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Special-purpose hardware accelerators are increasingly pivotal for sustaining performance improvements
in emerging applications, especially as the benefits of technology scaling continue to diminish. However,
designers currently lack effective tools and methodologies to construct complex, high-performance accelerator
architectures in a productive manner. Existing high-level synthesis (HLS) tools often require intrusive source-
level changes to attain satisfactory quality of results. Despite the introduction of several new accelerator
design languages (ADLs) aiming to enhance or replace HLS, their advantages are more evident in relatively
simple applications with a single kernel. Existing ADLs prove less effective for realistic hierarchical designs
with multiple kernels, even if the design hierarchy is flattened.

In this paper, we introduce Allo, a composable programming model for efficient spatial accelerator design.
Allo decouples hardware customizations, including compute, memory, communication, and data type from
algorithm specification, and encapsulates them as a set of customization primitives. Allo preserves the
hierarchical structure of an input program by combining customizations from different functions in a bottom-
up, type-safe manner. This approach facilitates holistic optimizations that span across function boundaries. We
conduct comprehensive experiments on commonly-used HLS benchmarks and several realistic deep learning
models. Our evaluation shows that Allo can outperform state-of-the-art HLS tools and ADLs on all test cases
in the PolyBench. For the GPT2 model, the inference latency of the Allo generated accelerator is 1.7x faster
than the NVIDIA A100 GPU with 5.4 higher energy efficiency, demonstrating the capability of Allo to handle
large-scale designs.
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1 INTRODUCTION

With the recent trends in technology scaling, computer engineers are increasingly turning to
special-purpose hardware accelerators to meet the escalating computational demands of emerging
applications, such as large language models (LLMs) [62, 74, 87]. One architectural paradigm that
has gained popularity is spatial architecture [27, 31, 42, 43, 56, 97], which instantiates specialized
processing engines interconnected through direct wires or streaming buffers to increase throughput
and reduce off-chip memory accesses. While hardware specialization can significantly improve
performance and energy efficiency, it does entail a substantially higher development effort. Specifi-
cally, manually constructing spatial architectures has been notably challenging, particularly with
the traditional register-transfer-level (RTL) design abstraction. Consequently, modern accelerator
designs are increasingly embracing high-level synthesis (HLS) to expedite RTL code generation
and enable rapid exploration of diverse design alternatives [15, 16, 51]. However, to achieve high
performance, HLS users must extensively restructure the source program to guide the tool toward
realizing specialized architectures like systolic arrays. Additionally, they are required to employ
various vendor-specific data types and pragmas, diminishing design reusability and portability.

In this context, we identify two major challenges to the productive development of high-
performance accelerators.

Challenge 1: Balancing manual control with automated compiler optimizations. Kernels
manually created by experts deliver high-performance implementations but require substantial
manual effort for design and validation. Also, these kernels usually adhere to specific data types
and function signatures, which hampers their ability to keep up with rapidly evolving applications
and hardware advancements. There is an increasing use of automated compiler techniques such as
polyhedral compilation to generate on-chip buffers [71], streaming dataflow architectures [13], or
systolic arrays [17, 92] from a plain C/C++ code without sophisticated loop annotations. However,
these tools typically do not provide adequate control to the designers to explore various perfor-
mance/cost trade-offs and customize the memory hierarchies and communication schemes for new
applications. Embracing domain-specific languages (DSLs) simplifies tasks for both programmers
and compilers [25, 28, 35, 57, 84], but most DSLs are inherently tailored for specific application
domains, such as image processing, machine learning, and network processing, and they lack
support for general-purpose language constructs essential for accelerator hardware design [51].

