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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• State-of-the-art modeling methodologies
for OARO are reviewed.

• CFD for simulating OARO is demon-
strated using the classical and porous
media models.

• Porous media model is most applicable
for a system with a thick membrane.

• Role of mathematical model for OARO
module-scale and optimization is
highlighted.

• Role of CFD for design of OARO draw
spacer and fouling is emphasized.
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A B S T R A C T

Osmotically assisted reverse osmosis (OARO) has been proposed as an innovative solution to recover more water
from hypersaline water, surpassing the traditional RO method which is limited by the maximum pressure that the
membrane can withstand. An accurate mathematical model is required to elucidate the mechanism of concen-
tration polarization build-up at the inside and outside of the membrane so that these insights can be applied to
design an efficient OARO system. This paper reviews state-of-the-art modeling methodologies for OARO using
analytical and CFD models. While analytical models have been extensively employed for the design of OARO, the
progress of computational models (i.e., CFD) still falls behind. Therefore, CFD methodologies for simulating
OARO are demonstrated in this review using the classical and Brinkman porous media models. The sensitivity
analysis demonstrates that the Brinkman porous media model is the most applicable for systems with low flux
and a thick membrane porous layer. Lastly, future research directions related to OARO modeling are
recommended.
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1. Introduction

The evolution of membrane processes throughout history has
included several pioneering methods, such as nanofiltration (NF),
reverse osmosis (RO), forward osmosis (FO), and pressure retarded
osmosis (PRO). Originating in the 1950s, NF/RO involves driving clean
water through a semi-permeable membrane to separate solutes for
desalination. Later, FO was introduced to use the osmotic gradient to
transfer water across the membrane for the pre-treatment process, while
PRO was introduced to utilize the pressure difference between the
concentrated and dilution solutions for energy generation. These pro-
cesses have rapidly evolved to address the global water challenges. In
recent years, osmotically assisted reverse osmosis (OARO) has gained
popularity as an effective method for dewatering hypersaline brine. At
high feed salinities, the application of traditional RO to produce pure
water is limited as it requires a very high pressure to overcome the
transmembrane osmotic pressure. The transmembrane pressure

required to overcome the huge osmotic pressure difference between the
feed and permeate sides can easily exceed the membrane burst pressure
(i.e., 70 to 80 bar [1]). OARO, in contrast, can overcome this limitation
by introducing a dilute solution on the draw side to reduce the osmotic
pressure difference. OARO is different from FO/PRO as the former is a
pressure driven membrane process in which the hydraulic pressure is
applied to drive the water flux from a high concentration feed solution to
a low concentration draw solution while the latter are osmotic driven
membrane processes in which the water flux is driven by the concen-
tration gradient between a low concentration feed solution and a high
concentration draw solution. The schematic diagrams of the membrane
processes are shown in Fig. 1.

The OARO concept was first introduced by Loeb and Bloch [2] in
1973 in counter-current flow configuration, but it was limited to only a
single stage. Then, in 2017, Bartholomew, et al. [3] proposed the first
multi-stage OARO process for the purpose of lowering the concentration
of a high salinity feed so that it is within the operating pressure of

Nomenclature

Symbols
A Water permeability (L m−2 h−1 bar−1)
Am Membrane area (m2)
B Salt permeability (L m−2 h−1)
D Solute diffusivity (m2 s−1)
dh Hydraulic diameter (m)
fglob Global friction factor
h Channel height (m)
Jw Water flux (L m−2 h−1)
Js Solute flux (L m−2 h−1)
k Mass transfer coefficient (m s−1)
KICP Mass transfer resistance inside the support layer (s m−1)
L Length (m)
n Distance in the normal direction (m)
p Pressure (Pa)
Δp Transmembrane pressure (Pa)
Q Volumetric flow rate (m3 s−1)
Re Reynolds number
S Membrane structural parameter (m)
SM Source term for continuity equation (kg m−3 s−1)
S→u Source term for momentum equation (kg m−2 s−2)
Si Source term for mass transfer equation (kg m−3 s−1)
Sc Schmidt number
Sh Sherwood number
t Time (s)
tm Membrane thickness (m)
u Velocity (m s−1)
u→ Velocity vector (m s−1)
Vc Volume of the source or sink cells (m3)

w Solute mass fraction
x Distance in the bulk flow direction, parallel to membrane

surface (m)
y Distance from the membrane surface, in direction normal

to the surface (m)
z Distance in the direction perpendicular to both x and y (m)

Greek letters
δ Boundary layer thickness (m)
ε Porosity
κ Darcy permeability of porous support layer (m2)
μ Dynamic viscosity (Pa s)
π Osmotic pressure (Pa)
ρ Fluid density (kg m−3)
τ Tortuosity

Subscripts
b Bulk
CECP Concentrative external concentration polarization
d Draw side
DECP Dilutive external concentration polarization
eff Effective
f Feed side
i Interface between membrane and support layer
ICP Internal concentration polarization
in Inlet
int Intrinsic
m Membrane
s Support layer
x x-direction
y y-direction
z z-direction

Fig. 1. Schematic diagram of different membrane processes (a) RO, (b) FO, (c) PRO, and (d) OARO. Darker blue indicates a more concentrated solution.
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traditional RO. Using this multistage OARO approach, a brine with a
very high salinity up to 12.5 wt% can potentially be treated [4], which
clearly confirms the potential of OARO for treating brine water.

Unlike traditional RO, OARO not only experiences concentration
polarization (CP) and fouling on the feed side but also within the porous
layer on the draw side. Moreover, OARO is expected to experience a
more severe fouling because the feed concentration treated for OARO
(12.5 wt%) is significantly higher than in RO (3 wt%). Therefore, ac-
curate modeling is crucial for a better understanding of the performance
of the membrane, as well as for the design and optimization of the
system.

The modeling of the membrane desalination process is commonly
classified into two categories, namely phenomenological and mecha-
nistic models [5]. The phenomenological model, such as that of Spiegler-
Kedem-Katchalsky [6,7], defines the membrane as a black box and de-
scribes the mass transfer through irreversible thermodynamics.
Phenomenological transport coefficients are used to describe the rela-
tionship between the input (i.e., hydraulic pressure and osmotic pres-
sure difference) and output (i.e., water and solute fluxes) of the
experiment. Due to the model simplicity, it lacks mechanistic explana-
tions of the effects of transport mechanisms andmembrane structures on
the fluxes.

On the other hand, a mechanistic model is derived based on the
transport mechanisms and membrane structures. This can be achieved
either through analytical or numerical methods. Generally, the analyt-
ical methods use lumped parameter approaches and do not explicitly
resolve the variation of flow velocity and concentrations, while the
numerical methods use the distributed parameter approach and resolve
the partial differential equations that govern conservation of mass,
momentum and energy. Even if local variables are simulated using
analytical methods, they are most likely applicable only under low flux
conditions [8]. This is because the derivation of existing mass transfer
coefficients (measured by the Sherwood number (Sh)) is typically based
on the assumption of impermeable wall conditions. Furthermore,
employing lumped parameter methods is inadequate for modeling
membrane processes on a large scale because they often do not account
for the membrane area. Typically, extensive membrane surface area is
needed for processes like OARO [3,9], which can lead to significant
pressure drops and spatial variations in flux within the membrane
channels.

