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Abstract

The global symmetries of a D-dimensional QFT can, in many cases, be captured in terms
of a (D+1)-dimensional symmetry topological field theory (SymTFT). In this work we con-
struct a (D + 1)-dimensional theory which governs the symmetries of QFTs with multiple
sectors which have connected correlators that admit a decoupling limit. The associated
symmetry field theory decomposes into a SymTree, namely a treelike structure of SymTFTs
fused along possibly non-topological junctions. In string-realized multi-sector QFTs, these
junctions are smoothed out in the extra-dimensional geometry, as we demonstrate in exam-
ples. We further use this perspective to study the fate of higher-form symmetries in the
context of holographic large M averaging where the topological sectors of different large M
replicas become dressed by additional extended operators associated with the SymTree.
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1 Introduction

Global symmetries play an important role in constraining the dynamics of quantum field

theories (QFTs). It has recently been shown that global symmetries are also associated with

deep topological structures [1]. This has led to many generalizations, which now encompass

the standard textbook 0-form symmetries, as well as various higher-form, higher-group, and

higher categorical structures.1

For a D-dimensional QFT,2 this topological structure can often be captured in terms of

a (D + 1)-dimensional topological field theory, often referred to as a symmetry topological

field theory (SymTFT).3 In this framework, the structure of the D-dimensional QFT is spec-

ified by fixing appropriate boundary conditions in the SymTFT: we have a non-topological

physical boundary condition specifying a choice of relative QFT, as well as a topological

boundary condition which fixes the global form of the QFT. This approach is quite power-

ful, and immediately provides a framework for extracting higher-categorical symmetries as

captured by topological fusion rules of the SymTFT. While the existence of this SymTFT

can be formulated in purely bottom up terms, it is helpful to note that for QFTs with a top

down (i.e., stringy) realization, the SymTFT naturally appears via a topological reduction

of the associated extra-dimensional non-compact geometry [20] (see also [21–24]). This is es-

pecially helpful in the context of intrinsically strongly coupled QFTs, e.g., D > 4 conformal

fixed points.4

But QFTs can exhibit a range of possible phenomena and it is natural to ask whether the

current paradigm of SymTFTs is flexible enough to accommodate all these possibilities. In

this work we study the structure of SymTFTs for QFTs with multiple “decoupled” sectors

in which all connected correlators involving non-topological operators admit a decoupling

limit. In practice, this means we have parameters / mass scales such that for connected

correlators between different sectors:

⟨O1O2⟩conn → 0, (1)

in a suitable decoupling limit. We refer to these as multi-sector QFTs. In our terminology,

each sector is itself a non-trivial interacting relative QFT.

Even though the different sectors have decoupled local dynamics, their global form can

still be non-trivially coupled topologically.5 For example, the global form of the gauge group

in a multi-sector model can impose non-trivial constraints on the spectrum of Wilson lines.

To frame the discussion, an example which we repeatedly return to is that of a UV suN+M

1For some recent reviews, see e.g., [2–6].
2We assume throughout that our QFT is Lorentz invariant when formulated on RD−1,1.
3See e.g., [7–19].
4See [25,26] for recent reviews.
5This is somewhat distinct from the case of coupling a QFT to a TFT studied in [27], but we explain the

relation to the present work in Appendix A.
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gauge theory which undergoes adjoint Higgsing to suN × suM × u(1) gauge theory in the IR.

While there is no issue in defining Wilson lines in the parent suN+M theory, the construction

of Wilson lines for just the suN or suM gauge theory sector meets with immediate subtleties

such as the proper treatment of 1-form symmetries in a given sector.

In general, we can construct the corresponding SymTFT for each individual sector, and

then construct a junction with a SymTFT which captures the symmetries of the parent UV

theory. Our main claim is that this procedure can indeed be carried out, but there is in

general no guarantee that the theory living at the junction is topological. Carrying this out

for multiple SymTFTs fused by junctions, we arrive at a treelike structure.

We refer to this tree as a “SymTree”. A SymTree consists of branches, which merge at

junctions. Each branch is associated with a SymTFT, and each junction specifies gluing

/ compatibility conditions for these bulk TFTs. The junctions themselves need not be

topological, and often support additional degrees of freedom. This also leads to a natural

categorical structure where collections of SymTFTs are the objects and the junctions serve

as morphisms. Rearrangements of the branches of a SymTree amount to compatibility

conditions for the morphisms, i.e., homotopy equivalences.6

To establish this, we begin with the (D+1)-dimensional SymTFT for the full multi-sector

QFT. Treating the topological couplings between sectors as supported in D dimensions, we

can pull these into the bulk. This results in junctions of SymTFTs for the different relative

QFTs. Heavy defects defined in one relative theory are dressed by extended operators in the

bulk SymTFTs, which can split / attach to other relative QFT sectors by passing through

the junctions. Similarly, symmetry operators attached to the topological boundary of the

full SymTFT can be pushed through the junctions, resulting in symmetry operators which

are dressed by defects possibly attached to the junction, and can also be shared between

multiple sectors.

SymTrees have a direct geometric interpretation in string theory. To begin, recall that

string-realized QFTs decoupled from gravity naturally arise from local geometries with var-

ious singularities. In stringy terms, a multi-sector QFT simply amounts to having a non-

compact geometry with more than one such singularity. Near each singularity we get a

collection of local operators, and heavy states which stretch across the different sectors are

integrated out, leaving their imprint in the low energy effective field theory via higher di-

mension operators suppressed by a scale Λ. Taking Λ very large and possibly tuning other

moduli then results in seemingly decoupled QFT sectors.7

While this provides a way to partially sequester the contributions from different sectors,

there are still residual topological couplings which persist, even into the deep infrared. Ex-

6In principle there can be anomalies / obstructions in carrying out such moves.
7This further tuning of moduli is sometimes necessary to truly decouple the sectors. For example, another

contribution which often does not decouple are kinetic mixing terms between U(1) gauge fields [28]. These
arise from integrating out charged states which could in principle be very heavy. This leads to a more
“obvious” non-decoupling effect, but one which is somewhat orthogonal to the considerations of the present
work. This contribution can also be switched off via suitable tuning of moduli.
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tending the picture of reference [20] to cover this case, we observe that for a D-dimensional

QFT, we can indeed locally construct a (D + 1)-dimensional SymTFT by extending in the

“radial direction” emanating out from a given singularity. But with multiple QFT sectors,

this radial direction inevitably fuses with other locally defined SymTFTs. The resulting

structure is thus really a junction of individual SymTFTs which fuse along a possibly non-

topological D-dimensional interface. While the (D+1)-dimensional description is somewhat

singular, it is clear that this is smoothed out in the extra-dimensional geometry of string the-

ory. From this perspective, the stringy construction (when available) leads to a systematic

method for constructing a SymTree. Any ambiguities in reading off the SymTree amount to

dualities / homotopy moves which rearrange the branches of the SymTree.

The string theory characterization of heavy defects and topological symmetry operators

exactly fits with these general considerations. Much as in [29] (see also [30–32]), heavy defects

arise from branes wrapped on non-compact cycles which extend from a given QFT sector

out to “infinity” (i.e., where we impose the topological boundary conditions), which are then

partially screened by branes wrapped on collapsing cycles. On the other hand, symmetry

operators arise from branes wrapped “at infinity” [33–35] (see also [36–41]). Pushing these

branes in from infinity so that they are shared across multiple QFT sectors exactly matches

with the bottom up description in terms of junctions of SymTFTs.

One of the general lessons from this sort of analysis is that trying to characterize all

categorical symmetry structures in terms of a single bulk SymTFT can obscure some im-

portant features (though of course they are still present). For example, there have been

recent proposals that many categorical structures are captured by a suitable fusion (D − 1)

Category (see e.g., [42–45]). Our present considerations illustrate that both the objects, as

well as morphisms of the correct symmetry category for a general QFT will inevitably be

somewhat broader.8

We illustrate these general features with examples, many of which also admit a top down

construction. As an illustrative example, we consider 7D gauge theories engineered from

M-theory on an ADE singularity. In this case, the local geometry takes the form C2/Γ for Γ

a finite subgroup of SU(2). There is an ADE classification of such singularities, and this fixes

the Lie algebra type of the corresponding gauge theory, i.e., the relative QFT. The global form

of the gauge group is fixed by a choice of boundary conditions “at infinity” on the generalized

lens space S3/Γ in the asymptotic conical geometry. Complex structure deformations of the

singularity correspond to adjoint Higgsing of the singularity, and can result in multiple QFT

sectors where all connected correlators for local operators in different sectors decouple below

the Higgsing scale. Even so, there can still be topological couplings between these sectors

which correlate the structure of heavy defects and topological symmetry operators. Focusing

on the local radial profile for these geometries, we uncover a junction of symmetry TFTs with

a non-topological interface theory, supported on the junction, setting boundary conditions

8At the very least, the presence of non-topological interfaces suggests that the collection of k-morphisms
must be enriched.
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for the TFTs.

This basic geometric example generalizes in a number of ways. For example, we can

produce similar SymTree structures for 6D superconformal field theories (SCFTs), as well

as their compactifications to lower-dimensional systems. Similar considerations also apply

in QFTs engineered via D-branes probing singularities. For example, we can also realize 4D

N = 4 Super Yang-Mills theory with an A-type gauge group via spacetime filling D3-branes

sitting at a common point of C3. Partitioning up these D3-branes to multiple stacks, we

observe that these sectors decouple in the deep IR, but that there are also massive strings

which are integrated out in taking this limit. The associated bulk SymTree exhibits the

same structure of SymTFTs fused along a non-topological junction. One can also apply

the same reasoning in hybrid situations where we have branes probing singularities; we can

deform the singularities and at the same time also separate the stacks of D-branes in the

extra dimensions, much as in [46].

The unifying theme in all of these examples is that we start with a single “parent theory”

and then consider a flow in the moduli space of vacua to a multi-sector QFT. The SymTree

encodes a topological treelike structure associated with this flow.

In addition to these examples, we also present examples where the multi-sector model is

not obtained from a flow in moduli space. Such multi-sector models are ubiquitous in string

compactifications which typically have other sequestered sectors anyway. From a bottom up

perspective, these sectors can be viewed as always being at infinite distance in moduli space.

In all of these cases, we can use the “branes at infinity” perspective to construct heavy

defects as well as topological symmetry operators. Moving these objects into the bulk and

passing them to another sector explicitly illustrates that defects of one theory inevitably

need to be dressed by additional operators.

We anticipate that these considerations can be used to study the structure of a wide

variety of multi-sector QFTs. Indeed, while our examples mainly focus on supersymmetric

multi-sector QFTs, the structure of a SymTree is largely complementary data. Along these

lines we also give an example of a non-supersymmetric Yang-Mills theory coupled to a

complex adjoint-valued scalar which has precisely the same sort of SymTree as found in the

supersymmetric setting.

As another application, we use this perspective to study large M ensemble averaging

in the context of the AdS/CFT correspondence [47]. At a practical level, this is expected

for any “self-averaging” observable which is smooth in the value of Newton’s constant.9

On the other hand, phenomena such as the confinement / deconfinement transition are

observable in semi-classical gravity, but are also quite sensitive to the specific higher-form

symmetries of the boundary theory [21, 48]. One would presumably still like to assert that

even with large M averaging, the Wilson lines of SU(M) gauge theory serve as an order

parameter for confinement / deconfinement. Reconciling these two points of view, we can

9We review some aspects of self-averaging observables in Appendix E.
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BphysBtop

SymTFT Slab

U

D

Figure 1: Standard SymTFT setup. Topological symmetry operators (green, U) link heavy

defect operators (grey, D) in the (D + 1)-dimensional slab. The defects stretch from the

topological boundary (blue, Btop) to the physical boundary (red, Bphys).

consider a collection of large M replicas with extended operators dressed by additional

extended operators. Dressing the Wilson lines of an individual replica by operators shared

across all the sectors yields a general procedure for producing an order parameter which

is still sensitive to the higher-form symmetries of the original large M gauge theory with

no averaging. This sort of construction also lifts to a top down proposal for implementing

disorder averaging [46].10

The rest of this paper is organized as follows. In Section 2 we analyze in general terms

the symmetry field theory associated with a multi-sector QFT. In particular, we explain

how junctions of SymTFTs arise in this setting. In Section 3 we show how this treelike

structure is smoothed out in the extra dimensions of string constructions. Section 4 presents

an illustrative example of SymTrees for 7D Super Yang-Mills theory. We present additional

examples constructed via vacuum moduli space flows in Section 5, and in Section 6 we con-

struct examples where each sector is at infinite distance in moduli space from its counterpart.

Section 7 presents a non-supersymmetric example of SymTrees for Yang-Mills theory coupled

to a complex adjoint-valued scalar. In Section 8 we use this structure to study higher-form

symmetries in large M ensemble averaging. Section 9 contains our conclusions and future

directions. In Appendix A we study the SymTree of a gauge theory coupled to a TFT.

Appendix B gives additional details on a top down derivation of single derivative terms of

a SymTFT. In Appendices C and D we present more details on some of the (co)homology

calculations used in the main body. Appendix E reviews some additional details on ensemble

averaging in holography.
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2 SymTrees

In this paper we shall be interested in the structure of D-dimensional multi-sector QFTs, and

a (D + 1)-dimensional bulk theory which governs its symmetries. While our considerations

are motivated by string-theoretic constructions, they can be stated in purely field theoretic

terms, and so in this Section we opt to give a bottom up characterization of these structures.

We defer a top down string-theoretic approach to Section 3.11

To begin, we recall that the symmetries of a (relative) D-dimensional QFT can be encap-

sulated in terms of a corresponding (D + 1)-dimensional symmetry topological field theory

(SymTFT) [16–19]. In this symmetry TFT, the global form of the QFT is specified by

suitable boundary conditions. More precisely, we have a state / physical boundary condi-

tion |Bphys⟩, or simply Bphys, as well as a topological boundary condition ⟨Btop|, or simply

Btop, which amounts to a choice of Dirichlet boundary conditions for some of the fields of

the SymTFT and Neumann boundary conditions for others. The partition function of the

absolute QFT is then given by evaluation of the overlap of states:

ZBtop,Bphys
= ⟨Btop|Bphys⟩, (2)

in the obvious notation.

Heavy defects and topological symmetry operators can be introduced in this framework

in a straightforward manner. First of all, we can consider symmetry operators localized near

the topological boundary condition. We can of course move this operator into the (D + 1)-

dimensional bulk and over to the physical boundary. These symmetry operators acts on the

heavy defects of the QFT. In the SymTFT, these heavy defects lift to defects which fill out

one more direction in the bulk, and stretch from Btop to Bphys (see figure 1). Observe that

symmetry operators and physical operators now link both in the D-dimensional physical

boundary, as well as in the (D + 1)-dimensional bulk.

Our interest here will be in QFTs with multiple sectors. Our definition of this is to

begin with distinct relative theories T1 and T2. These theories might be coupled via operator

mixing terms. We demand, however, that there is a limit of various mass scales and / or

parameters in which they decouple:

⟨O1O2⟩conn → 0 . (3)

A typical situation is operator mixing via higher-dimension operators. In the limit where

the suppression scale Λ → ∞, this mixing term vanishes. While our definition also allows for

possible mixing by marginal operators (e.g., as would occur in models with kinetic mixing)

10We caution that while this top down procedure is designed to produce the same answers “in the IR”,
it will inevitably depart from the single throat large M answer at short distances / high energies. See also
reference [49] for other aspects of generalized symmetries in disorder averaged systems.

11There are many excellent resources for learning more about string theory. See, e.g., reference [50].
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the essential points are already covered by cases with just higher-dimension operator mixing.

In any case, when the conditions leading to line (3) are satisfied we refer to this as a

multi-sector QFT. Clearly, we can extend this to include any number of theories Ti. We then

introduce another relative theory J (for “junction”) which has only topological couplings

to the original relative theories and thus mixes the different sectors via terms which do not

fully decouple.

For each such sector Ti, we can therefore speak of a symmetry TFT Si which lives in

D + 1 dimensions, and has a physical boundary condition B(i)
phys specifying a relative QFT.

For each such SymTFT, we can also speak of the associated boundary conditions B(i)
top which

fixes an absolute theory. The boundary conditions B(i)
phys,B

(i)
top are separated in the D + 1

dimensional space and supported individually on copies of spacetime. Collapsing slabs to D

dimensions these are then stacked.

We now glue the theories together. We start with the original decoupled theories, T1 and

T2, and assume these admit descriptions by actions S1 and S2 respectively. Then introduce

the junction theory J12, again assumed to have an associated action SJ12 . In these cases the

topological couplings captured by the SymTree are given by an overall D-dimensional action

Sfull = S1 + S2 + SJ12 + STmix (4)

where STmix describes topological mixing terms.12 The full SymTree then further supple-

ments Sfull by specifying the path-integral. We refer to the relative theory associated with

the action Sfull as Tfull.

For non-Lagrangian theories the SymTree should be considered as the definition of the

topological couplings we consider. More precisely, Tfull is schematically presented as

T1 J12 T2

TFTJ12,T2TFTT1,J12

(5)

with TFTs TFTT1,J12 and TFTJ12,T2 in one higher dimension, which have edge mode theories

as indicated by the subscripts. In the end, the original sectors T1 and T2 now interact via

topological terms, as well as with an intermediate gluing theory J12. Clearly this same

structure extends to QFTs with many sectors, and so we can label the original decoupled

sectors as Ti, with i ∈ I an index. From this, we can fuse together multiple decoupled sectors

by picking a subset J ⊂ I, with an associated JJ of gluing theories and a topological field

theory TFTJ which couples the different sectors together. We refer to the full (relative)

D-dimensional theory obtained in this way as Tfull. Let us note that this sort of structure

naturally appears in a number of contexts, for example in adjoint Higgsing of a gauge theory

where the IR theory separates into sectors which are decoupled (up to topological terms).

12This is distinct from the procedure of coupling a QFT to a TFT discussed in reference [27]. In that
case, the TFT is coupled in a way such that overall no degrees of freedom are added and only a change in
polarization is achieved. We comment on the relation to our construction further in Appendix A.
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SfullBtop

B(1)
phys

B(2)
phys

J

S1

S2

Figure 2: We depict a trivalent junction J of symmetry TFTs. The junctions supports the

D-dimensional theory GJ ⊗ TFTJ . Color conventions: Junctions are purple.

It is also quite common in stringy realizations of QFTs where there is a clear notion of

geometric localization of operators, including geometrically delocalized sectors (the J ’s)

which are shared across multiple sectors. We turn to examples of this sort in later sections.

Now, on general grounds, the D-dimensional theory Tfull has its own SymTFT, which

we refer to as Sfull. That being said, there is clearly more fine-grained structure available

from decomposing the boundary D-dimensional theory into its constituent parts, where each

individual sector has its own SymTFT. Indeed, for a given sector Ti, we have an associated

SymTFT Si and in the discussion above we make the identification:

Si = TFTJJ ,Ti . (6)

Here, JJ refers to a junction theory which couples together some collection of theories as

obtained from a subset J ⊂ I. The process of coupling the Ti sectors together can be

visualized in terms of a treelike structure Υ: Along each terminating branch, we have a

SymTFT Si as associated with the theory Ti. In this theory, we have a physical boundary

condition B(i)
phys. At the other end of Si, we can fuse it to a collection of other SymTFTs.

The fusion in question involves a collection of theories indexed by J ⊂ I. At this junction,

we have the D-dimensional theory, and emanating out from it, we have the other SymTFTs

(see figure 2).

Clearly, there are many ways to construct such a junction, and each of them leads to a

different treelike structure (see figure 3). That being said, for each choice of tree, we get a

notion of a (D + 1)-dimensional bulk. Away from all of these junctions, we can also speak

of the topological boundary for Sfull. Indeed, pushing all of the junctions into the physical

boundary conditions results in the SymTree reducing to a single slab filled by Sfull. We

denote the boundary condition, obtained by stacking all junctions and physical boundary

conditions of the multi-sector QFT, by B(retract)
phys .

For a depiction of “retracting” a SymTree, see figure 4. The physical boundary condition

10



after retracting, B(retract)
phys , is equivalent to the D-dimensional theory given by dimensionally

reducing S1⊗S2 along the interval with boundary conditions on one end given by the junction

J , and on the other end by B(1)
phys ⊗ B(2)

phys.

We also have a operation related to retraction, which we will refer to as “unzipping”.

Whenever the multi-sector QFT emerges via limits of various mass scales and / or parame-

ters, as discussed around (3), we are also handed the initial, single sector, parent QFT with

associated boundary B(full)
phys . Taking the discussed limits B(full)

phys reduces to B(retract)
phys , i.e., the

difference between these boundary conditions are precisely the states which decouple in the

limit. Here we can immediately anticipate a convenient feature of the SymTree: it often

happens that the decoupled states emerge as defects in the effective description, i.e., the

spectrum of defects enhances. These are then manifest in the SymTree as we momentarily

discuss. Retractions of SymTrees are always allowed, these are a field theory manipulation.

There are of course other degenerations in which some other subset of the edges of the

SymTree are contracted. For a trivalent SymTree we show the possible configurations in

figure 5. We will also see examples in top-down approaches where, using the string theory

construction, we are able to embed a given multi-sector QFT into a moduli space which has

loci described by a single sector QFT. In this case, moving between the different moduli, we

can also “zip up” the Symtree mapping B(i)
phys and the junctions to B(full)

phys .

Summarizing, the local subsectors Ti contribute relative theories [16]. Practically, this

means that they each determine physical boundary conditions B(i)
phys of a symmetry topologi-

cal field theory [18,51]. We have argued that topological non-decoupling between a collection

of such relative theories amounts to interactions between their symmetry theories, which we

formalize via junctions. Such junctions arise at the fusion of symmetry theories. These

boundary conditions are not necessarily purely topological, rather they can be partially

topological and partially physical. As such, the junctions may themselves support relative

theories. Overall this results in a SymTree of symmetry theories with internal junctions and

external boundaries (see figure 3). The data entering a SymTree includes:

Btop : Topological (i.e., gapped) boundary conditions,

B(i)
phys : Physical boundary conditions for relative theory Ti,

J : Junction with partially topological and partially physical boundary conditions,

Υ : Tree built from SymTFTs and their junctions.

(7)

Evaluation of the partition function for the SymTree theory depends on all this data, which

we write as Z(Btop, {B(i)
phys},Υ). Instead of trees one could of course consider arbitrary graphs,

however, we find trees to arise in examples throughout and therefore restrict to these.

It is natural to ask what happens if we rearrange the branches of the tree, i.e., via an

“associator move”. As an example, consider the trees in figure 6. In passing from one theory

to the next, we get a possibly non-topological junction, and we are stacking and unstacking

it with other junctions. This results in a new tree (and implicitly a new set of junctions) Υ′.

11



Btop

B(N)
phys

B(1)
phys

B(1)
phys

Btop

B(2)
phys

B(3)
phys

B(4)
phys

B(i)
phys

(i)

(ii)

Figure 3: Junctions can be assembled into trees (i). The tree Υ can be visualized as a

horizontal cross-section. Junctions can have arbitrary valency (ii).

B(1)
phys

B(2)
phys

Btop

J J

B(retract)
full

(i) (ii) (iii)

Sfull Sfull Sfull

Figure 4: Depiction of retracting a SymTree to produce the corresponding SymTFT Sfull for

the multi-sector QFT with topological couplings between the different sectors. In terms of

the SymTree, this amounts to pulling in the different branches into the physical boundaries.
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Btop

B(2)
phys

B(1)
phys

Btop

J ′

B(1)
phys

B(1)
hyb

B(2)
phys

B(1)
phys

B(2)
hyb

B(1)
phys

(i) (ii)

(iii) (iv)

Btop Bfull

(v)

S1

S2

Sfull Sfull

S1

S1

S1

S2

Sfull

Figure 5: Subfigures (ii),(iii),(iv),(v) show various degenerations of (i) achieved by contract-

ing one or more of the three symmetry theory slabs. Here Bhyb denotes a hybrid boundary

condition which occurs whenever the branch of the SymTree connecting to Btop is contracted.

Hybrid boundary are generically not purely topological. When a physical boundary condi-

tion is fused with a junction a new junction J ′ emerges.

