ZMP-HH/23-13
CERN-TH-2023-183

SymTrees and Multi-Sector QFT's

Florent Baume'[], Jonathan J. Heckman?3], Max Hiibner7,
Ethan Torrest, Andrew P. Turnerzm, and Xingyang Yu5’6m

1. Institut fur Theoretische Physik, Universitat Hamburg, Hamburg 22607, Germany
2Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
3Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
4CERN Theory Department, CH-1211 Geneva, Switzerland
>Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA
6Physics Department, Robeson Hall, Virginia Tech, Blacksburg, VA 24061, USA

Abstract

The global symmetries of a D-dimensional QFT can, in many cases, be captured in terms
of a (D + 1)-dimensional symmetry topological field theory (SymTFT). In this work we con-
struct a (D + 1)-dimensional theory which governs the symmetries of QFTs with multiple
sectors which have connected correlators that admit a decoupling limit. The associated
symmetry field theory decomposes into a SymTree, namely a treelike structure of SymTFT's
fused along possibly non-topological junctions. In string-realized multi-sector QFT's, these
junctions are smoothed out in the extra-dimensional geometry, as we demonstrate in exam-
ples. We further use this perspective to study the fate of higher-form symmetries in the
context of holographic large M averaging where the topological sectors of different large M
replicas become dressed by additional extended operators associated with the SymTree.
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1 Introduction

Global symmetries play an important role in constraining the dynamics of quantum field
theories (QFTs). It has recently been shown that global symmetries are also associated with
deep topological structures |1]. This has led to many generalizations, which now encompass
the standard textbook 0-form symmetries, as well as various higher-form, higher-group, and
higher categorical structures]T]

For a D-dimensional QFT ] this topological structure can often be captured in terms of
a (D + 1)-dimensional topological field theory, often referred to as a symmetry topological
field theory (SymTFT)F]In this framework, the structure of the D-dimensional QFT is spec-
ified by fixing appropriate boundary conditions in the SymTFT: we have a non-topological
physical boundary condition specifying a choice of relative QFT, as well as a topological
boundary condition which fixes the global form of the QFT. This approach is quite power-
ful, and immediately provides a framework for extracting higher-categorical symmetries as
captured by topological fusion rules of the SymTFT. While the existence of this SymTFT
can be formulated in purely bottom up terms, it is helpful to note that for QFTs with a top
down (i.e., stringy) realization, the SymTFT naturally appears via a topological reduction
of the associated extra-dimensional non-compact geometry [20] (see also [21}-24]). This is es-
pecially helpful in the context of intrinsically strongly coupled QFTs, e.g., D > 4 conformal
fixed points/[]

But QFTs can exhibit a range of possible phenomena and it is natural to ask whether the
current paradigm of SymTFTs is flexible enough to accommodate all these possibilities. In
this work we study the structure of SymTFTs for QFTs with multiple “decoupled” sectors
in which all connected correlators involving non-topological operators admit a decoupling
limit. In practice, this means we have parameters / mass scales such that for connected
correlators between different sectors:

<0102>conn — 07 (1)

in a suitable decoupling limit. We refer to these as multi-sector QFTs. In our terminology;,
each sector is itself a non-trivial interacting relative QFT.

Even though the different sectors have decoupled local dynamics, their global form can
still be non-trivially coupled topologically[’| For example, the global form of the gauge group
in a multi-sector model can impose non-trivial constraints on the spectrum of Wilson lines.

To frame the discussion, an example which we repeatedly return to is that of a UV suy_

!For some recent reviews, see e.g., [216].

2We assume throughout that our QFT is Lorentz invariant when formulated on RP~1:1,

3See e.g., [7H19].

4See [25,26] for recent reviews.

This is somewhat distinct from the case of coupling a QFT to a TFT studied in [27], but we explain the
relation to the present work in Appendix E}



gauge theory which undergoes adjoint Higgsing to suy x suy, X u(1) gauge theory in the IR.
While there is no issue in defining Wilson lines in the parent suy. 5, theory, the construction
of Wilson lines for just the suy or su,, gauge theory sector meets with immediate subtleties
such as the proper treatment of 1-form symmetries in a given sector.

In general, we can construct the corresponding SymTFT for each individual sector, and
then construct a junction with a SymTFT which captures the symmetries of the parent UV
theory. Our main claim is that this procedure can indeed be carried out, but there is in
general no guarantee that the theory living at the junction is topological. Carrying this out
for multiple SymTFTs fused by junctions, we arrive at a treelike structure.

We refer to this tree as a “SymTree”. A SymTree consists of branches, which merge at
junctions. Each branch is associated with a SymTFT, and each junction specifies gluing
/ compatibility conditions for these bulk TFTs. The junctions themselves need not be
topological, and often support additional degrees of freedom. This also leads to a natural
categorical structure where collections of SymTFTs are the objects and the junctions serve
as morphisms. Rearrangements of the branches of a SymTree amount to compatibility
conditions for the morphisms, i.e., homotopy equivalences.ﬂ

To establish this, we begin with the (D+1)-dimensional SymTFT for the full multi-sector
QFT. Treating the topological couplings between sectors as supported in D dimensions, we
can pull these into the bulk. This results in junctions of SymTFTs for the different relative
QFTs. Heavy defects defined in one relative theory are dressed by extended operators in the
bulk SymTFTs, which can split / attach to other relative QFT sectors by passing through
the junctions. Similarly, symmetry operators attached to the topological boundary of the
full SymTF'T can be pushed through the junctions, resulting in symmetry operators which
are dressed by defects possibly attached to the junction, and can also be shared between
multiple sectors.

SymTrees have a direct geometric interpretation in string theory. To begin, recall that
string-realized QFTs decoupled from gravity naturally arise from local geometries with var-
ious singularities. In stringy terms, a multi-sector QFT simply amounts to having a non-
compact geometry with more than one such singularity. Near each singularity we get a
collection of local operators, and heavy states which stretch across the different sectors are
integrated out, leaving their imprint in the low energy effective field theory via higher di-
mension operators suppressed by a scale A. Taking A very large and possibly tuning other
moduli then results in seemingly decoupled QFT sectors]]

While this provides a way to partially sequester the contributions from different sectors,
there are still residual topological couplings which persist, even into the deep infrared. Ex-

SIn principle there can be anomalies / obstructions in carrying out such moves.

"This further tuning of moduli is sometimes necessary to truly decouple the sectors. For example, another
contribution which often does not decouple are kinetic mixing terms between U(1) gauge fields [28]. These
arise from integrating out charged states which could in principle be very heavy. This leads to a more
“obvious” non-decoupling effect, but one which is somewhat orthogonal to the considerations of the present
work. This contribution can also be switched off via suitable tuning of moduli.

4



tending the picture of reference [20] to cover this case, we observe that for a D-dimensional
QFT, we can indeed locally construct a (D + 1)-dimensional SymTFT by extending in the
“radial direction” emanating out from a given singularity. But with multiple QFT sectors,
this radial direction inevitably fuses with other locally defined SymTFTs. The resulting
structure is thus really a junction of individual SymTFTs which fuse along a possibly non-
topological D-dimensional interface. While the (D + 1)-dimensional description is somewhat
singular, it is clear that this is smoothed out in the extra-dimensional geometry of string the-
ory. From this perspective, the stringy construction (when available) leads to a systematic
method for constructing a SymTree. Any ambiguities in reading off the SymTree amount to
dualities / homotopy moves which rearrange the branches of the SymTree.

The string theory characterization of heavy defects and topological symmetry operators
exactly fits with these general considerations. Much as in [29] (see also [30-32]), heavy defects
arise from branes wrapped on non-compact cycles which extend from a given QFT sector
out to “infinity” (i.e., where we impose the topological boundary conditions), which are then
partially screened by branes wrapped on collapsing cycles. On the other hand, symmetry
operators arise from branes wrapped “at infinity” [33-35] (see also [36-41]). Pushing these
branes in from infinity so that they are shared across multiple QFT sectors exactly matches
with the bottom up description in terms of junctions of SymTFTs.

One of the general lessons from this sort of analysis is that trying to characterize all
categorical symmetry structures in terms of a single bulk SymTFT can obscure some im-
portant features (though of course they are still present). For example, there have been
recent proposals that many categorical structures are captured by a suitable fusion (D — 1)
Category (see e.g., [42-45]). Our present considerations illustrate that both the objects, as
well as morphisms of the correct symmetry category for a general QFT will inevitably be
somewhat broader ]

We illustrate these general features with examples, many of which also admit a top down
construction. As an illustrative example, we consider 7D gauge theories engineered from
M-theory on an ADE singularity. In this case, the local geometry takes the form C?/T" for T
a finite subgroup of SU(2). There is an ADE classification of such singularities, and this fixes
the Lie algebra type of the corresponding gauge theory, i.e., the relative QFT. The global form
of the gauge group is fixed by a choice of boundary conditions “at infinity” on the generalized
lens space S?/T" in the asymptotic conical geometry. Complex structure deformations of the
singularity correspond to adjoint Higgsing of the singularity, and can result in multiple QFT
sectors where all connected correlators for local operators in different sectors decouple below
the Higgsing scale. Even so, there can still be topological couplings between these sectors
which correlate the structure of heavy defects and topological symmetry operators. Focusing
on the local radial profile for these geometries, we uncover a junction of symmetry TFTs with
a non-topological interface theory, supported on the junction, setting boundary conditions

8 At the very least, the presence of non-topological interfaces suggests that the collection of k-morphisms
must be enriched.



for the TFTs.

This basic geometric example generalizes in a number of ways. For example, we can
produce similar SymTree structures for 6D superconformal field theories (SCFTs), as well
as their compactifications to lower-dimensional systems. Similar considerations also apply
in QFTs engineered via D-branes probing singularities. For example, we can also realize 4D
N = 4 Super Yang-Mills theory with an A-type gauge group via spacetime filling D3-branes
sitting at a common point of C3. Partitioning up these D3-branes to multiple stacks, we
observe that these sectors decouple in the deep IR, but that there are also massive strings
which are integrated out in taking this limit. The associated bulk SymTree exhibits the
same structure of SymTFTs fused along a non-topological junction. One can also apply
the same reasoning in hybrid situations where we have branes probing singularities; we can
deform the singularities and at the same time also separate the stacks of D-branes in the
extra dimensions, much as in [46).

The unifying theme in all of these examples is that we start with a single “parent theory”
and then consider a flow in the moduli space of vacua to a multi-sector QFT. The SymTree
encodes a topological treelike structure associated with this flow.

In addition to these examples, we also present examples where the multi-sector model is
not obtained from a flow in moduli space. Such multi-sector models are ubiquitous in string
compactifications which typically have other sequestered sectors anyway. From a bottom up
perspective, these sectors can be viewed as always being at infinite distance in moduli space.

In all of these cases, we can use the “branes at infinity” perspective to construct heavy
defects as well as topological symmetry operators. Moving these objects into the bulk and
passing them to another sector explicitly illustrates that defects of one theory inevitably
need to be dressed by additional operators.

We anticipate that these considerations can be used to study the structure of a wide
variety of multi-sector QFTs. Indeed, while our examples mainly focus on supersymmetric
multi-sector QFTs, the structure of a SymTree is largely complementary data. Along these
lines we also give an example of a non-supersymmetric Yang-Mills theory coupled to a
complex adjoint-valued scalar which has precisely the same sort of SymTree as found in the
supersymmetric setting.

As another application, we use this perspective to study large M ensemble averaging
in the context of the AdS/CFT correspondence [47]. At a practical level, this is expected
for any “self-averaging” observable which is smooth in the value of Newton’s constant[]
On the other hand, phenomena such as the confinement / deconfinement transition are
observable in semi-classical gravity, but are also quite sensitive to the specific higher-form
symmetries of the boundary theory [21,/4§]. One would presumably still like to assert that
even with large M averaging, the Wilson lines of SU(M) gauge theory serve as an order
parameter for confinement / deconfinement. Reconciling these two points of view, we can

9We review some aspects of self-averaging observables in Appendix
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SymTFT Slab

Figure 1: Standard SymTFT setup. Topological symmetry operators (green, U) link heavy
defect operators (grey, D) in the (D + 1)-dimensional slab. The defects stretch from the
topological boundary (blue, By,,) to the physical boundary (red, Bppys).

consider a collection of large M replicas with extended operators dressed by additional
extended operators. Dressing the Wilson lines of an individual replica by operators shared
across all the sectors yields a general procedure for producing an order parameter which
is still sensitive to the higher-form symmetries of the original large M gauge theory with
no averaging. This sort of construction also lifts to a top down proposal for implementing
disorder averaging [46] [

The rest of this paper is organized as follows. In Section [2| we analyze in general terms
the symmetry field theory associated with a multi-sector QFT. In particular, we explain
how junctions of SymTFTs arise in this setting. In Section [3| we show how this treelike
structure is smoothed out in the extra dimensions of string constructions. Section [4] presents
an illustrative example of SymTrees for 7D Super Yang-Mills theory. We present additional
examples constructed via vacuum moduli space flows in Section [f] and in Section [6] we con-
struct examples where each sector is at infinite distance in moduli space from its counterpart.
Section [7] presents a non-supersymmetric example of SymTrees for Yang-Mills theory coupled
to a complex adjoint-valued scalar. In Section [§| we use this structure to study higher-form
symmetries in large M ensemble averaging. Section [J] contains our conclusions and future
directions. In Appendix [A] we study the SymTree of a gauge theory coupled to a TFT.
Appendix |B| gives additional details on a top down derivation of single derivative terms of
a SymTFT. In Appendices |C| and @ we present more details on some of the (co)homology
calculations used in the main body. Appendix [E|reviews some additional details on ensemble
averaging in holography.



2 SymTrees

In this paper we shall be interested in the structure of D-dimensional multi-sector QFT's, and
a (D + 1)-dimensional bulk theory which governs its symmetries. While our considerations
are motivated by string-theoretic constructions, they can be stated in purely field theoretic
terms, and so in this Section we opt to give a bottom up characterization of these structures.
We defer a top down string-theoretic approach to Section [3||']

To begin, we recall that the symmetries of a (relative) D-dimensional QFT can be encap-
sulated in terms of a corresponding (D + 1)-dimensional symmetry topological field theory
(SymTFT) [16-19]. In this symmetry TFT, the global form of the QFT is specified by
suitable boundary conditions. More precisely, we have a state / physical boundary condi-
tion |Bphys), or simply Bpnys, as well as a topological boundary condition (Biep|, or simply
Biop, Which amounts to a choice of Dirichlet boundary conditions for some of the fields of
the SymTFT and Neumann boundary conditions for others. The partition function of the
absolute QFT is then given by evaluation of the overlap of states:

ZBtop,Bphys = <Bt0p|Bphys>7 (2)

in the obvious notation.

Heavy defects and topological symmetry operators can be introduced in this framework
in a straightforward manner. First of all, we can consider symmetry operators localized near
the topological boundary condition. We can of course move this operator into the (D + 1)-
dimensional bulk and over to the physical boundary. These symmetry operators acts on the
heavy defects of the QFT. In the SymTFT, these heavy defects lift to defects which fill out
one more direction in the bulk, and stretch from Byop to Bonys (see figure . Observe that
symmetry operators and physical operators now link both in the D-dimensional physical
boundary, as well as in the (D + 1)-dimensional bulk.

Our interest here will be in QFTs with multiple sectors. Our definition of this is to
begin with distinct relative theories 7; and 75. These theories might be coupled via operator
mixing terms. We demand, however, that there is a limit of various mass scales and / or
parameters in which they decouple:

<Olo2>conn — 0 . (3)

A typical situation is operator mixing via higher-dimension operators. In the limit where
the suppression scale A — oo, this mixing term vanishes. While our definition also allows for
possible mixing by marginal operators (e.g., as would occur in models with kinetic mixing)

10We caution that while this top down procedure is designed to produce the same answers “in the IR”,
it will inevitably depart from the single throat large M answer at short distances / high energies. See also
reference [49] for other aspects of generalized symmetries in disorder averaged systems.

UThere are many excellent resources for learning more about string theory. See, e.g., reference [50].



the essential points are already covered by cases with just higher-dimension operator mixing.

In any case, when the conditions leading to line (3] are satisfied we refer to this as a
multi-sector QFT. Clearly, we can extend this to include any number of theories 7;. We then
introduce another relative theory J (for “junction”) which has only topological couplings
to the original relative theories and thus mixes the different sectors via terms which do not
fully decouple.

For each such sector 7;, we can therefore speak of a symmetry TFT S; which lives in
(i)
phys i
For each such SymTFT, we can also speak of the associated boundary conditions Bfé)p which
(i) (4)

phys? Btop
dimensional space and supported individually on copies of spacetime. Collapsing slabs to D

D + 1 dimensions, and has a physical boundary condition B specifying a relative QFT.

fixes an absolute theory. The boundary conditions B are separated in the D + 1

dimensions these are then stacked.

We now glue the theories together. We start with the original decoupled theories, 7; and
T2, and assume these admit descriptions by actions S; and S, respectively. Then introduce
the junction theory [Ji9, again assumed to have an associated action S,. In these cases the
topological couplings captured by the SymTree are given by an overall D-dimensional action

St = 51+ S2 + Sz, + STmix (4)

where St describes topological mixing termsEZ] The full SymTree then further supple-
ments Sy by specifying the path-integral. We refer to the relative theory associated with
the action Sga as Tean-

For non-Lagrangian theories the SymTree should be considered as the definition of the
topological couplings we consider. More precisely, T is schematically presented as

TFTTLJ& TFT\71277—2
e g, g 5)

with TFTs TFTx 7, and TFT 7, 7, in one higher dimension, which have edge mode theories
as indicated by the subscripts. In the end, the original sectors 7; and 75 now interact via
topological terms, as well as with an intermediate gluing theory [Ji2. Clearly this same
structure extends to QFTs with many sectors, and so we can label the original decoupled
sectors as 7;, with 7 € I an index. From this, we can fuse together multiple decoupled sectors
by picking a subset J C I, with an associated J; of gluing theories and a topological field
theory TFT; which couples the different sectors together. We refer to the full (relative)
D-dimensional theory obtained in this way as Try. Let us note that this sort of structure
naturally appears in a number of contexts, for example in adjoint Higgsing of a gauge theory
where the IR theory separates into sectors which are decoupled (up to topological terms).

12This is distinct from the procedure of coupling a QFT to a TFT discussed in reference [27]. In that
case, the TF'T is coupled in a way such that overall no degrees of freedom are added and only a change in
polarization is achieved. We comment on the relation to our construction further in Appendix [E
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Figure 2: We depict a trivalent junction J of symmetry TFTs. The junctions supports the
D-dimensional theory G; ® TFT ;. Color conventions: Junctions are purple.

It is also quite common in stringy realizations of QFTs where there is a clear notion of
geometric localization of operators, including geometrically delocalized sectors (the J’s)
which are shared across multiple sectors. We turn to examples of this sort in later sections.

Now, on general grounds, the D-dimensional theory 7y has its own SymTFT, which
we refer to as Sgy. That being said, there is clearly more fine-grained structure available
from decomposing the boundary D-dimensional theory into its constituent parts, where each
individual sector has its own SymTFT. Indeed, for a given sector 7;, we have an associated
SymTFT §; and in the discussion above we make the identification:

Si=TFTg, 1. (6)

Here, J; refers to a junction theory which couples together some collection of theories as
obtained from a subset J C I. The process of coupling the 7; sectors together can be
visualized in terms of a treelike structure Y: Along each terminating branch, we have a
SymTFT §; as associated with the theory 7;. In this theory, we have a physical boundary
condition Bsgys. At the other end of S;, we can fuse it to a collection of other SymTFTs.
The fusion in question involves a collection of theories indexed by J C I. At this junction,
we have the D-dimensional theory, and emanating out from it, we have the other SymTFTs
(see figure [2)).

Clearly, there are many ways to construct such a junction, and each of them leads to a
different treelike structure (see figure |3). That being said, for each choice of tree, we get a
notion of a (D + 1)-dimensional bulk. Away from all of these junctions, we can also speak
of the topological boundary for Sgy. Indeed, pushing all of the junctions into the physical
boundary conditions results in the SymTree reducing to a single slab filled by Sgy. We
denote the boundary condition, obtained by stacking all junctions and physical boundary

conditions of the multi-sector QFT, by B}()f;]sra(:t)‘

For a depiction of “retracting” a SymTree, see figure[d The physical boundary condition

10



B(retract)
phys
reducing §; ®S, along the interval With boundary conditions on one end given by the junction

J, and on the other end by BY ® B

phys phys®
We also have a operation related to retraction, which we will refer to as “unzipping”.

after retracting, , is equivalent to the D-dimensional theory given by dimensionally

Whenever the multi-sector QFT emerges via limits of various mass scales and / or parame-
ters, as discussed around ({3} . we are also handed the initial, single sector, parent QFT with
associated boundary Bphys Taking the discussed limits B (i ls) reduces to Béfyt;m), i.e., the
difference between these boundary conditions are precisely the states which decouple in the
limit. Here we can immediately anticipate a convenient feature of the SymTree: it often
happens that the decoupled states emerge as defects in the effective description, i.e., the
spectrum of defects enhances. These are then manifest in the SymTree as we momentarily
discuss. Retractions of SymTrees are always allowed, these are a field theory manipulation.
There are of course other degenerations in which some other subset of the edges of the
SymTree are contracted. For a trivalent SymTree we show the possible configurations in
figure ). We will also see examples in top-down approaches where, using the string theory
construction, we are able to embed a given multi-sector QFT into a moduli space which has

loci described by a single sector QFT. In this case, moving between the different moduli, we
(full)
phys pllllys )

Summarizing, the local subsectors 7; contribute relative theorles [16]. Practically, this

can also “zip up” the Symtree mapping BY and the junctions to B

means that they each determine physical boundary conditions BY ofa symmetry topologi-

hys
cal field theory [18,/51]. We have argued that topological non—decguphng between a collection
of such relative theories amounts to interactions between their symmetry theories, which we
formalize via junctions. Such junctions arise at the fusion of symmetry theories. These
boundary conditions are not necessarily purely topological, rather they can be partially
topological and partially physical. As such, the junctions may themselves support relative
theories. Overall this results in a SymTree of symmetry theories with internal junctions and

external boundaries (see figure [3). The data entering a SymTree includes:

Biop : Topological (i.e., gapped) boundary conditions,

Bl()ﬁyb : Physical boundary conditions for relative theory 7;, 7

J : Junction with partially topological and partially physical boundary conditions,
T : Tree built from SymTFTs and their junctions.