For numerical method, there are two distinct categories: Computa-
tional Fluid Dynamics (CFD) modeling and system-level modeling. CFD
modeling is based on two-dimensional (2-D) or three-dimensional (3-D)
Navier-Stokes equations and diffusion-convection equations and can
reveal detailed local hydrodynamics and mass transfer characteristics at
the submillimeter scale. However, due to a high computational cost and
memory required, this approach is limited to a small fraction of the
membrane (millimeter scale) and is not well suited for a whole system
(meter scale). The system-level model is typically based on an algebraic
equation or one-dimensional (1-D) ordinary differential equations
(ODEs) that can be easily solved to predict and optimize system per-
formance. For the system-level model to be accurate, the modeling pa-
rameters, such as friction coefficient and mass transfer coefficient,
should be derived from CFD and/or experiments. Therefore, both are
important to advance OARO design and application. Table 1 summarizes
the advantages and limitations of both modeling approaches.

When Bartholomew, et al. [3] first introduced the multistage OARO,
it was purely based on an analytical model to determine the practicality
of this new technology. The reliability of this analytical model was
demonstrated and verified in several experimental studies [10–13].
Since its inception over the last six years, the analytical model has been
progressively used in parametric studies [3,14,15], techno-economic
analysis [4,16,17] and evaluation of different OARO configurations
[15,18–21]. The second modeling approach (i.e., CFD), on the other
hand, still falls behind for OARO application owing to the complex
interaction between the solute concentration and flux inside and outside

of the membrane.
The objectives of this paper are to review existing analytical

modeling work related to OARO since 2017 and to establish CFD
methodologies for modeling the flow and solute for an OARO system. In
addition, this review will highlight the capabilities and limitations of
both methodologies. This review is organized in four sections. First,
fundamental knowledge about OARO modeling, such as common model
assumptions, and operating and membrane parameters are explained in
Sections 2.1 and 2.2, respectively. Second, the methodology for deter-
mining the fluxes and concentration polarization (CP) in a full-scale
system using analytical models are discussed and established in Sec-
tion 2.3. Section 2.4 focuses on simulating and establishing the local
water flux and CP using CFD models based on classical internal CP (ICP)
developed by Loeb, et al. [22] and Brinkman porous media approaches.
The reliability of both models in terms of water flux is determined.
Third, the current state-of-the-art of OARO analytical modeling work is
reviewed in Section 3. Finally, the future directions for OARO modeling
studies are highlighted in Section 4.

2. Modeling methodologies

2.1. Physical and fluid properties model assumption

Several assumptions have to be made in modeling OARO to simplify
this complex membrane process. Generally, even though osmotic pres-
sure increases proportionally with temperature, an isothermal system
can be assumed as OARO does not involve any significant energy
transfer as heat. Therefore, the temperature of the system should remain
relatively constant during the process [23]. However, this assumption
should be carefully considered as the increase of temperature can lead to
an increase of the mass transfer coefficient [24], which could affect the
flux calculation. Furthermore, the system can be assumed to involve
Newtonian fluids, which display a linear relationship between the shear
stress and shear rate.

As the flux for OARO is typically small [3], the overall changes in the
diffusivity and viscosity are small. Therefore, constant solution proper-
ties, such as viscosity and diffusivity, can be assumed in the mathe-
matical model [25]. However, if the flux value approaches those of
typical ultrafiltration, it is important to consider the effects of viscosity
variation [26]. It was also reported elsewhere that the density variation
due to the solute concentration difference between the feed and mem-
brane surface was insufficient to create notable buoyancy effects when
the flow direction is normal to the direction of gravity [27]. Therefore,
the density of the fluid can be assumed as constant in a horizontal
channel. Furthermore, gravity has little impact on the flow solution
inside the channel [27].

Table 1
Advantages and limitations of analytical and numerical models.

Methods Advantages Limitations

Analytical
model

• Simple and easy to use.
• Allows quick understanding of
the interplay between
operating variables,
membrane structures, and
desalination performance.

• The prediction of external
mass transfer is limited to
low flux conditions as the
generalized Sh correlation is
typically derived under
impermeable wall
conditions.

• Often neglects the impact of
membrane area which could
leads to excessive pressure
drop and spatial variation of
flux along the channel.

Numerical
model

• Boundary conditions are well
controlled.

• Local hydrodynamic and
concentration profiles are
revealed.

• For CFD, in-depth knowledge
is required.

Y.K. Chong et al.
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2.2. Operating and membrane model parameters

Mathematical modeling of the OARO process requires operating and
membrane parameters as inputs. The most important membrane pa-
rameters are the water permeability (A), the solute permeability (B) and
the membrane structural parameter (S), which must be obtained
experimentally [28]. The most common experimental method used for
this purpose is the RO-FO methods [29–31]. First, A and B are deter-
mined through RO tests. Next, S is determined through FO tests based on
A and B obtained from the RO tests. This form of S is known as the
effective structural parameter (Seff). S can also be defined as the result of
multiplying the membrane thickness (tm) and tortuosity (τ), divided by
porosity (ε). This form of S is known as the intrinsic structural parameter
(Sint). The porosity (ε) of the membrane support layer can be determined
by using either gravimetric analysis [32] or imaging characterization
techniques, such as scanning electron microscopy (SEM) [33], confocal
laser scanning microscopy (CLSM) [34] and x-ray computed tomogra-
phy (XCT) [35].

It is crucial to review the methods used for characterizing structural
parameters to ensure accurate outcomes. For instance, calculating the
Seff based on lumped parameters might overlook the significant varia-
tions at different positions. This bulk averaging method does not capture
how asymmetry could affect mass transfer locally. Moreover, accurately
capturing the intrinsic properties of the support layer is crucial in
determining the Sint. Users should be aware of the drawbacks of the
techniques used to capture these intrinsic properties to avoid intro-
ducing biases. Interested readers can refer to the review article of
Manickam and McCutcheon [36] to understand more about the draw-
backs of the intrinsic property measurement techniques.

Determination of osmotic pressure is one of the crucial parameters in
any osmotically driven process. One of the most common assumptions in
determining osmotic pressure is the adoption of the ideal linear Van’t
Hoff approximation. As such, the osmotic pressure is directly propor-
tional to solute mass fraction in a single solute system. However, it
should be noted that the linear approximation of osmotic pressure is
only valid for dilute solute concentration up to a certain limit [37].
Beyond this limit, the actual osmotic pressure deviates significantly from
the ideal value, as reported by Scatchard, et al. [38] and Rogers and
Pitzer [39]. Therefore, a polynomial trendline should be used instead to
predict the non-linear correlation between the osmotic pressure and
solute mass fraction as discussed in detail by Bartholomew, et al. [4] and
Beni, et al. [20].

2.3. Analytical model for determining water flux, solute flux and
individual osmotic pressure across OARO compartments for a full-scale
system

Fig. 2 shows the solute mass fraction profile across a semi-permeable
membrane in OARO mode. For OARO, it is worth noting that the
effective osmotic pressure difference (πeff ) is higher than the bulk os-
motic pressure difference (πb). The bulk draw solute mass fraction (wd,b)
is reduced to wd,s on the support layer and subsequently wd,i at the
membrane-support layer interface due to the dilution with incoming
water while the bulk feed solute mass fraction (wf ,b) is elevated to wf ,m
on the membrane surface due to the solute accumulation caused by the
membrane rejection. The governing diffusive and convective compo-
nents can be integrated across tm and the boundary layers on the feed
(δf ) and draw (δd) sides to obtain the wd,i, wd,s and wf ,m.

One of the important discussions in modeling CP is the relative
importance of ICP between RO and OARO. It was argued that the ICP in
ROmode is negligible because water flux (Jw) and solute flux (Js) flow in
the same direction [40]. However, the same argument cannot be applied
for OARO, where the stream in the draw side of OARO is not clean water
and contains a significant amount of solutes. Therefore, the water flux
passing through the porous layer causes dilution, leading to dilutive ICP.