For each such tree, there is a well-defined (D + 1)-dimensional bulk. There can in principle

be an anomaly in performing this maneuver, and this just amounts to the evaluation of the

partition function for the fused theory at the junction:

Z(Btop, {B(i)
phys},Υ) = exp(iαΥ,Υ′)Z(Btop, {B(i)

phys},Υ
′), (8)

where the factor exp(iαΥ,Υ′) is a possible “anomaly” associated with the branch rearrange-

ment.13 In the cases we study in this paper, we typically have αΥ,Υ′ = 0, but in principle it

can be non-zero.14

Implicit here is a categorical structure which accompanies our SymTree. While we defer

a full analysis of this to future work, let us sketch some of its structure. Since we are able to

fuse more than two SymTFTs into a single SymTFT, and since such manipulations take place

13A priori, it could happen that the discrepancy between the two theories is captured by more than just
a complex phase. In such cases, we anticipate that the “anomaly” is captured by the associator α of the
(D + 1)-category whose objects are SymTFTs, where α is a natural collection of isomorphisms

α1,2,3 : S1 ⊗ (S2 ⊗ S3)
∼=→ (S1 ⊗ S2)⊗ S3. (9)

14For example, in stringy models with a bulk flavor brane or other gapless QFT it is quite likely that the
obstruction class is non-trivial.
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B(1)
phys

B(2)
phys

B(3)
phys

Btop

B(1)
phys

B(2)
phys

B(3)
phys

Btop

J1,23 J2,3

J12,3 J1,2

S23

S12

Figure 6: We depict two SymTrees related by an associator move Υ ↔ Υ′. There is an

anomaly whenever fusion of trivalent junctions produces distinct tetravalent junctions. Gen-

eralizations are immediate. This can be accompanied by a non-zero obstruction class /

anomaly αΥ,Υ′ , although the examples considered in this paper have no such obstruction.

in the category of (D + 1)-dimensional TFTs, we have a (D + 1)-functor category between

BordD+1 and a suitably defined (D + 1)-category C. This naturally suggests a multi-fusion

(D + 1)-category whose objects are SymTFTs. In this language, the zipping and retracting

procedures can also be phrased naturally. First, notice that any boundary condition Bphys

can be thought of as an element in Hom(Sfull,1D+1) where 1D+1 is the trivial (D+1)-theory.

We have seen that the retraction of two branches with boundary conditions B(1)
phys and B(2)

phys

to some B(retract)
full always exists by dimensionally reducing S1 and S2. This means we have

a product ⊗retract: Hom(Sfull,1D+1)× Hom(Sfull,1D+1) → Hom(Sfull,1D+1). Meanwhile, the

process of zipping additionally relies on a map F : Hom(Sfull, 1) → Hom(Sfull, 1) where Bfull =

F (B(retract)
full ) has additional degrees of freedom which is specified by the string construction.

We leave a full exploration of this structure to future work.15

We now proceed to analyze the dressing of defects, and then turn to the dressing of

symmetry operators. We turn to the stringy characterization of SymTrees in Section 3.

15Let us comment that it has recently been proposed that a suitable fusion (D− 1)-category captures the
categorical symmetry of a D-dimensional QFT (see e.g., [42–45]). One can in principle still speak of the
fusion (D−1)-category for the full theory Tfull, but here we have observed the appearance of some additional
structure as associated with a fusion D-category for the SymTFTs themselves.
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B(2)
phys

B(1)
phys

Btop

J

(i) (ii)

(iii) (iv)

(v)

D

D(1)

D(1)

D(1)

D(1)

D(2)

D(2)

D

D

Figure 7: Sketch of possible defect configurations for a trivalent junction of symmetry TFTs.

The red and purple dots denote the spacetime defects, the brown line marks the defect within

the SymTree. The purple junction defect is said to dress the red boundary defects.

2.1 Heavy Defect Operators

We begin by studying the heavy defects for a junction of SymTFTs, i.e., heavy the defects of

our SymTree. The simplest non-trivial case is a trivalent junction J between the symmetry

TFTs of the theories T1, T2 and Tfull. We impose physical boundary conditions B(i)
phys for the

Si theories for i = 1, 2, and topological boundary conditions Btop for theory Sfull (see figure

2).

The topological boundary conditions determine which defects can end at the associated

boundary, and sets the global form of the full multi-sector QFT. Consider a defect ending at

Btop and stretch it across Sfull to the junction J . From here, three possibilities can occur:

1. The defect ends on the junction giving a defect of the junction theory. There is a single

15



spacetime defect and it is not a defect of the relative theories Ti. See subfigure (i) of

figure 7.

2. The defect can not end on the junction and continues on to the boundary B(i)
phys resulting

overall in a defect of the junction theory and one of the relative theory. There are now

two spacetime defects. We say the defect of the relative theory B(i)
phys is dressed by the

junction defect. See subfigure (iii) of figure 7.

3. The defect does not end on the junction and fractionates into two defects which end

on the two physical boundaries. We obtain a defect in the junction theory and the two

relative theories B(i)
phys. The latter pair is dressed by the junction defect. See subfigure

(v) of figure 7.

In addition to these three cases we also have the case

• The defect stretches from B(1)
phys to B(2)

phys or vice versa, passing through the junction

and not attaching to the topological boundary. See subfigure (iv) of figure 7.

In principle there could also exist defects which just stretch between the junction and the

physical boundaries, see subfigure (ii) of figure 7.

We have implicitly assumed that all spacetime defects are stacked, i.e., they have identical

spacetime support. Let us now separate these defects. Consider for instance the setup of case

2, here we separate the junction defect from the physical defect. This results in a portion of

the associated defect in the symmetry theory to run parallel to spacetime. We can localize

this portion within the junction. In spacetime this portion realizes a topological operator,

in one higher dimension, stretching between the separated spacetime defects (see figure 8).

Similar remarks hold for the other cases: whenever we separate spacetime defects a

spacetime topological defect in one higher dimension emerges bounded by the initial defects.

With this we can now introduce a notion of genuine defects for the relative theories B(i)
phys.

We call defects genuine if they run between the topological boundary condition and a single

physical boundary and non-genuine otherwise. Genuine defects are constructed from defects

of a single physical boundary via dressings. This definition is such that the defects depicted

in subfigure (iv) of figure 7 are non-genuine. If we separate the defects of B(1)
phys and B(2)

phys in

spacetime there will always be a topological operator running between these no matter the

dressing. On the other hand, for example, the defect in subfigure (iii) of figure 7 is genuine.

2.2 Topological Symmetry Operators

We now study topological symmetry operators for our SymTree. To illustrate the main

points, it again suffices to consider the trivalent junction comprised of SymTFTs Sfull, S1

and S2. We assume that away from the junction we have imposed a topological boundary

condition Btop for Sfull, and physical boundary conditions B(i)
phys for the relative theories Ti.
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→

(ii)

B(2)
phys

B(1)
phys

Btop

J

(i)

Spacetime

→

x⊥

x⊥

(iii)

Figure 8: We sketch a deformation of the defect configuration depicted in (i). In (i) the

purple and red defect are coincident in spacetime, as shown on the lefthand side in (iii).

In (ii) we displace these along a spacetime direction x⊥ and deforming the resulting defect

configuration into a horizontal and vertical piece we find a topological operator bounded by

the initial pair of defects, as depicted on the righthand side in (iii).
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We begin by considering a symmetry operator located at the topological boundary con-

dition for Sfull. Our aim will be to understand the structure of this symmetry operator as

we move it from the boundary Btop through the junction, and eventually on to either of the

physical boundaries.16 With this our starting point is the configuration depicted in subfigure

(i) of figure 9. As in our analysis of defect operators, we emphasize three generic possibilities:

1. The boundary conditions for Sfull set by the junction J are such that the topological

symmetry operator can not be deformed across the junction.

2. The topological symmetry operator can be deformed across the junction to a topolog-

ical symmetry operator in the slab with TFT Si. See subfigure (ii) of figure 9. The

deformation across the junction comes at the cost of a dressing, i.e., an additional topo-

logical symmetry operator localized in the junction. This pair of symmetry operators

can further be connected by a topological operator in one higher dimension.

3. The topological symmetry operator can be deformed across the junction to a collection

of topological symmetry operator in the slabs S1 and S2. See subfigure (iv) of figure 9.

Again, there may be a dressing and additional higher dimensional topological operators.

Clearly there exist further configurations. For one we can, starting from (i), deform only a

portion of the symmetry operators into/across the junction. This can give the configurations

(iii), (v), (iv) in figure 9. We can also consider different starting points instead of (i), e.g.,

any of the configuration depicted in figure 9 or configurations similar to (i) with a collection

of operators U (i) contained in the slabs attaching to physical boundaries. Given this large

collection of symmetry operators the key point is that they are subject to an equivalence.

Two configurations are equivalent precisely when they can be deformed into each other.

From this, the action of the symmetry operators, deformation equivalent to configuration

(i) of figure 9, on heavy defects is now clear. For such operators the action on defects is given

by considering the distinguished representative purely contained in the slab of the symmetry

theory Sfull. It acts in standard fashion via linking on the part of the defect which extends

into that slab. The computation therefore fully restricts to Sfull.

Similar to the spacetime deformation depicted in figure 8 we can separate the various

components contributing to symmetry operators, e.g., as depicted in figure 9. In the space-

time we have topological operators in one higher dimension which bound the individual

components.

16This subset of bulk operators of the SymTree is identified with the symmetry operators of a multi-sector
QFT with string construction. In such settings topological symmetry operators can only be constructed in
the asymptotic boundary which becomes Btop in the SymTree.
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B(1)
phys

B(2)
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(iii)
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U

V (1)
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V

V (1)

(iv)

V (1)

V (2)

(vi)

V
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V (2)

Figure 9: Sketch of different topological symmetry operator configurations for a trivalent

junction of symmetry TFTs. We consider the initial configuration depicted in (i). Deforming

it (partially) across/into the junction gives various equivalent configurations of topological

operators presented in subfigures (ii) - (vi). The dashed lines indicate topological operators in

one higher dimension. We denote non-genuine operators at their boundaries as V ,V(1),V(2),

also represented by green dots. The purple dots again depict dressings. Both the dressings

and the higher-dimensional operators can be trivial.
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3 Top Down Approach to SymTrees

In the previous Section we presented a bottom up analysis of multi-sector QFTs and the

SymTree which governs their symmetries. We now proceed from the top down, showing that

for multi-sector QFTs with a stringy realization, this treelike structure directly descends

from extra-dimensional geometry. Throughout, we shall work on spacetimes of the form

RD−1,1×X where X is taken to be a non-compact background which preserves some amount

of supersymmetry in the D-dimensional spacetime.17

With this in mind, we will be interested in either a 10D (e.g., type IIA and IIB back-

grounds) or 11D (i.e., M-theory) starting point in which we have QFTs which are localized

at singularities. We refer to this higher-dimensional bulk theory as BLK. In the extra-

dimensional geometry such singularities can either arise from a singular metric profile (as in

geometric engineering) or from branes probing the local geometry (which might also have

metric curvature singularities). In principle these singularities need not be isolated: when

gravity is decoupled there can be additional branes / singularities supported on non-compact

cycles. For ease of exposition we shall mainly focus on cases where we do not have such “fla-

vor branes” but the analysis we present naturally extends to these cases as well. We denote

the singularities of X by Sing = ⊔i∈I Singi where i ∈ I labels connected pairwise disjoint

components of Sing. We take Sing to have finitely many compact components and no non-

compact components. In this case, there is a one to one correspondence

B(i)
phys ↔ Singi (10)

between relative QFTs and singular components. We shall often depict these geometries by

putting “∞” at the top of a figure, and the individual singularities / throats near the bottom.

One should view this as a fattening up of the SymTree, but in which we have rotated the

picture by 90 degrees so that the topological boundary conditions are now at the top. We

do this in part to emphasize the top down nature of the construction, but also because it is

easier to read off the relevant physical data in this presentation. See figure 10 for a depiction

of such a top down geometry.

To illustrate how one reads off the symmetry TFT associated with such a geometry,

suppose first that we have a single isolated singularity, and that our background X has the

form of a conical singularity Cone(∂X) where ∂X refers to the conformal boundary of X, and

the relative QFT is localized at the tip of the cone. As a point of notation, we shall introduce

a radial coordinate r and refer to r = 0 as the tip of the cone (where the QFT lives) and

r = ∞ as the asymptotic boundary. From this starting point, we can consider branes which

extend from ∂X to the tip of the cone, giving rise to heavy defects [29–32]. Branes purely

wrapped in ∂X give rise to symmetry operators, i.e., topological defects [33–35]. The global

form of the relative QFT is specified by a choice of boundary conditions at ∂X for the bulk

17The supersymmetry condition is more so that we have tractable examples to discuss rather than any
intrinsic limitation.
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Asymptotic Boundary

Sing1 Sing2

Critical Slice

Figure 10: Sketch of double throat internal geometry with two sets of localized degrees of

freedom (red). Horizontal slices of constant radius are initially disjoint and then combine

resulting in a connected asymptotic boundary.

supergravity fields. By inspection, the radial direction of the conical geometry suggestively

resembles the extra dimension of a symmetry TFT.

Indeed, in reference [20] (see also [21, 22]) it was noted that one can start from the

topological terms of the bulk supergravity theory BLK and dimensionally reduce along the

linking geometry ∂X which might also be threaded by various supergravity fluxes (sourced

by the branes at the tip of the cone), which we denote as F . This results in a (D + 1)-

dimensional TFT which captures some of the interactions terms of the SymTFT which

we label as S(∂X, F ), in the obvious notation.18 This construction beautifully shows how

SymTFTs arise from an extra-dimensional starting point. Moreover, the boundary states

⟨Btop| and |Bphys⟩ are clearly manifest as the boundary conditions of the conical geometry at

r = ∞ and r = 0, respectively.

Multi-sector QFTs naturally arise in backgrounds where X supports multiple singulari-

ties. In what follows, we again assume that X is asymptotically conical, i.e., we assume that

there exists a coordinate 0 ≤ r ≤ ∞ such that near r = ∞, we have a conical geometry

Cone(∂X). The different sectors are sequestered from each other because branes stretching

between different singularities have a mass scale set by the size of this distance. In the

corresponding effective field theory, this serves as a suppression scale for higher-dimension

operators. Even so, there can still be non-trivial topological couplings between sectors, as

captured by defects and symmetry operators.

The SymTFT for this multi-sector QFT arises from a similar procedure to that given in

[20]: In principle, we simply need to perform a dimensional reduction on the linking geometry

∂X, and read off the corresponding (D + 1)-dimensional SymTFT. Observe, however, that

in this case the “radial direction” only makes sense near r = ∞. Indeed, as we proceed

to the interior of the geometry we find additional structure as captured by the individual

sectors of the model. Proceeding deep into the interior (i.e., for r sufficiently small) we now

allow for the geometry to fragment into other local conical geometries, each with their own

18Some of the terms of this SymTFT can be recovered by requiring appropriate braiding rules for extended
operators in the associated SymTFT. These braiding rules follow from bulk kinetic terms, as shown in
Appendix B.
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localized singularity supporting a relative QFT. Indexing the collection of such localized

singularities as Singi and their associated relative theories as Ti, we have a local radial

coordinate ri which points out from its corresponding singularity. For each such local patch

we can again speak of a background Xi and boundary ∂Xi. Consequently, we see that the

“full” SymTFT S(∂X, F ) is given by reduction on ∂X, and the SymTFT for each sector

is instead captured by S(∂Xi, Fi) ≡ Si, in the obvious notation. Each such Si admits

physical boundary conditions |B(i)
phys⟩ at ri = 0 (i.e., where the relative QFT lives), as well as

topological boundary conditions ⟨B(i)
top|.

By inspection, we see that the resulting background X resembles a tree. On the other

hand, the SymTree picture has now been “fattened up” in the extra dimensions, so that sharp

edges associated with junctions are now smoothed out / delocalized. We can project down

to a tree again by integrating the topological terms of the bulk theory BLK over the linking

geometry which is piecewise of the form ∂Xi, but additional care is needed in the fusion of

multiple linking geometries, as well as the flux profiles. We return to this shortly, but for now

it should be clear that the SymTree has an interpretation in the stringy extra-dimensional

geometry.

The construction of heavy defects and topological symmetry operators proceeds much as

in the case of a single singularity. Symmetry operators result from (flux-)branes wrapped on

asymptotic cycles in ∂X. These are at infinite distance from the QFT degrees of freedom

which we assume to be localized in the bulk and hence result in operators interacting only

topologically with the QFT. See [33–35, 39] for further details and [36, 38, 40, 41, 52] for

applications. As such they engineer topological operators in the QFT.19 The novelty here is

that as the heavy defects descend to different sectors of our system, they can fractionate and

become dressed by operators of the smoothed out junctions, as well as defects of other sectors.

Note also that a topological operator of the full system can, in an individual throat, end up

being dressed by other defects, rendering it “non-genuine”. See figure 11 for a depiction of

how heavy defects and symmetry operators descend to individual sectors of the system.

With this we can turn to the question of which operators constructed in figure 11 are

genuine and non-genuine. For example, consider the brane configuration (i) in figure 11.

Deforming the locus along which a defect attaches to Sing in spacetime, as shown in figure

12, we find the component of the string / brane stretching between the local models gives

rise to a topological operator. From the perspective of an individual throat the initial defect

is non-genuine. Similar comments apply to other configurations displayed in figure 11. Note

that this discussion exactly parallels our “bottom up” analysis in Section 2.

19Reading off the precise form of the generalized symmetries directly from the string background depends
on the details of the geometry and fluxes. In the absence of fluxes, it is captured by a relative homology
group, but when fluxes are present a suitable generalization of twisted K-theory must be used. For further
discussion on the latter point, see Appendix A of reference [39].

22



(i) (ii)

Asymptotic Boundary

(iv) (v) (vi)

T1 T2
(iii)

Figure 11: Top row: Defects of a double throat geometry X with two local sectors. Strings

/ branes either run between singularities (i) or between a singularity and the asymptotic

boundary (ii) or between multiple singularities and the asymptotic boundary (iii).

Bottom row: Symmetry Operators of a double throat geometry. The symmetry operators of

the full theory are strings / branes wrapped in the asymptotic boundary (iv). These admit

deformations into a single local model (v) or deformations into multiple local models (vi)

joined by a possibly trivial string / brane configuration.
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E(1)
E(2)

(i) (ii)

3

1 2

Figure 12: (i): String / brane running between two local models. Such an object admits

a partition into three pieces, two of which are contained in a local model, and one which

connect the two via the bulk of X. In the QFT spacetime the result is a pair of defects E(12).

(ii): Deforming the configuration into a spacetime direction x⊥ the bulk part of the string /

brane gives a topological operator bounded by the defects. Individually the defects E(i) are

non-genuine.

3.1 Projection to a SymTree

Having spelled out the general strategy for extracting the SymTree of a multi-sector model

directly from X, we now provide an algorithmic procedure for reading off this data. The

discussion splits up into the contribution from the geometry of X, and if present, additional

contributions from fluxes threading ∂X as well as the individual branches ∂Xi. With this in

mind, we first begin by explaining in more detail how the different “boundary geometries”

∂Xi fuse together to form the SymTree, focusing in particular on the singular homology of

these spaces and how they consistently glue together. To read off the SymTFT we will also

extract the associated differential cohomology (following [20,53]), but one might entertain a

generalization such as differential K-theory. The contribution from fluxes follows a similar

procedure: we find that along each segment of the resulting SymTree, we have a piecewise

constant contribution from flux, but that this “jumps” across the junctions of the SymTree.

This sort of jumping phenomena is indicative of additional degrees of freedom localized at

the junction, precisely as expected on general grounds. Reduction of the bulk theory BLK

topological terms then results in our SymTree theory.
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3.1.1 Filtrations and Trees

We now turn to the treelike structure obtained by “projecting down” onto the radial direction

of X. Recall that X has singularities Sing = ⊔i∈ISingi with finite index set I. Generically

there is no unique treelike structure given X. Rather, a particular tree Υ is only specified

once we have determined how to sweep out X via radial shells, as specified by a filtration

FX . Much as in other stringy realizations of QFTs, ambiguities in reading off a specific

SymTree from geometry amount to non-trivial dualities / associator moves of a SymTree.

Given a geometry X we therefore also require the existence of a filtration FX over the

real half-line, parameterized by the “radius” r ∈ [0,∞) and with radial shells Ur and the

indexed family of sets {Br}r≥0 where Br = ∪s≤rUs and ∂Br = Ur. Among all possible

filtrations we consider those with following favorable properties:

• The filtration is centered on the singularities of X; we impose B0 = Sing. The filtration

sweeps out the full geometry; we impose B∞ = X.

• The filtration describes a disjoint collection of local models at small radii. We impose

0 < r ≤ ϵ : Br ∼ ⊔iTube(Singi) (11)

for some ϵ > 0 where Tube(Singi) is the tubular neighbourhood of Singi and no two

tubes overlap. Tubes capture topological structure of a local model centered on Singi.

• The filtration is topologically piecewise constant. There only exist finitely many critical

radii, denoted rk which we label as rk < rl for k < l, such that balls wedged between

the same critical radii are topologically equivalent:

rk < R1 < R2 < rl : BR2 → BR1 . (12)

Here → denotes a deformation retraction from BR2 to BR1 . In particular the integral

homology (and homotopy) groups are constant along the interval (rk, rl), so we have

Hn(BR1)
∼= Hn(BR2) , Hn(UR1)

∼= Hn(UR2) . (13)

• The filtration has one asymptotic boundary. The maximal radius r∗ = max{rk} is such

that Br∗ is connected and there are deformation retractions X → Br and ∂X → ∂Br

for all r ≥ r∗.

Now, given such a filtration FX of the geometry X we associate to it a SymTree, for a given

choice of theory IIA, IIB,M, by compactification of the topological terms of the respective

supergravity theory BLK over the boundary ∂Br = Ur. At each value of the radius r we have

π0(∂Br) connected components and on each component distinct topological fields are present.
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Figure 13: Radial filtration {Br}r≥0 of the singular geometry X with ∂Br = Ur.

At the critical radii π0 jumps and previously disjoint local models combine. Consequently,

the symmetry TFT is defined on a tree Υ (see figure 13).

Generically, this tree has |I| + 1 external nodes. Of these |I| are located at r = 0 and a

single vertex is at r = ∞. The singularities Sing = ⊔i∈ISingi specify relative theories setting

enriched Neumann boundary conditions B(i)
phys at the |I| vertices at r = 0. Further, there is

a topological boundary condition Btop at the asymptotic node at infinity which determines

the overall global form.

Internal nodes arise whenever the number of connected components of ∂Br = Ur change.

At the first transition r = r1 some local models centered on the individual connected singular

loci Singi combine, such combined neighbourhoods then continue to grow, merging with

similar neighborhoods at critical radii rk into larger neighbourhoods containing more and

more components of Sing. The number of connected components π0(∂Br) decreases with

increasing radius r and is locally constant away from critical radii (see figure 13).

Y-shaped Junctions and their Homology

Generically there are |I| − 1 internal trivalent vertices at which two previously disjoint local

models combine. The tree Υ then parameterizes a collection of such combinations. It suffices

to consider a single trivalent vertex as in figure 14. Such a junction of symmetry TFTs is

supported on a Y-shaped tree. On the two legs at small radii we have the TFTs S1 and S2.

At the internal vertex these attach to the TFT S12 describing symmetries at large radii. At

the internal vertex additional fields can be localized and enter into the gluing conditions.

We now derive the gluing conditions at the junction from geometry. First, note that

the topological fields on the legs of the Y-shaped graph derive via dimensional reduction

over the radial slices Ur and we therefore need to track the corresponding cycles of Ur<r∗

26



B(1)
phys B(2)

phys
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S12 = Sfull

Figure 14: Two relative theories B(i)
phys with symmetry topological field theory Si which

combine to Sij terminated by topological boundary conditions Btop. From this fundamental

junction more generic graphs can be built.

through Ur=r∗ to cycles of Ur>r∗
20. We reformulate this problem by noting that Ur>r∗ is the

deformation retract of the pair of pants

BR2>r>R1 =
⋃︂

R2>r>R1

Ur , R2 > r∗ > R1 , (14)

which has boundary ∂BR2>r>R1 = UR2 ∪ UR1 . Clearly there are embedding maps URi
↪→

BR2>r>R1 and we denote their degree n lift to homology by

ȷ(r<r∗)
n : Hn(Ur<r∗)

∼= Hn(UR1) → Hn(BR2>r>R1)
∼= Hn(Ur=r∗)

ȷ(r>r∗)
n : Hn(Ur>r∗)

∼= Hn(UR2) → Hn(BR2>r>R1)
∼= Hn(Ur=r∗)

(15)

which compare cycles in large radius shells with those of small radius shells by embedding

them both into the critical shell (see figure 15).

Cycles of small and large radius shells are further put in relation by two Mayer-Vietoris

long exact sequence, one for small radii and one for large radii. These are setup such that

the mappings (15) are maps of these sequences, offering a tool to compute them.

We begin by describing the small radius sequence. Denote the two connected components

of Ur<r∗ as

Ur<r∗ = U
(1)
r<r∗ ⊔ U

(2)
r<r∗ , (16)

where we suppress the index for notational purposes below. These two shells grow until they

touch along some locus

U (12)
r=r∗ = U (1)

r=r∗ ∩ U (2)
r=r∗ (17)

where the intersecting sets are such that we have deformation retractions U
(i)
r=r∗ → U

(i)
r<r∗ .