Evaluation of the partition function for the SymTree theory depends on all this data, which
we write as Z(Byop, {Bphys} T). Instead of trees one could of course consider arbitrary graphs,
however, we find trees to arise in examples throughout and therefore restrict to these.

It is natural to ask what happens if we rearrange the branches of the tree, i.e., via an
“associator move”. As an example, consider the trees in figure[6] In passing from one theory
to the next, we get a possibly non-topological junction, and we are stacking and unstacking
it with other junctions. This results in a new tree (and implicitly a new set of junctions) Y’.

11



Btop

Btop N B(L)

B(l)

phys

Figure 3: Junctions can be assembled into trees (i). The tree T can be visualized as a
horizontal cross-section. Junctions can have arbitrary valency (ii).

B(l)

phys

retract
Biop Stull Stan Shal Bguu )

phys

i) (ii) (iii)

—

Figure 4: Depiction of retracting a SymTree to produce the corresponding SymTFT Sgy for
the multi-sector QFT with topological couplings between the different sectors. In terms of
the SymTree, this amounts to pulling in the different branches into the physical boundaries.

12
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@)
S, | B

phys

B“)P Sfull Bmp Sfull
Si

B(l)

phys phys

BY

hyb

2
Bl(n)h Btnp Sfull Bfull

phys phys
(i) (iv) v)

Figure 5: Subfigures (ii),(iii),(iv),(v) show various degenerations of (i) achieved by contract-
ing one or more of the three symmetry theory slabs. Here By, denotes a hybrid boundary
condition which occurs whenever the branch of the SymTree connecting to By, is contracted.
Hybrid boundary are generically not purely topological. When a physical boundary condi-
tion is fused with a junction a new junction J’ emerges.

For each such tree, there is a well-defined (D + 1)-dimensional bulk. There can in principle
be an anomaly in performing this maneuver, and this just amounts to the evaluation of the
partition function for the fused theory at the junction:

Z(Buop. B b, 1) = explior 1) Z(Buop, { By}, T, (®)
where the factor exp(iay y/) is a possible “anomaly” associated with the branch rearrange-

mentm In the cases we study in this paper, we typically have ay y» = 0, but in principle it
can be non-zero[X

Implicit here is a categorical structure which accompanies our SymTree. While we defer
a full analysis of this to future work, let us sketch some of its structure. Since we are able to
fuse more than two SymTFT's into a single SymTF'T, and since such manipulations take place

13A priori, it could happen that the discrepancy between the two theories is captured by more than just

a complex phase. In such cases, we anticipate that the “anomaly” is captured by the associator « of the
(D + 1)-category whose objects are SymTFTs, where « is a natural collection of isomorphisms

Q123 S ® (SQ ® 83) = (81 ® 82) ® S3. (9)

1For example, in stringy models with a bulk flavor brane or other gapless QFT it is quite likely that the
obstruction class is non-trivial.

13
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( fgphys
..... e 2
Bphys
Ji23 T2 BY

phys

Figure 6: We depict two SymTrees related by an associator move T <> Y’. There is an
anomaly whenever fusion of trivalent junctions produces distinct tetravalent junctions. Gen-
eralizations are immediate. This can be accompanied by a non-zero obstruction class /
anomaly ar v, although the examples considered in this paper have no such obstruction.

in the category of (D + 1)-dimensional TFTs, we have a (D + 1)-functor category between
Bordpy1 and a suitably defined (D + 1)-category C. This naturally suggests a multi-fusion
(D + 1)-category whose objects are SymTFTs. In this language, the zipping and retracting
procedures can also be phrased naturally. First, notice that any boundary condition Bppys
can be thought of as an element in Hom(Sgy, 1p41) where 1544 is the trivial (D + 1)-theory.
We have seen that the retraction of two branches with boundary conditions BSI)YS and Bgl)ys
to some Bt always exists by dimensionally reducing &) and ;. This means we have
a product ®yetract: Hom(Sgn, 1py1) X Hom(Sga, 1py1) — Hom(Sgn, 1py1). Meanwhile, the
process of zipping additionally relies on a map F' : Hom(Spy, 1) — Hom(Sg, 1) where By =
F (Bgﬁt ")) has additional degrees of freedom which is specified by the string construction.
We leave a full exploration of this structure to future vvork.E

We now proceed to analyze the dressing of defects, and then turn to the dressing of
symmetry operators. We turn to the stringy characterization of SymTrees in Section

15Let us comment that it has recently been proposed that a suitable fusion (D — 1)-category captures the
categorical symmetry of a D-dimensional QFT (see e.g., [42H45]). One can in principle still speak of the
fusion (D — 1)-category for the full theory Tru, but here we have observed the appearance of some additional
structure as associated with a fusion D-category for the SymTFTs themselves.
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(v)

Figure 7: Sketch of possible defect configurations for a trivalent junction of symmetry TFTs.
The red and purple dots denote the spacetime defects, the brown line marks the defect within
the SymTree. The purple junction defect is said to dress the red boundary defects.

2.1 Heavy Defect Operators

We begin by studying the heavy defects for a junction of SymTFTs, i.e., heavy the defects of
our SymTree. The simplest non-trivial case is a trivalent junction J between the symmetry
TFTs of the theories T1, T3 and gy We impose physical boundary conditions ngys for the
S; theories for ¢ = 1,2, and topological boundary conditions By, for theory Sy (see figure

2).

The topological boundary conditions determine which defects can end at the associated
boundary, and sets the global form of the full multi-sector QFT. Consider a defect ending at
Biop and stretch it across Sgy to the junction J. From here, three possibilities can occur:

1. The defect ends on the junction giving a defect of the junction theory. There is a single

15



spacetime defect and it is not a defect of the relative theories 7;. See subfigure (i) of

figure [7]

2. The defect can not end on the junction and continues on to the boundary B;(st resulting
overall in a defect of the junction theory and one of the relative theory. There are now
two spacetime defects. We say the defect of the relative theory Br(ﬁys is dressed by the
junction defect. See subfigure (iii) of figure

3. The defect does not end on the junction and fractionates into two defects which end
on the two physical boundaries. We obtain a defect in the junction theory and the two
relative theories Bgys. The latter pair is dressed by the junction defect. See subfigure

(v) of figure [7]
In addition to these three cases we also have the case

e The defect stretches from BI()LLS to Bgl)ys or vice versa, passing through the junction

and not attaching to the topological boundary. See subfigure (iv) of figure [

In principle there could also exist defects which just stretch between the junction and the
physical boundaries, see subfigure (ii) of figure [7}

We have implicitly assumed that all spacetime defects are stacked, i.e., they have identical
spacetime support. Let us now separate these defects. Consider for instance the setup of case
2, here we separate the junction defect from the physical defect. This results in a portion of
the associated defect in the symmetry theory to run parallel to spacetime. We can localize
this portion within the junction. In spacetime this portion realizes a topological operator,
in one higher dimension, stretching between the separated spacetime defects (see figure .

Similar remarks hold for the other cases: whenever we separate spacetime defects a

spacetime topological defect in one higher dimension emerges bounded by the initial defects.
(i)

phys*
We call defects genuine if they run between the topological boundary condition and a single

With this we can now introduce a notion of genuine defects for the relative theories B

physical boundary and non-genuine otherwise. Genuine defects are constructed from defects
of a single physical boundary via dressings. This definition is such that the defects depicted
in subfigure (iv) of figure [7| are non-genuine. If we separate the defects of B&Ls and B}(i)ys in
spacetime there will always be a topological operator running between these no matter the

dressing. On the other hand, for example, the defect in subfigure (iii) of figure [7|is genuine.

2.2 Topological Symmetry Operators

We now study topological symmetry operators for our SymTree. To illustrate the main
points, it again suffices to consider the trivalent junction comprised of SymTFTs Sgy, St
and S;. We assume that away from the junction we have imposed a topological boundary

condition By, for Spyi, and physical boundary conditions BY for the relative theories T;.

phys
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Spacetime

(iii)

Figure 8: We sketch a deformation of the defect configuration depicted in (i). In (i) the
purple and red defect are coincident in spacetime, as shown on the lefthand side in (iii).
In (ii) we displace these along a spacetime direction z; and deforming the resulting defect
configuration into a horizontal and vertical piece we find a topological operator bounded by
the initial pair of defects, as depicted on the righthand side in (iii).
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We begin by considering a symmetry operator located at the topological boundary con-
dition for Sgy. Our aim will be to understand the structure of this symmetry operator as
we move it from the boundary By, through the junction, and eventually on to either of the
physical boundariesm With this our starting point is the configuration depicted in subfigure
(i) of figure @ As in our analysis of defect operators, we emphasize three generic possibilities:

1. The boundary conditions for Sgy set by the junction J are such that the topological
symmetry operator can not be deformed across the junction.

2. The topological symmetry operator can be deformed across the junction to a topolog-
ical symmetry operator in the slab with TFT S;. See subfigure (ii) of figure |§| The
deformation across the junction comes at the cost of a dressing, i.e., an additional topo-
logical symmetry operator localized in the junction. This pair of symmetry operators
can further be connected by a topological operator in one higher dimension.

3. The topological symmetry operator can be deformed across the junction to a collection
of topological symmetry operator in the slabs S§; and Ss. See subfigure (iv) of figure |§|
Again, there may be a dressing and additional higher dimensional topological operators.

Clearly there exist further configurations. For one we can, starting from (i), deform only a
portion of the symmetry operators into/across the junction. This can give the configurations
(iii), (v), (iv) in figure [0} We can also consider different starting points instead of (i), e.g.,
any of the configuration depicted in figure |§| or configurations similar to (i) with a collection
of operators U contained in the slabs attaching to physical boundaries. Given this large
collection of symmetry operators the key point is that they are subject to an equivalence.
Two configurations are equivalent precisely when they can be deformed into each other.

From this, the action of the symmetry operators, deformation equivalent to configuration
(i) of figure @, on heavy defects is now clear. For such operators the action on defects is given
by considering the distinguished representative purely contained in the slab of the symmetry
theory Sgp- It acts in standard fashion via linking on the part of the defect which extends
into that slab. The computation therefore fully restricts to Sgy.

Similar to the spacetime deformation depicted in figure |8 we can separate the various
components contributing to symmetry operators, e.g., as depicted in figure [0} In the space-
time we have topological operators in one higher dimension which bound the individual
components.

16This subset of bulk operators of the SymTree is identified with the symmetry operators of a multi-sector
QFT with string construction. In such settings topological symmetry operators can only be constructed in
the asymptotic boundary which becomes By, in the SymTree.
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Figure 9: Sketch of different topological symmetry operator configurations for a trivalent
junction of symmetry TFTs. We consider the initial configuration depicted in (i). Deforming
it (partially) across/into the junction gives various equivalent configurations of topological
operators presented in subfigures (ii) - (vi). The dashed lines indicate topological operators in
one higher dimension. We denote non-genuine operators at their boundaries as V, V), V),
also represented by green dots. The purple dots again depict dressings. Both the dressings
and the higher-dimensional operators can be trivial.
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3 Top Down Approach to SymTrees

In the previous Section we presented a bottom up analysis of multi-sector QFTs and the
SymTree which governs their symmetries. We now proceed from the top down, showing that
for multi-sector QFTs with a stringy realization, this treelike structure directly descends
from extra-dimensional geometry. Throughout, we shall work on spacetimes of the form
RP=L1 % X where X is taken to be a non-compact background which preserves some amount
of supersymmetry in the D-dimensional spacetimeE]

With this in mind, we will be interested in either a 10D (e.g., type IIA and IIB back-
grounds) or 11D (i.e., M-theory) starting point in which we have QFTs which are localized
at singularities. We refer to this higher-dimensional bulk theory as BLK. In the extra-
dimensional geometry such singularities can either arise from a singular metric profile (as in
geometric engineering) or from branes probing the local geometry (which might also have
metric curvature singularities). In principle these singularities need not be isolated: when
gravity is decoupled there can be additional branes / singularities supported on non-compact
cycles. For ease of exposition we shall mainly focus on cases where we do not have such “fla-
vor branes” but the analysis we present naturally extends to these cases as well. We denote
the singularities of X by Sing = U;c;Sing, where i € I labels connected pairwise disjoint
components of Sing. We take Sing to have finitely many compact components and no non-
compact components. In this case, there is a one to one correspondence

ijgys + Sing; (10)
between relative QFT's and singular components. We shall often depict these geometries by
putting “co” at the top of a figure, and the individual singularities / throats near the bottom.
One should view this as a fattening up of the SymTree, but in which we have rotated the
picture by 90 degrees so that the topological boundary conditions are now at the top. We
do this in part to emphasize the top down nature of the construction, but also because it is
easier to read off the relevant physical data in this presentation. See figure[10|for a depiction
of such a top down geometry.

To illustrate how one reads off the symmetry TFT associated with such a geometry,
suppose first that we have a single isolated singularity, and that our background X has the
form of a conical singularity Cone(0X ) where 0.X refers to the conformal boundary of X, and
the relative QF'T is localized at the tip of the cone. As a point of notation, we shall introduce
a radial coordinate r and refer to r = 0 as the tip of the cone (where the QFT lives) and
r = 0o as the asymptotic boundary. From this starting point, we can consider branes which
extend from 0X to the tip of the cone, giving rise to heavy defects [29-32]. Branes purely
wrapped in 90X give rise to symmetry operators, i.e., topological defects [33H35]. The global
form of the relative QFT is specified by a choice of boundary conditions at 0.X for the bulk

1"The supersymmetry condition is more so that we have tractable examples to discuss rather than any
intrinsic limitation.
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Asymptotic Boundary

i/ Critical Slice

Sing; Sing,

Figure 10: Sketch of double throat internal geometry with two sets of localized degrees of
freedom (red). Horizontal slices of constant radius are initially disjoint and then combine
resulting in a connected asymptotic boundary.

supergravity fields. By inspection, the radial direction of the conical geometry suggestively
resembles the extra dimension of a symmetry TFT.

Indeed, in reference [20] (see also [21,[22]) it was noted that one can start from the
topological terms of the bulk supergravity theory BLK and dimensionally reduce along the
linking geometry dX which might also be threaded by various supergravity fluxes (sourced
by the branes at the tip of the cone), which we denote as F. This results in a (D + 1)-
dimensional TF'T which captures some of the interactions terms of the SymTFT which
we label as S(9X, F), in the obvious notation[®| This construction beautifully shows how
SymTFTs arise from an extra-dimensional starting point. Moreover, the boundary states
(Btop| and |Bppys) are clearly manifest as the boundary conditions of the conical geometry at
r = o0 and r = 0, respectively.

Multi-sector QFTs naturally arise in backgrounds where X supports multiple singulari-
ties. In what follows, we again assume that X is asymptotically conical, i.e., we assume that
there exists a coordinate 0 < r < oo such that near r = oo, we have a conical geometry
Cone(0X). The different sectors are sequestered from each other because branes stretching
between different singularities have a mass scale set by the size of this distance. In the
corresponding effective field theory, this serves as a suppression scale for higher-dimension
operators. Even so, there can still be non-trivial topological couplings between sectors, as
captured by defects and symmetry operators.

The SymTFT for this multi-sector QFT arises from a similar procedure to that given in
[20]: In principle, we simply need to perform a dimensional reduction on the linking geometry
0X, and read off the corresponding (D + 1)-dimensional SymTFT. Observe, however, that
in this case the “radial direction” only makes sense near » = oo. Indeed, as we proceed
to the interior of the geometry we find additional structure as captured by the individual
sectors of the model. Proceeding deep into the interior (i.e., for r sufficiently small) we now
allow for the geometry to fragment into other local conical geometries, each with their own

18Some of the terms of this SymTFT can be recovered by requiring appropriate braiding rules for extended
operators in the associated SymTFT. These braiding rules follow from bulk kinetic terms, as shown in

Appendix E}
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localized singularity supporting a relative QFT. Indexing the collection of such localized
singularities as Sing, and their associated relative theories as 7;, we have a local radial
coordinate r; which points out from its corresponding singularity. For each such local patch
we can again speak of a background X; and boundary 0X;. Consequently, we see that the
“full” SymTFT S(0X, F) is given by reduction on 90X, and the SymTFT for each sector
is instead captured by S(0X;, F;) = S;, in the obvious notation. Each such S; admits
s
topological boundary conditions <Bt(z))p|

physical boundary conditions |B ;) at r; = 0 (i.e., where the relative QFT lives), as well as

By inspection, we see that the resulting background X resembles a tree. On the other
hand, the SymTree picture has now been “fattened up” in the extra dimensions, so that sharp
edges associated with junctions are now smoothed out / delocalized. We can project down
to a tree again by integrating the topological terms of the bulk theory BLK over the linking
geometry which is piecewise of the form 0.X;, but additional care is needed in the fusion of
multiple linking geometries, as well as the flux profiles. We return to this shortly, but for now
it should be clear that the SymTree has an interpretation in the stringy extra-dimensional
geometry.

The construction of heavy defects and topological symmetry operators proceeds much as
in the case of a single singularity. Symmetry operators result from (flux-)branes wrapped on
asymptotic cycles in 0X. These are at infinite distance from the QFT degrees of freedom
which we assume to be localized in the bulk and hence result in operators interacting only
topologically with the QFT. See [33-35,39] for further details and [36,|38} 40,41, 52] for
applications. As such they engineer topological operators in the QFT.@ The novelty here is
that as the heavy defects descend to different sectors of our system, they can fractionate and
become dressed by operators of the smoothed out junctions, as well as defects of other sectors.
Note also that a topological operator of the full system can, in an individual throat, end up
being dressed by other defects, rendering it “non-genuine”. See figure [11| for a depiction of
how heavy defects and symmetry operators descend to individual sectors of the system.

With this we can turn to the question of which operators constructed in figure are
genuine and non-genuine. For example, consider the brane configuration (i) in figure .
Deforming the locus along which a defect attaches to Sing in spacetime, as shown in figure
, we find the component of the string / brane stretching between the local models gives
rise to a topological operator. From the perspective of an individual throat the initial defect
is non-genuine. Similar comments apply to other configurations displayed in figure[11} Note
that this discussion exactly parallels our “bottom up” analysis in Section [2]

19Reading off the precise form of the generalized symmetries directly from the string background depends
on the details of the geometry and fluxes. In the absence of fluxes, it is captured by a relative homology
group, but when fluxes are present a suitable generalization of twisted K-theory must be used. For further
discussion on the latter point, see Appendix A of reference [39).
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Asymptotic Boundary
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Figure 11: Top row: Defects of a double throat geometry X with two local sectors. Strings
/ branes either run between singularities (i) or between a singularity and the asymptotic
boundary (ii) or between multiple singularities and the asymptotic boundary (iii).

Bottom row: Symmetry Operators of a double throat geometry. The symmetry operators of
the full theory are strings / branes wrapped in the asymptotic boundary (iv). These admit
deformations into a single local model (v) or deformations into multiple local models (vi)
joined by a possibly trivial string / brane configuration.
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Spacetime

(1) (i)

Figure 12: (i): String / brane running between two local models. Such an object admits
a partition into three pieces, two of which are contained in a local model, and one which
connect the two via the bulk of X. In the QFT spacetime the result is a pair of defects E(1?).
(ii): Deforming the configuration into a spacetime direction x; the bulk part of the string /
brane gives a topological operator bounded by the defects. Individually the defects E® are
non-genuine.

3.1 Projection to a SymTree

Having spelled out the general strategy for extracting the SymTree of a multi-sector model
directly from X, we now provide an algorithmic procedure for reading off this data. The
discussion splits up into the contribution from the geometry of X, and if present, additional
contributions from fluxes threading 0X as well as the individual branches 0.X;. With this in
mind, we first begin by explaining in more detail how the different “boundary geometries”
0X; fuse together to form the SymTree, focusing in particular on the singular homology of
these spaces and how they consistently glue together. To read off the SymTFT we will also
extract the associated differential cohomology (following [20L53]), but one might entertain a
generalization such as differential K-theory. The contribution from fluxes follows a similar
procedure: we find that along each segment of the resulting SymTree, we have a piecewise
constant contribution from flux, but that this “jumps” across the junctions of the SymTree.
This sort of jumping phenomena is indicative of additional degrees of freedom localized at
the junction, precisely as expected on general grounds. Reduction of the bulk theory BLK
topological terms then results in our SymTree theory.
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3.1.1 Filtrations and Trees

We now turn to the treelike structure obtained by “projecting down” onto the radial direction
of X. Recall that X has singularities Sing = U;c;Sing; with finite index set I. Generically
there is no unique treelike structure given X. Rather, a particular tree T is only specified
once we have determined how to sweep out X via radial shells, as specified by a filtration
Fx. Much as in other stringy realizations of QFTs, ambiguities in reading off a specific
SymTree from geometry amount to non-trivial dualities / associator moves of a SymTree.

Given a geometry X we therefore also require the existence of a filtration Fx over the
real half-line, parameterized by the “radius” r € [0,00) and with radial shells U, and the
indexed family of sets {B,},>o where B, = Us<,Us and 0B, = U,. Among all possible
filtrations we consider those with following favorable properties:

e The filtration is centered on the singularities of X; we impose By = Sing. The filtration
sweeps out the full geometry; we impose B, = X.

e The filtration describes a disjoint collection of local models at small radii. We impose
0<r<e: B,~L;Tube(Sing,) (11)

for some ¢ > 0 where Tube(Sing;) is the tubular neighbourhood of Sing; and no two
tubes overlap. Tubes capture topological structure of a local model centered on Sing,.

e The filtration is topologically piecewise constant. There only exist finitely many critical
radii, denoted 7, which we label as r, < r; for k < [, such that balls wedged between
the same critical radii are topologically equivalent:

re, < Ry < Ry <1y : BR2_>BR1' (12)

Here — denotes a deformation retraction from Bp, to Bg,. In particular the integral
homology (and homotopy) groups are constant along the interval (ry,r;), so we have

Hn(BRl) = HN(BRQ) ) HH(UR1> = Hn(UR2) : (13)

e The filtration has one asymptotic boundary. The maximal radius r, = max{r} is such
that B,, is connected and there are deformation retractions X — B, and 0X — 0B,
for all r > r,.