Hence, Jw and Js for OARO can be calculated as a function of solute
mass fraction difference for both sides of membrane (wf ,m − wd,i) and the
other parameters (i.e., transmembrane pressure (Δp), π, A and B).
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It should be noted that KICP refers to the mass transfer resistance
inside the support layer while kf and kd refer to mass transfer coefficients
at the feed and draw sides, respectively. Readers are encouraged to refer
to [41] for a detailed derivation of these equations for Jw and Js.
Nevertheless, Eqs. (1) and (2) with lumped parameters are insufficient to
describe the full-scale membrane process because both Jw and Js vary in
a scaled-up system due to the significant decrease of driving force along
the membrane length.

Therefore, multi-scale modeling that combines micro- and module-
scale models is required to describe the full-scale membrane process
under actual operating. First, the correlation for the mass transfer co-
efficient (k) and friction factors (fglob) needs to be obtained from a CFD
simulation to describe the mass and momentum transfers inside the
channel at the microscopic level (submillimeter scale). These correla-
tions can then be incorporated into the ordinary differential equations
(ODE) derived from first principles (as shown in Eqs. (3) to (7)) to
predict the change of flow, solute concentration and pressure loss at the
module-scale (meter) for a single membrane wall:

∂Qf

∂x = −
AmJw
L

(3)

∂
(
Qfwf ,b

)

∂x = −
AmJs
L

(4)

∂Qd

∂x =
AmJw
L

(5)

∂
(
Qdwd,b

)

∂x =
AmJs
L

(6)

Fig. 2. Schematic diagram of an asymmetric membrane.
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∂p
∂x = −

2ρu2eff
dh

fglob (7)

where Q is the volumetric flow rate, Am is the membrane area, L is the
module length, p is the pressure, ρ is the density, ueff is the effective
velocity and dh is the hydraulic diameter. fglob is the Fanning friction
coefficient in the feed channel. The subscripts b, f and d represent bulk,
feed and draw sides, respectively.

It should be noted that the k values for both the feed and draw
channels are dependent on the operating conditions and geometry.
Table 2 lists all the Sh correlations used for OARO to date. Re is the
Reynolds number and Sc is the Schmidt number. There are shortcomings
in the existing correlations: 1) limited flux condition [42] and 2) valid
for only feed side but not draw side because correlations [43,44] are
developed based on a net-type spacer and they will probably not be
applicable for the tricot spacer that is typically applied in the OARO
permeate side. Therefore, CFD should be used to derive hydrodynamic
and mass transfer correlations based on the given operating conditions
and geometry.

2.4. CFD model for determining local water flux and solute concentration

It should be noted that modeling of flow across the support layer of a
membrane is a challenging task because its intrinsic support properties,
such as ε and τ, vary with position in most real systems. Although it was
reported elsewhere that the spatial variations of the pore structure can
be modeled through the CFD, some unrealistic assumptions were
adopted (i.e., τ equal to unity [46]). Another approach for simulating
flow across the support layer is by assuming the support layer as
isotropic, in which the local intrinsic membrane properties can be
lumped into a single representative measure (i.e., A, B, ε and τ). Section
2.4.1 validates the mathematical models based on isotropic membrane
properties with experimental data. However, to date, it remains unclear
to what extent this assumption can be safely applied. There is no limi-
tation in CFD to modeling spatially varying properties if suitable data
are available. Further studies are needed to understand the impacts of
this assumption on the accuracy of the mathematical models.

Assuming spatially constant membrane properties, the hydrody-
namics and mass transfer inside the membrane porous support layer can
be modeled using the Brinkman equation via the following continuity,
momentum, and mass transfer governing equations:

∂(ρε)

∂t + ∇⋅(ρε u→) = SM (8)

∂(ρε u→)

∂t + ∇(ρε u→ ⊗ u→) = ∇⋅(με(∇ u→+ ∇ u→T) ) −
μ
κ

(1− ε) u→− ε∇p+ S→u

(9)

∂(ρεw)

∂t + ∇⋅(ρεw u→) = ∇⋅(ρD*∇w) + Si (10)

where u→ is the velocity vector, t is the time, μ is the dynamic viscosity, κ
is the Darcy’s permeability coefficient of the porous support layer and w
is the solute mass fraction. The value of ε is <1 for the porous support
layer. On the other hand, for empty feed and draw channels, ε is equal to
1 and the viscous drag term in the momentum governing equation is

absent. In addition, D* varies according to the regions. For empty
channels, D* is equal to the diffusivity (D), whereas for the porous
support layer region, D* is equal to the effective diffusivity (Deff).

SM, S
→

u and Si are the source terms used for the above equations that
represent the flux across the membrane wall (Fig. 3):

SM =
ρAmJw

εVc
(11)

S→u = SM u→ (12)

Si =
ρAmJs

εVc
(13)

where Vc is the volume of the source or sink cells. The source term, S→u, is
often neglected due to the low velocity in the boundary layer.

On the other hand, the CFD model based on the classical analytical
ICP model developed by Loeb, et al. [22] does not resolve the membrane
thickness explicitly. Instead, it uses an analytical ICP model to predict
the wd,i and subsequently Jw and Js. Readers should refer to [41] to get
detailed information of this model.

Table 3 outlines the boundary conditions for the remaining non-
membrane regions.

One of the main strategies to reduce numerical error in CFD is the use
of the correct meshing technique. For empty channels, structured
meshes are preferred as they offer simplicity and more precise results
relative to unstructured meshes [47]. However, for complex domains
like spacer-filled channels, unstructured meshes are desired. Therefore,
the mesh qualities, such as skewness and orthogonality, should be
checked [48]. Furthermore, generating a sufficient number of inflation
layers on the membrane surface is important to ensure the velocity and
solute gradients are captured accurately [48].

2.4.1. Validity of OARO CFD model based on classical ICP and Brinkman
porous media approaches and sensitivity analysis

The validation process involves comparing the mathematical model
with experimental results. This step is essential for a CFD model to
ensure its accuracy and agreement with physical reality. Fig. 4 shows
that the classical ICP and Brinkman models tested for OARO give similar
Jw results. In addition, the classical ICP [41] and Brinkman models
demonstrate a good agreement with reported experimental Jw mea-
surements by Chen, et al. [10]. However, a larger difference between the
experimental results and the CFD models is observed at a higher Δp.
These observations are consistent with the outcomes reported by Chen,
et al. [10], whose analytical model showed similar Jw at a lower Δp but
exhibited a larger deviation at a higher Δp. They attributed this devia-
tion at high Δp to the constraints of their membrane characterization
method in accurately determining B [10]. The membrane parameters
and operating conditions of Chen, et al. [10] experiment are summa-
rized in Table 4.

In addition, the classical ICP and Brinkman models tested for OARO
give similar flux results (Fig. 4). However, in the classical ICP model,
membrane thickness is not explicitly resolved in the domain but instead,
Loeb, et al. [22] used an analytical ICP model to simulate the flow and
solute fraction inside the porous support. Therefore, in extreme condi-
tions, the simplifications in this model, such as negligible viscous drag
effects on flow velocity, may cause inaccuracies in predicting the solute
fraction within the porous support. To understand how changes in
thickness impact Jw between the two models, a sensitivity analysis was
conducted by varying this parameter by ±50 %. As the typical thickness
of the osmotic membrane lies within 50 to 150 μm [11,49–51], a
baseline value of 100 μm is set. The other parameters are provided in
Table 5.