There we also have U
(1)
r=r∗∪U

(2)
r=r∗ = Ur=r∗ which is precisely the covering we use in formulating

20Note that Ur<r∗ , Ur=r∗ , and Ur>r∗ are defined for fixed r and r∗ so these are codimension-1 subsets.
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Ur>r∗

U
(1)
r<r∗ U

(2)
r<r∗

BR2>r>R1

Figure 15: Pair of pants describing the uplift of a SymTree junction.

U
(1)
r=r∗ U

(2)
r=r∗

Ur=r∗ Ur>r∗

V

Figure 16: Movie growing the shells U
(i)
r=r∗ , until they touch and subsequently overlap in V .

On the righthand side V and Ur>r∗ only overlap in ∂V .

the Mayer-Vietoris sequence. The sequence

. . . → Hn(U
(12)
r=r∗)

ı
(r<r∗)
n−−−−−→ Hn(U

(1)
r=r∗)⊕Hn(U

(2)
r=r∗)

ȷ
(r<r∗)
n−−−−−→ Hn(Ur=r∗) → . . . (18)

then contains the map ȷ
(r<r∗)
n which relates cycles (and therefore fields) at small radii to

those of the critical shell. We label these maps by r < r∗ to emphasize that the covering of

the critical slice is derived by approaching it from small radii.

Let us next discuss the large radius sequence. Consider growing U
(i)
r<r∗ to the critical slice

Ur=r∗ and then further, without changing the homotopy type, to what we will denote as

U
(i)
r>r∗ . The shells press up against each other and share

V = U
(1)
r>r∗ ∩ U

(2)
r>r∗ (19)

which has a boundary ∂V ̸= ∅. When V has the same dimension as U
(i)
r>r∗ (i.e. is also

codimension-1), then the closure of U
(i)
r>r∗ \ V is a proper subset of U

(i)
r>r∗ . The shell Ur>r∗ is

then defined as the closure (U
(1)
r>r∗ ∪U

(2)
r>r∗) \V . A depiction of this process is shown in figure

16. Finally, note that the shell Ur>r∗ ∪ V is deformation equivalent to Ur=r∗ .
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The Mayer-Vietoris sequence of the union Ur>r∗ ∪ V therefore is

. . . → Hn(∂V )
ı
(r>r∗)
n−−−−−→ Hn(Ur>r∗)⊕Hn(V )

ȷ
(r>r∗)
n ⊕ ȷ

(V )
n−−−−−−−−→ Hn(Ur=r∗) → . . . (20)

containing the map ȷ
(r>r∗)
n which relates cycles at large radii to those of the critical shell.

Let us anticipate the geometric origin of an extension problem implicit in the above.

First, note that V can be viewed as a fattening of U
(12)
r=r∗ . Conversely V deformation retracts

to U
(12)
r=r∗ , and consequently we have the pair of embeddings

∂V ↪→ V , U (12)
r=r∗ ↪→ V . (21)

The cycles in ∂V and U
(12)
r=r∗ can therefore be compared. We can follow ∂V through the

deformation retraction V → U
(12)
r=r∗ and therefore there exists a group homomorphism

ι : H∗(∂V ) → H∗(U
(12)
r=r∗) (22)

which is neither injective nor surjective in general. Rather, generically, the image Im ι is

extended by elements of the homology group H∗(U
(12)
r=r∗) to its saturation Im ι. The physical

interpretation of this extension to the saturation is essentially the same as that given in

reference [41]; a U(1) symmetry of the “bulk” can, when pushed into one of the relative

boundaries instead descend to a torsional symmetry generator in the boundary relative

theory. This is in some sense just a consequence of having suitable objects which can partially

screen the associated defects.

Y-shaped Junctions and Differential Cohomology

Dimensional reduction of the BLK topological terms results in the SymTFT for a given branch

of our tree. This reduction involves expanding the bulk fields in generators for differential

cohomology classes for the internal geometry [20]. With this in mind, we now turn to

an analysis of how the different differential cohomology groups fuse in the tree. Again, it

suffices to consider the case of a Y-shaped junction. More specifically, the symmetry TFT

fields originate via expansions along generators of the differential cohomology groups H̆∗(Ur).

The differential cohomology groups H̆∗(Ur) sit in the short exact sequence21

0 → Ωp−1(Ur)/Ω
p−1
Z (Ur) → H̆p(Ur)

π−−→ Hp(Ur,Z) → 0 , (23)

where Ωp(Ur) (resp. Ω
p
Z(Ur)) denotes closed differential p-forms (resp. with integral periods)

[54]. The groups Hp(Ur,Z) are standard singular cohomology groups which we can relate via

the universal coefficient theorem to the singular homology groups appearing in the Mayer-

Vietoris sequences (18) and (20).

21They also sit in 0 → Hp−1(Ur,R/Z) → H̆p(Ur) → Ωp
Z(Ur) → 0.
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The embeddings (15) tracking the deformation of cycles at small and large radius through

the critical slice corresponding to the junction, dualize to the restriction maps

ȷ̄ p(r<r∗)
: Hp(Ur=r∗) → Hp(UR1)

∼= Hp(Ur<r∗)

ȷ̄ p(r>r∗)
: Hp(Ur=r∗) → Hp(UR2)

∼= Hp(Ur>r∗)
(24)

on cocycles and subsequently lift to the restrictions ȷ̆ p(r<r∗)
, ȷ̆ p(r>r∗)

on differential cohomology

classes which we use momentarily to formulate the boundary conditions for bulk cocycles of

the SymTree at the junction.

Flux Contributions

So far, we have mainly concentrated on the background geometryX, but this can be threaded

by fluxes in many cases. These fluxes emanate out from the localized singularities, e.g., in

systems with a brane probe of geometry. Such branes source a supergravity flux F (x), which

is continuous away from the singularities of X.

Again, we first pick a favorable filtration F of the space X which satisfies the properties

listed out in subsection 3.1. There then exist cycles Σr within the shells Ur such that

n(r) ≡
∫︂
Σr

F (25)

is a piecewise constant function. Appropriately normalized n(r) is a signed counting function,

counting how many branes sourcing the flux F are contained in the ball Br = ∪r ′≤rUr′ .

Consequently n(r) is constant on branches of the SymTree and jumps at the junctions.22

Junction Theory

Finally, we come to the contributions localized at the junctions. As already mentioned, this

analysis is somewhat more delicate since in the stringy construction, such “jagged edges” have

already been smoothed out. In the case of brane probes of singularities, this is compounded

by the fact that some modes (e.g., U(1)’s) can end up being delocalized across the geometry,

so projecting them onto the junction is a somewhat discontinuous process.

That being said, there is no obstacle in seeing how the different differential cohomology

groups on branches fuse together at such a junction. Indeed, the group H̆p(Ur=r∗) also

specifies gluing conditions across the junction for dynamical fields of the symmetry TFTs

attaching to the junction. Whenever we have fields in the SymTFT Sr<r∗ = {S1,S2} and

Sr>r∗ = S12, which result respectively via expansion along the classes

ȷ̆r<r∗(t̆r=r∗) and ȷ̆r>r∗(t̆r=r∗) (26)

22This jumping phenomenon also signals the presence of additional light degrees of freedom, as dictated
by anomaly inflow considerations. We expand on this point in specific examples.
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with common origin within the pair of pants / the critical slice (recall they are deformation

equivalent), we have that their profiles necessarily glue along the junction. Equivalently,

they restrict to the same value at the junction due to their common origin as modes along

t̆r=r∗ . This corresponds to imposing Dirichlet boundary conditions for two out of the three

associated bulk fields at the junction. The overall glued profile is permitted to fluctuate, i.e.,

Neumann boundary conditions are imposed.

The fields not constrained by such a gluing condition are localized to the junction and

characterize dynamical degrees of freedom on the junction, such fields result via expansion

along the classes

K̆erpr=r∗ ≡ Ker ȷ̆ pr<r∗ ∩Ker ȷ̆ pr>r∗ ⊂ H̆p(Ur=r∗) . (27)

In many cases, especially when focusing on discrete symmetry structures, it will be sufficient

to focus on the singular cohomology subgroup

Kerpr=r∗ ≡ Ker ȷ pr<r∗ ∩Ker ȷ pr>r∗ ⊂ Hp(Ur=r∗) . (28)

In order to completely determine the dynamics of the junction we however require informa-

tion beyond topology. The modes characterized by (28) are dynamical only if this internal

p-form profile is L2-normalizable. When non-normalizable the corresponding field profiles

are better viewed as Lagrange multipliers which enforce identifications between different

SymTFT branches.

The embedding maps ȷ
(r>r∗)
n , ȷ

(r<r∗)
n completely determine a Y-shaped SymTree up to

this question of normalizability. Their domain and codomain determine the TFTs on the

branches and the mappings themselves indicate, via dualization to cohomology and lifts to

differential cohomology, how the bulk fields interact across the junction. Above we have

interpreted the image (26) and kernel (27) of the related maps in cohomology, it remains to

interpret the cokernel.

Once the junction has been determined to support degrees of freedom, we may ask how

to interpret the bulk SymTree fields as associated with backgrounds for these. We consider

the cokernel of the mapping

J̆ ≡ (ȷ̆r<r∗ , ȷ̆r>r∗) : H̆∗(Ur=r∗) → H̆∗(Ur<r∗)⊕ H̆∗(Ur>r∗) (29)

which correspond to bulk fields which are not fixed by gluing conditions. In particular,

denoting the composition of J̆ with the projection down to singular cohomology by J , we

get the projections:

πr<r∗ : coker J̄ =
H∗(Ur<r∗)⊕H∗(Ur>r∗)

H∗(Ur=r∗)
→ H∗(Ur<r∗)

H∗(Ur=r∗)

πr>r∗ : coker J̄ =
H∗(Ur<r∗)⊕H∗(Ur>r∗)

H∗(Ur=r∗)
→ H∗(Ur>r∗)

H∗(Ur=r∗)

(30)
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and consequently coker J̄ can be viewed as an extension of the image of πr<r∗ , πr>r∗ by its

kernel. This is the relevant cohomological version of the extension described around line

(21). The quotients on the righthand side are associated with SymTree bulk fields which do

not participate in gluing conditions and for which the junction imposes Neumann boundary

conditions. The bulk fields descending from coker J̄ relate to background fields for the

junction degrees of freedom.

4 Illustrative Example: Adjoint Higgsing of 7D SYM

To illustrate the considerations spelled out in the previous sections, we now turn to some

examples. Many of the key features are already present in the case of 7D Super Yang-Mills

theory (7D SYM), and so we first treat this case in detail. An advantage of this case is

that we have both an explicit stringy realization of this theory (and thus implicitly a UV

completion) as well as a field theoretic characterization of the multi-sector system.

With this in mind, this Section is organized as follows. First, we review the case of a

single 7D SYM theory, as well as the construction of heavy defects and topological symmetry

operators. We also explain how adjoint Higgsing is captured by deformations of the associ-

ated M-theory background. With this in place, we next turn to adjoint Higgsing / geometric

deformations which produces a multi-sector QFT at low energies. We explicitly show how

the SymTree theory arises in this context.

4.1 Gauge Theory via Geometry

Our starting point is 7D SYM, as realized by taking M-theory on the supersymmetric back-

ground:

R6,1 ×X (31)

where X = C2/Γ, and Γ is a finite subgroup of SU(2) with group action dictated by the

condition that we preserve 7D N = 1 supersymmetry (16 real supercharges). There is an

ADE classification of such finite subgroups, and these in turn specify the ADE type of the

7D SYM theory. As explained in [31] (see also [29,30,32]) the global form of the gauge group

is fixed by a choice of boundary conditions on ∂X = S3/Γ. In gauge theoretic terms the

center of the simply connected ADE Lie group is just the abelianization of Γ. This follows

directly from the underlying geometry / gauge theory correspondence.

Indeed, in the relative QFT we can discuss the spectrum of Wilson lines (codimension 6)

and ’t Hooft defects (codimension 3) and a choice of global form fixes the spectrum in the

absolute QFT. Wilson lines arise from M2-branes which wrap a torsional cycle in H1(S
3/Γ)

of the boundary lens space, and which sweep out the radial direction as well, i.e., they

wrap Cone(γ) for γ ∈ H1(S
3/Γ). Similarly, the ’t Hooft defects arise from M5-branes which

wrap Cone(γ) for γ ∈ H1(S
3/Γ). As found in [33–35], the associated topological symmetry
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operators which act on these defects arise from branes wrapped “at infinity”. Indeed, the

1-form symmetry operator which acts on Wilson lines is generated by M5-branes wrapped

on a boundary 1-cycle, and the 4-form symmetry operator which acts on ’t Hooft defects is

generated by M2-branes wrapped on a boundary 1-cycle. Specifying a consistent choice of

boundary conditions then fixes an absolute theory.

The Symmetry TFT for this theory follows directly from the braiding relations for the

various fields, and can be derived from dimensionally reducing the 11D kinetic term for the

M-theory 3-form field.23 Consider the special case where Γ = ZN . Then, the 8D topological

action for the SymTFT is:

S8D =
i

2π
N

∫︂
B2 ∧ dC5 + . . . , (32)

where the superscript indicates the form degree. Here B2 and C5 take values in U(1) and

the overall coefficient of N restrict their periods to take values in ZN ⊂ U(1). We have also

dropped terms of the SymTFT associated with 2-form and (−1)-form symmetries. These can

also be extracted by dimensional reduction of the topological terms of 11D supergravity [20],

but for ease of exposition we focus on the 1-form and 4-form symmetries. We specify physical

boundary conditions on one end and topological boundary conditions on the other to fix the

global form of the theory.

Similar considerations hold for more general choices of Γ; when the abelianization Ab(Γ)

is a cyclic group (all cases other than D2k) we simply take N = |Ab(Γ)|, and one can likewise

extract a similar expression when Γ = D2k, where the abelianization is just Z2 × Z2.

4.2 Multi-Sector QFT via Adjoint Higgsing

Starting from this theory, we can generate a multi-sector QFT via adjoint Higgsing. Geomet-

rically, we start with a single singularity and then consider either a smoothing deformation

or blowup of the singularity so that the resulting geometry has distinct singularities after

the deformation. In field theory terms, we are switching on a background vacuum expec-

tation value for some combination of the R-symmetry triplet of adjoint-valued scalars in

the 7D N = 1 vector multiplet. Of course, since all of these vacua are part of the same

moduli space, there is a sense in which the original SymTFT still governs the structure of

the spectrum of heavy defects and symmetry operators. On the other hand, there is clearly

some approximate notion of the gauge theory corresponding to a single isolated singularity

and its associated heavy defects and symmetry operators. Our aim will be to sharpen this

correspondence.

The essential points are all captured by the case Γ = ZN so in what follows we again

focus on this special case. There are natural generalizations to the rest of the ADE series,

23For details on this see Appendix B.
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albeit at the expense of a few more complications in writing out the explicit forms of blowups

and smoothing deformations.

To begin, then, we recall that an AN−1 singularity X = C2/ZN can be presented as the

singular hypersurface swept out by the locus:

x2 + y2 = zN . (33)

Adjoint Higgsing amounts to a deformation or resolution of this singularity. Here, we focus

on a complex deformation of the form:

x2 + y2 =
K∏︂
i=1

(z − ti)
Ni , (34)

where N1 + ... + NK = N , and N1t1 + ... + NKtK = 0 (a tracelessness condition). This

corresponds to the breaking pattern:

SU(N) ⊃ S(U(N1)× ...× U(NK)), (35)

as triggered by a complex adjoint valued Higgs field of the form:24

⟨Φ⟩ = t11N1×N1 ⊕ ...⊕ tK1NK×NK
, (36)

where 1M×M denotes the M ×M identity.

After this Higgsing, we find multiple sectors at low energies, i.e., where we restrict all field

ranges to be below the scales set by the tj. Indeed, we have massive W-bosons as obtained

from M2-branes which stretch between the separated singularities. This mass goes as:

Mij ∼ |ti − tj|. (37)

Further, in the vicinity of any individual singularity we have a geometry of the form C2/ZNj
,

and a corresponding 7D SYM theory with Lie algebra suNj
. There are also u(1) sectors

which are delocalized / spread across the different singularities, and small fluctations about

the values of the tj (as well as the accompanying resolution parameters) fill out R-symmetry

triplets for the associated vector multiplets.

Focussing on just the non-abelian factors, we see a multi-sector QFT, but one in which

there are still residual couplings to abelian sectors as well as additional TFT degrees of

freedom. Our plan will be to extract the corresponding SymTree for this configuration.

24Two out of the three components of the SU(2) R-symmetry triplet are being switched on here. The
third one in this choice of complex structure corresponds to a blowup mode.
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4.3 Extracting the SymTree

By inspection, it is enough to focus on just the case where we Higgs the parent 7D SYM

theory to two non-abelian factors. Indeed, all other treelike structures can be obtained by

further Higgsing operations. In the case at hand, the Higgsed gauge group is:

SU(N) ⊃ (SU(N1)× SU(N2)× U(1))
/︂
ZL , (38)

with N = N1 +N2 and where L = lcm(N1, N2) is the least common multiple of N1 and N2.

We denote by X ′ the partial smoothing of X. The space X ′ contains an AN1−1 and AN2−1

singularity at z = t1 and z = t2 respectively and a compact 2-cycle stretching between these.

The adjoint fields of the SYM theory reorganize following the decomposition

suN → suN1 ⊕ suN2 ⊕ u(1)

Ad
[︁
suN

]︁
→ Ad

[︁
suN1 ⊕ suN2 ⊕ u(1)

]︁
⊕
(︁
N1,N2

)︁
N/g

⊕
(︁
N1,N2

)︁
−N/g

N → (N1,1)N2/g ⊕ (1,N2)−N1/g

(39)

where g = gcd(N1, N2). Here the bifundamental fields are the massive W-bosons (in the

off-diagonal blocks) and arise from M2-branes wrapped on the compact 2-cycle.

Filtration and Critical Slice

We obtain the SymTree by first describing a convenient choice of filtration FX′ sweeping out

the partial smoothing X ′. The filtration has radial shells

Ur>r∗ = S3/ZN1+N2 ,

Ur=r∗ =
(︁
S3/ZN1

)︁
∪S1

H

(︁
S3/ZN2

)︁
,

Ur<r∗ = (S3/ZN1) ⊔ (S3/ZN2) ,

(40)

with a single critical slice at r = r∗ (see figure 17). Here ∪S1
H
denotes the gluing of the two

lens spaces along one of their Hopf circles. Running the Mayer-Vietoris sequence we find the

critical slice to be characterized by the homology groups

Hn(
(︁
S3/ZN1

)︁
∪S1

H

(︁
S3/ZN2)

)︁ ∼=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z k = 0

Zg k = 1

Z k = 2

Z2 k = 3

(41)

where g = gcd(N1, N2). In Appendix C we identify the generators of (41).

The filtration FX′ is motivated by the IIA dual setup consisting of two D6-brane stacks
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p1 p2

S3/ZN1 S3/ZN2

S3/ZN (S3/ZN1) ∪S1
H
(S3/ZN2)

r = r∗

r = 0

r = ∞

Figure 17: We sketch the partially smoothed geometry X ′ as a fibration over a Y-shaped

base. This picture presents a horizontal slice of figures similar to figure 2.

with common transverse space R3. We denote the location of the two stacks by p1, p2 ∈ R3

and by S2
1,r, S

2
2,r spheres of radius r centered on these. A filtration FIIA of R3 is constructed

by first growing r. In the process two 3-balls are swept out, they grow until they meet in a

point. This results in a critical slice at radius r = r∗ which is the wedge sum

S2
12,r∗ = S2

1,r∗ ∨p S2
2,r∗ . (42)

The rest of FIIA follows by continuing to grow the spheres, taking the radial shells to be

their ‘peanut’ shaped exterior. The filtration FX′ is then the M-theory lift of FIIA via the

Gibbons-Hawking ansatz, and the shells of FIIA are extended to X ′ by including all M-theory

circles projecting to these. In particular the point of kissing25 p in line (42) lifts to the circle

S1
H , and line (42) lifts to Ur=r∗ .

Projection to SymTree

We now reduce 11D supergravity on the radial shells Ur. We retain only topological data

following the approach in [20]. This results in an 8D TFT action for each branch of the

Y-shaped graph of figure 17 and a non-topological 7D action describing the junction degrees

of freedom. These 7D and 8D modes derive from the 11D field strength Ğ4 via KK reduction.

We discuss this reduction in detail in Appendices B and C. There we show that we can

discuss discrete generalized symmetries in isolation of other structures26 occurring. The

relevant discrete symmetries are the 1-form symmetries of the various SYM sectors, and

their dual 4-form symmetries. The background fields for these symmetries are dynamical in

the 8D TFTs and interact at the junction.

In terms of differential cohomology classes we are restricting our attention to the coeffi-

25Namely, an osculation.
26Of course the 8D TFTs on the branches of the SymTree are simply the SymTFTs of the

AN−1, AN1−1, AN2−1 7D SYM theories. The string theory analysis for these also produces (−1)-form and
2-form symmetries. We defer a discussion of interaction terms near the junction to Appendix C.
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cients in the expansions

(r > r∗) : Ğ4 = B̆
(r>r∗)
2 ⋆ t̆

(r>r∗)
2 + . . .

(r = r∗) : Ğ4 = B̆
(r=r∗)
2 ⋆ t̆

(r=r∗)
2 + F̆2 ⋆ ŭ2 + . . .

(r < r∗) : Ğ4 = B̆
(r<r∗,1)
2 ⋆ t̆

(r<r∗,1)
2 + B̆

(r>r∗,2)
2 ⋆ t̆

(r<r∗,2)
2 + . . .

(43)

and omitting fields and interactions resulting from the “...” terms. Here, the generators t̆2
are torsional classes and are in correspondence with the torsional 1-cycles of the radial shells

Ur. Their exponent indicates the SymTree branch they live on. The respective coefficient

fields valued in U(1) with periods taking values in finite subgroups of U(1). We make this

explicit by changing the normalization such that the fields now take values in ZK where

K = N,N1, N2, g. This rescaling is reflected in notation as

B̆
(r>r∗)
2 =

2πi

N
B̆

(N)
2 , B̆

(r=r∗)
2 =

2πi

g
B̆

(g)
2 , B̆

(r<r∗,i)
2 =

2πi

Ni

B̆
(Ni)
2 , (44)

where the exponent now keeps track of the order of the form with the index continuing to

record its degree. The free generator ŭ2 is in correspondence with the free 2-cycle in (41)

which only exists at the critical radius r = r∗ and results in an abelian gauge field localized

to the junction. The fields of the SymTree under consideration are thus

(r > r∗) : B
(N)
2

(r = r∗) : B
(g)
2 , A1

(r < r∗) : B
(N1)
2 , B

(N2)
2

(45)

together with their magnetic duals. The discrete fields B2 are background fields for the

1-form center symmetry.

We now determine the theory localized at the junction and the gluing conditions across

the junction. Evaluating the Mayer-Vietoris sequences of lines (18) and (20) we find the

intersection of kernels in line (28) yields:

Ker(2)r=r∗ = Z . (46)

This kernel characterizes the fields at the junction not arising as restriction of bulk fields.

Since the field content is supersymmetric, we conclude that the dynamical junction degrees

of freedom organize into the following theory27:

7D N = 1 u(1) vector multiplet. (47)

27This mode is understood to arise via Higgsing from which we infer that the 2-form (46) is L2-normalizable,
i.e., the u(1) theory is dynamical.
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Further, line (46) implies that the junction field B
(g)
2 is eaten up by identifications. Indeed

computing the images of the maps ȷr<r∗ ȷr>r∗ , defined in line (24), we find

Im ȷ
(2)
r<r∗

∼= Zg ⊕ Zg , Im ȷ
(2)
r>r∗

∼= Zg , (48)

implying that the low radius pair B
(N1)
2 and B

(N2)
2 glues via B

(g)
2 to the large radius field

B
(N)
2 . More precisely, at the critical slice we have the restrictions

N1

g
B

(N1)
2

⃓⃓⃓
r=r∗

= B
(g)
2 ,

N2

g
B

(N2)
2

⃓⃓⃓
r=r∗

= B
(g)
2 ,

N

g
B

(N)
2

⃓⃓⃓
r=r∗

= B
(g)
2 . (49)

The background field B
(g)
2 is thus auxiliary and can be eliminated, straightforwardly implying

the junction gluing condition

N1

g
B

(N1)
2

⃓⃓⃓
r=r∗

=
N2

g
B

(N2)
2

⃓⃓⃓
r=r∗

=
N

g
B

(N)
2

⃓⃓⃓
r=r∗

(50)

which is an equation with coefficients in Zg.

We turn to discuss how the abelian junction theory interacts with the three 8D TFTs.