Now, given such a filtration Fx of the geometry X we associate to it a SymTree, for a given
choice of theory ITA,IIB, M, by compactification of the topological terms of the respective
supergravity theory BLK over the boundary 0B, = U,.. At each value of the radius r we have
mo(0B,.) connected components and on each component distinct topological fields are present.
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Figure 13: Radial filtration {B, },>¢ of the singular geometry X with 0B, = U,.

At the critical radii mp jumps and previously disjoint local models combine. Consequently,
the symmetry TFT is defined on a tree T (see figure .

Generically, this tree has |I| 4+ 1 external nodes. Of these |I| are located at r = 0 and a
single vertex is at r = oo. The singularities Sing = U;c;Sing; specify relative theories setting
enriched Neumann boundary conditions ngys at the |I| vertices at r = 0. Further, there is
a topological boundary condition B, at the asymptotic node at infinity which determines

the overall global form.

Internal nodes arise whenever the number of connected components of 0B, = U, change.
At the first transition » = r; some local models centered on the individual connected singular
loci Sing; combine, such combined neighbourhoods then continue to grow, merging with
similar neighborhoods at critical radii r; into larger neighbourhoods containing more and
more components of Sing. The number of connected components my(0B,) decreases with
increasing radius r and is locally constant away from critical radii (see figure .

Y-shaped Junctions and their Homology

Generically there are |I| — 1 internal trivalent vertices at which two previously disjoint local
models combine. The tree T then parameterizes a collection of such combinations. It suffices
to consider a single trivalent vertex as in figure [I4 Such a junction of symmetry TFTs is
supported on a Y-shaped tree. On the two legs at small radii we have the TFTs §; and Ss.
At the internal vertex these attach to the TFT Si5 describing symmetries at large radii. At
the internal vertex additional fields can be localized and enter into the gluing conditions.

We now derive the gluing conditions at the junction from geometry. First, note that
the topological fields on the legs of the Y-shaped graph derive via dimensional reduction
over the radial slices U, and we therefore need to track the corresponding cycles of U,.,,
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combine to §;; terminated by topological boundary conditions Biep. From this fundamental

Figure 14: Two relative theories B with symmetry topological field theory S; which

junction more generic graphs can be built.

through U,—,, to cycles of U,.>r*m. We reformulate this problem by noting that U, ., is the
deformation retract of the pair of pants

BR2>7~>R1: U UT, R2>T*>R1, (14)

R2 >T>R1

which has boundary 0Bg,~,>r, = Ug, UUpg,. Clearly there are embedding maps Ug, —
Bpr,~r>gr, and we denote their degree n lift to homology by

jng<7"*) : Hn(Ur<7“*) = Hn(URl) — Hn<BR2>7">R1) = Hn(UT’:T*)

(15)
2 Hy(Upsy,) = Hy(Ug,) — Ho(Brysrsr,) = Hoy(Up—y,)

which compare cycles in large radius shells with those of small radius shells by embedding
them both into the critical shell (see figure [15)).

Cycles of small and large radius shells are further put in relation by two Mayer-Vietoris
long exact sequence, one for small radii and one for large radii. These are setup such that
the mappings are maps of these sequences, offering a tool to compute them.

We begin by describing the small radius sequence. Denote the two connected components
of U,-,, as
Ur<r, = Urg)r* U Uﬁi)m ) (16)

where we suppress the index for notational purposes below. These two shells grow until they
touch along some locus
vt =y nu?®, (17)

r=ry =r

where the intersecting sets are such that we have deformation retractions UT(QT* — UT(QT*.
There we also have Ugr* UU@T* = U,—,, which is precisely the covering we use in formulating

20Note that Ur<r,, U=, and U, ., are defined for fized r and r, so these are codimension-1 subsets.
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Figure 15: Pair of pants describing the uplift of a SymTree junction.
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Figure 16: Movie growing the shells UTQT*, until they touch and subsequently overlap in V.
On the righthand side V' and U,.~,, only overlap in 0V

the Mayer-Vietoris sequence. The sequence

(r<'r*) (r<rx)

- Hn(Ugﬂl) —> H, (U( )*)@Hn<U£i)r*) — Hn(UT=T*> - . (18>
then contains the map ]%KT*) which relates cycles (and therefore fields) at small radii to

those of the critical shell. We label these maps by r < r, to emphasize that the covering of
the critical slice is derived by approaching it from small radii.

Let us next discuss the large radius sequence. Consider growing UEQT* to the critical slice
U,—., and then further, without changing the homotopy type, to what we will denote as
Ugr The shells press up against each other and share

v=0%, nU2, (19)

which has a boundary 0V # (). When V has the same dimension as UT(QT* (i.e. is also
codimension-1), then the closure of U,f>T \ V is a proper subset of U,EQT*. The shell U, ., is
then defined as the closure (Ur>r* uU,< @ )\ V. A depiction of this process is shown in figure
16l Finally, note that the shell U,~,, U V is deformation equivalent to U,—,..
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The Mayer-Vietoris sequence of the union U,.~,, UV therefore is

(r>rs) ]’1<’LT>T*)®]’£7,V)

.= H,(0V) 22— H,(Upsp,) @ H (V) 22— 5 H (U—.) — ... (20)
containing the map ]1(107"*) which relates cycles at large radii to those of the critical shell.

Let us anticipate the geometric origin of an extension problem implicit in the above.
First, note that V' can be viewed as a fattening of U,gr) Conversely V' deformation retracts
to U,Sfr)*, and consequently we have the pair of embeddings

o=V, U V. (21)

=T

The cycles in 9V and UT(ET) can therefore be compared. We can follow 0V through the

deformation retraction V' — U;izr) and therefore there exists a group homomorphism

v H.(0V) — H(UM)) (22)

which is neither injective nor surjective in general. Rather, generically, the image Im is
extended by elements of the homology group H.( T(fr)) to its saturation Im¢. The physical
interpretation of this extension to the saturation is essentially the same as that given in
reference [41]; a U(1) symmetry of the “bulk” can, when pushed into one of the relative
boundaries instead descend to a torsional symmetry generator in the boundary relative
theory. This is in some sense just a consequence of having suitable objects which can partially

screen the associated defects.

Y-shaped Junctions and Differential Cohomology

Dimensional reduction of the BLK topological terms results in the SymTFT for a given branch
of our tree. This reduction involves expanding the bulk fields in generators for differential
cohomology classes for the internal geometry [20]. With this in mind, we now turn to
an analysis of how the different differential cohomology groups fuse in the tree. Again, it
suffices to consider the case of a Y-shaped junction. More specifically, the symmetry TFT
fields originate via expansions along generators of the differential cohomology groups H *(U,).

The differential cohomology groups H *(U,) sit in the short exact sequenc
0 — oYU,/ NU,) - HP(U,) = HP(U,,Z) — 0, (23)

where QP(U,.) (resp. Q2 (U,.)) denotes closed differential p-forms (resp. with integral periods)
[54]. The groups H?(U,,Z) are standard singular cohomology groups which we can relate via
the universal coefficient theorem to the singular homology groups appearing in the Mayer-

Vietoris sequences and .

2 They also sit in 0 — HP~Y(U,,R/Z) — HP(U,) — Qb(U,) — 0.
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The embeddings tracking the deformation of cycles at small and large radius through
the critical slice corresponding to the junction, dualize to the restriction maps

jp : Hp(Ur:T’*) — Hp(URl) = Hp(U’I’<7”*)
(T‘<T*) (24)
Tosry: H(Uy) = HY(Ur,) = HY(Uysy.)

p
(T’<’f’>~<

classes which we use momentarily to formulate the boundary conditions for bulk cocycles of
the SymTree at the junction.

on cocycles and subsequently lift to the restrictions j ),j(’;, .y OLL differential cohomology

Flux Contributions

So far, we have mainly concentrated on the background geometry X, but this can be threaded
by fluxes in many cases. These fluxes emanate out from the localized singularities, e.g., in
systems with a brane probe of geometry. Such branes source a supergravity flux F'(x), which
is continuous away from the singularities of X.

Again, we first pick a favorable filtration F of the space X which satisfies the properties
listed out in subsection [3.I} There then exist cycles ¥, within the shells U, such that

n(r) = / K (25)

is a piecewise constant function. Appropriately normalized n(r) is a signed counting function,
counting how many branes sourcing the flux F' are contained in the ball B, = U,.<,U,.
Consequently n(r) is constant on branches of the SymTree and jumps at the junctionsF_ZI

Junction Theory

Finally, we come to the contributions localized at the junctions. As already mentioned, this
analysis is somewhat more delicate since in the stringy construction, such “jagged edges” have
already been smoothed out. In the case of brane probes of singularities, this is compounded
by the fact that some modes (e.g., U(1)’s) can end up being delocalized across the geometry,
so projecting them onto the junction is a somewhat discontinuous process.

That being said, there is no obstacle in seeing how the different differential cohomology
groups on branches fuse together at such a junction. Indeed, the group ﬁp(UT:r*) also
specifies gluing conditions across the junction for dynamical fields of the symmetry TFTs
attaching to the junction. Whenever we have fields in the SymTFT S,.,., = {S1,S2} and
S;~r, = S12, which result respectively via expansion along the classes

j?“<7‘* (Er:"’* ) a‘nd jr>r* (.E?":T* ) (26)

22This jumping phenomenon also signals the presence of additional light degrees of freedom, as dictated
by anomaly inflow considerations. We expand on this point in specific examples.
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with common origin within the pair of pants / the critical slice (recall they are deformation
equivalent), we have that their profiles necessarily glue along the junction. Equivalently,
they restrict to the same value at the junction due to their common origin as modes along
t,—... This corresponds to imposing Dirichlet boundary conditions for two out of the three
associated bulk fields at the junction. The overall glued profile is permitted to fluctuate, i.e.,

Neumann boundary conditions are imposed.

The fields not constrained by such a gluing condition are localized to the junction and
characterize dynamical degrees of freedom on the junction, such fields result via expansion
along the classes

Ker?_, = Kerjl., NKerjl, CH(U.-,.). (27)

In many cases, especially when focusing on discrete symmetry structures, it will be sufficient
to focus on the singular cohomology subgroup

Kerf_, = Kerjy.,, NKerjr., C H(U—,,). (28)

In order to completely determine the dynamics of the junction we however require informa-
tion beyond topology. The modes characterized by are dynamical only if this internal
p-form profile is L2-normalizable. When non-normalizable the corresponding field profiles
are better viewed as Lagrange multipliers which enforce identifications between different
SymTFT branches.

(r>ry)  (r<ry)

The embedding maps jn y In completely determine a Y-shaped SymTree up to
this question of normalizability. Their domain and codomain determine the TFTs on the
branches and the mappings themselves indicate, via dualization to cohomology and lifts to
differential cohomology, how the bulk fields interact across the junction. Above we have
interpreted the image and kernel of the related maps in cohomology, it remains to
interpret the cokernel.

Once the junction has been determined to support degrees of freedom, we may ask how
to interpret the bulk SymTree fields as associated with backgrounds for these. We consider
the cokernel of the mapping

v

J=GrarisJrsr) + H'(Uiz) = H' (Urey) © H (Ursy.) (29)

which correspond to bulk fields which are not fixed by gluing conditions. In particular,
denoting the composition of J with the projection down to singular cohomology by J, we
get the projections:

T *(Ur<r ) EB H*<Ur>r ) H*(U'I‘<T )
: k — * * *
Tr<ry coker J H (U2 — H (U ) 0
30
T *(Ur<7" ) @ H*(Ur>r ) H*(Ur>r )
: k — * * *
Tr>r, coker J H (U2 — H (U )



and consequently coker J can be viewed as an extension of the image of 7., , Ty, by its
kernel. This is the relevant cohomological version of the extension described around line
. The quotients on the righthand side are associated with SymTree bulk fields which do
not participate in gluing conditions and for which the junction imposes Neumann boundary
conditions. The bulk fields descending from coker.J relate to background fields for the
junction degrees of freedom.

4 Illustrative Example: Adjoint Higgsing of 7D SYM

To illustrate the considerations spelled out in the previous sections, we now turn to some
examples. Many of the key features are already present in the case of 7D Super Yang-Mills
theory (7D SYM), and so we first treat this case in detail. An advantage of this case is
that we have both an explicit stringy realization of this theory (and thus implicitly a UV
completion) as well as a field theoretic characterization of the multi-sector system.

With this in mind, this Section is organized as follows. First, we review the case of a
single 7D SYM theory, as well as the construction of heavy defects and topological symmetry
operators. We also explain how adjoint Higgsing is captured by deformations of the associ-
ated M-theory background. With this in place, we next turn to adjoint Higgsing / geometric
deformations which produces a multi-sector QFT at low energies. We explicitly show how
the SymTree theory arises in this context.

4.1 Gauge Theory via Geometry

Our starting point is 7D SYM, as realized by taking M-theory on the supersymmetric back-
ground:
RO x X (31)

where X = C?/T, and T is a finite subgroup of SU(2) with group action dictated by the
condition that we preserve 7D N = 1 supersymmetry (16 real supercharges). There is an
ADE classification of such finite subgroups, and these in turn specify the ADE type of the
7D SYM theory. As explained in [31] (see also [29,30,32]) the global form of the gauge group
is fixed by a choice of boundary conditions on X = S3/T'. In gauge theoretic terms the
center of the simply connected ADE Lie group is just the abelianization of I'. This follows
directly from the underlying geometry / gauge theory correspondence.

Indeed, in the relative QFT we can discuss the spectrum of Wilson lines (codimension 6)
and 't Hooft defects (codimension 3) and a choice of global form fixes the spectrum in the
absolute QFT. Wilson lines arise from M2-branes which wrap a torsional cycle in H;(S%/T)
of the boundary lens space, and which sweep out the radial direction as well, i.e., they
wrap Cone(y) for v € H;(S%/T"). Similarly, the 't Hooft defects arise from M5-branes which
wrap Cone(y) for v € H,(S?/T). As found in [33}35], the associated topological symmetry
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operators which act on these defects arise from branes wrapped “at infinity”. Indeed, the
1-form symmetry operator which acts on Wilson lines is generated by Mb5-branes wrapped
on a boundary 1-cycle, and the 4-form symmetry operator which acts on 't Hooft defects is
generated by M2-branes wrapped on a boundary 1-cycle. Specifying a consistent choice of
boundary conditions then fixes an absolute theory.

The Symmetry TFT for this theory follows directly from the braiding relations for the
various fields, and can be derived from dimensionally reducing the 11D kinetic term for the
M-theory 3-form field ’| Consider the special case where I' = Zy. Then, the 8D topological
action for the SymTFT is:

SgD:%N/BQ/\ng,—i—..., (32)

where the superscript indicates the form degree. Here B, and Cj take values in U(1) and
the overall coefficient of N restrict their periods to take values in Zy C U(1). We have also
dropped terms of the SymTFT associated with 2-form and (—1)-form symmetries. These can
also be extracted by dimensional reduction of the topological terms of 11D supergravity [20],
but for ease of exposition we focus on the 1-form and 4-form symmetries. We specify physical
boundary conditions on one end and topological boundary conditions on the other to fix the
global form of the theory.

Similar considerations hold for more general choices of I'; when the abelianization Ab(T")
is a cyclic group (all cases other than Dsy) we simply take N = |Ab(I")|, and one can likewise
extract a similar expression when I' = Dy, where the abelianization is just Zy X Zs.

4.2 Multi-Sector QFT via Adjoint Higgsing

Starting from this theory, we can generate a multi-sector QFT via adjoint Higgsing. Geomet-
rically, we start with a single singularity and then consider either a smoothing deformation
or blowup of the singularity so that the resulting geometry has distinct singularities after
the deformation. In field theory terms, we are switching on a background vacuum expec-
tation value for some combination of the R-symmetry triplet of adjoint-valued scalars in
the 7D N = 1 vector multiplet. Of course, since all of these vacua are part of the same
moduli space, there is a sense in which the original SymTFT still governs the structure of
the spectrum of heavy defects and symmetry operators. On the other hand, there is clearly
some approximate notion of the gauge theory corresponding to a single isolated singularity
and its associated heavy defects and symmetry operators. Our aim will be to sharpen this
correspondence.

The essential points are all captured by the case I' = Zy so in what follows we again
focus on this special case. There are natural generalizations to the rest of the ADE series,

23For details on this see Appendix
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albeit at the expense of a few more complications in writing out the explicit forms of blowups
and smoothing deformations.

To begin, then, we recall that an Ay_; singularity X = C?/Zy can be presented as the
singular hypersurface swept out by the locus:

2?4yt =2V, (33)

Adjoint Higgsing amounts to a deformation or resolution of this singularity. Here, we focus
on a complex deformation of the form:

2’ 4y = H(z — )N (34)

i=1

where Ny + ... + Ny = N, and Nyt; + ... + Ngtx = 0 (a tracelessness condition). This
corresponds to the breaking pattern:

SU(N) D S(U(Ny) x ... x U(Ng)), (35)
as triggered by a complex adjoint valued Higgs field of the formﬁ

<<I3> :tllleNl@---@tKlNKxNK7 (36)

where 1,743 denotes the M x M identity.

After this Higgsing, we find multiple sectors at low energies, i.e., where we restrict all field
ranges to be below the scales set by the ¢;. Indeed, we have massive W-bosons as obtained
from M2-branes which stretch between the separated singularities. This mass goes as:

Mij ~ [t; — t;]. (37)

Further, in the vicinity of any individual singularity we have a geometry of the form C?/Z N; s
and a corresponding 7D SYM theory with Lie algebra suy,. There are also u(1) sectors
which are delocalized / spread across the different singularities, and small fluctations about
the values of the ¢; (as well as the accompanying resolution parameters) fill out R-symmetry
triplets for the associated vector multiplets.

Focussing on just the non-abelian factors, we see a multi-sector QFT, but one in which
there are still residual couplings to abelian sectors as well as additional TFT degrees of
freedom. Our plan will be to extract the corresponding SymTree for this configuration.

24Two out of the three components of the SU(2) R-symmetry triplet are being switched on here. The
third one in this choice of complex structure corresponds to a blowup mode.
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4.3 Extracting the SymTree

By inspection, it is enough to focus on just the case where we Higgs the parent 7D SYM
theory to two non-abelian factors. Indeed, all other treelike structures can be obtained by
further Higgsing operations. In the case at hand, the Higgsed gauge group is:

SU(N) > (SU(N;) x SU(Ny) x U(1 /ZL, (38)

with N = Nj + Ny and where L = lem(Ny, Ny) is the least common multiple of N7 and Nj.
We denote by X’ the partial smoothing of X. The space X’ contains an Ay, 1 and Ay, 1
singularity at z = t; and z = t5 respectively and a compact 2-cycle stretching between these.
The adjoint fields of the SYM theory reorganize following the decomposition
suy — suy, ®suy, G u(l)
Ad[suy] — Ad[suy, ®suy, ®u(l)] & (N, Ng)N/g @ (Ny, NQ)_N/Q (39)
N — (va 1)N2/g D (17 NQ)—N1/9

where g = ged(Ny, Ny). Here the bifundamental fields are the massive W-bosons (in the
off-diagonal blocks) and arise from M2-branes wrapped on the compact 2-cycle.

Filtration and Critical Slice

We obtain the SymTree by first describing a convenient choice of filtration Fx/ sweeping out
the partial smoothing X’. The filtration has radial shells

Ursr, = S° /Ly, 40,
Urzr, = (5°/Zn,) Ugy, (S°/Zn,) , (40)
Urer, = (S°/Zn,) U (S [ Zny,)

with a single critical slice at r = r, (see figure . Here U sy denotes the gluing of the two

lens spaces along one of their Hopf circles. Running the Mayer-Vietoris sequence we find the
critical slice to be characterized by the homology groups

Z E=0
Z k=1

m((8*/2w) Ug, (/2 = { 0 77 (1)
72 k=3

where g = ged(Ny, Na). In Appendix [C| we identify the generators of (41)).
The filtration Fy- is motivated by the ITA dual setup consisting of two D6-brane stacks
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/ (53/ZN1) US}{ (Sg/ZNQ)

Sg/ZNz

r=20

J41 D2

Figure 17: We sketch the partially smoothed geometry X’ as a fibration over a Y-shaped
base. This picture presents a horizontal slice of figures similar to figure .

with common transverse space R?. We denote the location of the two stacks by p;,p, € R?
and by ST, S, spheres of radius 7 centered on these. A filtration Fia of R? is constructed
by first growing r. In the process two 3-balls are swept out, they grow until they meet in a
point. This results in a critical slice at radius » = r, which is the wedge sum

8%2,7'* = ‘912,7'* \/P 822,7'* . (42)

The rest of Fija follows by continuing to grow the spheres, taking the radial shells to be
their ‘peanut’ shaped exterior. The filtration Fy: is then the M-theory lift of Fia via the
Gibbons-Hawking ansatz, and the shells of Fija are extended to X’ by including all M-theory
circles projecting to these. In particular the point of kissingjﬂ p in line lifts to the circle
St and line lifts to U,—,,.

Projection to SymTree

We now reduce 11D supergravity on the radial shells U,. We retain only topological data
following the approach in [20]. This results in an 8D TFT action for each branch of the
Y-shaped graph of figure 17| and a non-topological 7D action describing the junction degrees
of freedom. These 7D and 8D modes derive from the 11D field strength G4 via KK reduction.

We discuss this reduction in detail in Appendices [B] and [C] There we show that we can
discuss discrete generalized symmetries in isolation of other structureﬂ occurring. The
relevant discrete symmetries are the 1-form symmetries of the various SYM sectors, and
their dual 4-form symmetries. The background fields for these symmetries are dynamical in
the 8D TFTs and interact at the junction.

In terms of differential cohomology classes we are restricting our attention to the coeffi-

25Namely, an osculation.

260f course the 8D TFTs on the branches of the SymTree are simply the SymTFTs of the
AN_1,AN,—1,AN,—1 TD SYM theories. The string theory analysis for these also produces (—1)-form and
2-form symmetries. We defer a discussion of interaction terms near the junction to Appendix @
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cients in the expansions

(r>r): Gy= B§r>r*) *tvéwr*) +...
(7’ = 7”*) : é4 = éér:r*) * {27“:7“*) + F’Q * ’112 4+ ... (43)
(r<r): Gy= ng*’l) *52(T<T*’1) + B§T>T*’2) *fz(rq*g) + ...