The water flux calculated using the classical ICP (Jw,classical) and
Brinkman porous media models (Jw,porous media) is determined based on
the boundary conditions specified in Table 3. The relative change in the

Table 2
Sh correlation in different channel geometries.

Ref. Geometry Flow Sh correlation for k

[45] Empty channel Laminar
Sh = 1.85

(

ReSc
dh
L

)0.33

[45] Empty channel Turbulent Sh = 0.04Re0.75Sc0.33

[43] Net-type spacer-filled channel Laminar Sh = 0.46(ReSc)0.36

[44] Net-type spacer-filled channel Laminar Sh = 0.2Re0.57Sc0.4

Y.K. Chong et al.
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water flux (ΔJw) in comparison with the base case (Brinkman porous
media model) is given as defined in Eq. (14):

ΔJw =
Jw,classical−Jw,porous media

Jw,porous media
× 100% (14)

Interestingly, the ΔJw remains small when the thickness is 100 μm (0
% of Δtm), but it exceeds 24 % as the thickness of the membrane in-
creases by 50 %, as shown in Fig. 5. The classical ICP model also tends to
overpredict the measured water flux in comparison with the Brinkman
porous media model because the former does not consider the viscous
drag in the porous media, leading to negligible flow resistance and an
exaggerated permeate velocity.

2.4.2. A comparative analysis of the impact of membrane permeability (A)
and selectivity (A/B) on OARO performance

To date, there remains a need for optimizing the membranes
employed in OARO. The traditional RO membrane might not be the
optimal choice for OARO due to its large thickness. The large thickness
can give rise to increased ICP, subsequently leading to a decline in
membrane flux. Therefore, an osmotic membrane is normally preferred
over an RO membrane in the current OARO study [11,12,55] due to its
lower thickness, which helps mitigate the ICP.

Currently, the understanding of molecular-level transport through
dense polymer layers is still limited [56]. Consequently, there is a
pressing need for a thorough grasp of how membrane synthesis and
structure impact performance in order to enhance membrane selectivity.

In this context, it is noteworthy that the recent development of an open
access resource, known as the OpenMembrane Database [56], is starting
to address this need. This database contains comprehensive information
regarding the latest reverse osmosis (RO) membranes, sourced from
peer-reviewed journals, patents, and commercial product data, which
holds significant value for advancing membrane development.

An ideal membrane should have high permeability and high selec-
tivity. However, this is difficult to achieve because enhancing the water
permeability almost inevitably results in significant increase of the so-
lute permeability, consequently reducing selectivity [57]. Therefore, a
thoughtful decision should be made between prioritizing high perme-
ability or high selectivity in the selection and development of OARO
membranes, unless a new material can be found in which a different
balance can be found between the permeability and selectivity, as is
common in the search for better gas transport membranes where the
search for new materials is driven by breaking the so-called ‘Robeson
upper bound’ [58].

Nevertheless, some recent advancedmembrane technologies, such as
energy-efficient reverse osmosis (EERO) [59,60] (Fig. 6a) and low salt
rejection reverse osmosis (LSRRO) [61] (Fig. 6b), have been proposed to
utilize low-selectivity membranes to overcome the challenge of osmotic
pressure difference. In the EERO process, the retentate from reverse
osmosis is fed into a countercurrent membrane cascade with recycle
(CMCR) consisting of one or a few stages of NF to further concentrate the
retentate and recover more water. EERO offers the benefit of reducing
the osmotic pressure differential by at least 33 % compared with single-

Fig. 3. Schematic diagram of the membrane and channels for the CFD.

Table 3
CFD boundary conditions using classic analytical ICP and Brinkman porous media model.

Equations

Locations Boundary conditions Classic analytical ICP model Brinkman porous media model

Inlet Parabolic velocity profile uy = 6uin
y
h

(
1 −

y
h

)

Uniform solute mass
fraction

w = wb,
dw
dy

=
dw
dz

= 0

Outlet Zero gauge pressure pgauge = 0
Non-
membrane

No-slip ux = uy = uz =
dw
dn

= 0

Membrane Water permeation Jw =

A

⎛

⎜
⎜
⎝Δp− π

⎡

⎢
⎢
⎣
wf ,m − wd,sexp( − JwKICP)

1 +
B
Jw

(1 − exp[ − JwKICP ] )

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

Jw = A
(
Δp− π

[
wf,m − wd,i

] )

Salt permeation

Js = B

⎡

⎢
⎢
⎣
wf ,m − wd,sexp( − JwKICP)

1 +
B
Jw

(1 − exp[ − JwKICP] )

⎤

⎥
⎥
⎦

Js = B
(
wf ,m − wd,i

)

Porous
support

– ε < 1 for porous region in Eqs. (8) to (10). ε is the intrinsic value of the membrane
porous support.
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stage RO at the same water recovery rate [59]. Additionally, the specific
energy consumption (SEC) of EERO can be lower than that of single-
stage RO at water recovery above the critical threshold (58.5 % for 3-
stage EERO and 75 % for 4-stage EERO) [60]. In LSRRO, the retentate
from reverse osmosis is fed into subsequent stages with low salt rejection
RO or NF membranes to further concentrate the retentate and recover
more water. LSRRO requires substantially less energy than traditional
thermally-driven phase change-based technologies, such as mechanical

vapor compression (MVC), to concentrate the brine. For example, it has
been reported elsewhere [61] that to concentrate a saline feed stream
from 0.1 to 1.0MNaCl, the SEC of LSRRO is four times lower than that of
MVC.

Unlike traditional RO, the membrane selectivity is not as important
for OARO because perfect solute rejection is not required. Furthermore,
in OARO, the feed solute mass fraction is higher than the draw solute
mass fraction. Consequently, unlike in FO or PRO, reverse solute flux
(RSF) does not occur in OARO as the directions of the water and solute
fluxes are the same. Thus, any reduction in membrane selectivity will
not adversely affect water flux; rather, it will potentially enhance water
flux because the leakage of solute from the feed side to the draw side will
lower the osmotic pressure difference across the membrane [15].

A CFD simulation with the Brinkman model was conducted for this
paper to evaluate Jw and the solute fraction of permeate flux (wp) in
OARO by varying the A and A/B. Prior to determining the A and A/B
used in this simulation, an upper bound relationship for the trade-off
between permeability and selectivity was established (Fig. 7) based on
data for existing conventional membranes available in the market
(commercial), as well as advanced membranes developed by researchers
for their studies (novel) (listed in Table S1). It was found that A/B is
inversely proportional to the square of A (A/B∝A−2) which is the same
as reported elsewhere [62,63]. Using Fig. 7, the best possible membrane
at the present point in time was identified. The membrane parameters
used in the simulation are provided in Table 6.

As A and B can change by several orders of magnitude (0.1 to 10 L
m−2 h−1 bar−1 [64,65] and 0.01 to 1 L m−2 h−1 [10,66], respectively),
the simulations are conducted at different magnitudes of A and B (shown
in Table 6) along the upper bound. In OARO, it was found that Jw in-
creases as A increases and A/B decreases (see Fig. 8a). However, wp also
rises sharply as A/B decreases, as shown in Fig. 8b. This occurs because
as A/B decreases, B increases, leading to a higher Js. Therefore, while a
membrane exhibiting a high permeability is favored over a highly se-
lective membrane, it is important to note that a reduced selectivity can
potentially cause excessive solute leakage.

Fig. 4. Dependence of Jw on Δp. The square marks indicate the results obtained
from Chen, et al. [10] experimentally, the asterisk and diamond marks indicate
the result obtained from classical ICP [41] and Brinkman CFD models,
respectively.