The point of view taken here is that the junction theory itself is relative and that the

fields B
(N1)
2 , B

(N2)
2 , B

(N)
2 admit an interpretation as background fields for (a subgroup of)

its 1-form center symmetry. Solving the extension problem in geometry we determine the

relevant subgroup to be ZLN/g ⊂ U(1) which naturally arises in the extension

0 → ZL → ZLN/g → ZN/g → 0 (51)

where L = lcm(N1, N2). Let us denote 1-form symmetry backgrounds of the junction theory

contained in this subgroup as B
(ℓ,U(1))
2 where we introduce ℓ = LN/g for convenience, sim-

ilarly we introduce a background for the subgroup ZL ⊂ U(1). Studying the small radius

Mayer-Vietoris sequence we find the identifications

B
(N1)
2 =

N2

g
B

(L,U(1))
2 , B

(N2)
2 =

N1

g
B

(L,U(1))
2 (52)

which fundamentally are identifications between center subgroups of U(1) and SU(Ni). Next,

studying the large radius Mayer-Vietoris sequence we find the identifications

gB
(N)
2 = LB

(ℓ,U(1))
2 . (53)

The righthand sides are related simply as (N/g)B
(ℓ,U(1))
2 = B

(L,U(1))
2 . Note, that these are

identifications and not gluing conditions, the restriction to the critical slice |r=r∗ is missing

compared to (50). One can check that the interaction of the 8D fields with and across the

junction is now fully determined. They either glue across the junctions or enter the u(1)

theory. For discussion and details on geometrization of the above see Appendix C.
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Overall the action of the SymTree now takes the form

S =
∑︂

branches b

S
(b)
8D +

∑︂
internal nodesn

S
(n)
7D

= S
(1)
8D + S

(2)
8D + S

(12)
8D + S

(J )
7D ,

(54)

where the final term is the junction theory, which includes a 4D N = 4 u(1) vector multiplet

that arises from the relative separation of the D3-brane stacks, and also enforces the iden-

tifications for the 8D bulk modes. The first two 8D terms are supported at r ∈ (0, r∗), the

third term is supported along r ∈ (r∗,∞) and the fourth terms is in 7D located at r = r∗.

The first three terms each correspond to a leg of the Y-shaped SymTree and are topological,

explicitly

S
(1)
8D =

2πi

N1

∫︂
R6,1×(0,r∗)

B
(N1)
2 ∪ δC

(N1)
5 + . . .

S
(2)
8D =

2πi

N2

∫︂
R6,1×(0,r∗)

B
(N2)
2 ∪ δC

(N2)
5 + . . .

S
(12)
8D =

2πi

N

∫︂
R6,1×(r∗,∞)

B
(N)
2 ∪ δC

(N)
5 + . . .

(55)

where the omitted terms include fields for the 2-form and (−1)-form symmetry derived from

the 11D Chern-Simons term Ğ3
4, see Appendix C. We have switched from d to δ for our

differentials from wedge product to cup products compared to (32) to emphasize the change

from differential forms valued in U(1) to discrete cocycles.

We now comment on the difference between B(retract)
phys , the boundary condition obtained

from retracting the suNi
SymTree branches into the u(1) junction, as in figure 4, and B(full)

phys ,

the boundary condition associated the parent suN1+N2 theory. Recall from Section 2, that

retraction consists of simply dimensionally reducing the two SymTFTs of the branches along

the interval. This means that the retracted theory includes the 7D gauge theories from each

interval end which combine, with the junction degrees of freedom, to form a suN1⊕suN2⊕u(1)

gauge theory while S
(1)
8D and S

(2)
8D vanish. Interestingly, this boundary condition has defects

which are localized within it. Upon contraction defects running between the suNi
boundaries

(as in configuration (iv) of figure 7) descend to defects in the engineered theory. The manner

in which bulk fields reduce to background fields of the 7D theory is precisely given by

lines (50) and (52). In comparison, B(full)
phys in this example is realized by physically moving

the AN1−1 and AN2−1 singularities together to form a AN1+N2−1 singularity. This fuses the

boundary conditions of the branches of the SymTree to a 7D suN1+N2 gauge theory, setting

the standard physical boundary conditions for Sfull.

Field Theory Interpretation

We now discuss the above from a field theoretic perspective. This perspective relies heavily
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on understanding the origin of the junction via the Higgsing specified by line (38). More

invariantly, we are relying on an understanding of how the physical edge modes fuse with

the junction theory. In contrast the geometric analysis yields identical results without this

additional input.

Our starting point is the Higgsing, which we repeat for convenience here:

SU(N) → (SU(N1)× SU(N2)× U(1))
/︂
ZL . (56)

Note that this deformation does not change the 1-form center symmetry of the theory. In-

deed, screening arguments are insensitive to such deformations as is clear from the geometries

X,X ′ exhibiting the same boundaries and the partial smoothing X ′ → X introducing no

1-cycles.

We then may ask how to represent a 2-form background field configuration of the lefthand

side via data of the righthand side. This is equivalent to asking how to represent a center

element of the lefthand side as a combination of center elements on the righthand side modulo

identification imposed by ZL.

Observe that the Zg ⊂ ZN subgroup embeds into ZN1 × ZN2 without involving the U(1)

which is the content of the gluing condition (50). Therefore it remains to track the ZN/g

from left to right. This now necessarily involves the U(1) and turns on line (53). However

no element of U(1) except the identity is a central subgroup of SU(N), we therefore need to

compensate the U(1) profile by turning on a subgroup of ZN1 × ZN2 which is not central in

SU(N). The subgroup Zg ⊂ ZN1 × ZN2 is central in SU(N), therefore we are turning on a

subgroup of (ZN1 × ZN2)/Zg, exactly as in line (52).

4.4 Multi-Sector Defects and Symmetry Operators

Let us next turn to the defects and symmetry operators of the multi-sector QFT. We have

already reviewed how these arise in the UV parent theory, and in an electric polarization

where we have the ZN center symmetry, the absolute theory admits the following objects:

Defect Operators: M2-brane wrapped on Cone(γ)

Symmetry Operators: M5-brane wrapped on γ
(57)

where γ ∈ H1(S
3/ZN) and the cone over γ stretches to the singularity.

Consider next the SymTree generated by our smoothing deformation / adjoint Higgsing

where we are left with C2/ZN1 and C2/ZN2 singularities. In addition to the localized non-

abelian gauge groups, we also have a delocalized u(1) sector (i.e., an N = 1 vector multiplet)

which we interpret as part of the junction of the SymTree.

Let us now turn to possible heavy defects and symmetry operators of the parent UV

theory and how they are interpreted in the multi-sector QFT. To do this, it is enough to
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study the fate of the various boundary cycles γ ∈ H1(S
3/ZN) and what happens to them

as we push them down to the junction and to the individual singularities. The Gibbons-

Hawking ansatz tells us that the generator of H1(S
3/ZN) pushes downwards into the local

model of C2/ZNi
without obstruction. However, the equivalence relations imposed on the free

group generated by this chain is sensitive to the radial shell it is being considered in, giving

different homology groups in degree 1. Similarly generators of H1(S
3/ZNi

) can be deformed

between the two singularities without obstruction. From here 2-cycles are constructed, which

are simply traced out by these 1-cycles following these deformations.

Defects follow by wrapping M2-/M5-branes on the constructed 2-cycles, and returning

to figure 7, we see that fundamentally we are constructing defects of type (iii) and (iv). Any

defect of type (v) is a composite of these. Defects of type (ii) do not exist.

Defects of type (iii) and (iv) constructed in this way correspond to the representations in

(39) carrying U(1) charge. Dressing amounts to tensoring the non-abelian representations

by the abelian ones, dressing the former by the latter. The U(1) charge is computed via an

intersection. In Appendix C we show that the abelian generator is geometrized as (see the

discussion leading to (128) for notation)

Σ ≡ (N2Σ1/g) ∪LS1
H
(−N1Σ2/g) . (58)

In an electric frame, Wilson lines in the fundamental representation Ni are constructed by

M2-branes wrapping the 1-cycle homology generator at “true infinity” S3/ZN fibered to the

C2/ZNi
singularity. In the critical slice we find a U(1) line with charge qi = γi ·Σ where γi is

a representative for the 1-cycle from the i-th local model. We have γi ·Σj = δij and therefore

q1 =
N2

g
, q2 = −N1

g
, (59)

correctly reproducing (39). Taking orientations into account, the charge of the bifundamental

is of course q1 − q2. We have the dressing Ni ⊗ 1qi ≡ (Ni)qi and (N1,N2) ⊗ 1q1−q2 ≡
(N1,N2)q1−q2 which are the true defects of the system.

There also exist defects which need not be dressed. By the above analysis we found a

subgroup Zg ⊂ ZN to glue across the junction, to Zg ⊂ ZN1 ×ZN2 and not involve the U(1).

At the level of defects this describes a configuration of type (v). We begin with N/g copies

of the generator of H1(S
3/ZN), fiber these radially inwards, and after the critical slice we

fiber Ni/g of these to C2/ZNi
. The dressing line has charge (N1/g)q1 + (N2/g)q2 = 0 and is

trivial.

Similar considerations hold for the topological symmetry operators, with M5-branes now

wrapped on the torsional cycles of H1(S
3/ZN). We discussed this in general terms in figure

9. For M5-branes wrapped on γ ∈ Zg ⊂ ZN , the symmetry operator can be pushed down

into the pair of throats according to Zg ⊂ ZN1 × ZN2 where they act on the corresponding

lines. This corresponds to subfigure (iv) of figure 9. When γ /∈ Zg ⊂ ZN , we have a further
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dressing by operators of the junction theory, as captured by the ZL charge. This corresponds

to subfigure (ii) of figure 9.

5 More Multi-Sector QFTs via Moduli Space Flows

In the previous Section we focused on the special case of 7D SYM as realized by M-theory

on an ADE singularity. Under adjoint Higgsing, i.e., a smoothing and / or blowup of the

geometry, we arrived at a multi-sector QFT. Similar considerations apply to other QFTs

which admit such geometric deformations. In this Section we present a few such examples

which have either a similar geometric or field theoretic realization.

As a first class of examples, we consider the case of multi-sector 6D SCFTs realized

via tensor branch deformations. Geometrically, these are quite similar to the case of 7D

SYM, but with a different physical interpretation of the SymTree and associated defects and

symmetry operators. We illustrate how this works for brane probes of smooth and singular

geometries. A pleasant feature of some brane probe theories is that, in a suitable large

N limit, they result in multi-throat AdS configurations. This in turn provides us with a

holographic description of the SymTree.

5.1 6D SCFTs and their Compactifications

Let us now turn to the SymTree for 6D SCFTs as realized in F-theory backgrounds [55–57]

(see e.g., [25,26] for reviews). In all these cases, the base of the F-theory model is of the form

C2/Γ for Γ a finite subgroup of U(2). A suitable elliptic fibration results in a non-compact

elliptically fibered Calabi-Yau threefold which preserves (at least)N = (1, 0) supersymmetry.

In this case, we have stringlike surface operators defects from D3-branes wrapping cones of

boundary one-cycles Cone(γ) with γ ∈ H1(S
3/Γ) ≃ Ab(Γ). Indeed, the 2-form symmetry

for the relative theory is specified by the abelianization of Γ (see reference [29]). There can

in principle also be 0-form and 1-form symmetries, but these are model dependent so we

defer an analysis of this structure to future work.28 For ease of exposition, we also assume

that Γ is of generalized A-type, namely that it is always just a cyclic group ZN with some

group action induced from the action of U(2) on C2. All other choices were classified in [29]

and result in quite similar conclusions.

Focusing, then, on just the 2-form symmetry, the SymTFT for this theory follows from

dimensional reduction of the topological action associated with the chiral 4-form of type IIB

string theory:29

S7D =
i

4π
N

∫︂
C3 ∧ dC3 + ..., (61)

28For some discussion of this, see e.g., references [58–63].
29A proper derivation of the 7D SymTFT is a bit subtle because we are dealing with reduction of a chiral

4-form. Following the treatment in [22] as well as [20, 53, 63–65], one starts from an 11D spacetime and a
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where the “...” refers to additional topological terms which captured contributions from

possible 0-form and 1-form symmetries.

Now starting from this 6D SCFT, we can consider a tensor branch flow which results in

the system breaking up into a multi-sector QFT. Geometrically this corresponds to blowing

up some collection of the previously collapsed curves. Doing so, we can get local singularities

of the form C2/ZN1 and C2/ZN2 . It is now clear that the geometric structure of a SymTree

found in the case of 7D SYM simply carries over since we again have boundary lens spaces

which fuse together.30 Carrying on in this way, we can simply take our previous analysis

of the SymTree action and make some small adjustments to reach the answer for our 7D

theory.

Overall the action of the SymTree for a trivalent junction now takes the form

S =
∑︂

branches b

S
(b)
7D +

∑︂
internal nodesn

S
(n)
6D

= S
(1)
7D + S

(2)
7D + S

(12)
7D + S

(J )
6D

(62)

where the final term is the junction theory, which includes a 6D N = (1, 0) tensor multiplet,

and also enforces the identifications for the 7D bulk modes. The first three terms each

correspond to a leg of the Y-shaped SymTree:

S
(1)
7D =

πi

N1

∫︂
R5,1×(0,r∗)

C
(N1)
3 ∪ δC

(N1)
3 + . . .

S
(2)
7D =

πi

N2

∫︂
R5,1×(0,r∗)

C
(N2)
3 ∪ δC

(N2)
3 + . . .

S
(12)
7D =

πi

N

∫︂
R5,1×(r∗,∞)

C
(N)
3 ∪ δC

(N)
3 + . . . .

(63)

So, up to a few small rearrangements in the physical interpretation of various higher-form

potentials, we see that we again reach precisely the same SymTree structure considered

previously. Here we have again rescaled fields similar to (44) as indicated by their raised

index.

Chern-Simons-like action equipped with a Wu structure:

S11D =
i

4π

∫︂
C5 ∧ dC5. (60)

Then, treating the 10D spacetime as a boundary, we impose the condition C5 = ∗10DC5 as C5 is an 11D
extension of the self-dual 5-form RR flux in IIB. Following a similar analysis to that presented in Appendix
B, we can then consider the reduction of the associated “boundary kinetic term” on the linking S3/ZN to
arrive at the 7D TFT action. For related discussions see e.g., references [22,65].

30One might ask whether the difference between a finite subgroup of SU(2) versus U(2) plays a role here.
At the level of topological structures, it does not appear to make much of a difference, although it can affect
link-pairings between cycles.
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Similar considerations hold for compactifications of 6D SCFTs. For example, starting

from the 6D N = (2, 0) theory, compactification on a T 2 results in a 4D N = 4 SYM theory,

the global form of which depends on the compactification and boundary data. In this case,

we can again extract a similar SymTree via adjoint Higgsing. We can also engineer various

4D N = 2 SCFTs with a Coulomb branch moduli space by compactifying the 6D N = (2, 0)

theories on a genus g > 1 Riemann surface, as well as by compactifying 6D N = (1, 0)

theories on a T 2. In all these cases, we get multi-sector QFTs as dictated by geometric

deformations of a single parent theory.

5.2 Branes in Flat Space

We can engineer much the same sort of theories starting from brane probes of geometry. For

example, 4D N = 4 SYM with an A-type gauge group follows from a stack of coincident

D3-branes filling 4D Minkowski space and sitting at a common point of C3.

Focusing on the brane realization, the SymTFT is in this case obtained via dimensional

reduction on the boundary ∂C3 = S5 in the presence of the RR 5-form flux sourced by the

D3-branes. Indeed, reduction of the type IIB term F5 ∧ B2 ∧ F3 results in a 5D SymTFT

action (see [21]):

S5D =
i

2π
N

∫︂
B2 ∧ dC2, (64)

when we have N coincident D3-branes. Partitioning up the stacks into individual segments

by adjoint Higgsing, we again see a treelike structure emerge.

Overall the action of the SymTree for a trivalent junction now takes the form

S =
∑︂

branches b

S
(b)
5D +

∑︂
internal nodesn

S
(n)
4D

= S
(1)
5D + S

(2)
5D + S

(12)
5D + S

(J )
4D

(65)

where the final term is the junction theory, which includes a 4D N = 4 u(1) vector multiplet,

and also enforces the identifications for the 5D bulk modes. The first three terms each

correspond to a leg of the Y-shaped SymTree:

S
(1)
5D =

2πi

N1

∫︂
R3,1×(0,r∗)

B
(N1)
2 ∪ δC

(N1)
2 + . . .

S
(2)
5D =

2πi

N2

∫︂
R3,1×(0,r∗)

B
(N2)
2 ∪ δC

(N2)
2 + . . .

S
(12)
5D =

2πi

N

∫︂
R3,1×(r∗,∞)

B
(N)
2 ∪ δC

(N)
2 + . . . .

(66)

Here we have again rescaled fields similar to (44) as indicated by their raised index.
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N1×D3 N2×D3

(1, 0)

(0, 1) (1,−1)

Figure 18: Depiction of line operators after adjoint Higgsing of 4D N = 4 SYM with gauge

group SU(N) = SU(N1 +N2) to S(U(N1)× U(N2)). A non-genuine ’t Hooft line (0, 1) and

dyonic line (1,−1) of two sectors of the multi-sector theory can fuse at the junction with

an electric Wilson line (1, 0). These are realized by (p, q)-strings, i.e., bound states of p

F1-strings and q D1-strings. This implements an explicit example of the general phenomena

anticipated in figure 11.

One can also consider the explicit construction and analysis of defects and symmetry

operators in this case. In the D3-brane case, the heavy defects of the relative theory are

engineered via F1- and D1-strings which stretch from the boundary of C3 to the stacks of

D3-branes.31 Starting from an electric polarization of the parent SU(N) gauge theory, we

observe that the electric Wilson lines persist in the individual throats. Additionally, we

observe that we can also form string junctions which start as F1 strings at the boundary

S5, but which fragment to a D1-string and a dyonic (1,−1)-string on the other throats.

These are associated with “non-genuine” line operators of the individual sectors. We see

this explicitly in the decoupling limit because this non-genuine line ends on a topological

surface operator constructed from everything else attached to the junction theory (which is

now at infinity). See figure 18 for a depiction of this phenomenon.

A pleasant feature of this setup is that the near horizon limit of an individual stack of N

D3-branes results in the semi-classical gravity dual AdS5×S5 with N units of self-dual 5-form

flux threading the geometry [66]. Partitioning up N = N1 + ...+NK , and assuming each Ni

is still sufficiently large to produce a semi-classical gravity dual on its own, we observe that

we get a multi-throat configuration of AdS vacua, as in figure 19. Clearly, we still retain the

structure of a SymTree, although here, the radial direction of the AdS throats corresponds

to the radial direction of the SymTree. Down a given throat, we have a geometry of the

form AdS
(i)
5 ×S5

(i) threaded by Ni units of RR 5-form flux. The merger between the different

throats results in a jump in the level of the associated bulk 5D topological term. Additional

degrees of freedom are localized at these special radial slices, and these are just the locations

of the junction theory (in the SymTree). Of course, in the holographic dual the 5-form flux

varies smoothly over the 10D geometry; the jumping occurs because of reduction on the

31The defect group is expected to be captured by a suitable generalization of twisted K-theory to RR
fluxes (see Appendix A of [36]), but at the level of the SymTFT, this matters little.
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AdS
(1)
5 AdS

(2)
5 AdS

(K−1)
5 AdS

(K)
5

R∗

Figure 19: Sequestered substacks of D3-branes are described in a near horizon limit by a

multi-throat AdS configuration. Throats merge at the length scale R∗ characterizing the

depth of the throats.

linking S5’s.

The View from a Single Stack

Although we have emphasized a “democratic perspective” for how to realize the SymTree

in terms of branes probing an extra-dimensional geometry, it is also interesting to consider

the view from a single stack, where we continuously enlarge the size of shells including the

branes. Doing so, we begin down in the deep IR of a single AdS throat with a fixed value of

N1 for the amount of brane flux. As we go further into the UV, we encounter a domain wall

(another stack) and the total amount of flux jumps to N1+N2. At the domain wall, we have

localized degrees of freedom which absorb the anomaly inflow generated by the mismatch

in topological terms on the two sides of the interface. Continuing in this fashion, we again

build up the local structure of a SymTree.

5.2.1 Wilson Line Dressing

It is instructive to consider in more detail how heavy defects end up being dressed by addi-

tional degrees of freedom localized near the junction of the SymTree. To illustrate, we again

focus on the case of 4D N = 4 SYM with gauge group SU(N) = SU(N1 + ...+NK), i.e., the

electric polarization of the relative suN theory and consider adjoint Higgsing to the subgroup

S(U(N1)× ...×U(NK)). The relative suNi
theories specify physical boundary conditions of

the SymTree, while the u(1) factors sit at the junction(s). See figure 20 for a depiction of

the case with a single multi-valent junction.

We can rephrase the above in terms of U(Ni) gauge connections which we decompose as:

Ai = Ai +
ai
Ni

1Ni×Ni
, (67)
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suN1 suN2
suNK

u(1)K−1

B(electric)
top

Figure 20: SymTree with topological boundary condition for SU(N1 + N2 + · · · + NK)

global form, and junction and tree Υ describing the Higgsing SU(N1 + N2 + · · · + NK) ⊃
S(U(N1)×U(N2)×· · ·×U(NK)). Node theories are 4D SYM with indicated gauge algebra.

which embed in the SU(N) connection in the obvious way.32 In particular, we have the

overall trace constraint:

N1a1 + ...+NKaK = 0. (68)

Suppose we now attempt to construct a Wilson line in an irreducible representation Ri

of the suNi
throat.33 On its own, this does not really make sense because the global form of

the SU(N) gauge group has an electric Z(1)
N symmetry, whereas the suNi

gauge theory has

electric defects acted on by Z(1)
Ni
. We can dress the “naive” Wilson line for SU(Ni) gauge

theory by an overall U(1)i line:

WRi,qi = Wnaive
Ri

exp

(︃
−iq(Ri)

∫︂
ai

)︃
, (69)

where q(Ri) is simply the Ni-ality of the representation:

q(Ri) =
#boxes(Ri)

Ni

, (70)

in the obvious notation.

Returning to line (68), we can of course also project down to the K−1 independent U(1)

vector potentials, e.g., matching back onto (39). Consider for example the case K = 2 with

Ri the fundamental representation of suNi
. The dressing of line (69) then corresponds to

the representation (Ri)1 where the added U(1) gauge field is that of the abelian factor in

U(Ni) =
SU(Ni)× U(1)i

ZNi

. (71)

32ai is the trace of the U(Ni) gauge connection in the fundamental representation.
33In stringy terms, we get the fundamental representation of suNi

from an F1-string which descends to the
stack of D3-branes. Higher-dimensional representations are obtained by merging such lines, i.e., via fusion
of these fundamental lines.
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We now reduce to a single abelian factor as in

S(U(N1)× U(N2)) = SU(N1)× SU(N2)× U(1)/ZL, (72)

where L is the least common multiple lcm(N1, N2). Denoting this U(1) potential as a, it is

related to the U(1)i vector potentials as

a1 =
N2

g
a, a2 = −N1

g
a (73)

which is consistent with the constraint (68) as well as the charge assignment in the final line

of (39).

From manipulations like the above we now see that the individual 1-form symmetries

across the different relative suNi
theories are correlated. Indeed, precisely because all of

these Wilson lines descend from a parent SU(N) gauge theory, observe that the electric Z(1)
N

1-form symmetry naturally acts on each of the WRi,qi ’s. Suppose next that we fix a Young

diagram Y such that this can be interpreted as a representation RY
i of each suNi

factor.34

We can then build an operator which transforms under the parent 1-form symmetry:

WY =
K∑︂
i=1

WRY
i ,qi

(74)

whereRY
i denotes the representation of suNi

with the same Young diagram. The line operator

WY has N -ality charge dictated by the number of boxes. This makes the transformation

of the Wilson lines consistent in each individual throat, and the dressing by the U(1) line

operators ensures that there is a common phase rotation for each summand.

Since we have labelled our Wilson line operators by a choice of Young diagram Y , it

is natural to ask what happens when this Young diagram has a sufficient number of boxes

which anti-symmetrize indices in the representation so that Y does not specify a genuine

representation for some choice of Ni. In this case, we take this to mean that the original

WRY
i
of a given suNi

theory has actually broken up into a product of Wilson lines labelled

by smaller Young diagrams. This is in accord with how we would treat heavy probe quarks

in the corresponding representation.

5.3 Branes at Singularities

As another class of examples, we now turn to multi-sector QFTs realized by brane probes

of singularities. More precisely, we assume that we have a single stack of branes probing a

Calabi-Yau singularity, where we can geometrically deform both the singularity, as well as

34Of course the notation here is a bit redundant once we specify Ri. It is more to emphasize the point
that it is all dictated by the Young diagram.
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Figure 21: Deformation of a necklace quiver with L nodes to a pair of quivers with L1, L2

nodes respectively. The quivers are (locally) engineered by a stack of N (respectively Ni)

D3-branes probing C2/ZL (respectively C2/ZLi
).

the stacks of branes. From the perspective of the Calabi-Yau singularity, we are dealing with

a higher-dimensional QFT which has a collection of defects, as realized by the probe branes.

For a different approach to bulk modes coupled to dynamical SCFT edge modes realized via

geometry, see reference [37].