14

and omitting fields and interactions resulting from the “...” terms. Here, the generators £,
are torsional classes and are in correspondence with the torsional 1-cycles of the radial shells
U,. Their exponent indicates the SymTree branch they live on. The respective coefficient
fields valued in U(1) with periods taking values in finite subgroups of U(1). We make this
explicit by changing the normalization such that the fields now take values in Zg where

K = N, Ny, Ny, g. This rescaling is reflected in notation as

S (r>r 2L S (r=r 2L o (T<ry,i 270 2 (N,
Bé >7y) — ﬂBéN) Bé «) — ﬂng), B§ <Tsyi) — ﬂB(Nz)

44
N ) q Nz 2 ) ( )

where the exponent now keeps track of the order of the form with the index continuing to
record its degree. The free generator s is in correspondence with the free 2-cycle in (41])
which only exists at the critical radius » = r, and results in an abelian gauge field localized
to the junction. The fields of the SymTree under consideration are thus

(r>ry) : BéN)

(r=r.): BY 4 (45)
. (N1) (N2)

(r<mr.): By, DB

together with their magnetic duals. The discrete fields By are background fields for the
1-form center symmetry.

We now determine the theory localized at the junction and the gluing conditions across
the junction. Evaluating the Mayer-Vietoris sequences of lines and we find the
intersection of kernels in line yields:

Ker® =17. (46)
This kernel characterizes the fields at the junction not arising as restriction of bulk fields.

Since the field content is supersymmetric, we conclude that the dynamical junction degrees
of freedom organize into the following theoryP'}

7D N =1 u(1) vector multiplet. (47)

27This mode is understood to arise via Higgsing from which we infer that the 2-form is L2-normalizable,
i.e., the u(1) theory is dynamical.
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Further, line implies that the junction field B is eaten up by identifications. Indeed
computing the images of the maps J,.,. J,-,., defined in line (24)), we find

m732, ~7,6Z, Imj32. ~7,, (48)

implying that the low radius pair BéNl) and BéNz) glues via Bég) to the large radius field
BéN). More precisely, at the critical slice we have the restrictions

N N. N
—B™| =B, =B =B, =B =BY. (49
g

T=Tx

=Ty r=ry

The background field Bég ) is thus auxiliary and can be eliminated, straightforwardly implying
the junction gluing condition

N, N,

T=Tx

B(Nl)

N:
! By

(50)

T=Tx

which is an equation with coefficients in Z,.

We turn to discuss how the abelian junction theory interacts with the three 8D TFTs.
The point of view taken here is that the junction theory itself is relative and that the
fields B§Nl),B§N2), BéN) admit an interpretation as background fields for (a subgroup of)
its 1-form center symmetry. Solving the extension problem in geometry we determine the
relevant subgroup to be Zpy/, C U(1) which naturally arises in the extension

0 - Z;, — ZLN/g — ZN/g — 0 (51)

where L = lem(Ny, Ny). Let us denote 1-form symmetry backgrounds of the junction theory

W) \where we introduce ¢ = LN /g for convenience, sim-

contained in this subgroup as Bg’U
ilarly we introduce a background for the subgroup Z; C U(1). Studying the small radius

Mayer-Vietoris sequence we find the identifications

N. N
g = N2 paoay vy N pavay (52)

which fundamentally are identifications between center subgroups of U(1) and SU(XV;). Next,
studying the large radius Mayer-Vietoris sequence we find the identifications

gBN = LBV (53)

The righthand sides are related simply as (N/ g)Bg’U(l)) = BéL’U(l)). Note, that these are
identifications and not gluing conditions, the restriction to the critical slice |,—,, is missing
compared to . One can check that the interaction of the 8D fields with and across the
junction is now fully determined. They either glue across the junctions or enter the u(1)
theory. For discussion and details on geometrization of the above see Appendix [C]
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Overall the action of the SymTree now takes the form

S= > Sp+ Y Sp

branches b internal nodes n (54)

1 2 12 J
= S + S5+ S5 + 84,

where the final term is the junction theory, which includes a 4D N = 4 u(1) vector multiplet
that arises from the relative separation of the D3-brane stacks, and also enforces the iden-
tifications for the 8D bulk modes. The first two 8D terms are supported at r € (0,r,), the
third term is supported along r € (7., 00) and the fourth terms is in 7D located at r = r..
The first three terms each correspond to a leg of the Y-shaped SymTree and are topological,
explicitly

o
s = 21 / B Use™ 4 .
N1 Jgroax (o)
-
S = 5 / BN uscM™ + (55)
2 JRO1Ix(0,ry)
-
s\ - 21 BM usct™ 4

N R6:1 % (74,00)

where the omitted terms include fields for the 2-form and (—1)-form symmetry derived from
the 11D Chern-Simons term éi, see Appendix . We have switched from d to § for our
differentials from wedge product to cup products compared to to emphasize the change

from differential forms valued in U(1) to discrete cocycles.
(retract)
phys

from retracting the suy, SymTree branches into the u(1) junction, as in figure |4 and

We now comment on the difference between B , the boundary condition obtained

phys ?
the boundary condition associated the parent suy,;y, theory. Recall from Section [2] that

retraction consists of simply dimensionally reducing the two SymTFTs of the branches along
the interval. This means that the retracted theory includes the 7D gauge theories from each
interval end which combine, with the junction degrees of freedom, to form a suy, ®suyn, Hu(1)
gauge theory while Ség and Sg)) vanish. Interestingly, this boundary condition has defects
which are localized within it. Upon contraction defects running between the suy, boundaries
(as in configuration (iv) of figure[7)) descend to defects in the engineered theory. The manner
in which bulk fields reduce to background fields of the 7D theory is precisely given by
lines and . In comparison, BSTYHS) in this example is realized by physically moving
the Ay,—1 and Ay,_; singularities together to form a Ay, n,—1 singularity. This fuses the
boundary conditions of the branches of the SymTree to a 7D suy, n, gauge theory, setting
the standard physical boundary conditions for Sgy.

Field Theory Interpretation

We now discuss the above from a field theoretic perspective. This perspective relies heavily
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on understanding the origin of the junction via the Higgsing specified by line . More
invariantly, we are relying on an understanding of how the physical edge modes fuse with
the junction theory. In contrast the geometric analysis yields identical results without this
additional input.

Our starting point is the Higgsing, which we repeat for convenience here:
SU(N) — (SU(N,) x SU(Ny) x U(1 /ZL (56)

Note that this deformation does not change the 1-form center symmetry of the theory. In-
deed, screening arguments are insensitive to such deformations as is clear from the geometries
X, X’ exhibiting the same boundaries and the partial smoothing X’ — X introducing no
1-cycles.

We then may ask how to represent a 2-form background field configuration of the lefthand
side via data of the righthand side. This is equivalent to asking how to represent a center
element of the lefthand side as a combination of center elements on the righthand side modulo
identification imposed by Zr.

Observe that the Z, C Zy subgroup embeds into Zy, X Zy, without involving the U(1)
which is the content of the gluing condition . Therefore it remains to track the Zy/,
from left to right. This now necessarily involves the U(1) and turns on line (53)). However
no element of U(1) except the identity is a central subgroup of SU(N), we therefore need to
compensate the U(1) profile by turning on a subgroup of Zy, x Zy, which is not central in
SU(N). The subgroup Z, C Zn, X Zuy, is central in SU(N), therefore we are turning on a
subgroup of (Zy, X Zy,)/Z,, exactly as in line (52).

4.4 Multi-Sector Defects and Symmetry Operators

Let us next turn to the defects and symmetry operators of the multi-sector QFT. We have
already reviewed how these arise in the UV parent theory, and in an electric polarization
where we have the Zy center symmetry, the absolute theory admits the following objects:

Defect Operators: M2-brane wrapped on Cone(7) (57)
Symmetry Operators: Mb-brane wrapped on

where v € H,(S%/Zy) and the cone over v stretches to the singularity.

Consider next the SymTree generated by our smoothing deformation / adjoint Higgsing
where we are left with C?/Zy, and C?/Zy, singularities. In addition to the localized non-
abelian gauge groups, we also have a delocalized u(1) sector (i.e., an N/ = 1 vector multiplet)
which we interpret as part of the junction of the SymTree.

Let us now turn to possible heavy defects and symmetry operators of the parent UV
theory and how they are interpreted in the multi-sector QFT. To do this, it is enough to
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study the fate of the various boundary cycles v € H;(S?/Zy) and what happens to them
as we push them down to the junction and to the individual singularities. The Gibbons-
Hawking ansatz tells us that the generator of H;(S%/Zy) pushes downwards into the local
model of C?/Zy, without obstruction. However, the equivalence relations imposed on the free
group generated by this chain is sensitive to the radial shell it is being considered in, giving
different homology groups in degree 1. Similarly generators of H;(S®/Zy,) can be deformed
between the two singularities without obstruction. From here 2-cycles are constructed, which
are simply traced out by these 1-cycles following these deformations.

Defects follow by wrapping M2-/M5-branes on the constructed 2-cycles, and returning
to figure |7, we see that fundamentally we are constructing defects of type (iii) and (iv). Any
defect of type (v) is a composite of these. Defects of type (ii) do not exist.

Defects of type (iii) and (iv) constructed in this way correspond to the representations in
(39) carrying U(1) charge. Dressing amounts to tensoring the non-abelian representations
by the abelian ones, dressing the former by the latter. The U(1) charge is computed via an
intersection. In Appendix [C| we show that the abelian generator is geometrized as (see the
discussion leading to for notation)

Y= (NaXi/g) Ursy, (—NX2/g). (58)

In an electric frame, Wilson lines in the fundamental representation N; are constructed by
M2-branes wrapping the 1-cycle homology generator at “true infinity” S®/Zy fibered to the
C?/Zy;, singularity. In the critical slice we find a U(1) line with charge ¢; = ; - & where ; is
a representative for the 1-cycle from the ¢-th local model. We have v, - ¥; = ¢;; and therefore

N. N
Q1=—27 Q2=——1; (59)
g g
correctly reproducing . Taking orientations into account, the charge of the bifundamental
is of course ¢; — ¢ga. We have the dressing N; ® 1,, = (N;),, and (N, No) ® 1,4, =
(N1, N3)4 —g which are the true defects of the system.

There also exist defects which need not be dressed. By the above analysis we found a
subgroup Z, C Zy to glue across the junction, to Z, C Zy, X Zy, and not involve the U(1).
At the level of defects this describes a configuration of type (v). We begin with N/g copies
of the generator of H(S%/Zy), fiber these radially inwards, and after the critical slice we
fiber N;/g of these to C?/Zy,. The dressing line has charge (N;/g)q1 + (N2/g)g2 = 0 and is
trivial.

Similar considerations hold for the topological symmetry operators, with M5-branes now
wrapped on the torsional cycles of Hy(S?/Zy). We discussed this in general terms in figure
|§|. For Mb5-branes wrapped on v € Z, C Zy, the symmetry operator can be pushed down
into the pair of throats according to Z, C Zy, X Zy, where they act on the corresponding
lines. This corresponds to subfigure (iv) of figure [0} When v ¢ Z, C Zy, we have a further
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dressing by operators of the junction theory, as captured by the Zj, charge. This corresponds
to subfigure (ii) of figure [9]

5 More Multi-Sector QFTs via Moduli Space Flows

In the previous Section we focused on the special case of 7D SYM as realized by M-theory
on an ADE singularity. Under adjoint Higgsing, i.e., a smoothing and / or blowup of the
geometry, we arrived at a multi-sector QFT. Similar considerations apply to other QFTs
which admit such geometric deformations. In this Section we present a few such examples
which have either a similar geometric or field theoretic realization.

As a first class of examples, we consider the case of multi-sector 6D SCFTs realized
via tensor branch deformations. Geometrically, these are quite similar to the case of 7D
SYM, but with a different physical interpretation of the SymTree and associated defects and
symmetry operators. We illustrate how this works for brane probes of smooth and singular
geometries. A pleasant feature of some brane probe theories is that, in a suitable large
N limit, they result in multi-throat AdS configurations. This in turn provides us with a
holographic description of the SymTree.

5.1 6D SCFTs and their Compactifications

Let us now turn to the SymTree for 6D SCFTs as realized in F-theory backgrounds [55-H57]
(see e.g., |2526] for reviews). In all these cases, the base of the F-theory model is of the form
C?/T for T a finite subgroup of U(2). A suitable elliptic fibration results in a non-compact
elliptically fibered Calabi-Yau threefold which preserves (at least) N” = (1, 0) supersymmetry.
In this case, we have stringlike surface operators defects from D3-branes wrapping cones of
boundary one-cycles Cone(y) with v € H;(S*/T") ~ Ab(I"). Indeed, the 2-form symmetry
for the relative theory is specified by the abelianization of I" (see reference [29]). There can
in principle also be O-form and 1-form symmetries, but these are model dependent so we
defer an analysis of this structure to future Work.@ For ease of exposition, we also assume
that I' is of generalized A-type, namely that it is always just a cyclic group Zy with some
group action induced from the action of U(2) on C?. All other choices were classified in |29
and result in quite similar conclusions.

Focusing, then, on just the 2-form symmetry, the SymTFT for this theory follows from
dimensional reduction of the topological action associated with the chiral 4-form of type 1B
string theoryFE]

Sy = iN/Qo, AdCs + ..., (61)
47

28For some discussion of this, see e.g., references [58-63].
29A proper derivation of the 7D SymTFT is a bit subtle because we are dealing with reduction of a chiral
4-form. Following the treatment in [22] as well as [201|53}/63-65], one starts from an 11D spacetime and a
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where the refers to additional topological terms which captured contributions from

possible 0-form and 1-form symmetries.

Now starting from this 6D SCF'T, we can consider a tensor branch flow which results in
the system breaking up into a multi-sector QFT. Geometrically this corresponds to blowing
up some collection of the previously collapsed curves. Doing so, we can get local singularities
of the form C?/Zy, and C?/Zy,. It is now clear that the geometric structure of a SymTree
found in the case of 7D SYM simply carries over since we again have boundary lens spaces
which fuse togetherm Carrying on in this way, we can simply take our previous analysis
of the SymTree action and make some small adjustments to reach the answer for our 7D
theory.

Overall the action of the SymTree for a trivalent junction now takes the form
s= Y she Y s
branches b internal nodes n (62)

1 2 12 J
- SéD) + SéD) + S§D) + SéD)

where the final term is the junction theory, which includes a 6D N = (1,0) tensor multiplet,
and also enforces the identifications for the 7D bulk modes. The first three terms each
correspond to a leg of the Y-shaped SymTree:

S0 _ ﬂ/ M U s 1
N1 Jgsax(or.)
S& = %/ ci™ usci™ + (63)
2 JR51x(0,r4)
s _ T oM usc™M 4.
N R 1 x (ry,00)

So, up to a few small rearrangements in the physical interpretation of various higher-form
potentials, we see that we again reach precisely the same SymTree structure considered
previously. Here we have again rescaled fields similar to as indicated by their raised
index.

Chern-Simons-like action equipped with a Wu structure:

)
S1ip = E /05 A dCs. (60)

Then, treating the 10D spacetime as a boundary, we impose the condition C5 = %19pC5 as Cs is an 11D
extension of the self-dual 5-form RR flux in IIB. Following a similar analysis to that presented in Appendix
we can then consider the reduction of the associated “boundary kinetic term” on the linking S%/Zy to
arrive at the 7D TFT action. For related discussions see e.g., references [221[65].

300ne might ask whether the difference between a finite subgroup of SU(2) versus U(2) plays a role here.
At the level of topological structures, it does not appear to make much of a difference, although it can affect
link-pairings between cycles.
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Similar considerations hold for compactifications of 6D SCFTs. For example, starting
from the 6D A = (2,0) theory, compactification on a T results in a 4D N = 4 SYM theory,
the global form of which depends on the compactification and boundary data. In this case,
we can again extract a similar SymTree via adjoint Higgsing. We can also engineer various
4D N =2 SCFTs with a Coulomb branch moduli space by compactifying the 6D N = (2,0)
theories on a genus g > 1 Riemann surface, as well as by compactifying 6D N = (1,0)
theories on a T2. In all these cases, we get multi-sector QFTs as dictated by geometric
deformations of a single parent theory.

5.2 Branes in Flat Space

We can engineer much the same sort of theories starting from brane probes of geometry. For
example, 4D N = 4 SYM with an A-type gauge group follows from a stack of coincident
D3-branes filling 4D Minkowski space and sitting at a common point of C3.

Focusing on the brane realization, the SymTFT is in this case obtained via dimensional
reduction on the boundary OC? = S° in the presence of the RR 5-form flux sourced by the
D3-branes. Indeed, reduction of the type IIB term F5 A By A F3 results in a 5D SymTFT
action (see [21]):

i
Swp = 5-N / By A dCh, (64)

when we have N coincident D3-branes. Partitioning up the stacks into individual segments
by adjoint Higgsing, we again see a treelike structure emerge.

Overall the action of the SymTree for a trivalent junction now takes the form
b n
s= Y s Y s
branches b internal nodesn (65)
1 2 12 J
= 50+ 53+ S + 5
where the final term is the junction theory, which includes a 4D N = 4 u(1) vector multiplet,

and also enforces the identifications for the 5D bulk modes. The first three terms each
correspond to a leg of the Y-shaped SymTree:

o
St = ﬂ/ B usc™ 1.
N1 w30,
271
S@ = _/ BM™ usci™ + ... (66)
No Jrsix(0,)
o
sy _ = BMusct™ 4.
N R3:1 % (ry,00)

Here we have again rescaled fields similar to as indicated by their raised index.
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Figure 18: Depiction of line operators after adjoint Higgsing of 4D N = 4 SYM with gauge
group SU(N) = SU(N; + N3) to S(U(Ny) x U(N3)). A non-genuine 't Hooft line (0,1) and
dyonic line (1, —1) of two sectors of the multi-sector theory can fuse at the junction with
an electric Wilson line (1,0). These are realized by (p, q)-strings, i.e., bound states of p
Fl-strings and ¢ D1-strings. This implements an explicit example of the general phenomena
anticipated in figure [[1}

One can also consider the explicit construction and analysis of defects and symmetry
operators in this case. In the D3-brane case, the heavy defects of the relative theory are
engineered via F1- and D1-strings which stretch from the boundary of C? to the stacks of
D3—branesﬂ Starting from an electric polarization of the parent SU(NN) gauge theory, we
observe that the electric Wilson lines persist in the individual throats. Additionally, we
observe that we can also form string junctions which start as F1 strings at the boundary
S5, but which fragment to a D1-string and a dyonic (1, —1)-string on the other throats.
These are associated with “non-genuine” line operators of the individual sectors. We see
this explicitly in the decoupling limit because this non-genuine line ends on a topological
surface operator constructed from everything else attached to the junction theory (which is
now at infinity). See figure [18| for a depiction of this phenomenon.

A pleasant feature of this setup is that the near horizon limit of an individual stack of N
D3-branes results in the semi-classical gravity dual AdSs x S® with N units of self-dual 5-form
flux threading the geometry [66]. Partitioning up N = Ny + ... + Nk, and assuming each NV;
is still sufficiently large to produce a semi-classical gravity dual on its own, we observe that
we get a multi-throat configuration of AdS vacua, as in figure Clearly, we still retain the
structure of a SymTree, although here, the radial direction of the AdS throats corresponds
to the radial direction of the SymTree. Down a given throat, we have a geometry of the
form Ang) X S?i) threaded by N; units of RR 5-form flux. The merger between the different
throats results in a jump in the level of the associated bulk 5D topological term. Additional
degrees of freedom are localized at these special radial slices, and these are just the locations
of the junction theory (in the SymTree). Of course, in the holographic dual the 5-form flux
varies smoothly over the 10D geometry; the jumping occurs because of reduction on the

31The defect group is expected to be captured by a suitable generalization of twisted K-theory to RR
fluxes (see Appendix A of [36]), but at the level of the SymTFT, this matters little.
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Figure 19: Sequestered substacks of D3-branes are described in a near horizon limit by a
multi-throat AdS configuration. Throats merge at the length scale R, characterizing the
depth of the throats.

linking S%’s.

The View from a Single Stack

Although we have emphasized a “democratic perspective” for how to realize the SymTree
in terms of branes probing an extra-dimensional geometry, it is also interesting to consider
the view from a single stack, where we continuously enlarge the size of shells including the
branes. Doing so, we begin down in the deep IR of a single AdS throat with a fixed value of
Nj for the amount of brane flux. As we go further into the UV, we encounter a domain wall
(another stack) and the total amount of flux jumps to Ny + Ny. At the domain wall, we have
localized degrees of freedom which absorb the anomaly inflow generated by the mismatch
in topological terms on the two sides of the interface. Continuing in this fashion, we again
build up the local structure of a SymTree.

5.2.1 Wilson Line Dressing

It is instructive to consider in more detail how heavy defects end up being dressed by addi-
tional degrees of freedom localized near the junction of the SymTree. To illustrate, we again
focus on the case of 4D N = 4 SYM with gauge group SU(N) = SU(N; + ...+ Nk), i.e., the
electric polarization of the relative suy theory and consider adjoint Higgsing to the subgroup
S(U(N;y) x ... x U(Ng)). The relative suy, theories specify physical boundary conditions of
the SymTree, while the u(1) factors sit at the junction(s). See figure [20| for a depiction of
the case with a single multi-valent junction.

We can rephrase the above in terms of U(XV;) gauge connections which we decompose as:

a;

)
A; Z+N¢

1y, xn;, (67)
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Figure 20: SymTree with topological boundary condition for SU(N; + Ny + -+ + Nk)
global form, and junction and tree T describing the Higgsing SU(N; + Ny + -+ + Ng) D
S(U(Ny) x U(Ng) x ---x U(Ng)). Node theories are 4D SYM with indicated gauge algebra.

which embed in the SU(/V) connection in the obvious way@ In particular, we have the
overall trace constraint:

N1a1—|—...+NKaK = 0. (68)

Suppose we now attempt to construct a Wilson line in an irreducible representation R;
of the suy, throat] On its own, this does not really make sense because the global form of
the SU(N) gauge group has an electric Zg) symmetry, whereas the suy, gauge theory has
). We can dress the “naive” Wilson line for SU(N;) gauge

electric defects acted on by Zg\lf
theory by an overall U(1); line:

W gr = WA oxp (—z'q<Rz-> / ) | (60)

where ¢(R;) is simply the N;-ality of the representation:

_ #boxes(R;)

(Ry) = O (70)

in the obvious notation.