Table 4
Membrane parameters and operating conditions of Chen, et al. [10] experiment.

Parameter Values

Water permeability, A (L m−2 h−1 bar−1) 2.99
Solute permeability, B (L m−2 h−1) 2.03
Membrane structural parameter (μm) 394.5
Transmembrane pressure, Δp (bar) 13.8, 20.7 & 27.6
Bulk feed solute mass fraction, wf ,b 0.034
Bulk draw solute mass fraction, wd,b 0.023
Feed channel inlet velocity, uf ,in (m s−1) 0.15
Draw channel inlet velocity, ud,in (m s−1) 0.19
Membrane length, Lm (m) 0.076
Feed channel height, hf (m) 0.003
Draw channel height, hd (m) 0.0005

Table 5
Parameters for the sensitivity analysis.

Parameter Values Reference

Water permeability, A (L m−2 h−1 bar−1) 1.80 [11,12,50]
Solute permeability, B (L m−2 h−1) 0.54 [11,12,50]
Porosity of the porous support layer, ε 0.5 [52–54]
Tortuosity of the porous support layer, τ 2 [52–54]
Transmembrane pressure, Δp (bar) 25 [10]
Bulk feed solute mass fraction, wf ,b 0.05 [10]
Bulk draw solute mass fraction, wd,b 0.03 [10]
Feed channel inlet velocity, uf ,in (m s−1) 0.12 [10]
Draw channel inlet velocity, ud,in (m s−1) 0.12 [10]

Fig. 5. Results of the sensitivity analysis performed using the CFD model
described above.
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3. Current state of mathematical modeling

3.1. Validation of existing analytical model

To date, only a limited number of OARO experiments have been
conducted to validate the analytical model [10–13], which were claimed
to have good agreement with the experimental results. To simplify the
model, the external CP (ECP) at the draw side is often assumed to be
negligible, as its impact is much smaller than that of the ICP. However,
at a higher Δp, there is a greater deviation in water flux between the
analytical model and experiment [10,11]. It is noteworthy that the
water flux calculated by the analytical model consistently overpredicts
those observed in the experiments [10,11]. The discrepancy was
attributed to the limitations in the membrane characterization method
used to determine B [10], as well as changes in S under pressurized
conditions [11]. Moreover, the currently available analytical model is
limited to a membrane module without a feed spacer. This is because the
generalized Sh-correlation used in these studies is limited to the empty
channel. In the case of a membrane module with a spacer, the correla-
tion will depend significantly on the spacer geometry. Therefore, CFD
needs to be employed to formulate an Sh correlation for the different
spacer geometry.

As shown in Table 7, the mathematical modeling of OARO has been
extensively validated in lab-scale experiments. However, the model
validation of this recent advanced membrane technology in real-world
applications is still lacking. Only recently, a pilot study in a multistage
system consisting of NF, RO, and OARO has been reported [67]. More
effort needs to be made to validate the mathematical modeling at larger
scale.

3.2. Mathematical model for parametric study

A modeling approach that allows the membrane or operating pa-
rameters to be varied offers flexibility in finding the optimal conditions.
It was reported that one of the easiest way to reduce the number of
stages required is by increasing the feed pressure so that a higher water
recovery can be achieved [14]. Additionally, using a lower flow rate is
more desirable as it results in higher water recovery and requires lower
energy consumption [14] at the expense of a higher fouling tendency
[68]. It is worth noting that the porosity of the draw side is typically
smaller than that of the feed side because the draw side needs to with-
stand the high transmembrane pressure. As such, maintaining a lower
ratio of draw to feed inlet flow rates is recommended to prevent
excessive pressure loss in the draw stream [14]. Nevertheless, if the
draw flow rate is too low, the decrease of draw solute fraction along the
membrane channel can become significant which results in the increase
of osmotic pressure difference, leading to the increase of transmembrane

NFNFRO

(a) (b)

Fig. 6. Schematic diagrams of (a) energy-efficient reverse osmosis (EERO) [59,60] and (b) low salt rejection reverse osmosis (LSRRO) [61].

Fig. 7. Permeability-selectivity trade-off relationship for state-of-the-art os-
motic membranes. Notes: The readers are referred to the data points and
sources in the Supplementary material.

Table 6
The membrane parameters for OARO membrane analysis. The permeabilities
and selectivity are decided based on the trendline of the trade-off upper bound
relationship obtained from Fig. 7.

Parameter Values Reference

Water permeability, A (L m−2 h−1 bar−1) 2, 4, 6 & 8 –
Solute permeability, B (L m−2 h−1) 0.03, 0.21, 0.72 & 1.71 –
Selectivity, A/B (bar−1) 75.0, 18.8, 8.3 & 4.7 –
Structural parameter, S (μm) 500 [12,51]
Transmembrane pressure, Δp (bar) 30 [10]
Bulk feed solute mass fraction, wf ,b 0.05 [10]
Bulk draw solute mass fraction, wd,b 0.03 [10]
Feed channel inlet velocity, uf ,in (m s−1) 0.15 [10]
Draw channel inlet velocity, ud,in (m s−1) 0.15 [10]
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pressure to maintain the same recovery [16].
A recent study [41] has investigated the effects of operating condi-

tions on the CP through CFD. It has been found that ECP on the feed side
can be more severe than ICP within the porous support layer, particu-
larly at high Δp (>40 bars). Furthermore, significant ECP has been

observed at the draw side of OARO at high Δp. In addition, under the
same πb, an increase in feed solute mass fractions (from 0.034 to 0.083)
and draw solute mass fraction (from 0.029 to 0.078) decreases the water
flux. This occurs due to the elevated CP, particularly ICP, causing an
increase of πeff . This study also reveals that both the counter-current and
co-current systems give comparable flux. In a scaled-up system involving
multiple membrane stages, the counter-current configuration is likely to
outperform than co-current configuration because it maintains more
uniform driving force and flux [69].

Apart from optimizing operating conditions, choice of membrane
properties is another factor that needs to be considered for optimizing
OARO performance. For example, using a membrane with high water
permeability is preferable to a membrane with high solute selectivity in
an OARO system because the former can achieve the same recovery at a
lower energy requirement [14]. This agrees with the findings reported in
Section 2.4.2, where a membrane with high permeability is favored over
a highly selective membrane for OARO. However, this principle may not
remain valid in systems containing multiple solute species. This is
because RSF can occur when the concentration of certain solute species
on the draw side exceeds that on the feed side. In such cases, a high-
selectivity membrane is required to minimize RSF.

Furthermore, a smaller membrane structural parameter can mitigate
the effect of ICP, enhancing the flux and reducing the specific energy
consumption [15,16]. However, the specific energy consumption de-
creases asymptotically as the structural parameter decreases [15]. This
is because, when the structural parameter becomes sufficiently small,
the mass transfer resistance caused by ICP becomes almost insignificant
compared with that caused by ECP. At this point, further reduction in the
structural parameter does not lead to significant performance gains.
Moreover, with the current membrane manufacturing technology, it is
still challenging to make a very thin and strong membrane. Thus,
achieving a balance between these factors is crucial. Table 8 summarizes
the OARO parametric studies reported in literature.

3.3. Mathematical model for comparing different OARO configurations
performance

Traditional RO is a highly energy-intensive system that requires
significant transmembrane pressure to overcome the osmotic pressure
between channels. In contrast, a smaller transmembrane pressure can be
applied in a OARO multistage system. Studies comparing both RO and
OARO processes have demonstrated that OARO has a lower unit cost of
water production [4,16]. It was reported elsewhere that OARO ($0.984/

Fig. 8. Dependence of (a) Jw and (b) wp on A and A/B.