There are many ways in which such systems can arise. For example, we can take the

7D SYM theories as realized by M-theory on C2/ZL, and introduce a stack of N M5-branes

probing the singularity. This results in a 6D conformal matter theory.35 Introducing a

smoothing deformation, the original A-type singularity breaks up into a collection of A-type

singularities which are each locally of the form C2/ZLi
with L = L1 + ... + LK . We can

also partition up the stacks of M5-branes as N = N1 + ... + NK . Similar considerations

hold for a stack of N D3-branes probing a C2/ZL singularity where we can perform a similar

partitioning of the geometry (see figure 21). To keep our discussion general, we assume we are

dealing with a local Calabi-Yau singularity X which admits smoothing deformations to local

singularities {Xj}Mj=1 and a stack of N branes which we partition up as N = N1 + ...+NK ,

i.e., we assume there are no obstructions in the moduli space (as generated by a potential).

As a general comment, it can happen that the brane probe specifies a QFT Tbrane in

dimensionD but should be viewed as a defect of aD′ ≥ D-dimensional QFT Tgeom engineered

by a geometric singularity.36 From the perspective of the SymTFT Sbrane for the brane

probe theory, the theory Tgeom actually fills out the higher-dimensional bulk. This occurs,

for example, in configurations such as M5-brane probes of ADE singularities, where the

holographic dual is (in the large number of M5’s limit) AdS7 × S4/ΓADE with the 7D SYM

sector filling all of AdS7. This issue is not unique to SymTrees but generically arises in the

stringy realization of a SymTFT in the first place. Strictly speaking, then, the SymTFT is

no longer purely a TFT since we still have gapless degrees of freedom in the bulk. This arises

in many string constructions, see e.g., reference [37] for some recent examples along these

lines. In this case, then, the SymTree will generically have branches which might include

35For various properties of conformal matter, see e.g., references [56,62,67–69].
36Of course, it could happen that D′ = D, in which case the subtleties which we now discuss do not arise.
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both gapped as well as gapless degrees of freedom.

With these subtleties addressed, let us now turn to the structure of the SymTree in

this setting. First of all, we have the “true infinity” which consists of the boundary ∂X as

threaded by some units of fluxes (as sourced by the probe branes). On the other side of the

tree, we have physical boundary conditions, as obtained both from the stacks of branes and

singularities. Indeed, we can begin by separating the singularities from the branes, and they

specify different sorts of boundary conditions. For example, the singularities are generically a

higher-dimensional relative QFT and the branes specify a lower-dimensional “defect” QFT.

Starting near one such boundary condition we can build up ever larger radial slices around

any one of the singularities or stacks of branes. Eventually, they touch, and we produce a

SymTree again. In the cases just mentioned, we have three generic situations for the local

structure of the SymTree:

• Trivalent junction from fusing two stacks of branes

• Trivalent junction from fusing two singularities

• Trivalent junction from fusing a brane with a singularity

We have already dealt with the first two cases, where we also dealt with the junction theory.

This leaves us with the fusion of a brane probe with a singularity. In this case, we analyze

the junction by pushing the singularity up into the bulk of the SymTree. This results in

a single branch which begins with a brane stack physical boundary condition, and which

then transitions to the singularity. Prior to reaching the singularity, the local geometry

of the brane stack is simply Rn with a boundary Sn−1. Once we cross the singularity,

however, the boundary jumps to ∂Xj. This can therefore be treated as a single SymTFT,

and reduction on the boundary in the presence of a flux proceeds in precisely the same way

as already discussed. See figure 22 for a depiction of a hybrid SymTree with both branes

and singularities.

A special multi-sector QFT of interest is where we focus on the worldvolume degrees of

freedom of the branes, ignoring the contributions from the higher-dimensional QFT generated

by the singularity. To analyze this case, we start from the SymTFT for Nj branes at the j
th

singularity and pull the singularity off the physical boundary condition. Doing this for all

the sectors, we can now fuse together the singularities first. Thus, this reduces to one of the

cases previously considered.

6 Isolated Multi-Sector QFTs

The operating theme in many of the previous examples has been to start from a single parent

UV theory, and to then initiate a flow on moduli space which, at low energies, results in a

multi-sector QFT. In this Section we consider a class of multi-sector QFTs which arise simply
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Figure 22: SymTrees for brane probes of singularities. (i): stack of K D3-branes probing

an C2/ZN singularity. In the extra dimensional geometry the D3-branes and the singularity

are separated. (ii): cross-section of this configuration. (iii): we contract a branch / center

the filtration on the D3-brane stack. Moving radially outwards from the D3-brane stack the

linking S5
K with K units of D3 flux sweeps over the singularity and is folded to an (S5/ZN)K .

(iv): we contract another branch pushing the brane stack into the singularity. This alters the

physical boundary condition and the massless edge modes are now organized into a quiver

gauge theory. The shaded slabs / red cross-section signify, from the perspective of 4D edge

modes / 5D slabs, that the ADE locus is non-compact. It stretches to infinity of the respec-

tive filtration and alters the boundary conditions.

(v): the SymTree of two stacks of D3-branes probing a partial resolution of a C2/ZN singu-

larity. The internal dimensions contain a pair C2/ZNi
singularities and Ki D3-brane, where

i = 1, 2, and which are all separated. In (vi) we show the cross-section and label branches

by the geometry of the corresponding radial shells and their D3-brane flux. Note, there is a

purely geometric junction J (Sing) and junction purely characterized by adjoint Higgsing of a

brane stack J (D3).
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from geometries with multiple singularities, but in which the collision of such singularities

is always at infinite distance in moduli space. Consequently, we do not have a single sector

parent boundary condition B(full)
phys , however B(retract)

phys is still well-defined as in figure 4. To

illustrate, we focus on some examples of isolated orbifold singularities where the underlying

QFTs are coupled by purely topological terms. We begin by revisiting 7D SYM theories, as

well as 6D SCFTs, and then turn to an example with 5D SCFTs.

As a general comment, a common feature we shall encounter is the appearance of a pu-

tative U(1) symmetry factor as associated with the local motion of the isolated singularities.

In a compact model we would indeed get a normalizable mode associated with this defor-

mation, but in the decompactified limit, this mode is log-normalizable, i.e., its kinetic term

is proportional to log VolX (in Planck units). To maintain continuity with our discussion

of the junction theories in earlier sections, we shall therefore continue to include this U(1)

factor, but it is important to bear in mind that in the limit decoupled from gravity, it does

not contribute a normalizable mode in the SymTree. However, once we couple to gravity,

this mode “comes to life” so we include it in what follows.

6.1 Revisiting Multi-Sector 7D Models

To generate isolated multi-sector 7D SYM sectors, we return to M-theory, but now introduce

ADE singularities such that the product group G1× ...×GK cannot be obtained from adjoint

Higgsing from a single simple gauge group factor. This occurs in many situations, e.g., when

all Gj are E-type gauge groups.

One way to geometrically engineer such examples is to start in F-theory, where we realize

such gauge group factors in terms of a suitable SL(2,Z) monodromy transformation around a

codimension two singularity of a 7-brane, as marked by a distinguished point in the complex

line C.37 In this way, the entire ADE series of Lie algebras dictates a specific monodromy

structure. Far away from the 7-brane, we characterize this in terms of an SL(2,Z) duality
bundle on the boundary S1 = ∂C, i.e., θ → θ+2π means acting by M7−brane, the monodromy

matrix for the 7-brane in question. Note that this also implicitly specifies a T 2 bundle over

the boundary S1 [60, 71,72].

Suppose now that we have multiple codimension two singularities, as captured by mon-

odromy matrices M1, ...,MK . The structure of the F-theory geometry is just as before, but

now the “true infinity” involves a monodromy given by the product M1...MK . The fusion

of junctions and the corresponding change in the bundles at each step is also captured by

products of such monodromy matrices.

With the F-theory characterization in place, we pass to M-theory by further compacti-

fication on a circle, in which case the F-theory torus now becomes part of the target space

geometry. Everything we have just specified in terms of monodromy matrices is directly

37For example, in terms of the standard A,B,C non-perturbative 7-branes of reference [70], the EN series
is realized as AN−1BC2.
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M1

M2

M1M2

p

Figure 23: We depict the base of the local K3 π : X → B = C. The preimage under π of

a base filtration FB gives a filtration FX . The critical slice projects to a figure eight. The

filtration for the base lifts to the full geometry, as determined by the SL(2,Z) monodromy

matrices M1,M2.

specified by a choice of T 2 bundle over an S1. We also see that when the radial shells sur-

rounding two distinct singularities just touch, there is an additional free generator in the

homology group of the boundary 3-manifold. This is the U(1) of the junction theory.

Observe that in the above discussion, we did not assume that we could push the singu-

larities on top of one another. Of course, we can specialize to the case of adjoint Higgsing,

e.g., when all the Mj commute and each specifies a monodromy of the form τ → τ +Nj as

we get for an suNj
gauge algebra. In this case, we can merge all the singularities at finite

distance in moduli space.

On the other hand, we can also consider cases where merging the singularities is at infinite

distance in moduli space. This case gives us an example of a multi-sector QFT where each

sector is fully isolated from its neighbors.38

We now turn to the construction of the SymTree in these cases.

Filtration and Critical Slice

The filtration of FX is constructed using the elliptic fibration structure π : X → B, with

base B = C, via the lift of a filtration FB of the base. Any base filtration FB lifts to a

filtration of X by replacing the radial shells of FB by their preimage with respect to π. Now,

the ADE singularities of X project to two points pi ∈ C and we simply pick FB to be swept

out, at small radius by two circles S1
i centered on pi. These then kiss at a point p, resulting

in a figure eight, and then merge into a single circle S1
12 at large radius. See figure 23 where

small to large radii are depicted as (i) → (ii) → (iii). The point p lifts to a generic torus

fiber π−1(p) = T 2
p .

38In a compact model where this modulus is normalizable (instead of log-normalizable as in the pres-
ence situation), one can push the singularities but this results in a higher-dimensional theory. For further
discussion, see reference [73].
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The radial shells of FX are

Ur>r∗ = ΣM1M2
3 ,

Ur=r∗ =
(︁
ΣM1

3

)︁
∪T 2

(︁
ΣM2

3

)︁
,

Ur<r∗ = ΣM1
3 ⊔ ΣM2

3 ,

(75)

where ΣM
3 denotes the three-manifold constructed by fibering a two-torus over a circle with

monodromy twist M . Here we will specify M by an element of SL(2,Z) which gives the

monodromy action on H1(T
2). The elliptic singularity, via Kodaira’s classification, fixes

the conjugacy class of M . When considering multiple elliptic singularities there may not

exist a SL(2,Z) frame in which all monodromy matrices take Kodaira’s canonical form

simultaneously, as often happens in the context of K3 surfaces. Monodromy matrices are

compared by traversing closed loops, starting and ending at one common point in B, linking

a singularity. Using the monodromy data the homology groups of ΣM
3 are

Hn

(︁
ΣM

3

)︁ ∼=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z k = 0

Z⊕ coker(M − 1) k = 1

Z⊕ coker(M − 1)∧ k = 2

Z k = 3

(76)

where we introduced the shorthand notation

coker (M − 1)∧ = Hom(coker (M − 1),Z) ∼= coker(M − 1)/Tor coker (M − 1) (77)

for a free group. These groups are invariant with respect to SL(2,Z) conjugation of M . The

homology groups of the critical slice are:

Hn

(︁(︁
ΣM1

3

)︁
∪T 2

(︁
ΣM2

3

)︁)︁ ∼=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z k = 0

Z2 ⊕ [Z2/Im(M1 − 1,M2 − 1)] k = 1

Z⊕ coker(M1 − 1)∧ ⊕ coker(M2 − 1)∧ ⊕ F k = 2

Z2 k = 3

(78)

where with the second entry in degree one we are denoting a quotient both by the image of

M1 − 1 and M2 − 1. This quotient is only invariant with respect to simultaneous SL(2,Z)
transformations of M1 and M2. Further, depending on the case, we have F = 0,Z,Z2. The

rank of F , denoted |F | = rankF , counts the number of two-cycles stretching between the

ADE singularities which depends both on the pair of elliptic singularities and their relative

orientation in SL(2,Z). We discuss the computation of these homology groups and their

generators in Appendix D.
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Projection to the SymTree

We now reduce 11D supergravity on the radial shells Ur. The computation follows the same

steps as laid out in Section 3 and Appendix D.

Again, we will focus on the subset of the generalized symmetries originating from the

center symmetries of the gauge theory sector. More precisely, we focus on the discrete 1-from

symmetries and their dual 4-form symmetries. We defer the discussion of a (−1)-form U(1)

symmetry, 2-form U(1) instanton symmetry, KK U(1) 0-form symmetry, associated with the

zero section, and a U(1) 1-form symmetry of a decoupled abelian vector multiplet associated

with the fiber class. The latter is fully decoupled, the fiber class does not intersect any

compact curves and is not even topologically coupled [41]. For further discussion on these

see [60, 71].

In terms of geometry these restrictions amount to focusing on 1-cycles and 2-cycles with

one leg the elliptic fiber, these are

H1

(︁
ΣMi

3

)︁ ∼= coker(Mi − 1)⊕ . . .

H1

(︁(︁
ΣM1

3

)︁
∪T 2

(︁
ΣM2

3

)︁)︁ ∼= Z2/Im(M1 − 1,M2 − 1)⊕ . . .

H2

(︁(︁
ΣM1

3

)︁
∪T 2

(︁
ΣM2

3

)︁)︁ ∼= F ⊕ . . .

(79)

which, lifting to differential cohomology, translates to restricting our attention to the coeffi-

cients in the expansions39

(r > r∗) : Ğ4 =
∑︂
j∈J

B̆
(r>r∗,j)
2 ⋆ t̆

(r>r∗,j)
2 +

∑︂
j∈J ′

H̆
(r>r∗,j)
2,U(1) ⋆ ŭ

(r>r∗,j)
2 + . . .

(r = r∗) : Ğ4 =
∑︂
j∈J∗

B̆
(r=r∗,j)
2 ⋆ t̆

(r=r∗)
2 +

∑︂
k∈K

F̆
(r=r∗,k)
2,U(1) ⋆ ŭ

(r=r∗,k)
2 + . . .

(r < r∗) : Ğ4 =
∑︂
j∈J1

B̆
(r<r∗,1,j)
2 ⋆ t̆

(r<r∗,1,j)
2 +

∑︂
j∈J2

B̆
(r<r∗,2,j)
2 ⋆ t̆

(r<r∗,2,j)
2

+
∑︂
j∈J ′

1

H̆
(r<r∗,1,j)
2,U(1) ⋆ ŭ

(r<r∗,1,j)
2 +

∑︂
j∈J ′

2

H̆
(r<r∗,2,j)
2,U(1) ⋆ ŭ

(r<r∗,2,j)
2 + . . .

(80)

where J1, J2, J∗, J ∈ {∅, {0}, {0, 1}} which count the number of torsional groups in the prime

decomposition of the finitely generated abelian groups computed as the torsion contributions

above. Similarly the primed index sets describe free contributions. We have |K| = rankF .

The geometrization of these groups is analogous to the discussion near line (43). The fields

39The lowered indices denote form degrees, the raised indices specify, in order, the radial shells the fields
are localized to, if these have multiple connected components which component, and finally and index
running over the relevant homology generators for that component. We further attach the index “U(1)” for
background fields for continuous symmetries, as obtained via expansion along free classes.
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of the SymTree under consideration are thus, projecting back down to cohomology,

(r > r∗) : B
(r>r∗,j)
2 , H

(r>r∗,ℓ)
2,U(1) j ∈ J, ℓ ∈ J ′

(r = r∗) : B
(r=r∗,j)
2 , A

(r=r∗,k)
1,U(1) j ∈ J∗, k ∈ K

(r < r∗) : B
(r<r∗,1,j)
2 , B

(r<r∗,2,ℓ)
2 , H

(r<r∗,1,r)
2,U(1) , H

(r<r∗,2,s)
2,U(1) j ∈ J1, ℓ ∈ J2, r ∈ J ′

1, s ∈ J ′
2

(81)

together with their magnetic duals. The fields on the SymTree branches are background fields

for the discrete and continous symmetry of the 7D theory. The H2 fields are backgrounds

for the decoupled abelian vector multiplets mentioned above.

The elliptic fiber has two 1-cycles and the geometric origin of these legs thus restricts the

number of fields under consideration to two on each SymTree branch

|Ji|+ |J ′
i | ≤ 2 , |J |+ |J ′| ≤ 2 . (82)

There are also up to two U(1) log-normalizable vector multiplets localized at the junction,

i.e., by supersymmetry the junction theory is

|F | 7D N = 1 u(1) log-normalizable vector multiplets (83)

Additionally, the junction fields B
(r=r∗,j)
2 are eaten up by identifications. Indeed the part of

the maps ȷr<r∗ ȷr>r∗ , defined in (24), relevant for the above fields are the restriction maps

associated via duality to the homology embedding maps ȷr<r∗ ȷr>r∗ defined by

ȷ
(i)
r<r∗ : Z2/Im(Mi − 1) → Z2/Im(M1 − 1,M2 − 1)

ȷr>r∗ : Z2/Im(M1M2 − 1) → Z2/Im(M1 − 1,M2 − 1)
(84)

with ȷr<r∗ = ȷ
(1)
r<r∗ + ȷ

(2)
r<r∗ . Because the mappings ȷ

(i)
r<r∗ impose further identifications, the

dual of these maps have vanishing kernel. With this all of the junction field B
(r=r∗,j)
2 arises

as restrictions from the discrete field localized on the small radius branches, i.e., they are

eaten up completely by gluing conditions. This of course matches with the junction degrees

of freedom being solely those of line (83).

Instead of writing out the gluing conditions explicitly, as in (50) and (52), we now consider

a representative examples for the cases |F | = 1. The case |F | = 2 as for example engineered

by two elliptic singularities both of Kodaira type I∗0 is rather subtle.40 The case |F | = 0 has

topological junctions at which only gluing conditions are formulated.

40In the context of an F-theory compactification, the monodromy around a pair of I∗0 singularities results
in a (−1)F transformation (see e.g., [74]). This monodromy transformation is present in Mp(2,Z), the Spin
cover of SL(2,Z) (see [75]) as well as the Pin+ cover of GL(2,Z) (see [76]). For further discussion on some
of the physical implications of these finer duality structures, see e.g., [72, 74,77].
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Case |F | = 1 with u(1) Junction

Consider a pair of elliptic singularities both of Kodaira type IV∗ engineering two e6 gauge

theory sectors. The relevant monodromies are

M ≡ M1 = M2 =

(︃
−1 −1

1 0

)︃
, M1M2 =

(︃
0 1

−1 −1

)︃
(85)

which determine the fields of the SymTree:

(r > r∗) : B
(r>r∗)
2

(r = r∗) : B
(r=r∗)
2 , A

(r=r∗)
1

(r < r∗) : B
(r<r∗,1)
2 , B

(r<r∗,2)
2

(86)

where all the B-fields are valued in Z3 ⊂ U(1). The gluing conditions across the junctions

are

B
(r<r∗,1)
2

⃓⃓⃓
r=r∗

= B
(r<r∗,2)
2

⃓⃓⃓
r=r∗

= −B
(r>r∗)
2

⃓⃓⃓
r=r∗

= B
(2)
∗,j (87)

where the minus sign is due to M−1 = M2. There is no mixing between B-fields and the u(1)

junction sector, i.e., none of the B-fields serve as background fields for the u(1) junction.

These gluing conditions reflect the gauge group, in an electric frame,

G =
E6 × E6 × U(1)

Z3

(88)

where E6 is the simply connected Lie group with Lie algebra e6. We also find massive bifun-

damentals (27,27)2 ⊕ (27,27)−2 which is compatible with the overall observed symmetries.

Again, we comment that in the decompactified limit, this U(1) factor is log-normalizable,

i.e., it is not really part of the SymTree junction.

6.2 6D SCFTs

As another class of multi-sector QFTs, consider N = (2, 0) SCFTs as realized by type

IIB string theory on an ADE singularity. Such singularities are modelled as C2/Γ for Γ

a finite subgroup of SU(2), but we can also reach the same sort of structures from non-

compact elliptically fibered Calabi-Yau twofolds. Indeed, the same geometry introduced in

our analysis of isolated 7D sectors works equally well in this case as well. For each individual

6D SCFT, we have a 7D SymTFT. In these cases, the junction theory again contains a

log-normalizable tensor multiplet (as in the non-isolated case). Again, there is a topological

coupling between the different 6D SCFTs as captured by the bulk 3-form potential of the

SymTFT branches.

We can perform a similar analysis in the more general case of 6D SCFTs as realized by
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F-theory on a non-compact elliptically fibered Calabi-Yau threefold with multiple canonical

singularities. Indeed, the main requirement here is that we start from independent contract-

ing configurations of curves which cannot be combined into a single configuration of curves.

We remark that this happens rather frequently in explicit 6D supergravity models realized

in F-theory.

6.3 5D SCFTs

Consider next the case of isolated multi-sector 5D SCFTs. In M-theory we get examples

of 5D SCFTs by working on the background R4,1 ×X for X a Calabi-Yau threefold with a

canonical singularity. Some aspects of the geometry, as well as higher-form symmetries for

these cases were studied e.g., in references [31, 32, 37, 59, 78, 79]. In general, we can consider

a Calabi-Yau threefold which has multiple isolated canonical singularities that cannot be

merged. These furnish examples of multi-sector models with isolated 5D SCFTs which only

couple via topological terms.

To illustrate these considerations in more detail, we focus on multi-sector models where

each sector is just the E0 Seiberg SCFT [80,81]. Geometrically, the E0 SCFT is realized via

M-theory on C3/Z3. The boundary geometry is the generalized lens space S5/Z3. The model

has a Z3 1-form symmetry with symmetry operators obtained from M5-branes wrapped on

torsional 3-cycles at the boundary geometry. This symmetry links / acts on M2-branes which

stretch from the singularity out to the torsional one-cycles of the boundary, i.e., Cone(γ) for

γ ∈ H1(S
5/Z3). The relevant homology groups in this case are:

Hk(S
5/Z3) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z k = 0

Z3 k = 1

0 k = 2

Z3 k = 3

0 k = 4

Z k = 5

(89)

To produce a collection of E0 SCFTs, it suffices to compactify one of the complex direc-

tions of our original model. With this in mind, we consider the quotient space X = (T 2×C×
C)/Z3, where we fix the complex structure of the T 2 to be τ = exp(2πi/6). Each holomorphic

factor has a local coordinate zi, and the group action is simply (z1, z2, z3) → (ωz1, ωz2, ωz3)

where ω3 = 1. This results in three codimension six singularities, each of which has the form

C3/Z3. In this case, the asymptotic geometry for the full system is ∂X = (T 2 × S3)/Z3.

We can view this as a specific SL(2,Z) bundle over the lens space S3/Z3, or as a lens space

bundle over the quotient space T 2/Z3. While we focus on this case, similar considerations

hold for related spaces such as (T 2 × T 2 × C)/Z3. The fully compactified case T 6/Z3 (i.e.,
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Topological Boundary

Physical Boundaries

Junction
∂X

S5/Z3

X◦

Figure 24: SymTree derived from the filtration FX of the orbifold X = (T 2 × C2)/Z3. We

give the topological models for the radial shells at the legs and junctions. The junction

valency is 4.

5D SCFTs coupled to gravity) and their higher-form symmetries was studied in [41].

The 5D field theory obtained from M-theory on (T 2 × C2)/Z3 contains three E0 SCFT

sectors. Additionally, because we have a compact T 2 factor which also has finite volume at

the conformal boundary of X, reduction of the M-theory 3-form potential on this 2-cycle

results in a continuous u(1) 0-form gauge symmetry. Observe that since the E0 theories do

not have a continuous 0-form symmetry,41 this gauge symmetry can only couple via massive

modes / topological terms to the E0 theories. The decoupling limit for the model corresponds

to sending the volume of the T 2 factor to infinite size.

Filtration and Critical Slice

We now determine the SymTree by first describing a convenient choice of filtration FX

sweeping out X = (T 2 × C2)/Z3. The filtration is again constructed by growing tubular

neighborhoods of the singularities, this results in the 5D radial shells

Ur>r∗ = ∂X ,

Ur=r∗ = X◦⃓⃓
retract

,

Ur<r∗ = (S5/Z3) ⊔ (S5/Z3) ⊔ (S5/Z3) ,

(90)

with a single critical slice at r = r∗. Here X
◦ is the total space X with the three singularities

excised and X◦|retract denotes the deformation retraction of X◦ to 5D. The space X◦ is a

topological model for three-legged pants42. Via various dualities in algebraic topology, the

41Geometrically, this is a consequence of H3(S
5/Z3) = Z3 being pure torsion. There is of course also a

continuous SU(2) R-symmetry, but that is not relevant for the present discussion.
42That is, three legs and one waist. The cross-section of these is S5/Z3 and ∂X respectively. See figure

30 in Appendix D.