Returning to line , we can of course also project down to the K — 1 independent U(1)
vector potentials, e.g., matching back onto . Consider for example the case K = 2 with
R; the fundamental representation of suy,. The dressing of line then corresponds to
the representation (R;); where the added U(1) gauge field is that of the abelian factor in

SU(N;) x U(1);

Ui = Zn,

(71)

32q; is the trace of the U(NV;) gauge connection in the fundamental representation.

33In stringy terms, we get the fundamental representation of suy, from an F1-string which descends to the
stack of D3-branes. Higher-dimensional representations are obtained by merging such lines, i.e., via fusion
of these fundamental lines.
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We now reduce to a single abelian factor as in

where L is the least common multiple lem(Ny, N2). Denoting this U(1) potential as a, it is
related to the U(1); vector potentials as
Ny Ny

a; = —a, ap = ——a (73
1 2= )

which is consistent with the constraint as well as the charge assignment in the final line
of (39).

From manipulations like the above we now see that the individual 1-form symmetries
across the different relative sup, theories are correlated. Indeed, precisely because all of
these Wilson lines descend from a parent SU(V) gauge theory, observe that the electric Zgl,)
1-form symmetry naturally acts on each of the Wy, 4,’s. Suppose next that we fix a Young
diagram ) such that this can be interpreted as a representation Rzy of each suy;, factor

We can then build an operator which transforms under the parent 1-form symmetry:

K
Wy = Z Wy (74)

2
i=1

where R denotes the representation of suy, with the same Young diagram. The line operator
Wy has N-ality charge dictated by the number of boxes. This makes the transformation
of the Wilson lines consistent in each individual throat, and the dressing by the U(1) line
operators ensures that there is a common phase rotation for each summand.

Since we have labelled our Wilson line operators by a choice of Young diagram ), it
is natural to ask what happens when this Young diagram has a sufficient number of boxes
which anti-symmetrize indices in the representation so that ) does not specify a genuine
representation for some choice of ;. In this case, we take this to mean that the original
Whgy of a given suy, theory has actually broken up into a product of Wilson lines labelled
by smaller Young diagrams. This is in accord with how we would treat heavy probe quarks
in the corresponding representation.

5.3 Branes at Singularities

As another class of examples, we now turn to multi-sector QFTs realized by brane probes
of singularities. More precisely, we assume that we have a single stack of branes probing a
Calabi-Yau singularity, where we can geometrically deform both the singularity, as well as

340f course the notation here is a bit redundant once we specify R;. It is more to emphasize the point
that it is all dictated by the Young diagram.
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Figure 21: Deformation of a necklace quiver with L nodes to a pair of quivers with Ly, Lo
nodes respectively. The quivers are (locally) engineered by a stack of N (respectively NV;)
D3-branes probing C?/Zy, (respectively C?/Zr,).

the stacks of branes. From the perspective of the Calabi-Yau singularity, we are dealing with
a higher-dimensional QFT which has a collection of defects, as realized by the probe branes.
For a different approach to bulk modes coupled to dynamical SCFT edge modes realized via
geometry, see reference [37].

There are many ways in which such systems can arise. For example, we can take the
7D SYM theories as realized by M-theory on C?/Zr, and introduce a stack of N M5-branes
probing the singularity. This results in a 6D conformal matter theory.ﬁ Introducing a
smoothing deformation, the original A-type singularity breaks up into a collection of A-type
singularities which are each locally of the form C?/Zj, with L = L; + ... + Lx. We can
also partition up the stacks of M5-branes as N = Nj + ... + Ng. Similar considerations
hold for a stack of N D3-branes probing a C?/Zy, singularity where we can perform a similar
partitioning of the geometry (see ﬁgure. To keep our discussion general, we assume we are
dealing with a local Calabi-Yau singularity X which admits smoothing deformations to local
singularities {X;}/Z, and a stack of N branes which we partition up as N = Ny + ... + Nk,
i.e., we assume there are no obstructions in the moduli space (as generated by a potential).

As a general comment, it can happen that the brane probe specifies a QFT Tiiane in
dimension D but should be viewed as a defect of a D' > D-dimensional QFT Tgeom engineered
by a geometric singularity.ﬂ From the perspective of the SymTFT Spiane for the brane
probe theory, the theory Tgeom actually fills out the higher-dimensional bulk. This occurs,
for example, in configurations such as M5-brane probes of ADE singularities, where the
holographic dual is (in the large number of M5’s limit) AdS; x S*/Tapg with the 7D SYM
sector filling all of AdS;. This issue is not unique to SymTrees but generically arises in the
stringy realization of a SymTFT in the first place. Strictly speaking, then, the SymTFT is
no longer purely a TFT since we still have gapless degrees of freedom in the bulk. This arises
in many string constructions, see e.g., reference [37] for some recent examples along these
lines. In this case, then, the SymTree will generically have branches which might include

35For various properties of conformal matter, see e.g., references [56,/62,67H69].
360f course, it could happen that D’ = D, in which case the subtleties which we now discuss do not arise.
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both gapped as well as gapless degrees of freedom.

With these subtleties addressed, let us now turn to the structure of the SymTree in
this setting. First of all, we have the “true infinity” which consists of the boundary 0X as
threaded by some units of fluxes (as sourced by the probe branes). On the other side of the
tree, we have physical boundary conditions, as obtained both from the stacks of branes and
singularities. Indeed, we can begin by separating the singularities from the branes, and they
specify different sorts of boundary conditions. For example, the singularities are generically a
higher-dimensional relative QFT and the branes specify a lower-dimensional “defect” QFT.
Starting near one such boundary condition we can build up ever larger radial slices around
any one of the singularities or stacks of branes. Eventually, they touch, and we produce a
SymTree again. In the cases just mentioned, we have three generic situations for the local
structure of the SymTree:

e Trivalent junction from fusing two stacks of branes
e Trivalent junction from fusing two singularities

e Trivalent junction from fusing a brane with a singularity

We have already dealt with the first two cases, where we also dealt with the junction theory.
This leaves us with the fusion of a brane probe with a singularity. In this case, we analyze
the junction by pushing the singularity up into the bulk of the SymTree. This results in
a single branch which begins with a brane stack physical boundary condition, and which
then transitions to the singularity. Prior to reaching the singularity, the local geometry
of the brane stack is simply R" with a boundary S"~!. Once we cross the singularity,
however, the boundary jumps to 0.X;. This can therefore be treated as a single SymTFT,
and reduction on the boundary in the presence of a flux proceeds in precisely the same way
as already discussed. See figure 22| for a depiction of a hybrid SymTree with both branes
and singularities.

A special multi-sector QFT of interest is where we focus on the worldvolume degrees of
freedom of the branes, ignoring the contributions from the higher-dimensional QFT generated
by the singularity. To analyze this case, we start from the SymTFT for N; branes at the 5
singularity and pull the singularity off the physical boundary condition. Doing this for all
the sectors, we can now fuse together the singularities first. Thus, this reduces to one of the
cases previously considered.

6 Isolated Multi-Sector QFT's

The operating theme in many of the previous examples has been to start from a single parent
UV theory, and to then initiate a flow on moduli space which, at low energies, results in a
multi-sector QFT. In this Section we consider a class of multi-sector QFTs which arise simply
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Figure 22: SymTrees for brane probes of singularities. (i): stack of K D3-branes probing
an C?/Zy singularity. In the extra dimensional geometry the D3-branes and the singularity
are separated. (ii): cross-section of this configuration. (iii): we contract a branch / center
the filtration on the D3-brane stack. Moving radially outwards from the D3-brane stack the
linking S% with K units of D3 flux sweeps over the singularity and is folded to an (S°/Zy) k.
(iv): we contract another branch pushing the brane stack into the singularity. This alters the
physical boundary condition and the massless edge modes are now organized into a quiver
gauge theory. The shaded slabs / red cross-section signify, from the perspective of 4D edge
modes / 5D slabs, that the ADE locus is non-compact. It stretches to infinity of the respec-
tive filtration and alters the boundary conditions.

(v): the SymTree of two stacks of D3-branes probing a partial resolution of a C?/Zy singu-
larity. The internal dimensions contain a pair C*/Zy, singularities and K; D3-brane, where
i = 1,2, and which are all separated. In (vi) we show the cross-section and label branches
by the geometry of the corresponding radial shells and their D3-brane flux. Note, there is a
purely geometric junction 78 and junction purely characterized by adjoint Higgsing of a
brane stack J®3).
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from geometries with multiple singularities, but in which the collision of such singularities
is always at infinite distance in moduli space. Consequently, we do not have a single sector
parent boundary condition Bé%lyli), however B;fyt;m) is still well-defined as in figure . To
illustrate, we focus on some examples of isolated orbifold singularities where the underlying
QFTs are coupled by purely topological terms. We begin by revisiting 7D SYM theories, as

well as 6D SCF'Ts, and then turn to an example with 5D SCFTs.

As a general comment, a common feature we shall encounter is the appearance of a pu-
tative U(1) symmetry factor as associated with the local motion of the isolated singularities.
In a compact model we would indeed get a normalizable mode associated with this defor-
mation, but in the decompactified limit, this mode is log-normalizable, i.e., its kinetic term
is proportional to log VolX (in Planck units). To maintain continuity with our discussion
of the junction theories in earlier sections, we shall therefore continue to include this U(1)
factor, but it is important to bear in mind that in the limit decoupled from gravity, it does
not contribute a normalizable mode in the SymTree. However, once we couple to gravity,
this mode “comes to life” so we include it in what follows.

6.1 Revisiting Multi-Sector 7D Models

To generate isolated multi-sector 7D SYM sectors, we return to M-theory, but now introduce
ADE singularities such that the product group G X ... Xx Gk cannot be obtained from adjoint
Higgsing from a single simple gauge group factor. This occurs in many situations, e.g., when
all G; are E-type gauge groups.

One way to geometrically engineer such examples is to start in F-theory, where we realize
such gauge group factors in terms of a suitable SL(2, Z) monodromy transformation around a
codimension two singularity of a 7-brane, as marked by a distinguished point in the complex
line CFP7| In this way, the entire ADE series of Lie algebras dictates a specific monodromy
structure. Far away from the 7-brane, we characterize this in terms of an SL(2,Z) duality
bundle on the boundary S* = 0C, i.e., § — 6+27 means acting by M7_prane, the monodromy
matrix for the 7-brane in question. Note that this also implicitly specifies a 7 bundle over
the boundary S* [60L|71},72].

Suppose now that we have multiple codimension two singularities, as captured by mon-
odromy matrices My, ..., M. The structure of the F-theory geometry is just as before, but
now the “true infinity” involves a monodromy given by the product M;...Mg. The fusion
of junctions and the corresponding change in the bundles at each step is also captured by
products of such monodromy matrices.

With the F-theory characterization in place, we pass to M-theory by further compacti-
fication on a circle, in which case the F-theory torus now becomes part of the target space
geometry. Everything we have just specified in terms of monodromy matrices is directly

3TFor example, in terms of the standard A,B,C non-perturbative 7-branes of reference 70|, the Ey series
is realized as AN~1BC?.
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(1) (ii) (iii)

Figure 23: We depict the base of the local K3 7 : X — B = C. The preimage under 7 of
a base filtration Fp gives a filtration Fx. The critical slice projects to a figure eight. The
filtration for the base lifts to the full geometry, as determined by the SL(2,7Z) monodromy
matrices My, Ms.

specified by a choice of T? bundle over an S'. We also see that when the radial shells sur-
rounding two distinct singularities just touch, there is an additional free generator in the
homology group of the boundary 3-manifold. This is the U(1) of the junction theory.

Observe that in the above discussion, we did not assume that we could push the singu-
larities on top of one another. Of course, we can specialize to the case of adjoint Higgsing,
e.g., when all the M; commute and each specifies a monodromy of the form 7 — 7+ N; as
we get for an suy, gauge algebra. In this case, we can merge all the singularities at finite
distance in moduli space.

On the other hand, we can also consider cases where merging the singularities is at infinite
distance in moduli space. This case gives us an example of a multi-sector QFT where each
sector is fully isolated from its neighbors ¥

We now turn to the construction of the SymTree in these cases.

Filtration and Critical Slice

The filtration of Fx is constructed using the elliptic fibration structure 7 : X — B, with
base B = C, via the lift of a filtration Fpz of the base. Any base filtration Fpg lifts to a
filtration of X by replacing the radial shells of F by their preimage with respect to 7. Now,
the ADE singularities of X project to two points p; € C and we simply pick Fp to be swept
out, at small radius by two circles S} centered on p;. These then kiss at a point p, resulting
in a figure eight, and then merge into a single circle S, at large radius. See figure [23| where
small to large radii are depicted as (i) — (ii) — (iii). The point p lifts to a generic torus
fiber 71 (p) = T},.

38In a compact model where this modulus is normalizable (instead of log-normalizable as in the pres-
ence situation), one can push the singularities but this results in a higher-dimensional theory. For further
discussion, see reference [73].
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The radial shells of Fx are

Ur>r* - Eé\/llMQ )
Uer, = (337) U2 (257) (75)

Ur<r* - Eg/ll U Zé\/fz )

where 27 denotes the three-manifold constructed by fibering a two-torus over a circle with
monodromy twist M. Here we will specify M by an element of SL(2,Z) which gives the
monodromy action on Hi(T?). The elliptic singularity, via Kodaira’s classification, fixes
the conjugacy class of M. When considering multiple elliptic singularities there may not
exist a SL(2,Z) frame in which all monodromy matrices take Kodaira’s canonical form
simultaneously, as often happens in the context of K3 surfaces. Monodromy matrices are
compared by traversing closed loops, starting and ending at one common point in B, linking
a singularity. Using the monodromy data the homology groups of 3 are

Z k=0

H, (5M1) = Z @ coker(M — 1) k=1 (76)
Z @ coker(M — 1)" k=2
V/ k=3

where we introduced the shorthand notation
coker (M — 1)" = Hom(coker (M — 1),Z) = coker(M — 1)/Tor coker (M — 1) (77)

for a free group. These groups are invariant with respect to SL(2, Z) conjugation of M. The
homology groups of the critical slice are:

V) E=0
72 @ (72 /Tm(My — 1, My — 1 k=1
H (549 U (s) = 4 2 /AR =L AR =)
7 & coker(M; — 1)" & coker(My — 1) & F k=2
z? k=3
(78)

where with the second entry in degree one we are denoting a quotient both by the image of
M; — 1 and My — 1. This quotient is only invariant with respect to simultaneous SI(2,7Z)
transformations of M; and M,. Further, depending on the case, we have F' = 0,7Z,7Z%. The
rank of F', denoted |F| = rank F', counts the number of two-cycles stretching between the
ADE singularities which depends both on the pair of elliptic singularities and their relative
orientation in SL(2,7Z). We discuss the computation of these homology groups and their
generators in Appendix [D}
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Projection to the SymTree

We now reduce 11D supergravity on the radial shells U,. The computation follows the same
steps as laid out in Section [3]and Appendix [D]

Again, we will focus on the subset of the generalized symmetries originating from the
center symmetries of the gauge theory sector. More precisely, we focus on the discrete 1-from
symmetries and their dual 4-form symmetries. We defer the discussion of a (—1)-form U(1)
symmetry, 2-form U(1) instanton symmetry, KK U(1) 0-form symmetry, associated with the
zero section, and a U(1) 1-form symmetry of a decoupled abelian vector multiplet associated
with the fiber class. The latter is fully decoupled, the fiber class does not intersect any
compact curves and is not even topologically coupled [41]. For further discussion on these
see [60L71].

In terms of geometry these restrictions amount to focusing on 1-cycles and 2-cycles with
one leg the elliptic fiber, these are

H, (Eéwl) = coker(M; — 1) @ .
Hy ((33%) Ure (25%)) 2 Z%/Im(M; — 1, My — 1) & ... (79)
Hy ((S3") Ure (532)) 2 Fe ...

which, lifting to differential cohomology, translates to restricting our attention to the coeffi-
cients in the expansionﬂ

(7" = 7"* : G4 _ ZB r>1ry,7) *t (r>rs,j) + ZH r>r*,] u(r>r*,j) +o

jeJ jeJ’
X S (r=r«.j r T+) =T, o (r=r«.k

(7":7’*): G4:ZB§ ]) —|—ZF2U(1) ( )—l—

jEJ« keK (80)
(7’ < 7’*) : é4 _ Z B(r<r*7 J) t(r<r*, J) + Z B (r<rs,2,j) *52(r<r*,2,j)

Jjeh1 Jj€J2

4 Z H2T<T*’ ) u(r<m7 J) + Z H r<r*, J) 2(r<m,2,]) N
Jjed; JjeJ}

where Jy, Jo, Ji, J € {0,{0},{0,1}} which count the number of torsional groups in the prime
decomposition of the finitely generated abelian groups computed as the torsion contributions
above. Similarly the primed index sets describe free contributions. We have |K| = rank F.
The geometrization of these groups is analogous to the discussion near line . The fields

39The lowered indices denote form degrees, the raised indices specify, in order, the radial shells the fields
are localized to, if these have multiple connected components which component, and finally and index
running over the relevant homology generators for that component. We further attach the index “U(1)” for
background fields for continuous symmetries, as obtained via expansion along free classes.
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of the SymTree under consideration are thus, projecting back down to cohomology,

(r>r): B HGY jedtelt
(r=r): By AT jedokek
(r<r): Byt Um0 glsedn gises e g te e i se

(81)
together with their magnetic duals. The fields on the SymTree branches are background fields
for the discrete and continous symmetry of the 7D theory. The H; fields are backgrounds
for the decoupled abelian vector multiplets mentioned above.

The elliptic fiber has two 1-cycles and the geometric origin of these legs thus restricts the
number of fields under consideration to two on each SymTree branch

PARPARS NV SR (82)

There are also up to two U(1) log-normalizable vector multiplets localized at the junction,
i.e., by supersymmetry the junction theory is

|F| 7D N =1 u(1) log-normalizable vector multiplets (83)

Additionally, the junction fields Bér:” 9 are eaten up by identifications. Indeed the part of
the maps 7,.,, Jy-,., defined in (24), relevant for the above fields are the restriction maps
associated via duality to the homology embedding maps j,<,, 7., defined by

A 72 Im(M; — 1) — Z2/Im(M; — 1, My — 1)

84
Jr>re - Z2/Im(M1M2 — 1) — Z2/Im(]\/[1 — 1, MQ — 1) ( )

with .., = 3(72,4* + j(i)“. Because the mappings 352“ impose further identifications, the

dual of these maps have vanishing kernel. With this all of the junction field Bgr:”’j ) arises
as restrictions from the discrete field localized on the small radius branches, i.e., they are
eaten up completely by gluing conditions. This of course matches with the junction degrees

of freedom being solely those of line (83)).

Instead of writing out the gluing conditions explicitly, as in and , we now consider
a representative examples for the cases |F'| = 1. The case |F| = 2 as for example engineered
by two elliptic singularities both of Kodaira type I is rather subtlem The case |F| = 0 has
topological junctions at which only gluing conditions are formulated.

40Tn the context of an F-theory compactification, the monodromy around a pair of I singularities results
in a (—1)F transformation (see e.g., [74]). This monodromy transformation is present in Mp(2,Z), the Spin
cover of SL(2,Z) (see [75]) as well as the Pin™ cover of GL(2,7Z) (see |76]). For further discussion on some
of the physical implications of these finer duality structures, see e.g., [72,/74L[77].
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Case |F| =1 with u(1) Junction

Consider a pair of elliptic singularities both of Kodaira type IV* engineering two ¢s gauge
theory sectors. The relevant monodromies are

-1 -1 0 1

which determine the fields of the SymTree:

(r>mry): B§r>r*)
(r=r): BI= A= (86)

(7“ < 7“*) : B§r<r*,1) 7B§7"<m,2)

where all the B-fields are valued in Zs C U(1). The gluing conditions across the junctions
are

B§r<'f‘*,1) _ B§r<r*,2) _ _B§r>7‘*) _ ij) (87)

where the minus sign is due to M ~' = M?2. There is no mixing between B-fields and the u(1)
junction sector, i.e., none of the B-fields serve as background fields for the u(1) junction.
These gluing conditions reflect the gauge group, in an electric frame,

- Eﬁ X E6 XU(l)

G Z

(88)

where Ejg is the simply connected Lie group with Lie algebra e¢g. We also find massive bifun-
damentals (27,27), @ (27, 27)_» which is compatible with the overall observed symmetries.
Again, we comment that in the decompactified limit, this U(1) factor is log-normalizable,
i.e., it is not really part of the SymTree junction.

6.2 6D SCFTs

As another class of multi-sector QFTs, consider N' = (2,0) SCFTs as realized by type
1B string theory on an ADE singularity. Such singularities are modelled as C?/T" for T
a finite subgroup of SU(2), but we can also reach the same sort of structures from non-
compact elliptically fibered Calabi-Yau twofolds. Indeed, the same geometry introduced in
our analysis of isolated 7D sectors works equally well in this case as well. For each individual
6D SCFT, we have a 7D SymTFT. In these cases, the junction theory again contains a
log-normalizable tensor multiplet (as in the non-isolated case). Again, there is a topological
coupling between the different 6D SCFTs as captured by the bulk 3-form potential of the
SymTFT branches.

We can perform a similar analysis in the more general case of 6D SCFTs as realized by
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F-theory on a non-compact elliptically fibered Calabi-Yau threefold with multiple canonical
singularities. Indeed, the main requirement here is that we start from independent contract-
ing configurations of curves which cannot be combined into a single configuration of curves.
We remark that this happens rather frequently in explicit 6D supergravity models realized
in F-theory.