Table 7
Validation of existing analytical model reported in literature.

Reference Output Input
Parameters

Geometry Main findings

Chen, et al.
[10]

Water
flux

Pressure
6.9 to 27.6
bars

Rectangular
channel

The authors claimed
that the analytical
result agrees well with
the experimental result
in terms of water flux.
Nevertheless, the
deviation of flux
between the analytical
model and
experimental results is
higher at a higher Δp
due to the constraints in
getting an accurate
value of B.

Feed solute
fraction
0.0015 to
0.16
Draw solute
fraction
0 to 0.13

Kim, et al.
[12]

Water
flux

Pressure
0 to 15 bars

Rectangular
channel

The authors claimed
that the analytical
result agrees well with
the experimental result
in term of water flux.

Chang Kim
and Min
[11]

Water
flux

Pressure
0 to 40 bars

Rectangular
channel

The authors claimed
that the analytical
result agrees well with
the experimental result
in term of water flux.
Nevertheless, the flux
predicted by analytical
model is higher than
experiment results at a
higher Δp because of
the change in structural
parameter under
pressurization.

Feed solute
fraction
0 to 0.067
Draw solute
fraction
0 to 0.067

Togo, et al.
[13]

Water
flux

Pressure
8 to 18 bars

Hollow fiber The authors claimed
that the analytical
result agrees well with
the experimental result
in term of water flux.

Feed solute
fraction
0.029 to
0.056
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m3) can reduce the unit water cost up to 10 % compared with traditional
RO ($1.098/m3) in treating seawater (3.5 wt% salinity) [16]. For a
higher saline brine (ranging from 5 to 12.5 wt%), the optimal OARO
configuration with water recoveries of 30 to 70 % requires a cost of
maximum $6/m3 [4].

The multistage OARO system was first proposed by Bartholomew,
et al. [3] as shown in Fig. 9a. This configuration is also known as
consecutive loop configuration or CL-OARO. Using the CL-OARO
configuration, the water from the hypersaline feed is extracted and
permeates to the draw side to dilute its concentration, in which the
resulting diluted draw solution is used as the feed for the next OARO
module. This dilution process is repeated until the solution can be
effectively treated by traditional RO which is placed at the last stage of
CL-OARO. They found that CL-OARO could achieve a water recovery
rate of 35 to 50 % with an energy consumption of 6 to 19 kWh/m3 for a
10 to 14 wt% NaCl solution.

For cascading osmotically mediated reverse osmosis (COMRO), on
the other hand, the brine feed to the OARO is sourced from the brine
stream of RO (see Fig. 9b) [18]. This configuration consumes at least 17
% lower energy compared with traditional RO. It is also worth noting
that COMRO can be integrated with the FO [19] to form a FO-COMRO
hybrid system (Fig. 9c). This hybrid system can recover 75 % of water
from metallurgical wastewater using 20 wt% NaCl draw solution which
is then regenerated using COMRO at the cost of 6.05 $/m3 and energy
consumption of 7.4 kWh/m3. Atia, et al. [70] reported that CL-OARO is
more energy efficient than COMRO (10.3 kWh/m3 in CL-ORAO versus
12.8 kWh/m3 in COMRO). In addition, the levelized cost of water was
also lower for the CL-OARO configuration compared with the COMRO
($5.14/m3 vs $7.90/m3) [70].

Nevertheless, CL-OARO has certain limitations, wherein the amount
of water and salt entering each loop must be equal to the amount exiting
the loop to maintain a steady state [3,15]. If these salt fluxes are not
equal, salt will either accumulate or be depleted within a loop, adversely
affecting the system’s performance. It should be noted that while the
water flux can be adjusted by manipulating hydraulic pressure, con-
trolling the same salt flux into and out of each loop is much more
challenging. In contrast, COMRO does not have this limitation, as it does
not form a loop system. To overcome these abovementioned limitations,
a make-up stream is required to maintain the steady operation and to
balance the flow rates between the feed and draw sides.

A portion of feed or brine can be split and recirculated into the OARO
system as a make-up stream. The configuration that splits a portion of
feed is known as split-feed OARO (SF-OARO) [15] (see Fig. 9d), whereas
the configuration that splits brine is known as split-brine OARO (SB-
OARO) [20,21] (Fig. 9e). When comparing SB-OARO and SF-OARO, SB-
OARO performs better than SF-OARO in terms of SEC (8.66 kWh/m3 vs.
9.47 kWh/m3) and unit water cost ($3.44/m3 vs $3.63/m3) [20]. This is
because SB-OARO requires fewer stages to dilute the draw solution to
the solute fraction (0.05 wt%) that can be treated using traditional RO
and to concentrate the feed solution to the targeted solute fraction (from
7 to 23.4 wt%). Similar findings were reported elsewhere [21], that the
SB-OARO system was the most efficient and economical configuration
for extracting water from 10 wt% feed and producing 30 wt% brine,
outperforming other configurations (i.e., CL- and SF-OARO) in terms of

Table 8
Mathematical model for OARO parametric studies reported in literature.

Reference Operating
parameters

Parameter
variation

Main findings

Bartholomew,
et al. [3]

Membrane area per
module

9 to 13 m2 An increase in the
membrane area per
module can reduce the
number of modules
required, decreasing the
energy consumption.

Transmembrane
pressure

55 to 75 bars To achieve the same
water recovery,
increasing the Δp can
reduce the number of
stages required, leading
to less energy
consumption.

Park, et al. [16] Ratio of draw to
feed inlet flow
rates

0.2 to 1.8 An increase in flow rate
ratio increases the SEC
of whole system.
Nevertheless, if the flow
rate ratio is lower, the
draw solute fraction
decreases more
significantly, requiring
higher transmembrane
pressure to overcome
the osmotic pressure
difference.

Structural
parameter

50 to 300 μm A smaller membrane
structure parameter
reduces the effect of ICP.

Peters and
Hankins [14]

Water
permeability

1.13 to 6.25
L m−2 h−1

bar−1

A membrane with high
water permeability is
more beneficial for
OARO than one with
high selectivity, as it
requires less energy
consumption to achieve
the same level of
recovery.

Flow rate 4 to 12 m3

h−1
Lower flowrate results in
higher water recovery
and lower energy
consumption, but also
results in a higher
capital cost and higher
tendency of fouling.

Ratio of draw to
feed inlet flow
rates

0.5 to 1.5 Lower ratio of draw inlet
flow rate to feed inlet
flow rate is more
practical to prevent
excessive pressure losses
in the draw channel.

Bouma and
Lienhard [15]

Flux 0 to 30 L
m−2 h−1

Operating at high fluxes
can intensify CP,
necessitating the need of
a higher pressure to
achieve the desired flux.

Solute
permeability

0.01 to 10 L
m−2 h−1

A higher solute
permeability membrane
results in less severe ICP.

Structural
parameter

10 to 1000
μm

A smaller membrane
structure parameter can
reduce the effect of ICP.

Chong, et al.
[41]

Transmembrane
pressure

13.8 to 48.3
bars

In situations involving
high transmembrane
pressure, ECP on feed
side is more significant
than ICP. Furthermore,
ECP on the draw side is
non-negligible.

Feed solute
fraction

0.034 to
0.083

Counter and co-current
OARO configuration
give comparable flux
performance.