59



critical slice are computed to have the homology groups:

Hn(X
◦) ∼= Hn

(︁
X◦⃓⃓

retract

)︁ ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z k = 0

Z2
3 k = 1

Z k = 2

Z3
3 k = 3

0 k = 4

Z3 k = 5

(91)

See subfigure (i) in figure 24 for a sketch of the filtration. The asymptotic boundary is

smooth and admits two fibrations X → T 2/Z3 and X → S3/Z3 and from here we compute

Hk(∂X) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z k = 0

Z2
3 k = 1

Z k = 2

Z⊕ Z2
3 k = 3

0 k = 4

Z k = 5

(92)

The three-legged pants X◦ runs between three copies of S5/Z3 and one copy of ∂X. In

Appendix C we give additional details and identify generators. The homology groupsHk(∂X)

determine the defect and symmetry operators, as in references [33–35,39]. Returning to our

discussion near line (89), we see that we can again speak of a 1-form symmetry operator

as realized by M5-branes wrapping a torsional generator of H3(∂X). Similar considerations

hold for the other symmetry operators, as well as the asymptotic profile of defects in the

SymTFT which become defects of the relative QFTs localized at singularities.

But compared with the case of line (89), we also see the appearance of free generators

in H2(∂X) and H3(∂X). We already anticipated the appearance of such free factors; they

are associated with the presence of a U(1) 0-form gauge symmetry in the 5D theory. This

U(1) field does not directly couple to the E0 SCFTs because these theories do not have a

continuous global U(1) symmetry. On the other hand, we clearly have massive M2-branes

stretched between the different sectors, as captured by elements of H2(X). Proceeding to one

of our 5D SCFT sectors, we integrate out these massive M2-branes; their remnant consists

of line defects of the individual E0 theory. In the local E0 sectors, the remnant of the U(1)

gauge symmetry is a global Z3 1-form symmetry which acts on these lines.

Projection to SymTree

We now determine the SymTree by reducing 11D supergravity on the radial shells Ur. This
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resembles the steps resulting in (45), hence we will be brief and only highlight differences to

the previous cases.

We focus on the SymTree fields (and their duals)

(89) → (r < r∗) : B
(r<r∗,i)
2 , B

(r<r∗,j)
0 , . . .

(91) → (r = r∗) : B
(r=r∗,a)
2 , B

(r=r∗,i)
0 , F

(r=r∗)
2,U(1) , . . .

(92) → (r > r∗) : B
(r>r∗,a)
2 , B

(r>r∗,b)
0 , H

(r>r∗)
2,U(1) , H

(r>r∗)
1,U(1) , . . .

(93)

derived via KK reduction from Ğ4. Here i, j = 1, 2, 3 run over the three generalized lens

spaces at low radii and a, b = 1, 2. The B-fields have discrete periods taking values in Z3, all

other fields take values in U(1). The indices a, b can be thought to label differences of labels

i, j and we sometimes write aij, bij. This notation is to indicate that, if the fields labelled

by i are associated with cycles σi, then those lablled by aij are associated with σi − σj. See

Appendix D for explicit discussion.

We begin by determining the how junction fields glue to fields living on the branches of

the SymTree. From the Mayer-Vietoris sequences (18) and (20) we compute, transitioning

to cohomology,

H
(r>r∗)
2,U(1)

⃓⃓⃓
r=r∗

= F
(r=r∗)
2,U(1)

H
(r>r∗)
1,U(1)

⃓⃓⃓
r=r∗

= 0
(94)

for fields valued in U(1) and associated with free generators. From the second relation we

conclude that the corresponding 0-form symmetry does not couple to the E0 sectors. From

the first relation we conclude that there is no isolated junction theory. All junction fields

arise as restrictions from fields on the branches of the SymTree.

For torsional fields we compute(︂
B

(r<r∗,i)
2 −B

(r<r∗,j)
2

)︂ ⃓⃓⃓
r=r∗

= B
(r>r∗,aij)
2

⃓⃓⃓
r=r∗

= B
(r=r∗,aij)
2

B
(r<r∗,i)
0

⃓⃓⃓
r=r∗

= B
(r=r∗,i)
0

B
(r>r∗,aij)
0

⃓⃓⃓
r=r∗

= B
(r=r∗,i)
0 −B

(r=r∗,j)
0

(95)

and find these to be fully eaten up by gluing conditions. These result follow by geometrizing

the various homology group generators as in appendix D. The geometry X → T 2/Z3 clearly

has a compact 2-cycle (the zero section), however, the corresponding metric modulus is not

normalizable. Overall the action of the SymTree now takes the form

S =
∑︂

branches b

S
(b)
6D +

∑︂
internal nodesn

S
(n)
5D

= S
(1)
6D + S

(2)
6D + S

(3)
6D + S

(123)
6D + S5D,J ,

(96)

61



where the 5D junction action simply enforces the gluing conditions between the different 6D

bulk fields. The first four terms each correspond to a leg of the Y-shaped SymTree and are

topological:

S
(i)
6D =

i

2π
3

∫︂
R4,1×(0,r∗)

B
(r<r∗,i)
2 ∧ dB

(r<r∗,i)
3 +

1

3
B

(r<r∗,i)
2 ∧B

(r<r∗,i)
2 ∧B

(r<r∗,i)
2 + . . .

S
(123)
6D =

i

2π
3
∑︂
a=1,2

∫︂
R4,1×(r∗,∞)

B
(r>r∗,a)
2 ∧ dB

(r>r∗,a)
3 + ...

+
i

2π

∫︂
R4,1×(r∗,∞)

H
(r>r∗)
2,U(1) ∧ dH

(r>r∗)
3,U(1) +H

(r>r∗)
1,U(1) ∧ dH

(r>r∗)
4,U(1) + ...

(97)

where the “...” involves bulk fields for the 2-form and (−1)-form symmetry derived from the

11D Chern-Simons term Ğ3
4. See reference [20] for additional discussion.

7 Non-Supersymmetric Example

So far, we have mainly focused on examples which are also supersymmetric. This is mainly

so that we can maintain technical control over the construction, and also so that we can

match to known string constructions, which are often implicitly supersymmetric.

That being said, the general structure of SymTFTs applies more broadly and does not

really rely on supersymmetry at all. With this in mind, we now present a non-supersymmetric

example which illustrates much of the same structure found in the supersymmetric setting.

Along these lines, we consider 4D SU(N) gauge theory with matter given by a complex

adjoint-valued scalar ϕ. We shall be interested in a model in which ϕ has a potential energy

density V (ϕ, ϕ†) which leads to Higgsing of the SU(N) gauge theory to a gauge group of the

form

G =
SU(N1)× SU(N2)× U(1)

ZL

, (98)

where L = lcm(N1, N2) = N1N2/gcd(N1, N2). To achieve this, we assume the vacuum

expectation value of ϕ is of the form:43

⟨ϕ⟩ = diag(v1, ..., v1⏞ ⏟⏟ ⏞
N1

, v2, ..., v2⏞ ⏟⏟ ⏞
N2

), with N1v1 +N2v2 = 0. (99)

43In a supersymmetric theory this can be arranged by a suitable choice of superpotential. Recall that the
physical potential in a supersymmetric theory is of the schematic form V = |∂W/∂ϕ|2, with superpotential
W (ϕ) = aTrϕ2 + bTrϕ3 + λTrϕ, and where the λ serves as a Lagrange multiplier enforcing the tracelessness
constraint. W also implicitly defines a function of a single complex variable, and so we can enforce the desired
choice of critical points by demanding (by abuse of notation) W ′(z) = (z−v1)(z−v2) with N1v1+N2v2 = 0.
In the non-supersymmetric setting, additional tuning and / or higher order terms are typically necessary to
achieve this breaking pattern.
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Below the characteristic energy scale set by this vacuum expectation value we reach the

expected gauge group of line (98). Similar considerations hold for breaking patterns which

involve additional suNi
factors, so we leave this extension implicit in what follows.

Now, after adjoint Higgsing, we observe that the two suNi
factors have different beta

functions, and so the gauge coupling for the gauge group factor with more colors will run

to strong coupling faster.44 Without loss of generality, we assume N1 ≥ N2, and thus that

Λ1 ≥ Λ2 for the associated strong coupling scales.45 We would like to understand now how

the topological coupling imposed by the ZL quotient in (98) affects this model both for an

observer at intermediate energy scales Λ1 > E > Λ2 and in the deep IR Λ2 > E where both

factors are confined.

First, note that the junction theory connecting the two sectors is again given by the

U(1) gauge theory with the same topological couplings as in Section 5.2. Also similar to

the supersymmetric moduli space flow example, the IR electric 1-form symmetry below the

energy scales Λ1 and Λ2 is

IR Electric 1-form Symmetry: (Zg × U(1))(1) (100)

where g := gcd(N1, N2). The U(1)(1) factor is of less interest to us since the U(1) photon in

G remains gapless and spontaneously breaks the U(1)(1).46 On the other hand, the (Zg)
(1)

factor is retained from the UV to the IR. This simply follows from the fact that we have an

electric area law for the Wilson lines.

8 Large M Averaging and Multi-Sector Models

Having presented a number of examples of multi-sector QFTs, as well as their associated

SymTrees, we now explain how we can use this same formalism to study large M47 averaging

in CFTs with a gravity dual. Large M averaging was recently discussed in references [47,82]

as a way to provide an approximate characterization of chaotic dynamics in holographic

systems, especially for observables above the large48 black hole threshold, i.e., for operators

with dimension ∆ ≳ M . Our aim here will be study the structure of higher-form symmetries

and whether it is compatible with such a large M averaging procedure.

44Recall that in pure SU(N) gauge theory, the one-loop running of α = g2/4π is dα−1/dt = b/2π with
b = 11N

3 .
45Of course, we are also implicitly assuming that v1, v2 ≫ Λ1.
46Also, the sense in which U(1)(1) is an IR symmetry is that it is broken in the UV explicitly due to

the gauge covariant derivative of SU(N), i.e., the conservation equation d ∗ FU(1) = 0 implicit from the
effective Lagrangian below the Higgsing scales receives corrections to the righthand side as it is realized in
the equations of motion DASU(N)

∗ FSU(N) = 0 at high energies.
47M here is associated to the central charge of the CFT, commonly referred to as “large c” or “large N”

in the literature.
48In 3D gravity, the black hole threshold is sharp, but in D > 3, we can also have small black holes.
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To keep our discussion concrete, we focus on the case of 4DN = 4 SYM theory with gauge

group SU(M), i.e., the electric polarization of the relative suM QFT. In that context, the

electric Wilson lines provide order parameters for the confinement / deconfinement transition.

Indeed, as found in [48], putting the boundary theory on S1×S3, i.e., at finite temperature,

the breaking of the center symmetry directly tracks with the Hawking Page transition [83].

As such, Wilson line observables, and thus higher-form symmetries are directly sensitive to

states near the black hole threshold. Thus, we expect that it should be possible to make

sense of large M averaging and higher-form symmetries.

At first glance, we meet with a puzzle: what does it mean to have a Z(1)
M symmetry

if we are going to average over M? At a pragmatic level, one might wish to assert that

only self-averaging observables Oself need to be considered, and that Wilson lines should

be excluded from such considerations. But then it is unclear how to actually calculate

correlation functions which involve both the Oself ’s and the Wilson lines.

Our aim will be to reverse engineer a prescription in gauge theory which does allow for

higher-form symmetries, even in the presence of large M averaging. The main idea will be to

use a similar proposal to that given in [46] where we directly build a multi-sector ensemble

of QFTs. Each sector will be a relative suNi
theory with Ni = M + εi for εi an integer much

smaller than M . Projecting onto a diagonal subset of operators O, we show that connected

correlators for local operators exhibits large M ensemble averaging. Moreover, by dressing

“naive” Wilson lines of each relative theory, we show how to produce a diagonal subset of

Wilson lines W which all transform under a common Z(1)
M 1-form symmetry.

The rest of this Section is organized as follows. We begin by reviewing the top down

construction of ensemble averaging proposed in [46] and explain how we can use it to imple-

ment large M averaging for local observables. With this in place, we then show how to dress

Wilson lines of the individual sectors of such a system so that extended operators correctly

transform under a common 1-form symmetry.

As a general comment, though we couch our discussion in terms of stringy terms, there

is clearly a bottom up prescription available where we simply consider a large number of

replica theories with different values of M . Dressing the Wilson lines via the SymTree then

yields precisely the same prescription.

8.1 Artisanal Ensembles

To study higher-form symmetries in CFTs with large M averaging, we first review the

proposal of [46] which engineers “by hand” an ensemble average with respect to parametric

families of QFTs. In such artisinal ensembles, the main idea is to consider a multi-sector

QFT with similar field content in each sector. After reviewing how this works when averaging

over the marginal parameters of a CFT,49 we show that the same considerations extend to

49One can generalize this to cover more general parameters of a QFT, a feature which can be read off from
the associated brane constructions.
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ensemble averaging inM for largeM QFTs. Again, we emphasize that this procedure reverse

engineers the same low energy behavior as that of self-averaging observables but can deviate

from this result at short distances / high energies.

We begin by briefly reviewing how we can use a multi-sector QFT to engineer an ensemble

average. Consider a multi-sector QFT comprised of decoupled CFTs which we label as Tk,

where the index k = 1, ..., K runs over all the sectors. We assume for now that the CFTs have

the same operator content, but possibly different values of marginal parameters which we

specify as λ⃗k. With this in mind, suppose we now introduce a local operator Ok for one such

sector. We can use a connection on the moduli space to construct its parallel transported

version on the other copies of the multi-sector QFT. Doing so, we can speak of the operator

obtained from the linear combination:

O = O1 + ...+OK . (101)

For connected correlators, we observe that there is a pleasant factorization of the associated

correlation functions for the O’s. Indeed, we have normalized connected correlation functions

of the form:

⟨O(1) · · ·O(n)⟩conn,norm ≈ 1

K

∑︂
1≤k≤K

⟨O(1)
k · · · O(n)

k ⟩Tk , (102)

namely, the correlation function breaks up into a sum over the distinct sectors. It is important

to emphasize that we only discuss connected correlators here. Additionally, the normalization

factor 1/K reflects a normalization of the identity operator for the full system, and also

ensures that the large K limit is well-defined.

To see how this results in ensemble averaging, note that the k-th CFT sector has its cor-

responding set of parameters λ⃗k. Therefore, we can define a discrete probability distribution

over the parameter values λ⃗ with density

pdisc(λ⃗) =
K(λ⃗)

K
, (103)

where K(λ⃗) counts the number of brane stacks with parameters λ⃗.

In the context of stringy realizations of such ensembles, there is a natural sense in which

we can always “smooth out” these discretized distributions to continuous probability dis-

tributions. As noted in [46], we can realize this ensemble by taking brane configurations

probing an extra-dimensional geometry. In this case, we still have a multi-sector QFT but

one in which there are mixing terms between the sectors specified by irrelevant operators.

The geometry of the extra dimensions specifies values of the parameters in the worldvolume

theory. Further, since the branes have finite tension, the branes are not strictly localized at

a point in the transverse direction, but are instead “spread out” over a characteristic length
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scale.50 Approximating this spread as uniform, we smooth out the probability distribution

(103) from a sum of δ-functions (or “comb”) into a sum of step functions, which can be

further regarded as a “binned” approximation for a continuous distribution psmooth. The

resulting distribution can be expressed as a histogram function via an indicator Iλ⃗′ ,⃗ϵ
λ⃗′
(λ),

psmooth(λ⃗) =

∫︂
λ⃗′
dλ⃗′ Iλ⃗′ ,⃗ϵ

λ⃗′
(λ⃗)

K(λ⃗′)

K
, (104)

where ϵ⃗λ⃗′ is the appropriate vector of widths of the window centered on λ⃗′ and Iλ⃗′ ,⃗ϵ
λ⃗′
(λ⃗) has

unit area. Using this distribution, we can rewrite the correlation function (101) as

⟨O(1) · · ·O(n)⟩normalized ≈ 1

K

∑︂
1≤k≤K

⟨O(1)
k · · · O(n)

k ⟩Hk
≈

∫︂
dλ⃗ psmooth(λ⃗)⟨O(1) · · · O(m)⟩λ⃗ ,

(105)

which mimics an ensemble averaged computation for the observable ⟨O(1) · · · O(m)⟩.
In order to have a holographic interpretation of this ensemble averaging, we now assume

that each individual CFT sector has its own semi-classical AdS dual, with the same value of

the cosmological constant. It is indeed possible to engineer an ensemble of local CFT sectors

with the same dual cosmological constant but different parameters, as demonstrated with

concrete examples in reference [46]. Note that the operator O given in (101) is a sum over

operators, each of which enjoys the same field content in its respective local CFT, and as

such describes the collective motion of many copies Oi of this operator. Therefore, although

in fact the full system contains K distinct AdS throats, when we restrict our attention to

the set of observables of the form O, one only reconstructs a single AdS dual according to

the GKP dictionary [84].

At low energies, we thus see that this top down ensemble averaging produces a probability

distribution which can in principle match to the one which might be prescribed by other

holographic considerations. The approximation can break down in various ways, both in

terms of short distance limits, but also entropically by sampling sufficiently many times

from the “true distribution” generated by a single chaotic system and that of the top down

reverse engineered system.

Our discussion so far has focused on the case of averaging over the marginal parameters of

a CFT. An interesting generalization of this proposal is to consider the consequences of also

permitting a variation in the number of degrees of freedom in a large M CFT, i.e., to allow

for large M averaging. Strictly speaking, the operator content of each CFT with a different

value of M is distinct. Even so, there is a clear notion of varying M , especially in large M

gauge theories. For example, in an SU(M) gauge theory we can label (possibly gauge non-

invariant) operators by a representation of SU(M), as specified by a Young diagram Y . The

50For a Dp-brane, this scale is characterized by lmin ∼
(︂

1
Tp

)︂ 1
p

with Tp ∼
(︁
gsl

p+1
s

)︁−1
, where gs is the string

coupling and ls is the fundamental string length.

66



Young diagram is independent of M insofar as we restrict our attention to representations

where the number of anti-symmetrizing indices is “small” compared to M , and even when

this is not the case, the dependence on M is relatively mild (we simply pass to multi-particle

states). Indeed, this is also quite natural in the context of brane constructions of large M

parametric families of branes with an AdS dual. Otherwise, the very notion of having a

semi-classical gravity dual with GNewton scaling as a power of M would make little sense to

begin with!

Proceeding in this fashion, then, we can now enlarge our notion of our ensemble of relative

theories Ti to possibly include a variation in the marginal parameters as well as in the value

of the Ni. Again, this is quite natural in the context of string constructions where the value

of Ni is really just the asymptotic value of a flux quanta sourced by a stack of branes, i.e.,

it is simply the background value of a flux operator in the gravity dual.

Indeed, we can implement this sort of ensemble both at the formal level of a multi-sector

QFT, as well as in the context of explicit brane constructions. We actually encountered such

systems in Section 5 where we studied brane probes of singularities. In the near horizon

limit, this results in a multi-throat configuration, and we can tune the marginal couplings as

well as the parameter Ni in each stack to even maintain the same value of the cosmological

constant in each throat.

In the case of building an ensemble overNi, provided allNi are of the formNi = M+εi for

εi an integer far smaller than M , the precise form of the distribution matters little. Indeed,

in this case we achieve a reasonable approximation even using the uniform distribution and

all other choices require sampling a large number of times from the Ni. As such, the choice

of distribution is relatively insensitive to the particular brane configuration and we indeed

find a “preferred” distribution for our average over M .51

Proceeding as before, we also face no immediate obstacles in building local operators

O = O1 + ... + OK . Their normalized connected correlators again exhibit an ensemble

average which now includes an average over M , see figure 25 for a depiction. We comment

here that in the proposal of [47], the expectation is that up to non-perturbative corrections

of order exp(−M), there is no ensemble averaging at all for operators with scaling dimension

below the black hole threshold. In most of the cases we know of where we can implement a

large M average via branes in string theory, the typical situation is a D > 2 CFT, and the

gravity dual also supports small black holes. As such, large M averaging should be present

(even if smaller) in all these cases. For further discussion on this point, see Appendix E.

For large M averaging over extended operators, however, we face an additional compli-

cation because these are often sensitive to the arithmetic properties of the individual Ni

in each sector of our multi-sector QFT. For example, the Wilson lines of an SU(Ni) gauge

theory are charged under the electric Z(1)
Ni

1-form symmetry. To make sense of Wilson line

operators, we can thus entertain two general possibilities: either we demand that a putative

51For some recent discussion on non-perturbative effects which distinguish the choice of distribution, see
e.g., reference [85].
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ensemble

average

T

O1 Oi OK O

Figure 25: On the left, we depict the collection of separated 4D N = 4 suNi
SYM theories

that we label by Ti where Ni = M + ϵi and a sum of local operators in each of these sectors.

The wedges represent the AdS5 × S5 dual spacetimes for each sector. On the right, we

illustrate the averaged operator O in the ensemble averaged theory T .

WY (as specified by a choice of Young diagram / representation) has a well-defined charge

under an electric 1-form symmetry, or we forfeit the existence of a 1-form symmetry in the

large M average. The latter possibility would be a pity because it would seem to also re-

quire abandoning the beautiful connection between bulk gravitational dynamics and center

symmetry breaking in the gauge theory dual found in [48]. So, we shall instead proceed by

constructing a suitable WY which has a well-defined charge under the Z(1)
M 1-form symmetry.

In fact, we have already presented the main elements of this construction in Section 5.2.1

where we considered the case of N = N1 + ... + NK branes probing an extra-dimensional

geometry. As we observed there, we can start with the Wilson line of the relative suNj

theory and then dress it by U(1) factors of the SymTree as in equation (74). Doing so, we

produce an operator which has a well-defined charge under the Z(1)
N 1-form symmetry of the

SU(N) gauge theory. Similar considerations hold for other choices of polarization of the

relative suN theory. To get the specific case of a Wilson line WY charged under a Z(1)
M 1-form

symmetry we now specialize further by setting N = LM and work in the polarization where

the absolute theory has gauge group SU(LM)/ZL. This theory has an electric Z(1)
M 1-form

symmetry (isomorphic to the center of the gauge group), and as such, the W constructed in

this way has a well-defined charge under the Z(1)
M 1-form symmetry. A consequence of this

is that in the diagonal theory with the ensemble operators such as O and WY , we can still

speak of our 1-form symmetries, which matches to expectation from the bulk gravity dual.

Again, let us emphasize that here we are interested in studying large M averaging in its own

right, and whether we can make sense of gauge / gravity dual in that setting. We expect,

however, that these considerations connect with the analysis in [47,82].

9 Conclusions

Much of the topological structure of global symmetries in a D-dimensional QFT is captured

by a bulk (D+1)-dimensional field theory with suitable boundary conditions imposed to fix

the global form of the QFT. In this paper we have studied the case of a D-dimensional multi-

sector QFT. Each individual sector is associated to a SymTFT, but these can form junctions,

leading to topological mixing between the sectors. Topological operators and defects of a
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given sector must then be dressed by additional operators associated with modes localized

at the (possibly non-topological) junctions of different SymTFTs. We have illustrated these

general considerations in the context of various QFTs realized via geometry and branes

probing singularities. We have also presented some non-supersymmetric examples. We also

used this construction to study generalized symmetries in holographic large M ensemble

averaging. In the remainder of this section we discuss some potential avenues for future

investigation.

A general feature of SymTree theories is the appearance of multiple boundaries. In this

work we have focused on the appearance of multiple physical boundaries, which covers the

appearance of multi-sector QFTs. One can also entertain additional topological boundary

conditions. This leads to a further generalization in the global structure of a QFT, as

influenced by the presence of a junction of SymTFTs. It would be interesting to study the

structure of such theories, for example, their partition functions.

One of the general themes in recent work is the appearance of various higher-categorical

symmetries which capture the topological structure of such QFTs. In most cases considered

to date, heavy use has been made of the bulk SymTFT associated with such a QFT. Given

what we have observed here, one can sometimes have additional substructure as captured by

a SymTree. We have sketched some aspects of the higher-categorical structure which enters

here, but it would be interesting to formalize this further.

The structure of the SymTree resembles that of a tree-level Feynman diagram. Continuing

with this analogy, it is natural to also consider SymTrees which include closed loops as well.

It would also be interesting to investigate the sense in which there might be a “meta-theory”

with scattering amplitudes associated with such diagrams, perhaps along the lines sketched

in reference [86].

It is natural to study the fate of these categorical structures once we switch on gravity.

For example, in reference [41], it was noted that the heavy defects and topological symmetry

operators of individual sectors inevitably become correlated in such systems. One might

expect that including the effects of gravity leads to additional constraints on multi-sector

models which are only topologically coupled when gravity is switched off. Studying such

constraints would likely be quite informative.

