_date” emerged as a significant predictor in the middle of 2021,

ranking first in importance, and had a positive correlation with

COVID-19 cases. Specifically, a missing or large value in

“last_vaccination_to_pcr_date” implied that the patient had a

higher chance of being identified as a positive COVID-19 case.

However, by the end of 2021 its significance was reduced Figure 6,

possibly due to a decrease in the efficacy of vaccination-induced

antibodies over time. Similarly, another vaccination-related feature,

“get_vaccination”, which was defined as whether or not a patient

had received vaccines before the prediction date, has a negative

correlation with positive COVID-19 cases, as shown in Figure 7

compare before after vaccination.

Comparing the two training strategies, the 3-month rolling

models (represented by black lines) generally produced rougher

curves for SHAP values, as they were quicker to respond to rapid

changes. In contrast, cumulative models (represented by red lines)

utilized accumulated data, making them less responsive to changes

such as the introduction of vaccination.

4 Discussion

We have successfully developed a machine learning model that

utilizes multiple data sources to detect early COVID-19 infections

in maintenance hemodialysis patients. We demonstrated that the

proposed machine learning model achieved clinically meaningful

performance by monthly testing throughout the COVID-19

pandemic. Overall, the model was able to identify 40% of

COVID-19 patients (with a 20% false-positive rate) before they

were identified by an RT-PCR COVID-19 test. This can

significantly aid dialysis clinics in preventing the spread of the

virus by implementing targeted procedures for identified patients.

More importantly, apart from the patient’s laboratory and

treatment information (e.g., body temperature) used by

Monaghan et al. (13), we identified two other sources of

B

A

FIGURE 7

Top five features ranked by absolute SHAP value. (A) The model was trained with the data from 1 April to 30 June in 2020 and tested on data from 1

July to 31 July, 2020. (B) The model was trained with data from 1 September to 30 November in 2021 and tested on data from 1 December to 31

December, 2021.
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information that are more critical for such prediction models. The

first is local county infection data provided by CDC. County-level

COVID-19 infection information reflects how likely SARS-CoV-2 is

to spread within the patient’s community. The second is the

patient’s vaccination record, which reflects how likely SARS-CoV-

2 will infect a patient after contact. As the dynamics of COVID-19

change, previously important features, such as whether or not a

patient lives in a nursing home, become less predictive.

There are limitations to our study. First, the positive COVID-19

diagnosis labels are limited to the positive patients’ specific RT-PCR

test date. As the COVID-19 pandemic is a continuous and dynamic

process, there are dates before and after the RT-PCR test date that

should also be annotated as positive labels. However, without

enough information, it is difficult to select these periods.

Furthermore, the timing of the RT-PCR test relative to infection

can vary based on symptom presentation and other factors, adding

additional variability to the RT-PCR test dates. It is worth further

investigating the cutoff dates to further improve COVID-19 early

detection. Second, as limited by anticipated data availability and

model integration into clinical systems, the prediction date was set

to 3 days before the index date. Ideally, with real-time data

aggregation, one could set the prediction date to the index date.

This will likely improve the detection performance as the most

recent laboratory and treatment data can be used. In addition, more

advanced methods such as deep learning could potentially further

improve the accuracy of COVID-19 detection (27–30). This avenue

will be explored in future research endeavors.
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