Table 8 (continued )

Reference Operating
parameters

Parameter
variation

Main findings

Draw solute
fraction

0.017 to
0.078

Under the same bulk
osmotic pressure
difference, an increase
in feed solute mass
fractions and draw
solute mass fraction
decreases the water flux
due to the elevated ICP.

Flow rate 0.12 to 0.19
m s−1

Flow direction Co- and
counter
current
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(a)

(b)

(d)

(e)

(c)

Fig. 9. Different OARO configurations: (a) CL-OARO [3], (b) COMRO [18], (c) FO-COMRO [19], (d) SF-OARO [15], and (e) SB-OARO [20].
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treatment cost, membrane area, and energy consumption, owing to the
fewer stages and lower pumping energy required. Table 9 summarizes
the OARO configurations reported in literature.

4. Future research prospects

4.1. Mathematical model

4.1.1. Development of OARO module-scale model
System-level modeling that simulates the whole process is important

for membrane desalination because module-scale experiment requires a
huge resource allocation. The system-level modeling of the membrane
module-scale can be achieved using the multi-scale model developed in
Section 2.3, which combines both a CFD model at small-scale (submil-
limeter) and analytical model at large-scale (meter).

It is important to recognize the nonlinearity when extrapolating
findings from a laboratory-scale to a scaled-up system. This discrepancy
arises because, in the case of a very short membrane length, the draw
solution experiences only a minor dilution (a few percent). In contrast,
in a scaled-up system, the draw solution undergoes substantial dilution,
resulting in a significant reduction in both osmotic pressure and flux
along the membrane.

Furthermore, despite some existing generalized Sh-correlations used

for OARO (as discussed in Section 2.3), they are valid only for a flat plate
[42], feed side channel [43,44] or short membrane length [42].
Therefore, using these correlations for a spacer-filled channel without
validation can lead to inaccurate predictions as the presence of spacers
significantly increases friction loss and mass transfer. This means op-
portunities for developing 2D or 3D models for OARO system, which not
only help to elucidate the mechanisms involved, but also facilitate the
analysis of the system performance when integrated with the analytical
model at a large scale. The developed model can also be compared
against the available pilot or full-scale real plant data.

4.1.2. Analytical model for optimal control and optimization of large-scale
OARO

Process optimization and control is crucial for a membrane-based
system to reduce SEC and to achieve a lower operating cost. In a
steady continuous cross flow membrane process, the solute concentra-
tion as well as the osmotic pressure in the feed increases as it flows along
the channel. This results in a varying driving force, which causes a
variation in the water flux. Additionally, a high flux membrane system
(i.e., high membrane permeance) can cause a rapid reduction of the feed
flow rate [71]. Consequently, the highest flux is observed at the begin-
ning of the module, while the lowest flux is at the end, which may
negatively impact the energy efficiency of the membrane system.
Therefore, finding approaches to ensure a more uniform flux distribu-
tion across membrane systems is desirable.

Recently, batch operation has been applied to the OARO [72] which
shows promising results in achieving high seawater recovery (60 %) and
reducing energy consumption by 30% compared with continuous OARO
process. However, the downtime for flushing and refilling steps were not
considered in their model [72], which can decrease the efficiency of this
operation. Optimizing cycle reset would be an intriguing research topic
for batch operation of OARO. Moreover, batch operation requires a
larger membrane area to achieve the same recovery as a continuous
OARO operation [72], which can result in an increased capital cost.

One of the methods that can be used for process optimization in-
volves machine learning (ML), which uses existing data obtained from
experiments and model solutions [73,74] to train a model that can then
be used to predict the best operating conditions and membrane prop-
erties. By utilizing ML algorithms, researchers can analyze vast data-
bases of material properties and structures to understand structure-
property relationships, predict material behavior under different con-
ditions, and even propose entirely newmaterial compositions that might
exhibit superior properties. Despite the availability of the open access
database for membranes [56], ML techniques have not yet been applied.
In the context of the membrane open access database, ML could be used
for: 1) identifying patterns, correlations, and trends; 2) generating pre-
dictive models to forecast membrane performance; 3) recommending
membranes for specified conditions; 4) detecting anomalies in a mem-
brane dataset, or 5) determining the best combination of membrane
properties (material, thickness, pore size) to meet an objective function.
One more notable gap in the open access database research is the lack of
utilization of machine learning techniques for predicting specific energy
consumption or the economic processing cost, both of which are
important metrics in the field of desalination.

Furthermore, the ML model can potentially be used to analyze the
spatial and temporal data obtained from CFD to predict how different
spacer designs will affect pressure drop, wall shear stress, and mass
transfer. In terms of system level modeling, the ML model can be trained
to find the optimal combination of operating conditions (pressure, flow
rate, temperature, etc.) that maximizes water recovery while mini-
mizing energy consumption [75]. This could accelerate innovation in
the OARO membrane technology, as machine learning can handle and
process massive amounts of data, resulting in reduced resource re-
quirements and less time compared with the traditional experimental
and mathematical simulation approaches. However, it is worth noting
that the accurate predictions from machine learning techniques can be

Table 9
Comparison between different OARO configurations reported in literature.

Reference Configuration Main findings

Bartholomew,
et al. [3]

CL-OARO CL-OARO can achieve a water recovery
rate of 35 to 50 % with an energy
consumption of 6 to 19 kWh/m3 for a 10
to 14 wt% NaCl solution.

Bartholomew,
et al. [4]

CL-OARO The optimal CL-OARO configuration
requires cost of only $6/m3 or less for feed
salinity ranges from 5 to 12.5 wt% with
achievable water recoveries from 30 to
70 %.

Chen and Yip [18] COMRO COMRO consumes less energy by at least
17 % compared with traditional RO.

Martínez, et al.
[19]

FO-COMRO FO-COMRO can recover 75 % of water
from metallurgical wastewater using 20
wt% NaCl draw solution which is then
regenerated using COMRO at the cost of
6.05 $/m3 and energy consumption of 7.4
kWh/m3.

Bouma and
Lienhard [15]

SF-OARO SF-OARO can achieve higher water
recovery than traditional RO (80 % vs. 60
%).
SF-OARO requires 70 bars to concentrate
3.5 wt% feed solution to 20 wt%, whereas
traditional RO requires 180 bars to
accomplish the same.

Atia, et al. [70] COMRO & CL-
OARO

The SEC for COMRO and CL-OARO
configurations were 12.8 and 10.3 kWh/
m3, respectively.
The levelized cost of water for COMRO
and CL-OARO configurations were 7.90
and 5.14 $/m3, respectively.

Beni, et al. [20] SB- and SF-
OARO

The SEC for SB-OARO and SF-OARO
configurations to dewater 7 wt% feed to
23.4 wt% were 8.66 and 9.47 kWh/m3,
respectively.
The unit water cost for SB-OARO and SF-
OARO configurations to dewater 7 wt%
feed to 23.4 wt% were 3.44 and 3.63
$/m3, respectively.

Shamlou, et al.
[21]

SB-, CL and SF-
OARO

SB-OARO system with treatment cost of
5.1 US $/m3 of produced water with 10
wt% salinity outperforms other
configurations (i.e., consecutive loops
and split-feed) in terms of number of
stages needed, treatment cost, membrane
area, and energy consumption.
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limited if there is not sufficient high-quality data to train the model.

4.2. CFD

4.2.1. CFD for designing improved and mechanical stable draw side spacer
For OARO, the draw spacer should be strong enough to withstand the

high transmembrane pressure applied at the feed side. Therefore, the
volume ratio of spacer-to-channel in the draw channel must be relatively
higher than that in the feed channel, which also means that the former
has a lower porosity than the latter.