While we have presented a prescription for making sense of higher-form symmetries in

a large M averaging prescription, one of the important features of reference [47] is that

this really ought to be viewed as taking place in a single large M gauge theory. It would

nevertheless be interesting to see whether a more explicit map between the ensemble of

theories considered here and possible replicas connected by wormhole configurations can

also be constructed.
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A Coupling QFTs to TFTs à la Kapustin-Seiberg

Couplings between QFTs and TFTs were explored previously in [27]. In this Appendix we

review this construction and compare it to our discussion of SymTrees.

We focus on a 4D example with the QFT given by an SU(N) gauge theory and the TFT

given by ZN topological gauge theory (ZN)p with discrete θ-parameter p. Once coupled, the

system describes a (SU(N)/ZN)p gauge theory with a discrete θ-parameter p turned on [27].

In the SymTFT framework changing from SU(N) to (SU(N)/ZN)p amounts to changing

the topological boundary conditions of the associated 5D topological field theory, perhaps

together with adding an SPT. Clearly this does not add any physical degrees of freedom

and formulating the QFT/TFT coupling of [27] via a Y-shaped SymTree therefore, if possi-

ble, must therefore involve two topological boundary conditions and one physical boundary

conditions, the latter supporting the relative suN theory.

To make this explicit let us discuss deforming the respective SymTFT into a SymTree.
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We begin by considering the SymTFT

S5D =
2πi

N

∫︂
B

(N)
2 ∪ δC

(N)
2 (106)

where fields now take values in ZN . We place this TFT on the slab M4 × [0, 1] with one

physical and topological boundary condition.

For concreteness we now also restrict to the case N = 2. In this case the the physical

boundary condition is determined by an edge mode su2 theory:

|Tsu2⟩ =
∑︂
d

ZG0 [d]|G0, d⟩ , (107)

where G = SU(2), SO(3)+, SO(3)− is one of the global forms of the gauge algebra su2 and the

subscript p = 0, 1 in Gp labels a stacked SPT. The background 2-form fields for the 1-form

symmetry of G are denoted d, they are associated with SymTFT fields B
(2)
2 , C

(2)
2 , B

(2)
2 +C

(2)
2

respectively, and ZG0 [d] the partition function of gauge theory with gauge group G with

background d turned on. We refer to [19,36] for further details.

The topological Dirichlet and Neumann boundary conditions Btop we consider are:

Dirichlet: ⟨Gp, D|

Neumann: ⟨Gp, D| =
∑︂
d

exp

(︃
i

∫︂
d ∪D

)︃
⟨Gp, d|

(108)

where the overline denotes that the Neumann boundary condition is conjugate, via Fourier

transformation, to the respective Dirichlet boundary conditions. Here D is the Dirichlet

boundary profile imposed on the relevant 2-form background. Upon contracting the SymTFT

slab the partition functions compute as

⟨Gp, D|Tsu2⟩ = ZGp [D] , ⟨Gp, D|Tsu2⟩ = ZGp/Z2 [D] . (109)

Note also that via gauging of 1-form symmetries one finds the Fourier pairs

exp

(︃
iπ

∫︂
D(1) ∪D(2)

)︃
= ⟨SU(2)0, D(1) | SO(3)+,0, D

(2)⟩

= ⟨SO(3)+,1, D
(1) | SO(3)−,1, D

(2)⟩

= ⟨SU(2)1, D(1) | SO(3)−,0, D
(2)⟩

(110)

In [36] it was shown that there is simple SymmetryTFT bulk operator for each Fourier

pair, which maps one boundary condition of a Fourier pair onto the other and vice versa.
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For the discussion at hand the relevant Fourier operator is

P = exp

(︃
iπ

∫︂
P(B2 + C2)

2

)︃
= exp

(︃
iπ

∫︂
P(B2)

2
+

P(C2)

2
+B2 ∪ C2

)︃
.

(111)

Here we denote the Pontryagin square of a 2-form B2 as P(B2). This operator maps topo-

logical boundary conditions as

P |SU(2)0, D⟩ = |SO(3)+,0, D⟩

P |SU(2)1, D⟩ = |SO(3)+,1, D⟩

P |SO(3)−,0, D⟩ = |SO(3)−,1, D⟩
(112)

and satisfies P ◦ P = 1. In particular, from the first line, we have the identity

P |SU(2)0, D⟩ =
∑︂
d

exp

(︃
πi

∫︂
d ∪D

)︃
|SU(2)0, d⟩ . (113)

We now turn to phrase the coupling of the SU(2) theory to the discrete (Z2)p theory in

the SymTFT framework, resulting in an SO(3)+ theory. First, we note that we can express

the SO(3)+,0 gauge theory partition function as

ZSO(3)+,0 [D] = ⟨SU(2)0, D|P |Tsu2⟩ (114)

where acting with P to the left we simply produce the boundary condition ⟨SO(3)+,0, D|.
Acting on the right we obtain a new physical boundary condition |PTsu2⟩ which is

|PTsu2⟩ =
∑︂
d1

ZSU(2)0 [d1]
∑︂
d2

exp

(︃
iπ

∫︂
d1 ∪ d2

)︃
|SU(2)0, d2⟩

=
∑︂
d2

[︄∑︂
d1

ZSU(2)0 [d1] exp

(︃
iπ

∫︂
d1 ∪ d2

)︃]︄
|SU(2)0, d2⟩ .

(115)

See figure 26. Now note that the argument of the exponential is the action for a (Z2)0
topological gauge theory coupled to a background d2. The sum over the common d1 is

interpreted as a gauging and we write

|PTsu2⟩ =
∑︂
d

ZSU(2)0|(Z2)p [d]|SU(2)0, d⟩ (116)

where SU(2)0|(Z2)p denotes the coupled system QFT/TFT in [27]. It is immediate that we

have ZSU(2)0|(Z2)p [d] = ZSO(3)+,0 [d].
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= =

P⟨SO(3)+,0, D| |Tsu2⟩ ⟨SU(2)0, D| |Tsu2⟩ ⟨SU(2)0, D| |PTsu2⟩

Figure 26: In the SymTFT frame work changing from SU(2) to SU(2)/Z2 = SO(3)+ gauge

theory can be formulated as a change in topological boundary condition. Equivalently, we can

realize this as an insertion of the Fourier operator P . This operator can the be collided with

the physical boundary condition giving a notion of coupling the relative physical boundary

to a TFT.

P

Tsu2

Btop

Tsu2

Btop P

(i) (ii)

Gluing

Figure 27: SymTree with two topological boundary conditions realizing the polarization

change SU(2) to SO(3)+.

In the difference between |PTsu2⟩ and |Tsu2⟩ it is thus crucial to keep track of the TFT

basis {|Gp, D⟩} in which the relative boundary condition is expanded. Equivalently, the

coupling a TFT to a QFT in the framework of [27] can be phrased in SymTFT language

as a manipulation of the physical boundary condition: once expanded in a TFT basis the

coefficients are permuted against the basis elements.

We now formulate the discussion above using SymTrees. The point of our discussion will

be that the topological couplings we have described throughout this paper are different from

those analyzed by Kapustin and Seiberg in [27]. Naively, one might have thought that the

coupling described there can be recast as a Y-shaped SymTree with external nodes associated

to the SU(2) theory and topological (Z2)p theory and the topological boundary condition.

Starting from the central configuration in figure 26, the SymTree is constructed by ex-

tracting a third edge which is glued trivially at the introduced trivalent junction (see figure

27). More precisely, the three edges e we have the fields B
(2,e)
2 and at the junction they

are all set pairwise equal, similarly for C
(2,e)
2 . Figure 27 then shows the deformation of this

configuration back to the one appearing in figure 26. The resulting edge supports the action

SP = πi

∫︂
P(B2 + C2)

2
(117)

and upon retracting the third leg we revert to the configuration shown in figure 26 in the

central subfigure.
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B Single Derivative Terms in SymTFT Action

The goal of this Appendix will be to derive the leading term in (32) from reducing the 11D

M-theory kinetic term for the 3-form potential which we reproduce here

S8D =
i

2π
N

∫︂
8D

B2 ∧ dC5 . (118)

This appears in the 8D topological action of the SymTFT of 7D suN SYM, as engineered

from M-theory on C2/ZN .
52 The key effect of line (118) is that it creates a braiding alge-

bra between the electric 1-form and magnetic 4-form symmetry operators, or equivalently,

signifies a mixed ’t Hooft anomaly between these symmetries.

We will perform this dimensional reduction in a similar fashion to [87] which represents

torsional cocycles by non-harmonic differential forms.53 In particular, we can represent the

generator of ZN = H2(S3/Γ,Z) by a pair (α2, β1) where the 2-form α2 and 1-form β1 obey

Nα2 = dβ1, d†β1 = 0. (119)

The M-theory fluxes can then be expanded along (α2, β1) as

G4 = (dA1 +NB2) ∧ α2 + dB2 ∧ β1 (120)

G7 = (dA4 +NC5) ∧ α2 + dC5 ∧ β1 (121)

This expands in the 11D kinetic term as

−2πiS11D =
1

2

∫︂
11D

G4 ∧G7 (122)

=
1

2

(︃∫︂
S3/ZN

α2 ∧ β1

)︃(︃∫︂
8D

dA1 ∧ dC5 +NB2 ∧ dC5 − dB2 ∧ dA4 −NdB2 ∧ C5

)︃
(123)

where the “8D” directions are the directions of the SymTFT are R+ ×M7, and the minus

signs result from anticommuting β1 through 5-forms. The two-derivative terms in the above

expansion are not topological as ∗8DdC5 = dA1 and ∗8DdA4 = dB2 so these will not be of

concern to us here.54 On the other hand, the single derivative terms are topological and

after integrating by parts we have

S8D =
i

2π

(︃∫︂
S3/ZN

α2 ∧ β1

)︃(︃
N

∫︂
8D

B2 ∧ dC5

)︃
. (124)

52It is straightforward to generalize to arbitrary ΓADE ⊂ SU(2) but we will stick with Γ = ZN for ease of
exposition.

53For a more systematic derivation of similar BF-type terms in SymTFTs from reducing string/M-theory
actions, see the upcoming work [88].

54At long distances the topological term dominates.
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S3/ZNi

S2

∂Σi

Σi

Figure 28: Sketch of the Hopf-fibration S3/ZNi
→ S2 and the bounding chain Σi within it.

The Euler class NivolS2 of this circle fibration characterizes the obstruction to the existence

of a section. Consider attempting to construct such a section, as depicted, by starting at

the south pole of S2 and growing a disk inside of S3/ZNi
, projecting to S2 as shown. Upon

reaching the North pole the boundary ∂Σi does not close, rather it winds Ni times around

the Hopf fiber S1
H . With this Σi is a chain bounding Ni copies of S

1
H .

The term
∫︁
S3/ZN

α2 ∧ β1 is the cohomological version of the linking pairing of 1-cycles on

S3/ZN and normalizing this integral to be ≡ 1 mod N reproduces line (118).

C SymTrees from ALE Spaces

In this Appendix we discuss topological features of the filtration FX′ which sweeps out

X ′ : x2 + y2 = (z − z1)
N1(z − z2)

N2 , (125)

as introduced in Section 5. We discuss the homology groups of the radial slices Ur and

their relationship across the critical slice as determined by the small radius (line (18)) and

large radius (line (20)) Mayer-Vietoris sequences. Further, we dualize and lift to differential

cohomology as relevant in the reduction of the 11D supergravity terms. We extend the

SymTree analysis of Section 5 and include generalized symmetries indicated by the “...” in

the expansion of line (43).
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C.1 Generators of Hn(Ur=r∗)

We begin by identifying the generators of the integral homology groups of the critical slice

Ur=r∗ =
(︁
S3/ZN1

)︁
∪S1

H

(︁
S3/ZN2

)︁
(126)

which are listed in line (41). The bottom and top degree generators are clear. The generator

in degree one is the common Hopf circle S1
H . Next note, within each lens space there exists

a chain Σi such that

∂Σi = NiS
1
H . (127)

As a consequence S1
H is torsional, representing a class of order g = gcd(N1, N2). We move

on to discuss the generator in degree two. For this note that we can glue multiples of the

two chains Σi to a 2-cycle of the critical slice:

Σ ≡ (N2Σ1/g) ∪LS1
H
(−N1Σ2/g) . (128)

Here L = lcm(N1, N2) and the sign is required for closure ∂Σ = 0. To see that Σ represents

a free class we now compare this 2-cycle to the generator e of H2(X
′) ∼= Z. The cross-section

of Σ is LS1
H while the cross-section of e is S1

H . From this we conclude that mapping Σ into

H2(X
′) we have

Σ = Le (129)

or Σ = 0. Clearly the embedding is not trivial. From the IIA dual we see that Σ, projected

to R3, links both D6-brane stacks. See figure 28 where we illustrate the 2-chains Σi within

the Hopf fibration for S3/ZNi
. Upon gluing this construction back to back as indicated in

line (128) we indeed find line (129) holds.

C.2 Small and Large Radius Mayer-Vietoris Sequences

Next we determine how cycles contained within small / large radii slices deform to those of the

critical slice. This data is carried by the maps within the small / large radius Mayer-Vietoris

sequences whose associated coverings we now describe and which we then compute.

The covering of the critical slice associated with small radii is then given by the two

patches S3/ZN1 , S
3/ZN2 which intersect in S1

H . The large radii covering has patches S3/ZN

and the tubular neighbourhood

S1
H ↪→ T (S1

H) → D2 (130)

which is a solid torus fibered over a disk D2. These patches intersect along the torus T2 =

∂ T (S1
H) which is a circle fibration over the circle ∂D2 (see figure 29).
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S2
1 S2

2

S3/ZN2S3/ZN1

D2

AN1−1 AN2−1

Figure 29: Depict the covering of the large radius Mayer-Vietoris sequence with respect to

the M-theory circle fibration. In R3, the IIA dual to X ′, we have two spheres S2
i touching

along a two-disk D2 marked blue. The preimage of this disk and its complement are the

large radius covering. The boundary of the preimage of the disk, which is the intersection of

the two covering sets, is the circle S1
H fibered over the boundary of the disk.

With respect to these decompositions the long exact Mayer-Vietoris sequences are

Hn(S
1
H) Hn(S

3/ZN1)⊕Hn(S
3/ZN2) Hn(Ur=r∗)

(n = 3) 0 → Z⊕ Z → Z2 →
(n = 2) 0 → 0⊕ 0 → Z →
(n = 1) Z → ZN1 ⊕ ZN2 → Zg →
(n = 0) Z → Z⊕ Z → Z → 0

(131)

at small radii and

Hn(T
2) Hn(T (S

1
H))⊕Hn(S

3/ZN) Hn(Ur=r∗)

(n = 3) 0 → 0⊕ Z → Z2 →
(n = 2) Z → 0⊕ 0 → Z →
(n = 1) Z2 → Z ⊕ ZN → Zg →
(n = 0) Z → Z⊕ Z → Z → 0

(132)

at large radii. We remark that the most relevant part of the above sequences is summarized,

respectively, in the following two exact subsequences

0 → Z
∂
(r<r∗)
2−−−−−→ Z

ı
(r<r∗)
1−−−−−→ ZN1 ⊕ ZN2

ȷ
(r<r∗)
1−−−−−→ Zg → 0

0 → Z
∂
(r>r∗)
2−−−−−→ Z

ı
(r>r∗)
1−−−−−→ ZN1+N2

ȷ
(r>r∗)
1−−−−−→ Zg → 0

(133)

where the index p marks maps mapping from a domain of p-cycles and the exponent labels

the Mayer-Vietoris sequence the subsequence was extracted from.
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We now discuss the maps featuring in these subsequences. First, recall that the boundary

map in the Mayer-Vietoris sequence is defined by cutting a cycle along the intersection of

the two covering components and then considering one of the resulting halves. The initial

cycle is then mapped to the boundary of one of its ‘halves’. With this the map ∂
(r<r∗)
2 maps

Σ onto its cross-section and, as the codomain of ∂
(r<r∗)
2 is generated by S1

H and considering

line (129), therefore is multiplication by L.

In order to characterize ∂
(r>r∗)
2 let us consider the torus T2 = ∂T (S1

H) and denote its one

cycles by S1
H and ∂D2 = β1. We therefore have ∂Σ1 = N1S

1
H + β1 and ∂Σ2 = N2S

1
H − β1.

The two halves of Σ overlap in T2 and therefore

∂
(r>r∗)
2 Σ = (N2/g)∂Σ1 − (N1/g)∂Σ2 = (N/g)β1 . (134)

Similar consideration result in noting that β1 generates the codomain of ∂
(r>r∗)
2 which is

therefore multiplication by N/g = (N1 +N2)/g.

All remaining n = 1 homology groups are generated by the obvious Hopf circles and in

obvious, yet slightly redundant, notation we rewrite (133) as

0 → ⟨Σ⟩ 1 ↦→L−−−−→ ⟨α⟩ 1;↦→(1,−1)−−−−−−−→ ⟨(S1
H)1⟩ ⊕ ⟨(S1

H)2⟩
mod (1,−1)−−−−−−−→ ⟨S1

H⟩ → 0

0 → ⟨Σ⟩ 1 ↦→N/g−−−−−→ ⟨β⟩ 1 ↦→g−−−−→ ⟨(S1
H)12⟩

mod g−−−−→ ⟨S1
H⟩ → 0

(135)

where α = S1
H .

C.3 The Extension Problem

Now we turn to an extension problem, discussed around lines (21) and (22). From figure 28

and related discussion it follows that β is a multiple of α. Also note (see Section 5) that we

have identified the U(1) localized to the critical slice as55

⟨Σ⟩∨ = Z∨ = U(1) , (136)

while various 1-form symmetry background fields on the edges of the SymTree attaching to

the junction are related to the homology groups that α, β are mapped into. The relevance

of the refinement of ⟨β⟩ into ⟨α⟩ lies in noting that in the coupling of the junction U(1) to

the edges of the SymTree only runs via the subgroup

ZLN/g ⊂ U(1) . (137)

More precisely, as we explain later, we are permitted to interpret the fields on the SymTree

edges as background fields for the relative U(1) junction theory which take values in this

55As elsewhere, here G∨ = Hom(G,U(1)) denotes the Pontryagin dual of an abelian group G.
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ZLN/g subgroup. Also the preferred nesting of groups is

0 → ZL → ZLN/g → ZN/g → 0 , (138)

where Pontryagin duality has flipped the arrow, i.e., ⟨β⟩∨ is a refinement of ⟨α⟩∨ and the

preferred subgroup of ZLN/g ⊂ U(1) is ZL ⊂ U(1).

C.4 Differential Cohomology Uplift

Homology groups of internal M-theory dimensions carry geometric intuition. The reduction

of 11D supergravity however proceeds via expansions in differential cohomology classes. We

now discuss how to move from homology to differential cohomology and discuss the reduction

of the topological 11D SUGRA Chern-Simons terms on the radial shells.

First, note that, while the critical slice Ur=r∗ is not a manifold, it is a finite CW complex.

We hence have, via the universal coefficient theorem, the cohomology groups

Hn(
(︁
S3/ZN1

)︁
∪S1

H

(︁
S3/ZN2)

)︁ ∼=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z ∼= ⟨10⟩ k = 0

0 k = 1

Z⊕ Zg
∼= ⟨u2⟩ ⊕ ⟨t2⟩ k = 2

Z2 ∼= ⟨vol(1)3 , vol
(2)
3 ⟩ k = 3

(139)

which are lifted to the differential cohomology classes

1̆0, ŭ2, t̆2, v̆ol
(1)
3 , v̆ol

(2)
3 (140)

which with respect to the projection π : H̆∗ → H∗ of the short exact sequence of line (23)

satisfy

π(1̆0) = 10 , π(ŭ2) = u2 , π(t̆2) = t2 , π(v̆ol
(i)
3 ) = vol

(i)
3 (141)

where i = 1, 2. Similarly, for lens spaces, we have

Hn
(︁
S3/ZK

)︁ ∼=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z ∼= ⟨10⟩ k = 0

0 k = 1

ZK
∼= ⟨t2⟩ k = 2

Z ∼= ⟨vol3⟩ k = 3

(142)

where K = N for r > r∗ and K = N1, N2 for r < r∗ along the three SymTree edges. These

are lifted analogously to differential cohomology as in line (23).

Whenever it is necessary to resolve the redundancy in the notation of lines (139) and

(142) we append a raised label clarifying which of the SymTree edges we are referring to, for
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example

t̆
(r<r∗),1
2 , t̆

(r<r∗),2
2 , t̆

(r>r∗)
2 (143)

refer to the differential cohomology classes associated with the two small radius edges r < r∗
and large radius edge r > r∗ of the Y-shaped graph Υ supporting the SymTree.

All differential cohomology classes relevant in the KK reduction are the uplift of inte-

gral singular cohomology classes and as such are related to and across the critical slice via

mappings which are dual to those appearing in lines (131) and (132), i.e., the mappings

appearing in the respective Mayer-Vietoris cohomology sequences. The boundary map ∂

dualizes to the coboundary map. All other maps are embeddings and dualize to restrictions

for cocycles.

C.5 11D SUGRA Reduction

Next we turn to the KK reduction of the topological 11D SUGRA terms along the differential

cohomology classes lifted from lines (139) and (142). First, we determine the bulk fields of

the SymTree. This extends line (43). Then we determine the SymTree action governing

their interactions. It is in the latter part where the uplift to differential cohomology bears

fruit in the computation of anomaly coefficients.

The fields on a branch of the SymTree are determined by KK reduction of the field

strength Ğ4 over the associated radial shell. For the lens space shells we have

Ğ4 = H̆
(inst)
4 ⋆ 1̆0 + B̆

(K)
2 ⋆ t̆2 + H̆1 ⋆ v̆ol3 + . . . (144)

and the coefficients are the SymTree fields on the 8D branches of the SymTree. Here we

have suppressed an additional label of the fields denoting the branch of the SymTree these

live on, we shall add it as a raised index later. We also normalize such that G4 has integral

periods. For the small radius branches which attach to the physical boundaries supporting

7D SYM edge modes, one has the interpretations:

• H̆ inst
4 : continuous 4-form field strength, associated with a 3-form U(1) SymTree gauge

potential C inst
3 and restricting to the background of a 2-form symmetry on the physical

boundaries which is there interpreted as 2-form instanton symmetry.

• H̆1 : continuous 1-form field strength, associated with a 0-form U(1) SymTree gauge

potential C inst
0 . The associated parameter is

θ =

∫︂
S3/ZK

C3 (145)

where C3 is the 11D SUGRA 3-form potential. We return to the physical interpretation

of this parameter after discussing the other fields.
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• B̆
(K)
2 : discrete 2-form gauge field with ZK values. This field restricts on the boundary

to the background potential for a 1-form symmetry on the physical boundaries which

is there interpreted as the center symmetry.

The “...” omissions refer to an expansion along classes of Ωp−1/Ωp−1
Z , which lie in the kernel

of the projection π : H̆p → Hp resulting in U(1) valued fields in 8D which do not couple to

background fields for the discrete symmetries of the 7D SYM relative theories.

The one outlier in this discussion is the appearance of a continuous parameter coming

from H̆1, and its associated 0-form potential in the bulk 8D theory. This would suggest the

appearance of an 8D topological term of the schematic form θH̆ inst
4 ∪ H̆ inst

4 . Restricting to

the 7D worldvolume, this would descend to a Chern-Simons-like theory of the form:

S7D,CS =
i

4π
θ

∫︂
C3 ∧ dC3, (146)

for the background 3-form associated with the 2-form symmetry. For θ /∈ Z, this would

result in a theory with an improperly quantized level, i.e., it cannot be defined independent

of the 8D bulk.

Now we turn to discuss the TFT interactions between these fields which are determined

via reduction of the 11D supergravity Chern-Simons term

2πi

6

∫︂
Ğ4 ⋆ Ğ4 ⋆ Ğ4 (147)

over the lens space shells. Inserting the expansions of line (144) this results in (see reference

[20]):

S̆
(anomaly)
I,K = πi

∫︂
M7×I

H̆
(inst)
4 ⋆ H̆

(inst)
4 ⋆ H̆1 − 2πi

K − 1

2K

∫︂
M7×I

H̆
(inst)
4 ⋆ B̆

(K)
2 ⋆ B̆

(K)
2 , (148)

with spacetime M7 and interval I = (r, r∗) for the case K = N1, N2 or I = (r∗,∞) for the

case K = N , specifying mixed anomalies. Along each branch of the SymTree we also have

the one-derivative action

S
(0)
I,K =

2πi

K

∫︂
M7×I

B
(K)
2 ∪ δC

(K)
5 , (149)

whose derivation is discussed in Appendix B. The TFT action associated with one edge e of

the SymTree with internal radial shells S3/ZK is then

SI,K = S
(0)
I,K + S

(anomaly)
I,K + . . . (150)

where we have projected back down to integral singular cohomology, replacing the star

product ⋆ with the cup product ∪ in the process. When truncating to the indicated two terms

we are describing the TFT associated with discrete symmetry structures in a background

of continuous symmetry structures. Of course the full TFT does not distinguish between

81



discrete and continuous, however we postpone details of this to future work.