6.3 5D SCFTs

Consider next the case of isolated multi-sector 5D SCFTs. In M-theory we get examples
of 5D SCFTs by working on the background R*! x X for X a Calabi-Yau threefold with a
canonical singularity. Some aspects of the geometry, as well as higher-form symmetries for
these cases were studied e.g., in references |31}32,37,59,78,79]. In general, we can consider
a Calabi-Yau threefold which has multiple isolated canonical singularities that cannot be
merged. These furnish examples of multi-sector models with isolated 5D SCFTs which only
couple via topological terms.

To illustrate these considerations in more detail, we focus on multi-sector models where
each sector is just the Ey Seiberg SCFT [80,81]. Geometrically, the Ey SCFT is realized via
M-theory on C3/Zsz. The boundary geometry is the generalized lens space S°/Zs. The model
has a Zz 1-form symmetry with symmetry operators obtained from Mb5-branes wrapped on
torsional 3-cycles at the boundary geometry. This symmetry links / acts on M2-branes which
stretch from the singularity out to the torsional one-cycles of the boundary, i.e., Cone(~) for
v € H,(S%/Z3). The relevant homology groups in this case are:

A k=0
73 k=1
0 k=2
H,.(S°/73) = { 89
R o (89)
0 4

To produce a collection of Ey SCFTs, it suffices to compactify one of the complex direc-
tions of our original model. With this in mind, we consider the quotient space X = (T?x C x
C)/Z3, where we fix the complex structure of the 7% to be 7 = exp(27i/6). Each holomorphic
factor has a local coordinate z;, and the group action is simply (21, 22, 23) — (W21, W22, W23)
where w?® = 1. This results in three codimension six singularities, each of which has the form
C3/Z3. In this case, the asymptotic geometry for the full system is X = (7% x S3)/Zs.
We can view this as a specific SL(2,Z) bundle over the lens space S3/Zs, or as a lens space
bundle over the quotient space T?%/Zs;. While we focus on this case, similar considerations
hold for related spaces such as (T2 x T? x C)/Z3. The fully compactified case T°/Zs (i.e.,
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Figure 24: SymTree derived from the filtration Fx of the orbifold X = (T? x C?)/Zs;. We
give the topological models for the radial shells at the legs and junctions. The junction
valency is 4.

5D SCFETs coupled to gravity) and their higher-form symmetries was studied in [41].

The 5D field theory obtained from M-theory on (7% x C?)/Zj contains three Ey SCFT
sectors. Additionally, because we have a compact 72 factor which also has finite volume at
the conformal boundary of X, reduction of the M-theory 3-form potential on this 2-cycle
results in a continuous u(1) 0-form gauge symmetry. Observe that since the E, theories do
not have a continuous 0-form symmetryﬂ this gauge symmetry can only couple via massive
modes / topological terms to the Ey theories. The decoupling limit for the model corresponds
to sending the volume of the 72 factor to infinite size.

Filtration and Critical Slice

We now determine the SymTree by first describing a convenient choice of filtration Fyx
sweeping out X = (T? x C?)/Zs. The filtration is again constructed by growing tubular
neighborhoods of the singularities, this results in the 5D radial shells

Ur>r* = aXa
Ur:r* = X" retract ’
Ur<r. = (8°/Z3) U (S°/Z3) U (S°/Z3)

(90)

with a single critical slice at r = r,. Here X° is the total space X with the three singularities
excised and X°|etract denotes the deformation retraction of X° to 5D. The space X° is a
topological model for three-legged pantslﬂ Via various dualities in algebraic topology, the

41Geometrically, this is a consequence of H3(S®/Z3) = Zs3 being pure torsion. There is of course also a
continuous SU(2) R-symmetry, but that is not relevant for the present discussion.
42That is, three legs and one waist. The cross-section of these is S%/Z3 and OX respectively. See figure

in Appendix E
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critical slice are computed to have the homology groups:

(

Z =0
z _
o o ~ Z k=2
Hn(X ) = M, (X retract) - 3 (91)
ZS -
0 4
YA =
\

See subfigure (i) in figure for a sketch of the filtration. The asymptotic boundary is
smooth and admits two fibrations X — T?/Z3 and X — S3/Zs and from here we compute

7 k=0
72 =
Z k=2
H,(0X) = (92)
2
0
7 k=5

The three-legged pants X° runs between three copies of S°/Zs and one copy of 9X. In
Appendixwe give additional details and identify generators. The homology groups Hy(0X)
determine the defect and symmetry operators, as in references [33-35,39]. Returning to our
discussion near line , we see that we can again speak of a 1-form symmetry operator
as realized by M5-branes wrapping a torsional generator of H3(0X). Similar considerations
hold for the other symmetry operators, as well as the asymptotic profile of defects in the
SymTFT which become defects of the relative QFTs localized at singularities.

But compared with the case of line , we also see the appearance of free generators
in Hy(0X) and H3(0X). We already anticipated the appearance of such free factors; they
are associated with the presence of a U(1) 0-form gauge symmetry in the 5D theory. This
U(1) field does not directly couple to the Ey SCEFTs because these theories do not have a
continuous global U(1) symmetry. On the other hand, we clearly have massive M2-branes
stretched between the different sectors, as captured by elements of Hy(X). Proceeding to one
of our 5D SCFT sectors, we integrate out these massive M2-branes; their remnant consists
of line defects of the individual E, theory. In the local Ej sectors, the remnant of the U(1)
gauge symmetry is a global Zs 1-form symmetry which acts on these lines.

Projection to SymTree
We now determine the SymTree by reducing 11D supergravity on the radial shells U,. This
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resembles the steps resulting in , hence we will be brief and only highlight differences to
the previous cases.

We focus on the SymTree fields (and their duals)

®) — (r<r): BI<) ,Bérq*’j) yoo

) — (=r): BT BT R (93)
r>7%,0 r>74,b r>T T>Ty

" — (T > T*> : Bé > ) ,B(() > ) 7H§,[?(1)) 7H1(’5(r1)) g oo

derived via KK reduction from G,. Here 1,7 = 1,2,3 run over the three generalized lens
spaces at low radii and a,b = 1,2. The B-fields have discrete periods taking values in Zjs, all
other fields take values in U(1). The indices a, b can be thought to label differences of labels
i,7 and we sometimes write a;j, b;;. This notation is to indicate that, if the fields labelled
by 7 are associated with cycles o;, then those lablled by a;; are associated with o; — 0. See
Appendix [D] for explicit discussion.

We begin by determining the how junction fields glue to fields living on the branches of
the SymTree. From the Mayer-Vietoris sequences and (20) we compute, transitioning
to cohomology,

t>ra|  _ pr=r)
Hyuoay |, = T2u0)

rors) - (94)
Hy vy —r =0

for fields valued in U(1) and associated with free generators. From the second relation we
conclude that the corresponding O-form symmetry does not couple to the Ej sectors. From
the first relation we conclude that there is no isolated junction theory. All junction fields
arise as restrictions from fields on the branches of the SymTree.

For torsional fields we compute

<B§r<r*,i) . B§r<r*,j)> _ _ B;T>7’*7aij) _ _ Bé'/':'f'*7aij)
Bé’l"<7’*,7/) . — B((]’/‘:T’*J) (95)
B(()T>r*,a¢j) _ Bér:r*,i) . B(()r:m,j)

and find these to be fully eaten up by gluing conditions. These result follow by geometrizing
the various homology group generators as in appendix @ The geometry X — T?/Z3 clearly
has a compact 2-cycle (the zero section), however, the corresponding metric modulus is not
normalizable. Overall the action of the SymTree now takes the form

s= Y se Y s

branches b internal nodesn (96)

=S+ 8% 4 98 4 g 4 g
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where the 5D junction action simply enforces the gluing conditions between the different 6D
bulk fields. The first four terms each correspond to a leg of the Y-shaped SymTree and are
topological:

% { r<Ty,l r<Ty,l 1 r<Tx,l r<Ty,l r<Tw,l
sgg:_s/ BY<ri) 5 gy 4 Lplrri) \ plr<red  plrered)
R415 (0, 3

2m
5(123) _ Lg / B(r>r*,a) A dB(r>r*,a)
" 2 a;Q R%1x (r+,00) ’ ’ " (97>
i (r>ry) (r>ry) (r>ry) (r>ry)
* 27( R4’1><(7'*,oo) HQ’U(]') A ngvU(l) + HlyU(l) A dH4,U(1) + .
where the “...” involves bulk fields for the 2-form and (—1)-form symmetry derived from the

11D Chern-Simons term G3. See reference [20] for additional discussion.

7 Non-Supersymmetric Example

So far, we have mainly focused on examples which are also supersymmetric. This is mainly
so that we can maintain technical control over the construction, and also so that we can
match to known string constructions, which are often implicitly supersymmetric.

That being said, the general structure of SymTFTs applies more broadly and does not
really rely on supersymmetry at all. With this in mind, we now present a non-supersymmetric
example which illustrates much of the same structure found in the supersymmetric setting.

Along these lines, we consider 4D SU(N) gauge theory with matter given by a complex
adjoint-valued scalar ¢. We shall be interested in a model in which ¢ has a potential energy
density V (¢, ¢") which leads to Higgsing of the SU(NN) gauge theory to a gauge group of the
form

SU(N7p) x SU(Ny) x U(1)

Zr, ’
where L = lem(Ny, Ny) = NyNy/ged(Ny, Na). To achieve this, we assume the vacuum
expectation value of ¢ is of the formﬂ

G:

(98)

(p)y = diag(vy, ..., v1, Vg, ..., v2), with Njv; + Nyvg = 0. (99)
e — N —

Ny No

43In a supersymmetric theory this can be arranged by a suitable choice of superpotential. Recall that the
physical potential in a supersymmetric theory is of the schematic form V = |0W/d¢|?, with superpotential
W(¢) = aTrg? + bTre?® + ATre, and where the \ serves as a Lagrange multiplier enforcing the tracelessness
constraint. W also implicitly defines a function of a single complex variable, and so we can enforce the desired
choice of critical points by demanding (by abuse of notation) W’ (z) = (z —v1)(z —v2) with Nyjv; + Navs = 0.
In the non-supersymmetric setting, additional tuning and / or higher order terms are typically necessary to
achieve this breaking pattern.
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Below the characteristic energy scale set by this vacuum expectation value we reach the
expected gauge group of line . Similar considerations hold for breaking patterns which
involve additional suy, factors, so we leave this extension implicit in what follows.

Now, after adjoint Higgsing, we observe that the two suy, factors have different beta
functions, and so the gauge coupling for the gauge group factor with more colors will run
to strong coupling faster [] Without loss of generality, we assume N; > N, and thus that
Ay > A, for the associated strong coupling scales[’] We would like to understand now how
the topological coupling imposed by the Zj quotient in affects this model both for an
observer at intermediate energy scales Ay > F > Ay and in the deep IR Ay > E where both
factors are confined.

First, note that the junction theory connecting the two sectors is again given by the
U(1) gauge theory with the same topological couplings as in Section 5.2 Also similar to
the supersymmetric moduli space flow example, the IR electric 1-form symmetry below the
energy scales A; and A, is

IR Electric 1-form Symmetry: (Z, x U(1))D (100)

where ¢ := ged(Ny, Na). The U(1)™® factor is of less interest to us since the U(1) photon in
G remains gapless and spontaneously breaks the U(1)<1). On the other hand, the (Z,)")
factor is retained from the UV to the IR. This simply follows from the fact that we have an
electric area law for the Wilson lines.

8 Large M Averaging and Multi-Sector Models

Having presented a number of examples of multi-sector QFTs, as well as their associated
SymTrees, we now explain how we can use this same formalism to study large M["| averaging
in CFTs with a gravity dual. Large M averaging was recently discussed in references [47,82]
as a way to provide an approximate characterization of chaotic dynamics in holographic
systems, especially for observables above the largelzig] black hole threshold, i.e., for operators
with dimension A 2 M. Our aim here will be study the structure of higher-form symmetries
and whether it is compatible with such a large M averaging procedure.

#4Recall that in pure SU(N) gauge theory, the one-loop running of o = ¢%/4rm is da~'/dt = b/27 with
p=LUN

450f course, we are also implicitly assuming that vy, vy > Aj.

46 Also, the sense in which U(l)(l) is an IR symmetry is that it is broken in the UV explicitly due to
the gauge covariant derivative of SU(N), i.e., the conservation equation d * Fyy(qy = 0 implicit from the
effective Lagrangian below the Higgsing scales receives corrections to the righthand side as it is realized in
the equations of motion Dag, * Fsuv) = 0 at high energies.

4TM here is associated to the central charge of the CFT, commonly referred to as “large ¢’ or “large N”
in the literature.

48In 3D gravity, the black hole threshold is sharp, but in D > 3, we can also have small black holes.
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To keep our discussion concrete, we focus on the case of 4D N = 4 SYM theory with gauge
group SU(M), i.e., the electric polarization of the relative suy, QFT. In that context, the
electric Wilson lines provide order parameters for the confinement / deconfinement transition.
Indeed, as found in [48], putting the boundary theory on S x S3, i.e.; at finite temperature,
the breaking of the center symmetry directly tracks with the Hawking Page transition [83)].
As such, Wilson line observables, and thus higher-form symmetries are directly sensitive to
states near the black hole threshold. Thus, we expect that it should be possible to make
sense of large M averaging and higher-form symmetries.

At first glance, we meet with a puzzle: what does it mean to have a Zg\? symmetry
if we are going to average over M7 At a pragmatic level, one might wish to assert that
only self-averaging observables Ogqr need to be considered, and that Wilson lines should
be excluded from such considerations. But then it is unclear how to actually calculate
correlation functions which involve both the Og¢’s and the Wilson lines.

Our aim will be to reverse engineer a prescription in gauge theory which does allow for
higher-form symmetries, even in the presence of large M averaging. The main idea will be to
use a similar proposal to that given in [46] where we directly build a multi-sector ensemble
of QFTs. Each sector will be a relative suy, theory with N; = M +¢; for ¢; an integer much
smaller than M. Projecting onto a diagonal subset of operators @, we show that connected
correlators for local operators exhibits large M ensemble averaging. Moreover, by dressing
“naive” Wilson lines of each relative theory, we show how to produce a diagonal subset of
Wilson lines W which all transform under a common Zg\? 1-form symmetry.

The rest of this Section is organized as follows. We begin by reviewing the top down
construction of ensemble averaging proposed in [46] and explain how we can use it to imple-
ment large M averaging for local observables. With this in place, we then show how to dress
Wilson lines of the individual sectors of such a system so that extended operators correctly
transform under a common 1-form symmetry.

As a general comment, though we couch our discussion in terms of stringy terms, there
is clearly a bottom up prescription available where we simply consider a large number of
replica theories with different values of M. Dressing the Wilson lines via the SymTree then
yields precisely the same prescription.

8.1 Artisanal Ensembles

To study higher-form symmetries in CFTs with large M averaging, we first review the
proposal of [46] which engineers “by hand” an ensemble average with respect to parametric
families of QFTs. In such artisinal ensembles, the main idea is to consider a multi-sector
QFT with similar field content in each sector. After reviewing how this works when averaging
over the marginal parameters of a CFT[] we show that the same considerations extend to

490ne can generalize this to cover more general parameters of a QFT, a feature which can be read off from
the associated brane constructions.
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ensemble averaging in M for large M QFTs. Again, we emphasize that this procedure reverse
engineers the same low energy behavior as that of self-averaging observables but can deviate
from this result at short distances / high energies.

We begin by briefly reviewing how we can use a multi-sector QFT to engineer an ensemble
average. Consider a multi-sector QFT comprised of decoupled CFTs which we label as T,
where the index k = 1, ..., K runs over all the sectors. We assume for now that the CFT's have
the same operator content, but possibly different values of marginal parameters which we
specify as Xk With this in mind, suppose we now introduce a local operator Oy for one such
sector. We can use a connection on the moduli space to construct its parallel transported
version on the other copies of the multi-sector QFT. Doing so, we can speak of the operator
obtained from the linear combination:

0=0 +..+0k. (101)

For connected correlators, we observe that there is a pleasant factorization of the associated
correlation functions for the O’s. Indeed, we have normalized connected correlation functions

of the form: )

(O -+ 0 compom ~ 7= D (OO, (102)
1<k<K
namely, the correlation function breaks up into a sum over the distinct sectors. It is important
to emphasize that we only discuss connected correlators here. Additionally, the normalization
factor 1/K reflects a normalization of the identity operator for the full system, and also
ensures that the large K limit is well-defined.

To see how this results in ensemble averaging, note that the k-th CF'T sector has its cor-
responding set of parameters \;. Therefore, we can define a discrete probability distribution
over the parameter values A\ with density

—

Paisc(X) = %7 (103)

where K (X) counts the number of brane stacks with parameters X.

In the context of stringy realizations of such ensembles, there is a natural sense in which
we can always “smooth out” these discretized distributions to continuous probability dis-
tributions. As noted in [46], we can realize this ensemble by taking brane configurations
probing an extra-dimensional geometry. In this case, we still have a multi-sector QFT but
one in which there are mixing terms between the sectors specified by irrelevant operators.
The geometry of the extra dimensions specifies values of the parameters in the worldvolume
theory. Further, since the branes have finite tension, the branes are not strictly localized at
a point in the transverse direction, but are instead “spread out” over a characteristic length
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scale.ﬂ Approximating this spread as uniform, we smooth out the probability distribution
from a sum of d-functions (or “comb”) into a sum of step functions, which can be
further regarded as a “binned” approximation for a continuous distribution pgmeotn. The
resulting distribution can be expressed as a histogram function via an indicator / N (N),

- - - KX
psmooth<)\) = [ dX IX/ & ()\) ( ) s (104)
N N K

where €y, is the appropriate vector of widths of the window centered on N and I S 2 (X) has
’ A/
unit area. Using this distribution, we can rewrite the correlation function ((101)) as

Y

>\

1 . . . .
<@(1) U @(n)>normalized ~ ? Z <O](€1) T O](C )>7-lk ~ /d)\ psmooth()\) <O(1) U O( )>
1<k<K

(105)

which mimics an ensemble averaged computation for the observable (O®) ... Om).

In order to have a holographic interpretation of this ensemble averaging, we now assume
that each individual CF'T sector has its own semi-classical AdS dual, with the same value of
the cosmological constant. It is indeed possible to engineer an ensemble of local CFT sectors
with the same dual cosmological constant but different parameters, as demonstrated with
concrete examples in reference [46]. Note that the operator O given in is a sum over
operators, each of which enjoys the same field content in its respective local CFT, and as
such describes the collective motion of many copies O; of this operator. Therefore, although
in fact the full system contains K distinct AdS throats, when we restrict our attention to
the set of observables of the form @, one only reconstructs a single AdS dual according to
the GKP dictionary [84].

At low energies, we thus see that this top down ensemble averaging produces a probability
distribution which can in principle match to the one which might be prescribed by other
holographic considerations. The approximation can break down in various ways, both in
terms of short distance limits, but also entropically by sampling sufficiently many times
from the “true distribution” generated by a single chaotic system and that of the top down
reverse engineered system.

Our discussion so far has focused on the case of averaging over the marginal parameters of
a CFT. An interesting generalization of this proposal is to consider the consequences of also
permitting a variation in the number of degrees of freedom in a large M CFT, i.e., to allow
for large M averaging. Strictly speaking, the operator content of each CFT with a different
value of M is distinct. Even so, there is a clear notion of varying M, especially in large M
gauge theories. For example, in an SU(M) gauge theory we can label (possibly gauge non-
invariant) operators by a representation of SU(M), as specified by a Young diagram ). The

1
50For a Dp-brane, this scale is characterized by lmin ~ (%) " with Ty ~ (gslgﬂ)fl, where g, is the string
P

coupling and [, is the fundamental string length.
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Young diagram is independent of M insofar as we restrict our attention to representations
where the number of anti-symmetrizing indices is “small” compared to M, and even when
this is not the case, the dependence on M is relatively mild (we simply pass to multi-particle
states). Indeed, this is also quite natural in the context of brane constructions of large M
parametric families of branes with an AdS dual. Otherwise, the very notion of having a
semi-classical gravity dual with Gnewton Scaling as a power of M would make little sense to
begin with!

Proceeding in this fashion, then, we can now enlarge our notion of our ensemble of relative
theories 7; to possibly include a variation in the marginal parameters as well as in the value
of the N;. Again, this is quite natural in the context of string constructions where the value
of N; is really just the asymptotic value of a flux quanta sourced by a stack of branes, i.e.,
it is simply the background value of a flux operator in the gravity dual.

Indeed, we can implement this sort of ensemble both at the formal level of a multi-sector
QFT, as well as in the context of explicit brane constructions. We actually encountered such
systems in Section [p| where we studied brane probes of singularities. In the near horizon
limit, this results in a multi-throat configuration, and we can tune the marginal couplings as
well as the parameter N; in each stack to even maintain the same value of the cosmological
constant in each throat.

In the case of building an ensemble over NNV;, provided all N; are of the form N; = M +¢; for
g; an integer far smaller than M, the precise form of the distribution matters little. Indeed,
in this case we achieve a reasonable approximation even using the uniform distribution and
all other choices require sampling a large number of times from the N;. As such, the choice
of distribution is relatively insensitive to the particular brane configuration and we indeed
find a “preferred” distribution for our average over M Pl

Proceeding as before, we also face no immediate obstacles in building local operators
O = Oy 4+ ... + Okg. Their normalized connected correlators again exhibit an ensemble
average which now includes an average over M, see figure 25| for a depiction. We comment
here that in the proposal of [47], the expectation is that up to non-perturbative corrections
of order exp(—M), there is no ensemble averaging at all for operators with scaling dimension
below the black hole threshold. In most of the cases we know of where we can implement a
large M average via branes in string theory, the typical situation is a D > 2 CFT, and the
gravity dual also supports small black holes. As such, large M averaging should be present
(even if smaller) in all these cases. For further discussion on this point, see Appendix

For large M averaging over extended operators, however, we face an additional compli-
cation because these are often sensitive to the arithmetic properties of the individual N;
in each sector of our multi-sector QFT. For example, the Wilson lines of an SU(N;) gauge
theory are charged under the electric ZS\P 1-form symmetry. To make sense of Wilson line
operators, we can thus entertain two general possibilities: either we demand that a putative

51For some recent discussion on non-perturbative effects which distinguish the choice of distribution, see
e.g., reference [85].
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0, 0; ensemble [0)
) —
® b average b

Figure 25: On the left, we depict the collection of separated 4D N = 4 suy, SYM theories
that we label by 7; where N; = M + ¢; and a sum of local operators in each of these sectors.
The wedges represent the AdSs x S° dual spacetimes for each sector. On the right, we
illustrate the averaged operator @ in the ensemble averaged theory T.