The most common spacer used in the draw side to date is of tricot
type [49]. Although this type of spacer provides great support for OARO
on the draw side, the effectiveness of mixing using this spacer is highly
questionable as it was shown in the recent literature [76,77] that the
spacer with most obstructions is not optimal. In addition, the tricot
spacer can also cause a large pressure loss inside the channel due to its
high flow obstruction nature, which in turn leads to a higher pumping
energy. Thus, there is a research opportunity to design a draw spacer
that exhibits high mechanical strength, low pressure loss and improved
mixing capability.

The spacer performance can be effectively analyzed using CFD [48].
CFD can elucidate various factors influenced by the spacer within the
membrane channel, including flow pattern, pressure distribution, and
mass transfer. Furthermore, CFD can identify the vortices generated by
the spacer that promote mixing at the boundary layer through the
lambda-2 criterion [48]. Therefore, CFD has been widely used to access
various spacer performances in terms of pressure loss and mass transfer
[78,79]. Although it is possible to model the mechanical deformation of
a substance through a finite element method (FEM) model and couple it
with CFD to simulate the fluid dynamics [80], this method is still not
commonly used to assess the mechanical strength of the spacer.

The importance of 3D impacts can be assessed by CFD over a broad
range of spacer types, as reported by Fimbres-Weihs andWiley [81]. One
of the important discussions is the relative significance of 3D impacts
caused by the feed spacer (typically net-type) versus the draw spacer
(typically tricot-type). It is anticipated that the 3D impacts caused by the
draw spacer are relatively less important compared with those caused by
the feed spacer, due to the fact that the dilutive ECP (DECP) contribution
to the effective osmotic pressure is smaller compared with concentrative
ECP (CECP) contribution (i.e., 2–9 % for DECP vs 8–38 % for CECP
[41]).

Subsequently, the optimization of spacer geometry can also be
facilitated by the use of machine learning techniques, in which a sur-
rogate model [82] trained on the obtained CFD data can be used to
predict the best spacer design in terms of optimal mixing and low
pressure drop. While providing useful insights, the reliability of the
machine learning model will be limited by how closely the surrogate
model matches an operating OARO system in which there can be many
unknown interactions from minor components in the feed water as well
as performance deviations introduced by local variations in the mem-
brane and spacer characteristics.

4.2.2. CFD for simulating fouling
Simulating fouling phenomena (i.e., biofouling, particulate fouling,

organic fouling, and inorganic scaling) in a membrane process is a
challenging task that requires a good understanding of fouling mecha-
nisms. However, there have been no reported fouling simulation studies
for OARO to date.

Despite this absence of studies, it is possible to use an existing CFD
fouling model obtained from other membrane processes (i.e., FO and
RO) in OARO process. For example, biofouling can be governed by
Monod kinetics [83] and modeled via sliding meshes [84], which may
elucidate the growth of biofilm thickness at different time steps. The
reaction rate parameters of Monod kinetics can be determined through
experiments conducted in membrane modules and activated sludge
models [85]. The mass balance of the biomass, including the transport,

growth, decay, attachment and detachment can be modeled the via
discrete cellular automata biofilm model [86].

The scaling, on the other hand, can be modeled by using a particle-
based approach [87] which could elucidate the growth of nuclei to a
critical size, segregation and formation of new nuclei and particle
compaction and immobilization. The nucleation rate can be determined
by classical nucleation theory [88], which is expressed as a function of
the local degree of saturation in the solution. Then, the nuclei grow to
the critical size, governed by the crystal growth rate [89], and split into
two smaller particles to form new nuclei.

Lastly, the particulate fouling can be modeled via a Lagrangian
approach [90] in order to elucidate the particle trajectory and deposi-
tion inside the spacer-filled membrane channel. Nevertheless, studies on
the combination of different types of fouling are still limited due to the
complex interaction between individual foulants that contribute to the
fouling development.

5. Conclusion

Within the last six years, OARO has been studied as an alternative to
recover more water from hypersaline water due to the fact that the
conventional RO application is limited by the maximum transmembrane
pressure (Δp). This paper establishes CFD methodologies for small-scale
modeling to elucidate local hydrodynamic and mass transfer and pre-
sents how knowledge from the local transport phenomena can be
applied to system-level analysis at the module-scale. Furthermore, this
paper outlines some prospective future research directions, such as the
development of module-scale modeling, machine learning, optimization
of spacer geometry and fouling models for enhancing OARO system
performance. The following are the key takeaways from this review:

• To date, analytical models were used for most of the process design
but the CFDmodel related to OARO has received very little attention.
Thus, CFD methodologies for simulating OARO processes using
classical ICP and Brinkman porous media approaches together with
validation and sensitivity analysis are demonstrated in this review.
The validation shows that both classical ICP and Brinkman models
demonstrate good agreement with reported experimental water flux
measurements. The sensitivity analysis shows that the variations in
membrane properties do not cause significant differences in flux
between both approaches, except for the membrane thickness. This is
due to the fact that the classical ICP model does not consider the
viscous drag in the porous media, leading to negligible flow resis-
tance which overpredicts the permeate velocity.

• The current osmotic membrane is still not optimal for OARO. Due to
the trade-off between the membrane permeability and selectivity,
the membrane community is currently facing a dilemma in priori-
tizing whether the membrane permeability or selectivity for OARO
should be optimized. This study simulated the OARO operations
using membrane with different permeability and selectivity param-
eters and found that membrane with a high permeability is preferred
over a highly selective membrane for OARO. However, this principle
may not hold true for systems with multiple solute species. This is
because RSF can occur when the concentration of certain solute
species on the draw side exceeds that found on the feed side. In such
cases, a high-selectivity membrane is necessary to minimize RSF.
Further studies are needed to close this gap.

• OARO can achieve lower unit water cost than traditional RO in
treating highly saline feed. This is because a lower transmembrane
pressure is required in OARO. Various possible OARO configurations
have been proposed to optimize this innovative process. To date, the
split brine-OARO system is regarded as the most efficient and
economical configuration. Furthermore, some novel OARO config-
urations (i.e., batch) have been reported to overcome the issue of
decreasing water flux over time by replenishing the feed and draw
with new solution to maintain a consistent driving force, which

Y.K. Chong et al.



Desalination 587 (2024) 117893

14

eliminates the need to increase the applied pressure as time passes
and to ensure a steady water flux.

• Some of the current correlations used for OARO are limited in their
applicability, either being only valid for the feed side channel or
applicable only for short membrane lengths. To advance the under-
standing of the mechanisms involved in OARO, future research
should focus on developing a comprehensive CFD model for OARO,
in which its correlation at small-scale (submillimeter) can be trans-
ferred to system-level model (meter scale) via multi-scale model
approach.

• Traditionally, the optimization of membrane processes involves
experimental or numerical trial and error methods that are time-
consuming and expensive. However, with the advancement of
data-driven method (e.g., machine learning), it is now possible to
optimize the membrane process more efficiently and accurately at all
scales, such as predicting the membrane materials and structures
with superior properties (nanoscale), designing a spacer geometry
with enhanced mixing and minimal pressure loss performances
(submillimeter) and optimizing the operating conditions to obtain
the maximumwater recovery and the minimum energy consumption
(meter-scale). This research field is anticipated to become more
prominent in the coming years, as machine learning techniques
continue to improve and become more accessible.

• The simulation of combined fouling has yet to be fully explored in
CFD to elucidate the transient fouling development phenomena. To
bridge this gap, more efforts are needed to develop a deeper math-
ematical understanding of the interaction of various fouling mech-
anisms in a CFD code.
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