Overall the full SymTree action takes the form

SΥ = S(0,r∗),N1 + S(0,r∗),N2 + S(r∗,∞),N + S(r=r∗),J . (151)

where the last term describes a possibly non-topological relative junction theory which we

are yet to determine. In addition to the junction action we are now required to supplement

the overall action with boundary conditions for the bulk fields at the junction. The junction

degrees of freedom crucially enter these boundary conditions, we therefore determine these

first and then solve for the boundary conditions via geometry.

First, we determine the fields localized to the junction. For this, similar to line (144), we

expand Ğ4 in the classes of line (139) of the critical slice resulting in

Ğ4

⃓⃓⃓
r=r∗

= H̆
(r=r∗,inst)
4 ⋆ 1̆0+B̆

(r=r∗)
2 ⋆ t̆2+ F̆

(r=r∗)
2,U(1) ⋆ŭ2+H̆

(r=r∗,1)
1 ⋆ v̆ol

(1)
3 +H̆

(r=r∗,2)
1 ⋆ v̆ol

(2)
3 + . . . .

(152)

The first set of boundary conditions derives by determining which of the coefficient fields

arises as restrictions from fields on the edges of the SymTree to the junction. For this we need

to relate the internal legs of differential cohomology class across the junction. In homology

this amounts to studying how the dual cycles of the edges embed into the critical slice of

the junction. For example the mappings ȷ
(r<r∗)
1 , ȷ

(r>r∗)
2 of line (133) immediately gives the

gluing conditions of line (50). Similar embeddings straightforwardly give

H̆
(r<r∗,1,inst)
4

⃓⃓⃓
r=r∗

= H̆
(r<r∗,2,inst)
4

⃓⃓⃓
r=r∗

= H̆
(r>r∗,inst)
4

⃓⃓⃓
r=r∗

= H̆
(r=r∗,inst)
4 , (153)

H̆
(r<r∗,1)
1

⃓⃓⃓
r=r∗

= H̆
(r=r∗,1)
1 , H̆

(r<r∗,2)
1

⃓⃓⃓
r=r∗

= H̆
(r=r∗,2)
1 , H̆

(r>r∗)
1

⃓⃓⃓
r=r∗

= H̆
(r=r∗,1)
1 = H̆

(r=r∗,2)
1

(154)

and we note that all coefficient fields of line (152) are thus fixed by bulk fields of the SymTree

except for the U(1) 2-form background fields. In order the raised indices here give the radii

the fields live on, the connected component of this radial slice if it is disconnected and

additional physical qualifiers. Next, following the discussion in Section 3, we have the images

Im ȷ
(0)
r<r∗

∼= Z⊕ Z , Im ȷ
(0)
r>r∗

∼= Z ,

Im ȷ
(2)
r<r∗

∼= Zg ⊂ ZN1 ⊕ ZN2 , Im ȷ
(2)
r>r∗

∼= Zg ⊂ ZN ,

Im ȷ
(3)
r<r∗

∼= Z⊕ Z , Im ȷ
(3)
r>r∗

∼= Z ,

(155)

with trivial cokernels in degree 0 and 3. Here notation is such that ȷ(p), ȷ
(p), ȷ̆(p) respecitvely

denote the embedding map in homology in the large radius and small radius Mayer-Vietoris

sequences (which we distinguish by an additional lowered or raised index), the restriction

map in the cohomology version of these sequences and the uplift of the latter to differential
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cohomology. We further have

Ker ȷ
(2)
r<r∗ ∩Ker ȷ

(2)
r>r∗

∼= Z , (156)

generated by u2 identifying F̆
(r=r∗)
2,U(1) as a junction degree of freedom, i.e., it does not arise as

restrictions of external bulk fields and is free to fluctuate.

Having identified the junction edge modes, we now view these as a relative theory with

respect to the three SymTree edges attaching to the junction. We are thus required to give

an interpretation of the bulk fields as background fields for the junction edge modes. This

results in lines (52) and (53).

To proceed note that in restricting all the 2-form fields B
(K)
2 , valued in ZK and supported

on the three SymTree edges, to the junction we have set boundary conditions for a subgroup

Z2
g ⊂ ZN1 ⊕ ZN2 ⊕ ZN (157)

via the gluing conditions of line (50). The three B
(K)
2 fields are only fixed relative to each

other, hence only Z2
g is eaten up by the conditions, rather than Z3

g. The extension problem

discussed in Appendix C.3 now implies that the remaining B-field profiles in

ZN1 ⊕ ZN2 ⊕ ZN

Z2
g

(158)

are to be interpreted as 2-form fields associated with U(1) backgrounds in the junction

taking values in ZNL/g, the central entry in line (138). The quotient of line (158) is precisely

ZNL/g = ZN1N2N/g2 . The quotient of line (158) also clearly gives map from bulk fields to

background field for the U(1) junction theory, it is simply the quotient map itself

Q : ZN1 ⊕ ZN2 ⊕ ZN → ZN1 ⊕ ZN2 ⊕ ZN

Z2
g

. (159)

Working out the quotient for elements (n1, n2, n) ∈ ZN1 ⊕ZN2 ⊕ZN with one non-vanishing

entry we find lines (52) and (53).

D Sequences for Isolated Multi-Sector QFTs

In this Appendix we supply additional details on the isolated multi-sector QFTs analyzed

in Section 6.
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D.1 Sequences for 7D Models

We now discuss the filtration FX with radial shells of Section 3.1.1 in greater detail. Recall

that we are considering elliptic local K3 surfaces X → B with base B = C. As such we will

repeatedly encounter three-manifolds ΣM
3 which are smooth torus bundles

T 2 ↪→ ΣM
3 → S1 (160)

over a circle subject to a monodromy twist. For our purposes only the action of this mon-

odromy on the n-th homology lattice of the torus fiber will be relevant, and we denote it by

Mn. The homology groups of such a three-manifold derive from the exact sequence

0 → Coker(M (n) − 1) → Hn(Σ
M
3 ) → Ker(M (n−1) − 1) → 0 . (161)

The monodromies we consider are such that M (0) = M (2) = 1 and M (1) ≡ M ∈ SL(2,Z).
From this sequence we derive the homology groups (76). Let us discuss the generators of these

groups. Top and bottom homology classes are clear. Consider H1(Σ
M
3 ) ∼= Z⊕Coker(M −1).

The factor of Z admits a simple representative, the base circle S1. Now consider a 1-cycle

γ1 ∈ H1(T
2) of the elliptic fiber. Now trace out a 2-chain by transporting it once around the

circle base transforming as

γ1 → Mγ1 = (M − 1)γ1 + γ1 (162)

considering orientations the initial and final copied of γ1 cancel against each other, the 2-

chain has boundary (M−1)γ1. This explains the contribution Coker(M−1). The homology

generators in degree 2 follow by duality, they are the fiber class and any eigenvector of M

fibered over the base circle.

Let us next compute the homology groups of the critical slice

Ur=r∗ =
(︁
ΣM1

3

)︁
∪T 2

(︁
ΣM2

3

)︁
. (163)

Again top and bottom homology classes are clear. Note that Ur=r∗ is fibered over a figure

eight S1 ∨ S1 and hence the factor of Z2 in

H1(Ur=r∗) = Z2 ⊕ [Z2/Im(M1 − 1,M2 − 1)] (164)

are represented by the two base circles. Constructing 2-chains by transporting 1-cycles of

the elliptic fiber around these circles as above then gives the quotient contribution. The

degree two cycles56

H2(Ur=r∗) = Z⊕ coker(M1 − 1)∧ ⊕ coker(M2 − 1)∧ ⊕ F (165)

are respectively the fiber, monodromy eigen-1-cycles fibered over any one of the base circles

56Given an abelian group G we define a dual group as G∧ = Hom(G,Z).
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and a case dependent contribution F = 0,Z,Z2 of a fiber 1-cycle fibered over the full figure

eight base. From these considerations the restriction to line (79) parameterizing the gauge

theory data is clear.

Next we determine how cycles contained within small / large radii slices deform to those of

the critical slice, studying the small / large radius Mayer-Vietoris sequences whose associated

coverings we now describe and which we then compute.

The covering of the critical slice associated with small radii is then given by the two

patches ΣM1
3 ,ΣM2

3 which intersect in T 2. The large radii covering has patches ΣM1M2
3 and the

cylinder I × T 2. Growing the base circles the touch along a point and then an interval, the

latter cylinder are simply all fibers projecting to the interval, see figure 16. These patches

intersect along 2 tori T2 ⊔ T2.

With respect to these decompositions the long exact Mayer-Vietoris sequences are

Hn(T
2) Hn(Σ

M1
3 )⊕Hn(Σ

M2
3 ) Hn(Ur=r∗)

(n = 3) 0 → Z⊕ Z → Z2 →
(n = 2) Z → Z⊕ C∧

1 ⊕ Z⊕ C∧
2 → Z⊕ C∧

1 ⊕ C∧
2 ⊕ F →

(n = 1) Z2 → Z⊕ C1 ⊕ Z⊕ C2 → Z2 ⊕ C1,2 →
(n = 0) Z → Z⊕ Z → Z → 0

(166)

at small radii, where we abbreviated Ci = Coker(Mi−1) and C1,2 = Z2/Im(M1−1,M2−1),

and

Hn(T
2 ⊔ T 2) Hn(T

2)⊕Hn(Σ
M1M2
3 ) Hn(Ur=r∗)

(n = 3) 0 → 0⊕ Z → Z2 →
(n = 2) Z⊕ Z → Z⊕ Z⊕ C∧

12 → Z⊕ C∧
1 ⊕ C∧

2 ⊕ F →
(n = 1) Z2 ⊕ Z2 → Z2 ⊕ Z⊕ C12 → Z2 ⊕ C1,2 →
(n = 0) Z⊕ Z → Z⊕ Z → Z → 0

(167)

at large radii, where we abbreviated C12 = Coker(M1M2 − 1). We remark that the most

relevant part of the above sequences is summarized, respectively, in the following two exact

subsequences

0 → F
∂
(r<r∗)
2−−−−−→ Z2 ı

(r<r∗)
1−−−−−→ C1 ⊕ C2

ȷ
(r<r∗)
1−−−−−→ C1,2 → 0

0 → C∧
12

ȷ
(r>r∗)
2−−−−−→ C∧

1 ⊕ C∧
2 ⊕ F

∂
(r>r∗)
2−−−−−→ Z2 ı

(r>r∗)
1−−−−−→ C12

ȷ
(r>r∗)
1−−−−−→ C1,2 → 0

(168)

where the index p marks maps mapping from a domain of p-cycles and the exponent labels

the Mayer-Vietoris sequence the subsequence was extracted from. These subsequences follow

by explicit considerations from having identified the generators above. The sequence (168)
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should be compared (135) which forms the starting point for the SymTree discussion laid

out in Appendix C.3.

Instead of laying out this very similar analysis we demonstrate how to make direct contact

with previous results. As expected this can be achieved by considering two mutually local

singularities of Kodaira type IN1 , IN2 , respectively with monodromy matrices

M1 =

(︃
1 N1

0 1

)︃
, M2 =

(︃
1 N2

0 1

)︃
. (169)

This gives
Ci

∼= Z⊕ ZNi
, C12

∼= Z⊕ ZN1+N2 , C1,2
∼= Z⊕ Zg

C∧
i
∼= Z , C∧

12
∼= Z , C∧

1,2
∼= Z .

(170)

Further there is a single 1-cycle of the fiber which pinches at both singularities and hence

we expect F ∼= Z, corresponding to the compact 2-cycle obtained by fibering that 1-cycle

between the singularities. However, the generator of F is constructed from the 2-cycles

constructed around (162) in much the same way as (128), this reproduces (129). Inserting

(170) into (168), we find an exact subsequence 0 → Z → Z2 → Z → 0 which we can remove

in both sequences as well as an additional subsequence 0 → Z → Z → 0 in the second

sequence. Once these trivial parts are cut we reproduce (135).

D.2 Homology groups for X = (T 2 × C2)/Z3

In this Appendix we expand on the homology computations for the geometryX = T 2×C2/Z3

and in particular derive the homology groups lines (91) and (92) which are relevant for the

small and large radius Mayer-Vietoris sequences with respect to the filtration (90). The

SymTree for this case is depicted in figure 24.

Let us first discuss the homology groups of ∂X = (T 2×S3)/Z3 given in (92) and identify

their generators. The homology groups are determined by considering the two fibrations

π1 : ∂X → T 2/Z3 , π2 : ∂X → S3/Z3 , (171)

which have generic fiber S3, T 2 respectively. The boundary is smooth and hence its homology

groups are organized by Poincarè duality. First, consider the fibration π1, which has three

exceptional fibers (S3/Z3)i with i = 1, 2, 3 which project to the three fixed points of T 2/Z3.

For these we have

3(S3/Z3)i = S3 (172)

where the lefthand side denotes the generic fiber of π1. These three-cycles generate the

third homlogy group of ∂X and taking the above equivalence into account are isomorphic to

Z⊕Z2
3. There are no four-cycles and Poincarè duality completely fixes the homology groups

of ∂X. The one-cycles γi, generating copy of Z2
3, are given by the uplift of the three 1-cycles
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∂X

(S5/Z3)1 (S5/Z3)2 (S5/Z3)3

X◦

Figure 30: Sketch of the geometry X◦.

which link exactly one marked point on T 2/Z3. They satisfy the homology relations

γ1 + γ2 + γ3 = 0 , 3γi = 0 . (173)

Finally the 2-cycle is simply the fiber class of the fibration π2, i.e., a copy of T 2.

We can now compute the homology groups of X◦. We proceed via Poincarè-Lefschetz

duality together with excision which establish the isomorphisms

Hn(X
◦) ∼= H6−n(X◦, ∂(X◦)) = H6−n(X, ∂X ∪ {x1, x2, x3}) (174)

where xi denote the location of the three codimension-6 singularities. We then compute the

lefthand side using the long exact sequence in relative homology resulting in line (91). The

only not straightforward map in this computation is the restriction map

R2 : H2(X) ∼= Z → Z ∼= H2(∂X ∪ {x1, x2, x3}) (175)

which is multiplication by 3. We can now further geometrize the homology groups of line

(91). For this think of X◦ as three-legged pants with cross-section (S5/Z3)i and one branch

with cross-section ∂X (see figure 30). The generators in degree 1 are again the γi subject to

the same relation (173). Given γi there exists a deformation into the boundary component

(S5/Z3)i such that γi generates H1((S
5/Z3)i)) ∼= Z3. The generator in degree two is again

the T 2 fiber class. The generators in degree three are now all three lens spaces (S3/Z3)i.

These however now generate Z3
3 because any such lens space is homologous to the (S3/Z3)i ⊂

(S5/Z3)i making it clear that all class generated by these are torsional. Finally the top degree

class follows because there are four boundary components which sum to zero in homology,

the trivializing chain is X◦ itself.

With these identifications of generators the small and large radius Mayer-Vietoris se-

quences follow straightforwardly.
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E Holography and Ensemble Averaging

In this Appendix we briefly review some aspects of ensemble averaging in the context of the

AdS/CFT correspondence. There are by now many papers in the literature with differing

viewpoints on the underlying reason that such averaging occurs, so we mainly focus on the

features most salient to our discussion in Section 8.

To large extent, ensemble averaging in holography is expected due to a factorization

puzzle which occurs in comparing the partition functions of causally disconnected boundary

CFTs which are joined by a bulk wormhole configuration [89,90].

Consider a system in which the boundary has n connected components Σ = Σ1 ⊔ Σ2 ⊔
· · · ⊔ Σn. The gravitational path integral must naively sum over all possible bulk manifolds

with this conformal boundary. Near each boundary, we need to specify the asymptotic profile

for the fields of the CFT, e.g., the moduli / parameters of the theory. We denote these as

ϕ|∂Σi
= Ji for i = 1, ..., n. According to the standard holographic dictionary [66, 84, 91], the

path integral results in a connected correlation function:

⟨Z[J1] · · ·Z[Jn]⟩ , (176)

which cannot generically be factored into a product of correlation functions for the individual

components of the boundary. For example, with n = 2,

⟨Z[J1]Z[J2]⟩ ≠ ⟨Z[J1]⟩⟨Z[J2]⟩ , (177)

where Z[J1] and Z[J2] can be regarded as CFT partition functions over the two boundary

components Σ1 and Σ2, respectively.

From the point of view of the effective theory and holography, the proposal is to interpret

this non-factorization as due to the contribution of wormhole configurations in the gravita-

tional path integral, which corresponds to the ensemble averaging of boundary theories.

There are indeed low-dimensional examples demonstrating this behavior, e.g., the duality

between 2D JT gravity and 1D random matrix theory (see e.g., [82, 92, 93] and references

therein), as well as the duality between semi-classical 3D gravity and 2D CFT ensemble

averaging (see e.g., references [47,82]).

At present, a full understanding of the mechanism underlying ensemble averaging remains

an open question. One interpretation is that this ensemble averaging is “real” in the sense

that the gravitational theory really is dual to an ensemble of CFTs; this possibility is closely

related to having a high-dimensional Hilbert space for baby universes [94],57 which in turn

would also appear to require treating gravity as an open system. On the other hand, a more

conservative interpretation is that even within a single fixed CFT, any attempt to describe

black hole physics will necessarily require some sort of chaotic dynamics. As such, one should

57See, however, [46, 95].
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expect averaging to be a generic feature of states which are sufficiently “complex”. This

would be in line with Wigner’s approach to nuclear theory which makes use of a probabilistic

ensemble of Hamiltonians [96] to model the structure of large nuclei. Such an approach

would also be in line with the general contours of the eigenstate thermalization hypothesis

(see [97, 98]).

Some aspects of this more conservative interpretation were recently sharpened in the

specific context of 3D gravitational theories in reference [47] (see also [82]), but it is expected

that some of these considerations apply more broadly. In reference [47], Schlenker andWitten

studied the factorization puzzle by separating observables into those below and above the

black hole threshold. Here, “below the black hole threshold” means, in the CFT dual, states

with scaling dimensions above the ground state by only a fixed amount, i.e., above some

∆BH , in the large M limit. It is claimed that observables below the black hole threshold do

not demonstrate ensemble averaging while, by contrast, black hole states are responsible for

the ensemble averaging behavior of the gravitational path integral.

This proposal is based on two statements: that black hole physics is chaotic, and that

the Hilbert space HM describing black hole states does not have a large M limit. To see

this, note that the black hole entropy SBH at a fixed temperature grows as a power of M ,

e.g., SBH ∝ M2 if the boundary CFT is a 4D large M gauge theory. Then, in the limit of

large M , if one changes M to M + 1, the dimension of HM grows by exponential factor as

eM
2 → e(M+1)2 . (178)

Therefore, it is very likely that the Hilbert space and the corresponding Hamiltonian of black

hole states do not have a large M limit. The Hamiltonian HM of black hole states at given

M is then a pseudorandom matrix58 For neighboring values of M , each HM can be regarded

as an independent draw from a random matrix ensemble.59

To better understand how this affects the computation of observables, let us focus on

an arbitrary observable OM depending only on HM . In random matrix theory, OM may

be a “self-averaging” function, meaning that it has almost the same value for almost any

draw from the ensemble. In this case, ⟨OM⟩ will be a smooth function of M , with small

e−S corrections reflecting the fact that self-averaging functions of a random matrix can differ

slightly from draw to draw. If OM is not self-averaging, it will be an erratic function of

M whose expectation value ⟨OM⟩ cannot be simply computed approximately. However, the

gravitational path integral always produces a smooth function of M by typically summing

58A pseudorandom matrix is one generated by a deterministic causal algorithm, but one in which it cannot
be distinguished from a truly random matrix by any pre-determined statistical test for randomness.

59An unfortunate feature of some of the literature on holographic ensemble averaging is that the notion
of averaging is sometimes different across different papers, e.g., it sometimes refers to a quenched, and
sometimes to an annealed average. This shows up in the present discussion because even though we are
averaging over M , we are still treating the system as drawn from a single class of Hamiltonian operators à
la Wigner.
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over the contributions of saddle points.60 From the random matrix theory point of view, even

for non-self-averaging observables, there still exists an averaged value within the ensemble,

which is possibly computed using the gravitational path integral. In this sense, ⟨OM⟩ as

derived from the gravitational path integral should represent an averaged result over nearby

values of large M . The reason underlying this property of the gravitational path integral is

related to the coarse-graining nature of the semi-classical gravity (see e.g., [101]). We must

emphasize that the Schlenker–Witten proposal by no means claims that the ensemble aver-

aging is always over microscopically well-defined CFTs, which is in contrast to the procedure

given in e.g., references [102–108].

Another subtlety with the Schlenker–Witten proposal is how it works in AdSD+1/CFTD

when the CFT spacetime dimension is D > 2. Recall that in (D + 1)-dimensional gravity,

the AdSD+1 black hole solutions can be separated as

small black holes with ρ+ <

√︃
D − 2

D
LAdS ,

large black holes with ρ+ >

√︃
D − 2

D
LAdS ,

(179)

where ρ+ is the location of the horizon and LAdS is the length scale of AdSD+1. In AdS3, there

is no small black hole and thus there exists a sharp black hole threshold scale to distinguish

states with energies below and above it. When D > 2, however, there exist small black holes,

so it is not clear in what sense one can determine whether states are sub-threshold or not.

This would seem to suggest that at least in higher-dimensional CFTs, large M ensemble

averaging would need to be entertained even in considering correlators for low dimension

operators.

Another question is how to implement large M averaging when dealing with extended

operators which transform non-trivially under higher-form symmetries. Such operators are

often directly sensitive to the topological sector of the bulk gravitational dual, and in par-

ticular quantities such as M itself. This occurs, for example, in the 5D topological term:

S5D =
i

2π
M

∫︂
B2 ∧ dC2. (180)

One of the aims of Section 8 is to construct extended operators which still admit large M

averaging even whilst still retaining a higher-form symmetry.

60This holds even when classical solutions are not available. See [99,100] for examples.
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[41] M. Cvetič, J. J. Heckman, M. Hübner, and E. Torres, “Generalized Symmetries,

Gravity, and the Swampland,” arXiv:2307.13027 [hep-th].

93



[42] T. Bartsch, M. Bullimore, and A. Grigoletto, “Higher representations for extended

operators,” arXiv:2304.03789 [hep-th].

[43] L. Bhardwaj and S. Schafer-Nameki, “Generalized Charges, Part I: Invertible

Symmetries and Higher Representations,” arXiv:2304.02660 [hep-th].

[44] T. Bartsch, M. Bullimore, and A. Grigoletto, “Representation theory for categorical

symmetries,” arXiv:2305.17165 [hep-th].

[45] L. Bhardwaj and S. Schafer-Nameki, “Generalized Charges, Part II: Non-Invertible

Symmetries and the Symmetry TFT,” arXiv:2305.17159 [hep-th].

[46] J. J. Heckman, A. P. Turner, and X. Yu, “Disorder averaging and its UV

discontents,” Phys. Rev. D 105 no. 8, (2022) 086021, arXiv:2111.06404 [hep-th].

[47] J.-M. Schlenker and E. Witten, “No ensemble averaging below the black hole

threshold,” JHEP 07 (2022) 143, arXiv:2202.01372 [hep-th].

[48] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge

theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532, arXiv:hep-th/9803131.

[49] A. Antinucci, G. Galati, G. Rizi, and M. Serone, “Symmetries and topological

operators, on average,” arXiv:2305.08911 [hep-th].

[50] A. Zimmerman and D. Robbins, String Theory For Dummies. For Dummies, 2009.

[51] J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and Anomalies of

Non-Invertible Symmetries,” arXiv:2301.07112 [hep-th].

[52] I. Bah, E. Leung, and T. Waddleton, “Non-Invertible Symmetries, Brane Dynamics,

and Tachyon Condensation,” arXiv:2306.15783 [hep-th].

[53] D. Belov and G. W. Moore, “Holographic Action for the Self-Dual Field,”

arXiv:hep-th/0605038.

[54] C. Bär and C. Becker, Differential Characters. Lecture Notes in Mathematics.

Springer International Publishing, 2014.

[55] J. J. Heckman, D. R. Morrison, and C. Vafa, “On the Classification of 6D SCFTs

and Generalized ADE Orbifolds,” JHEP 05 (2014) 028, arXiv:1312.5746

[hep-th]. [Erratum: JHEP 06, 017 (2015)].

[56] M. Del Zotto, J. J. Heckman, A. Tomasiello, and C. Vafa, “6d Conformal Matter,”

JHEP 02 (2015) 054, arXiv:1407.6359 [hep-th].

[57] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa, “Atomic Classification of

6D SCFTs,” Fortsch. Phys. 63 (2015) 468–530, arXiv:1502.05405 [hep-th].

94



[58] F. Apruzzi, L. Bhardwaj, D. S. W. Gould, and S. Schafer-Nameki, “2-Group

symmetries and their classification in 6d,” SciPost Phys. 12 no. 3, (2022) 098,

arXiv:2110.14647 [hep-th].
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