Wy (as specified by a choice of Young diagram / representation) has a well-defined charge
under an electric 1-form symmetry, or we forfeit the existence of a 1-form symmetry in the
large M average. The latter possibility would be a pity because it would seem to also re-
quire abandoning the beautiful connection between bulk gravitational dynamics and center
symmetry breaking in the gauge theory dual found in [48]. So, we shall instead proceed by
constructing a suitable Wy, which has a well-defined charge under the Zg\}) 1-form symmetry.

In fact, we have already presented the main elements of this construction in Section[5.2.1
where we considered the case of N = N; + ... + Ni branes probing an extra-dimensional
geometry. As we observed there, we can start with the Wilson line of the relative suy,
theory and then dress it by U(1) factors of the SymTree as in equation (74]). Doing so, we
produce an operator which has a well-defined charge under the ZS\}) 1-form symmetry of the
SU(N) gauge theory. Similar considerations hold for other choices of polarization of the
relative suy theory. To get the specific case of a Wilson line Wy, charged under a Zg\? 1-form
symmetry we now specialize further by setting N = LM and work in the polarization where
the absolute theory has gauge group SU(LM)/Z;. This theory has an electric ZS\}) 1-form
symmetry (isomorphic to the center of the gauge group), and as such, the W constructed in
this way has a well-defined charge under the ZE&I) 1-form symmetry. A consequence of this
is that in the diagonal theory with the ensemble operators such as O and Wy, we can still
speak of our 1-form symmetries, which matches to expectation from the bulk gravity dual.
Again, let us emphasize that here we are interested in studying large M averaging in its own
right, and whether we can make sense of gauge / gravity dual in that setting. We expect,

however, that these considerations connect with the analysis in [47},82].

9 Conclusions

Much of the topological structure of global symmetries in a D-dimensional QFT is captured
by a bulk (D + 1)-dimensional field theory with suitable boundary conditions imposed to fix
the global form of the QFT. In this paper we have studied the case of a D-dimensional multi-
sector QFT. Each individual sector is associated to a SymTFT, but these can form junctions,
leading to topological mixing between the sectors. Topological operators and defects of a
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given sector must then be dressed by additional operators associated with modes localized
at the (possibly non-topological) junctions of different SymTFTs. We have illustrated these
general considerations in the context of various QFTs realized via geometry and branes
probing singularities. We have also presented some non-supersymmetric examples. We also
used this construction to study generalized symmetries in holographic large M ensemble
averaging. In the remainder of this section we discuss some potential avenues for future
investigation.

A general feature of SymTree theories is the appearance of multiple boundaries. In this
work we have focused on the appearance of multiple physical boundaries, which covers the
appearance of multi-sector QFTs. One can also entertain additional topological boundary
conditions. This leads to a further generalization in the global structure of a QFT, as
influenced by the presence of a junction of SymTFTs. It would be interesting to study the
structure of such theories, for example, their partition functions.

One of the general themes in recent work is the appearance of various higher-categorical
symmetries which capture the topological structure of such QFTs. In most cases considered
to date, heavy use has been made of the bulk SymTFT associated with such a QFT. Given
what we have observed here, one can sometimes have additional substructure as captured by
a SymTree. We have sketched some aspects of the higher-categorical structure which enters
here, but it would be interesting to formalize this further.

The structure of the SymTree resembles that of a tree-level Feynman diagram. Continuing
with this analogy, it is natural to also consider SymTrees which include closed loops as well.
It would also be interesting to investigate the sense in which there might be a “meta-theory”
with scattering amplitudes associated with such diagrams, perhaps along the lines sketched
in reference [36].

It is natural to study the fate of these categorical structures once we switch on gravity.
For example, in reference [41], it was noted that the heavy defects and topological symmetry
operators of individual sectors inevitably become correlated in such systems. One might
expect that including the effects of gravity leads to additional constraints on multi-sector
models which are only topologically coupled when gravity is switched off. Studying such
constraints would likely be quite informative.

While we have presented a prescription for making sense of higher-form symmetries in
a large M averaging prescription, one of the important features of reference [47] is that
this really ought to be viewed as taking place in a single large M gauge theory. It would
nevertheless be interesting to see whether a more explicit map between the ensemble of
theories considered here and possible replicas connected by wormhole configurations can
also be constructed.
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A Coupling QFTs to TFTs a la Kapustin-Seiberg

Couplings between QFTs and TFTs were explored previously in [27]. In this Appendix we
review this construction and compare it to our discussion of SymTrees.

We focus on a 4D example with the QFT given by an SU(N) gauge theory and the TFT

given by Zy topological gauge theory (Zy), with discrete #-parameter p. Once coupled, the
system describes a (SU(N)/Zy), gauge theory with a discrete f-parameter p turned on [27].

In the SymTFT framework changing from SU(N) to (SU(N)/Zy), amounts to changing
the topological boundary conditions of the associated 5D topological field theory, perhaps
together with adding an SPT. Clearly this does not add any physical degrees of freedom
and formulating the QFT/TFT coupling of [27] via a Y-shaped SymTree therefore, if possi-
ble, must therefore involve two topological boundary conditions and one physical boundary
conditions, the latter supporting the relative suy theory.

To make this explicit let us discuss deforming the respective SymTFT into a SymTree.
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We begin by considering the SymTFT

o
Ssp = % BM UscV (106)

where fields now take values in Zy. We place this TFT on the slab M, x [0, 1] with one
physical and topological boundary condition.

For concreteness we now also restrict to the case N = 2. In this case the the physical
boundary condition is determined by an edge mode su, theory:

Tow) = Y Zay|d]|Go, d) (107)

where G' = SU(2),SO(3),SO(3)_ is one of the global forms of the gauge algebra su, and the
subscript p = 0,1 in G, labels a stacked SPT. The background 2-form fields for the 1-form
symmetry of G are denoted d, they are associated with SymTFT fields B§2), 02(2), B§2) + 052)
respectively, and Zg,[d] the partition function of gauge theory with gauge group G with
background d turned on. We refer to [19,36] for further details.

The topological Dirichlet and Neumann boundary conditions B, we consider are:
Dirichlet: (G, D|

Neumann: (G, D| = Zexp (i/du D> (G, d|
d

(108)

where the overline denotes that the Neumann boundary condition is conjugate, via Fourier
transformation, to the respective Dirichlet boundary conditions. Here D is the Dirichlet
boundary profile imposed on the relevant 2-form background. Upon contracting the SymTFT
slab the partition functions compute as

(Gp: D|Taw) = Zc, D], (G, D|Taw) = Za, 2| D] - (109)
Note also that via gauging of 1-form symmetries one finds the Fourier pairs
exp (m / pW uD<2>> = (SU(2)o, DY | SO(3) 40, D?)

= (SO(3)4.1, DV | SO(3)_1, D®) (110)

= <SU(2)17 D(l) | SO(3>—,U) D(2)>

In [36] it was shown that there is simple SymmetryTFT bulk operator for each Fourier
pair, which maps one boundary condition of a Fourier pair onto the other and vice versa.
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For the discussion at hand the relevant Fourier operator is

P (i [ P2 2C0)

— exp (m/ P(f2) + Pf?) + B, U 02) :

(111)

Here we denote the Pontryagin square of a 2-form By as P(Bs). This operator maps topo-
logical boundary conditions as

P[SU(2)e, D) = [SO(3)+,

P|SU(2)1, D) = [SO(3)+.1, D) (112)

P|SO(3)-0, D) = |5O(3)-,

+
e
S

I
S

and satisfies P o P = 1. In particular, from the first line, we have the identity
PISU(2) Zexp (m / du D> ISU(2)o, d) (113)

We now turn to phrase the coupling of the SU(2) theory to the discrete (Z2), theory in
the SymTFT framework, resulting in an SO(3), theory. First, we note that we can express
the SO(3)4 o gauge theory partition function as

ZSO(3)+,0 [D] = <SU(2)0, D| P |7;u2> (114)

where acting with P to the left we simply produce the boundary condition (SO(3); 0, D].
Acting on the right we obtain a new physical boundary condition |P7g,,) which is

|P ZZSU(Q)O d1 Zexp (Zﬂ'/dl Udz) |SU( )0,d2>

da
_Z ZZSU d1 exp( /d1Ud2>

See figure . Now note that the argument of the exponential is the action for a (Zs)o
topological gauge theory coupled to a background d;. The sum over the common d; is

(115)
|SU(2)07 d2> .

interpreted as a gauging and we write

[P Teus ) ZZSU 2)0(z2), [d][SU(2)o, d) (116)

where SU(2)o|(Z3), denotes the coupled system QFT/TFET in [27]. It is immediate that we
have Zsu(2)o|(z2), (4] = Zs0(3).+.01d]-
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(SO(3)+,0, DI [Tows) (SU(2)o, D] P [Tous) (SU(2)o, D| | PTous)
[ % = [ O 7% = [ 3Gy

Figure 26: In the SymTFT frame work changing from SU(2) to SU(2)/Z, = SO(3), gauge
theory can be formulated as a change in topological boundary condition. Equivalently, we can
realize this as an insertion of the Fourier operator P. This operator can the be collided with

the physical boundary condition giving a notion of coupling the relative physical boundary
to a TFT.

P

v

Biop Gluing Biop P

(1 (i)

Figure 27: SymTree with two topological boundary conditions realizing the polarization
change SU(2) to SO(3)4.

In the difference between |P7g,,) and |7s,) it is thus crucial to keep track of the TFT
basis {|G,, D)} in which the relative boundary condition is expanded. Equivalently, the
coupling a TFT to a QFT in the framework of [27] can be phrased in SymTFT language
as a manipulation of the physical boundary condition: once expanded in a TFT basis the
coefficients are permuted against the basis elements.

We now formulate the discussion above using SymTrees. The point of our discussion will
be that the topological couplings we have described throughout this paper are different from
those analyzed by Kapustin and Seiberg in [27]. Naively, one might have thought that the
coupling described there can be recast as a Y-shaped SymTree with external nodes associated
to the SU(2) theory and topological (Z,), theory and the topological boundary condition.

Starting from the central configuration in figure 26 the SymTree is constructed by ex-
tracting a third edge which is glued trivially at the introduced trivalent junction (see figure
. More precisely, the three edges e we have the fields B§2’e) and at the junction they
are all set pairwise equal, similarly for 052’6). Figure 27| then shows the deformation of this
configuration back to the one appearing in figure The resulting edge supports the action

/ P(Bg;r Cy)

and upon retracting the third leg we revert to the configuration shown in figure [26| in the
central subfigure.
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B Single Derivative Terms in SymTFT Action

The goal of this Appendix will be to derive the leading term in from reducing the 11D
M-theory kinetic term for the 3-form potential which we reproduce here

Ssp = iN/ Ba A dCs. (118)
2m 8D

This appears in the 8D topological action of the SymTFT of 7D suy SYM, as engineered
from M-theory on C?/Zy[? The key effect of line (TI8) is that it creates a braiding alge-
bra between the electric 1-form and magnetic 4-form symmetry operators, or equivalently,
signifies a mixed 't Hooft anomaly between these symmetries.

We will perform this dimensional reduction in a similar fashion to [87] which represents
torsional cocycles by non-harmonic differential forms[?| In particular, we can represent the
generator of Zy = H?(S3/T',Z) by a pair (as, #1) where the 2-form ay and 1-form 3; obey

NOéQ = dﬁl, dTﬁl = 0. (119)
The M-theory fluxes can then be expanded along (aw, £1) as

G4 = (dAl -+ NB2> N g + dB2 A\ 51 (120)
G7 = (dA4 + NO5) N oo + dO5 N 51 (121)

This expands in the 11D kinetic term as

—27Ti511D = % G4 A G7 (122)

11D

1
:—(/ 042/\51) (/ dAl/\dC5-|-NBQ/\dC5—dBQ/\dA4—NdBQ/\C5)
2 \Jss/zy 8D

(123)

where the “8D” directions are the directions of the SymTFT are R, x M5, and the minus
signs result from anticommuting 3; through 5-forms. The two-derivative terms in the above
expansion are not topological as xgpdCs = dA; and *gpdAs = dBsy so these will not be of
concern to us hereP’ On the other hand, the single derivative terms are topological and
after integrating by parts we have

SgD = L (/ (6%) N 51) (N/ B2 /\dC’5) . (124)
21 \Js3 /25 8D

52Tt is straightforward to generalize to arbitrary I'apg C SU (2) but we will stick with I' = Zy for ease of
exposition.

53For a more systematic derivation of similar BF-type terms in SymTFTs from reducing string/M-theory
actions, see the upcoming work [8§].

54 At long distances the topological term dominates.
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SS/ZNi
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52

Figure 28: Sketch of the Hopf-fibration S®/Zy, — S? and the bounding chain 3; within it.
The Euler class N;volg2 of this circle fibration characterizes the obstruction to the existence
of a section. Consider attempting to construct such a section, as depicted, by starting at
the south pole of S? and growing a disk inside of S3/Zy., projecting to S as shown. Upon
reaching the North pole the boundary 0%; does not close, rather it winds N; times around
the Hopf fiber S};. With this %; is a chain bounding N; copies of S};.

The term | 5375 Q2 N [ is the cohomological version of the linking pairing of 1-cycles on
S3/Zy and normalizing this integral to be = 1 mod N reproduces line (118]).

C SymTrees from ALE Spaces

In this Appendix we discuss topological features of the filtration Fx, which sweeps out
X' 224yt =(2—2)M (2 — )™, (125)

as introduced in Section We discuss the homology groups of the radial slices U, and
their relationship across the critical slice as determined by the small radius (line (|18))) and
large radius (line ) Mayer-Vietoris sequences. Further, we dualize and lift to differential
cohomology as relevant in the reduction of the 11D supergravity terms. We extend the

2

SymTree analysis of Section [5| and include generalized symmetries indicated by the “...” in

the expansion of line .
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C.1 Generators of H,(U,—,.)

We begin by identifying the generators of the integral homology groups of the critical slice
Ur=r, = (S°/Zn,) Ugy, (S°/Zn,) (126)

which are listed in line . The bottom and top degree generators are clear. The generator
in degree one is the common Hopf circle S};. Next note, within each lens space there exists
a chain ; such that

0% = NSy, . (127)

As a consequence S}, is torsional, representing a class of order g = ged(Np, Ny). We move
on to discuss the generator in degree two. For this note that we can glue multiples of the
two chains ¥; to a 2-cycle of the critical slice:

2= (N2X1/g) Uprgy (—NiXa/g). (128)

Here L = lem(Ny, Ny) and the sign is required for closure 93 = 0. To see that ¥ represents
a free class we now compare this 2-cycle to the generator e of Hy(X’) = Z. The cross-section
of ¥ is LS}, while the cross-section of e is SL. From this we conclude that mapping X into
Hy(X') we have

Y= Le (129)

or 3 = (. Clearly the embedding is not trivial. From the IIA dual we see that X, projected
to R?, links both D6-brane stacks. See figure [28 where we illustrate the 2-chains 3; within
the Hopf fibration for S®/Zy,. Upon gluing this construction back to back as indicated in

line ([128)) we indeed find line ((129) holds.

C.2 Small and Large Radius Mayer-Vietoris Sequences

Next we determine how cycles contained within small / large radii slices deform to those of the
critical slice. This data is carried by the maps within the small /large radius Mayer-Vietoris
sequences whose associated coverings we now describe and which we then compute.

The covering of the critical slice associated with small radii is then given by the two
patches S®/Zy,, S®/Zy, which intersect in S};. The large radii covering has patches S®/Zy
and the tubular neighbourhood

S — T(Sy) — D? (130)

which is a solid torus fibered over a disk D?. These patches intersect along the torus T? =
OT(S%) which is a circle fibration over the circle 9D? (see figure [29).
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S3/Zy, S}y,

St 3

Figure 29: Depict the covering of the large radius Mayer-Vietoris sequence with respect to
the M-theory circle fibration. In R?, the ITA dual to X', we have two spheres S? touching
along a two-disk D? marked blue. The preimage of this disk and its complement are the
large radius covering. The boundary of the preimage of the disk, which is the intersection of
the two covering sets, is the circle S3 fibered over the boundary of the disk.

With respect to these decompositions the long exact Mayer-Vietoris sequences are

Hn(SIIJ) Hn(‘Sg/ZNl) ®HH<S3/ZN2) Hn(Urzm)
(n=3) 0 — 707 R 72 N .
(n=2) 0o - 0@ 0 — Z N (131)
(n = 1) 7z — ZNl @D ZN2 — Zg —
(n=0) Z - A=Y/ — Z —~ 0
at small radii and
H,(T?) H,(T(Sy)) © Ha(S°/Zx) Hy(Ur—r,)
(n=3) 0o - 00 7Z — 72 N 15
(n=2) Z — 00 — Z — (132)
(n=1) Y/ 7Z® Ly — Zyg —
(n=0) 7 — ASY/ — 7 — 0

at large radii. We remark that the most relevant part of the above sequences is summarized,
respectively, in the following two exact subsequences

8(r<r*) Z(r<r*) (r<rsx)

0 = Z 22— Z —— Zy®Ly, =— Z, — 0
(r>rx) (r>rx) (r>rx) (133)
6 * 2 >k *

0 - 7 -2 3 ! > Znyen, —— Zy — 0

where the index p marks maps mapping from a domain of p-cycles and the exponent labels
the Mayer-Vietoris sequence the subsequence was extracted from.
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We now discuss the maps featuring in these subsequences. First, recall that the boundary
map in the Mayer-Vietoris sequence is defined by cutting a cycle along the intersection of
the two covering components and then considering one of the resulting halves. The initial
cycle is then mapped to the boundary of one of its ‘halves’. With this the map (‘3§T<T*) maps

*)

) onto its cross-section and, as the codomain of 8§T<T is generated by S} and considering

line ([129)), therefore is multiplication by L.

In order to characterize 8§T>T*) let us consider the torus T? = 9T'(S}) and denote its one
cycles by S} and 9D? = ;. We therefore have 92, = N1 S} + 81 and 0¥y = NoSh — 5.
The two halves of ¥ overlap in T? and therefore

ATE = (Na/g)d%1 — (N1/9)0%s = (N/g)B1 . (134)

>ry Sy
r>rs) which is

Similar consideration result in noting that (; generates the codomain of 8§
therefore multiplication by N/g = (N7 + Ns)/g.
All remaining n = 1 homology groups are generated by the obvious Hopf circles and in

obvious, yet slightly redundant, notation we rewrite (133]) as

mod (1,—-1)

Sy 22 ) 2L (S @ (Sk)a) (Sh) = 0
oy 2N gy e ((Sto) e
(135)

where o = S};.

C.3 The Extension Problem

Now we turn to an extension problem, discussed around lines and . From figure
and related discussion it follows that § is a multiple of a.. Also note (see Section [5)) that we
have identified the U(1) localized to the critical slice ag™|

()Y =7Y =U(1), (136)

while various 1-form symmetry background fields on the edges of the SymTree attaching to
the junction are related to the homology groups that «, 8 are mapped into. The relevance
of the refinement of (5) into («) lies in noting that in the coupling of the junction U(1) to
the edges of the SymTree only runs via the subgroup

Zinsy C U(L). (137)

More precisely, as we explain later, we are permitted to interpret the fields on the SymTree
edges as background fields for the relative U(1) junction theory which take values in this

55 As elsewhere, here GV = Hom(G, U(1)) denotes the Pontryagin dual of an abelian group G.
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Zir,n/g subgroup. Also the preferred nesting of groups is

0 > Z;, — ZLN/g — ZN/g — O, (138)

Vv

where Pontryagin duality has flipped the arrow, i.e., (5)Y is a refinement of («)" and the

preferred subgroup of Zyn,, C U(1) is Zg C U(1).

C.4 Differential Cohomology Uplift

Homology groups of internal M-theory dimensions carry geometric intuition. The reduction
of 11D supergravity however proceeds via expansions in differential cohomology classes. We
now discuss how to move from homology to differential cohomology and discuss the reduction
of the topological 11D SUGRA Chern-Simons terms on the radial shells.

First, note that, while the critical slice U,—,., is not a manifold, it is a finite CW complex.
We hence have, via the universal coefficient theorem, the cohomology groups

H"((S%/Zn,) Ust (S°)Zn,)) = 0 h=1 (139)
H Z@Zgg<ll,2>@<t2> ]{?:2
72 = (vol$", vol?) k=3

which are lifted to the differential cohomology classes
1o, i, &y, 01§, vol?) (140)

which with respect to the projection 7 : H* — H* of the short exact sequence of line
satisfy

m(lo) =10, m(ie) =us, n(l)=1ts, w(¥ol{’)=vol{’ (141)

where ¢ = 1, 2. Similarly, for lens spaces, we have

0 k=1
(S V2) =1 5 o L, (142)
K = \t2 =
7, = <V013> k=3

where K = N for r > r, and K = Ny, Ny for r < r, along the three SymTree edges. These
are lifted analogously to differential cohomology as in line ([23)).

Whenever it is necessary to resolve the redundancy in the notation of lines (139)) and
(142]) we append a raised label clarifying which of the SymTree edges we are referring to, for
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example

52(r<r*)71’ 52(r<7“*),2’ {2(7">7”*) (143)

refer to the differential cohomology classes associated with the two small radius edges r < r,
and large radius edge r > r, of the Y-shaped graph Y supporting the SymTree.

All differential cohomology classes relevant in the KK reduction are the uplift of inte-
gral singular cohomology classes and as such are related to and across the critical slice via
mappings which are dual to those appearing in lines and , i.e., the mappings
appearing in the respective Mayer-Vietoris cohomology sequences. The boundary map 0
dualizes to the coboundary map. All other maps are embeddings and dualize to restrictions
for cocycles.

C.5 11D SUGRA Reduction

Next we turn to the KK reduction of the topological 11D SUGRA terms along the differential
cohomology classes lifted from lines and . First, we determine the bulk fields of
the SymTree. This extends line (43). Then we determine the SymTree action governing
their interactions. It is in the latter part where the uplift to differential cohomology bears
fruit in the computation of anomaly coefficients.

The fields on a branch of the SymTree are determined by KK reduction of the field
strength G4 over the associated radial shell. For the lens space shells we have

Gy = H™% 1o+ B % iy + Hy * Vol + . .. (144)

and the coefficients are the SymTree fields on the 8D branches of the SymTree. Here we
have suppressed an additional label of the fields denoting the branch of the SymTree these
live on, we shall add it as a raised index later. We also normalize such that GG, has integral
periods. For the small radius branches which attach to the physical boundaries supporting
7D SYM edge modes, one has the interpretations:

e H™t: continuous 4-form field strength, associated with a 3-form U(1) SymTree gauge
potential Ci** and restricting to the background of a 2-form symmetry on the physical
boundaries which is there interpreted as 2-form instanton symmetry.

v

e H,: continuous 1-form field strength, associated with a 0-form U(1) SymTree gauge
potential C{"*. The associated parameter is

6 — / Cy (145)
S3 /LK

where C5 is the 11D SUGRA 3-form potential. We return to the physical interpretation
of this parameter after discussing the other fields.
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. B . discrete 2-form gauge field with Zx values. This field restricts on the boundary
to the background potential for a 1-form symmetry on the physical boundaries which
is there interpreted as the center symmetry.

The “...” omissions refer to an expansion along classes of QP~1/ QZZ’A, which lie in the kernel
of the projection 7 : H? — H? resulting in U(1) valued fields in 8D which do not couple to
background fields for the discrete symmetries of the 7D SYM relative theories.

The one outlier in this discussion is the appearance of a continuous parameter coming
from H 1, and its associated O-form potential in the bulk 8D theory. This would suggest the
appearance of an 8D topological term of the schematic form 0H inst Ifljl“s‘;. Restricting to
the 7D worldvolume, this would descend to a Chern-Simons-like theory of the form:

i
Stpcs = -0 / C A dCs, (146)

for the background 3-form associated with the 2-form symmetry. For 6 ¢ Z. this would
result in a theory with an improperly quantized level, i.e., it cannot be defined independent
of the 8D bulk.

Now we turn to discuss the TF'T interactions between these fields which are determined
via reduction of the 11D supergravity Chern-Simons term

22'@ G4 * G4 * G4 (147)

over the lens space shells. Inserting the expansions of line ((144)) this results in (see reference
[20]):

S(anomal . ins ins ] K - 1
S(IaK Y = m/ H( R H( R * H, —2m
’ M7 xT 2

H™ 5 B % B (148)
K M7><I
with spacetime M7 and interval Z = (r,r,) for the case K = Ny, Ny or Z = (r,00) for the

case K = N, specifying mixed anomalies. Along each branch of the SymTree we also have

the one-derivative action o
v

S0 = 22 B usci (149)
’ K Jagxz
whose derivation is discussed in Appendix |Bl The TF'T action associated with one edge e of

the SymTree with internal radial shells S3/Zj is then
St = ST + 5L (150)

where we have projected back down to integral singular cohomology, replacing the star
product x with the cup product U in the process. When truncating to the indicated two terms
we are describing the TFT associated with discrete symmetry structures in a background
of continuous symmetry structures. Of course the full TFT does not distinguish between
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discrete and continuous, however we postpone details of this to future work.

Overall the full SymTree action takes the form
St = 50,r.),N T S0,r),N2 T S ,00),N T S(r=r.),7 - (151)

where the last term describes a possibly non-topological relative junction theory which we
are yet to determine. In addition to the junction action we are now required to supplement
the overall action with boundary conditions for the bulk fields at the junction. The junction
degrees of freedom crucially enter these boundary conditions, we therefore determine these
first and then solve for the boundary conditions via geometry.

First, we determine the fields localized to the junction. For this, similar to line (144]), we
expand G4 in the classes of line (139) of the critical slice resulting in

G4 _ Vir:r*,inst)*10+Eér:r*)*£2_i_F(fr:r*)*qu+Fll(r:r*,1)*{701g1) +]:.I1(T:T*’2)*\701§2) 4o

— 2,U(1)

) (152)
The first set of boundary conditions derives by determining which of the coefficient fields
arises as restrictions from fields on the edges of the SymTree to the junction. For this we need
to relate the internal legs of differential cohomology class across the junction. In homology
this amounts to studying how the dual cycles of the edges embed into the critical slice of
the junction. For example the mappings ]I(Tq*), j2(T>T*) of line immediately gives the
gluing conditions of line . Similar embeddings straightforwardly give

r(r<r«,l,inst) _ p7(r<r«,2,inst) _ y(r>rs,inst) _ py(r=rs,inst)
H4 - 4 - 4 - 44 ) (153)
T=Tx T=Tx T=Tx
7 (r<rs,l1) _ pglr=rs,1) i (r<r«,2) _ gr=rs2) o (r>7) _ r=rel)  p(r=re2)
H, o = H, , H - = H , Hy . = H = H

(154)
and we note that all coefficient fields of line are thus fixed by bulk fields of the SymTree
except for the U(1) 2-form background fields. In order the raised indices here give the radii
the fields live on, the connected component of this radial slice if it is disconnected and
additional physical qualifiers. Next, following the discussion in Section [3, we have the images

m37%, 2Z&L, mj\Y, =7,
3\, 2Z,C Ly, ®Zy,,  Imj2, =Z,CZLy, (155)
7Y, =271z, 7Y, =7,

with trivial cokernels in degree 0 and 3. Here notation is such that j(p),j(p), 7®) respecitvely
denote the embedding map in homology in the large radius and small radius Mayer-Vietoris
sequences (which we distinguish by an additional lowered or raised index), the restriction
map in the cohomology version of these sequences and the uplift of the latter to differential
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cohomology. We further have
Kerj\2, NKerj2, =7, (156)

generated by us identifying Féﬁi)) as a junction degree of freedom, i.e., it does not arise as

restrictions of external bulk fields and is free to fluctuate.

Having identified the junction edge modes, we now view these as a relative theory with
respect to the three SymTree edges attaching to the junction. We are thus required to give
an interpretation of the bulk fields as background fields for the junction edge modes. This

results in lines and .

To proceed note that in restricting all the 2-form fields BéK), valued in Zg and supported
on the three SymTree edges, to the junction we have set boundary conditions for a subgroup

L. C Ly, ® Ly, ® Ly (157)

via the gluing conditions of line . The three BéK) fields are only fixed relative to each
other, hence only Zg is eaten up by the conditions, rather than Zg. The extension problem
discussed in Appendix now implies that the remaining B-field profiles in

ZNI @ ZN2 S ZN
Zg

(158)

are to be interpreted as 2-form fields associated with U(1) backgrounds in the junction
taking values in Zyp, /4, the central entry in line . The quotient of line is precisely
Zinr)g = LinyNyNJg2- The quotient of line also clearly gives map from bulk fields to
background field for the U(1) junction theory, it is simply the quotient map itself

Zn, ® LN, ® Ln

Q : Zn, ® Ly, ® Ly — 7 (159)
g

Working out the quotient for elements (ny,n9,n) € Zy, ® Zy, ® Zy with one non-vanishing

entry we find lines and .

D Sequences for Isolated Multi-Sector QFT's

In this Appendix we supply additional details on the isolated multi-sector QFTs analyzed
in Section [6l
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D.1 Sequences for 7D Models

We now discuss the filtration Fx with radial shells of Section |3.1.1|in greater detail. Recall
that we are considering elliptic local K3 surfaces X — B with base B = C. As such we will
repeatedly encounter three-manifolds ¥4/ which are smooth torus bundles

T? — 2 — 5t (160)

over a circle subject to a monodromy twist. For our purposes only the action of this mon-
odromy on the n-th homology lattice of the torus fiber will be relevant, and we denote it by
M,,. The homology groups of such a three-manifold derive from the exact sequence

0 — Coker(M™ —1) — H,(2}) — Ker(M™V 1) - 0. (161)

The monodromies we consider are such that M© = M® =1 and MY = M € SL(2,7Z).
From this sequence we derive the homology groups . Let us discuss the generators of these
groups. Top and bottom homology classes are clear. Consider H;(¥3!) 2 Z & Coker(M —1).
The factor of Z admits a simple representative, the base circle S*. Now consider a 1-cycle
v € Hy(T?) of the elliptic fiber. Now trace out a 2-chain by transporting it once around the
circle base transforming as

N = My=(M =1y +m (162)

considering orientations the initial and final copied of v, cancel against each other, the 2-
chain has boundary (M — 1)~;. This explains the contribution Coker(M —1). The homology
generators in degree 2 follow by duality, they are the fiber class and any eigenvector of M
fibered over the base circle.

Let us next compute the homology groups of the critical slice
Uey, = (S3) Uge (2572) . (163)

Again top and bottom homology classes are clear. Note that U,—,, is fibered over a figure
eight SV S and hence the factor of Z? in

Hy(Up—y,) = 22 ® [Z*/Tm(M; — 1, My — 1)] (164)

are represented by the two base circles. Constructing 2-chains by transporting 1-cycles of
the elliptic fiber around these circles as above then gives the quotient contribution. The
degree two cycleg|

Hy(U,—,,) = Z & coker(M; — 1)" @& coker(My — 1) & F (165)

are respectively the fiber, monodromy eigen-1-cycles fibered over any one of the base circles

56Given an abelian group G we define a dual group as G" = Hom(G, Z).
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and a case dependent contribution F' = 0,7, Z? of a fiber 1-cycle fibered over the full figure
eight base. From these considerations the restriction to line parameterizing the gauge
theory data is clear.

Next we determine how cycles contained within small / large radii slices deform to those of
the critical slice, studying the small / large radius Mayer-Vietoris sequences whose associated
coverings we now describe and which we then compute.

The covering of the critical slice associated with small radii is then given by the two
patches Zéwl, Eg/b which intersect in T2. The large radii covering has patches EéwlMQ and the
cylinder I x T?. Growing the base circles the touch along a point and then an interval, the
latter cylinder are simply all fibers projecting to the interval, see figure These patches
intersect along 2 tori T2 LI T2

With respect to these decompositions the long exact Mayer-Vietoris sequences are

H,(T?) H,(55") @ Ha(257) H,(Ur=r.)
(n=23) 0 — YASY/ — 72 — '
n=2 | z o Zerezel) - ZeClaC)eF — (166)
(n:].) ZQ — Z@Cl@Z@CQ — ZZ@CLQ —
(n=0) Z — 7® L — Z — 0

at small radii, where we abbreviated C; = Coker(M; —1) and Cy 5 = Z*/ITm(M; — 1, My — 1),
and

H,(T? U T?) H,(T%) @ H,(235""") H,(Ur=r.)
(n =3) 0 — 0 7Z — 7?2 —
(n=2) L — ZSZdCY - ZeCleCyaoF —
(n: ].) ZQ@ZQ — ZQ@Z@CIQ — ZQ@CLQ —
(n=0) ASY/ — YASY/ — Z — 0

(167)
at large radii, where we abbreviated C15 = Coker(M;M; — 1). We remark that the most
relevant part of the above sequences is summarized, respectively, in the following two exact

subsequences
a(r<7‘*) 71(7"<7‘*) J(r<7‘*)
0 — F 2 77 ! 01@02 1—> CLQ — 0
j(r>r*) (r>7rx) Z(7“>7"*) (r>7rx)
2 2 1 1
0 - C)y —— ClaCyaF y 772 3 Cis —— Cip — 0

(168)

where the index p marks maps mapping from a domain of p-cycles and the exponent labels
the Mayer-Vietoris sequence the subsequence was extracted from. These subsequences follow
by explicit considerations from having identified the generators above. The sequence ({168])
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should be compared ({135) which forms the starting point for the SymTree discussion laid
out in Appendix [C.3|

Instead of laying out this very similar analysis we demonstrate how to make direct contact
with previous results. As expected this can be achieved by considering two mutually local
singularities of Kodaira type In,, In,, respectively with monodromy matrices

1N1 1N2
! (0 1)’ 2 (o 1) (169)

CigZ@ZN“ OI2§Z@ZN1+N27 Cl,2gZ@ZQ
cr7, ch=7Z, Cpy 7.

This gives
(170)

Further there is a single 1-cycle of the fiber which pinches at both singularities and hence
we expect F' = Z, corresponding to the compact 2-cycle obtained by fibering that 1-cycle
between the singularities. However, the generator of F' is constructed from the 2-cycles
constructed around in much the same way as , this reproduces . Inserting
(170) into (168), we find an exact subsequence 0 — Z — Z? — Z — 0 which we can remove
in both sequences as well as an additional subsequence 0 — Z — Z — 0 in the second
sequence. Once these trivial parts are cut we reproduce ([135)).

D.2 Homology groups for X = (T? x C?)/Zs

In this Appendix we expand on the homology computations for the geometry X = T?xC?/Z3
and in particular derive the homology groups lines and which are relevant for the
small and large radius Mayer-Vietoris sequences with respect to the filtration (90). The
SymTree for this case is depicted in figure [24}

Let us first discuss the homology groups of 9X = (T2 x S3)/Zs given in (92)) and identify
their generators. The homology groups are determined by considering the two fibrations

m o 0X — T?%)Zs, T 0X — S%/Zs, (171)

which have generic fiber S3, T2 respectively. The boundary is smooth and hence its homology
groups are organized by Poincare duality. First, consider the fibration 7y, which has three
exceptional fibers (5%/Z3); with i = 1,2, 3 which project to the three fixed points of T?/Zs.
For these we have

3(8%/Zs); = S® (172)

where the lefthand side denotes the generic fiber of m;. These three-cycles generate the
third homlogy group of 0X and taking the above equivalence into account are isomorphic to
Z®73. There are no four-cycles and Poincare duality completely fixes the homology groups
of 9X. The one-cycles 7;, generating copy of Z2, are given by the uplift of the three 1-cycles
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0X

(8°/Zs) (8%/Zs3), (55 Z3)3

Figure 30: Sketch of the geometry X°.

which link exactly one marked point on T?/Zj. They satisfy the homology relations
Y1+ +73=0, 37 = 0. (173)

Finally the 2-cycle is simply the fiber class of the fibration my, i.e., a copy of T2.

We can now compute the homology groups of X°. We proceed via Poincare-Lefschetz
duality together with excision which establish the isomorphisms

H,(X°) = H"(X°,0(X°)) = HS"(X,0X U {21, 22, 23}) (174)

where x; denote the location of the three codimension-6 singularities. We then compute the
lefthand side using the long exact sequence in relative homology resulting in line . The
only not straightforward map in this computation is the restriction map

Ry : HY(X)27Z — 7= H*(0X U{xy, 15,73} (175)

which is multiplication by 3. We can now further geometrize the homology groups of line
(91)). For this think of X° as three-legged pants with cross-section (S°/Z3); and one branch
with cross-section 0X (see figure . The generators in degree 1 are again the ~; subject to
the same relation ((173). Given ~; there exists a deformation into the boundary component
(S%/Z3); such that ~y; generates Hy((S°/Zs3);)) = Z3. The generator in degree two is again
the T? fiber class. The generators in degree three are now all three lens spaces (S5°/Z3);.
These however now generate Z3 because any such lens space is homologous to the (S®/Z3); C
(55 /Z3); making it clear that all class generated by these are torsional. Finally the top degree
class follows because there are four boundary components which sum to zero in homology,
the trivializing chain is X° itself.

With these identifications of generators the small and large radius Mayer-Vietoris se-
quences follow straightforwardly.
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E Holography and Ensemble Averaging

In this Appendix we briefly review some aspects of ensemble averaging in the context of the
AdS/CFT correspondence. There are by now many papers in the literature with differing
viewpoints on the underlying reason that such averaging occurs, so we mainly focus on the
features most salient to our discussion in Section [8l

To large extent, ensemble averaging in holography is expected due to a factorization
puzzle which occurs in comparing the partition functions of causally disconnected boundary
CFTs which are joined by a bulk wormhole configuration [89}90].

Consider a system in which the boundary has n connected components > = ¥ LI 35 LI
-+ U 3,. The gravitational path integral must naively sum over all possible bulk manifolds
with this conformal boundary. Near each boundary, we need to specify the asymptotic profile
for the fields of the CFT, e.g., the moduli / parameters of the theory. We denote these as
¢log, = J; for i = 1,...,n. According to the standard holographic dictionary [66}84,91], the
path integral results in a connected correlation function:

(ZIN]--- Z[n]) (176)

which cannot generically be factored into a product of correlation functions for the individual
components of the boundary. For example, with n = 2,

(Z[1]Z][ L)) # (ZIA){Z][ L)) (177)

where Z[J;] and Z[Js] can be regarded as CFT partition functions over the two boundary
components Y; and X, respectively.

From the point of view of the effective theory and holography, the proposal is to interpret
this non-factorization as due to the contribution of wormhole configurations in the gravita-
tional path integral, which corresponds to the ensemble averaging of boundary theories.
There are indeed low-dimensional examples demonstrating this behavior, e.g., the duality
between 2D JT gravity and 1D random matrix theory (see e.g., [82,/92,93] and references
therein), as well as the duality between semi-classical 3D gravity and 2D CFT ensemble
averaging (see e.g., references [47,82)).

At present, a full understanding of the mechanism underlying ensemble averaging remains
an open question. One interpretation is that this ensemble averaging is “real” in the sense
that the gravitational theory really is dual to an ensemble of CF'Ts; this possibility is closely
related to having a high-dimensional Hilbert space for baby universes [94] P7| which in turn
would also appear to require treating gravity as an open system. On the other hand, a more
conservative interpretation is that even within a single fixed CFT, any attempt to describe
black hole physics will necessarily require some sort of chaotic dynamics. As such, one should

57See, however, [46,95].
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expect averaging to be a generic feature of states which are sufficiently “complex”. This
would be in line with Wigner’s approach to nuclear theory which makes use of a probabilistic
ensemble of Hamiltonians [96] to model the structure of large nuclei. Such an approach
would also be in line with the general contours of the eigenstate thermalization hypothesis
(see [97,98]).

Some aspects of this more conservative interpretation were recently sharpened in the
specific context of 3D gravitational theories in reference [47] (see also [82]), but it is expected
that some of these considerations apply more broadly. In reference [47], Schlenker and Witten
studied the factorization puzzle by separating observables into those below and above the
black hole threshold. Here, “below the black hole threshold” means, in the CFT dual, states
with scaling dimensions above the ground state by only a fixed amount, i.e., above some
App, in the large M limit. It is claimed that observables below the black hole threshold do
not demonstrate ensemble averaging while, by contrast, black hole states are responsible for
the ensemble averaging behavior of the gravitational path integral.

This proposal is based on two statements: that black hole physics is chaotic, and that
the Hilbert space H),; describing black hole states does not have a large M limit. To see
this, note that the black hole entropy Sgy at a fixed temperature grows as a power of M,
e.g., Spy o< M? if the boundary CFT is a 4D large M gauge theory. Then, in the limit of
large M, if one changes M to M + 1, the dimension of H,; grows by exponential factor as

My e(MHD? (178)

Therefore, it is very likely that the Hilbert space and the corresponding Hamiltonian of black
hole states do not have a large M limit. The Hamiltonian H); of black hole states at given
M is then a pseudorandom matriﬂ For neighboring values of M, each H); can be regarded
as an independent draw from a random matrix ensemble[”]

To better understand how this affects the computation of observables, let us focus on
an arbitrary observable O,; depending only on H,;. In random matrix theory, O,; may
be a “self-averaging” function, meaning that it has almost the same value for almost any
draw from the ensemble. In this case, (Oy) will be a smooth function of M, with small
e~ corrections reflecting the fact that self-averaging functions of a random matrix can differ
slightly from draw to draw. If ), is not self-averaging, it will be an erratic function of
M whose expectation value (O,s) cannot be simply computed approximately. However, the

gravitational path integral always produces a smooth function of M by typically summing

58 A pseudorandom matrix is one generated by a deterministic causal algorithm, but one in which it cannot
be distinguished from a truly random matrix by any pre-determined statistical test for randomness.

59 An unfortunate feature of some of the literature on holographic ensemble averaging is that the notion
of averaging is sometimes different across different papers, e.g., it sometimes refers to a quenched, and
sometimes to an annealed average. This shows up in the present discussion because even though we are
averaging over M, we are still treating the system as drawn from a single class of Hamiltonian operators a
la Wigner.
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over the contributions of saddle points.m From the random matrix theory point of view, even
for non-self-averaging observables, there still exists an averaged value within the ensemble,
which is possibly computed using the gravitational path integral. In this sense, (Oy) as
derived from the gravitational path integral should represent an averaged result over nearby
values of large M. The reason underlying this property of the gravitational path integral is
related to the coarse-graining nature of the semi-classical gravity (see e.g., [101]). We must
emphasize that the Schlenker—Witten proposal by no means claims that the ensemble aver-
aging is always over microscopically well-defined CF'Ts, which is in contrast to the procedure
given in e.g., references [102H108].

Another subtlety with the Schlenker—Witten proposal is how it works in AdSp,;/CFTp
when the CFT spacetime dimension is D > 2. Recall that in (D + 1)-dimensional gravity,
the AdSp.; black hole solutions can be separated as

D -2
small black holes with p, <4/ 5 Lgs ,
; (179)

large black holes with p, > DT Lags,

where p, is the location of the horizon and L agqg is the length scale of AdSp ;. In AdS;, there
is no small black hole and thus there exists a sharp black hole threshold scale to distinguish
states with energies below and above it. When D > 2, however, there exist small black holes,
so it is not clear in what sense one can determine whether states are sub-threshold or not.
This would seem to suggest that at least in higher-dimensional CF'Ts, large M ensemble
averaging would need to be entertained even in considering correlators for low dimension
operators.

Another question is how to implement large M averaging when dealing with extended
operators which transform non-trivially under higher-form symmetries. Such operators are
often directly sensitive to the topological sector of the bulk gravitational dual, and in par-
ticular quantities such as M itself. This occurs, for example, in the 5D topological term:

S5D = LM/BQ N ng (180)
2m

One of the aims of Section [§] is to construct extended operators which still admit large M
averaging even whilst still retaining a higher-form symmetry.

50This holds even when classical solutions are not available. See [99,100] for examples.
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