Challenge 2: Bridging the gap from single-kernel optimization to complex multi-kernel
accelerator design. In recent trends, DSLs for hardware design are evolving to become more gen-
eralized, incorporating flexible imperative language constructs or being embedded in general host
languages such as C++, Python, or Scala [40, 47, 49, 59, 83]. We refer to this category of program-
ming models as accelerator design languages (ADLs). Inspired by Halide [75] and TVM [11], several
recent ADLs further separate algorithm definition from hardware optimizations [49, 83], which
improves both productivity and portability. However, existing ADLs primarily focus on optimizing
single application kernels like convolution and matrix multiplication. In the case of realistic multi-
kernel applications, these ADLs tend to generate monolithic flattened designs, sidestepping the
intricacies of composing distinct kernels, which may present incompatible interfaces or conflicting
optimizations. The inadequate support for composability compromises modularity, debuggability,
and often leads to suboptimal performance, as pre-optimized kernels cannot easily be integrated
into a hierarchical program structure.

To tackle these challenges, we propose Allo, a new programming model for composable design
of high-performance spatial accelerator architectures'. The key design principles of Allo are to

1Allo means “atypical” and reflects our focus on developing non-traditional hardware architectures. The framework is
open-source and available at https://github.com/cornell-zhang/allo. The dinosaur in the project logo is an Allosaurus.
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provide decoupled hardware customization primitives, modularize the accelerator design process,
and facilitate type-safe composition of individual components.

Progressive Hardware Customizations. We inherit the idea from popular schedule languages like
TVM [11] and Halide [75] to decouple hardware customizations (e.g., caching and pipelining) from
algorithm specifications. Each hardware customization is a primitive that performs a rewrite on the
program. We not only decouple the loop-based transformations, but also extend the decoupling to
memory, communication, and data types. Each customization primitive can be verified individually
and progressively applied to a vanilla program to conduct optimizations.

Reusable Parameterized Kernel Templates. Allo supports declaring type variables during
kernel creation and instantiating the kernel when building the hardware executable, which is a
feature absent in most hardware ADLs [40, 47, 49] but is important for building reusable hardware
kernel libraries. Allo introduces a concise grammar for creating kernel templates, eliminating the
need for users to possess complicated metaprogramming expertise.

Composable Schedules. Allo empowers users to construct kernels incrementally from the bottom
up, adding customizations one at a time while validating the correctness of each submodule. Ulti-
mately, multiple schedules are progressively integrated into a complete design using the . compose ()
primitive. This approach, unachievable by prior top-down methods, significantly enhances produc-
tivity and debuggability.

Holistic Dataflow Optimizations. We introduce a hierarchical dataflow graph to support the
composition of multiple kernels within a complex design while maintaining the function boundaries.
To ensure the correctness of the interfaces when integrating distinct kernels, we model the interface
unification problem as a type inference problem and solve it efficiently through dataflow analysis.
Leveraging the hierarchical dataflow graph, we can effectively size the streaming buffers (FIFOs)
between stages.

To improve the usability of Allo, we have implemented the frontend language in Python, allowing
for a flexible programming style with minimal type annotations. We also present an end-to-
end optimizing compiler for Allo, allowing users to write Python programs and generate the
hardware bitstream. Moreover, we provide an MLIR dialect that supports decoupled hardware
customizations at the IR level and potentially supports multiple different input languages. In
summary, our contributions are as follows:

e We introduce Allo, a composable programming model that enables progressive hardware
customizations, transforming a vanilla program into a high-performance design, with each
step being verifiable.

e We propose composable schedules, enabling users to construct modular hardware accelerators
from the ground up by combining customized kernels and external IPs. A type system for
the memory layout is also proposed to ensure type safety during schedule composition.
Additionally, we introduce holistic dataflow optimizations to ensure functional correctness
and enhance performance further.

e We conduct comprehensive experiments on both realistic benchmarks and large neural
networks. For PolyBench [69], we outperform several state-of-the-art HLS tools and ADLs [40,
49, 59, 102], across all design cases. Furthermore, we demonstrate the applicability of our
programming model in the context of large neural network designs. To the best of our
knowledge, we are the first to employ such an ADL for a complete evaluation of LLMs on an
FPGA. Our experimental results reveal a 1.7x speedup and 5.4X higher energy efficiency on
the GPT2 model compared to the A100 GPU.
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2 AN ALLO EXAMPLE

1 import
2 from import float32
3 # Algorithm specification

4 M, N, K=32, 32, 32

5 def gemm(A: float32[M, K1,

6 B: float32[K, NJ,

7 C: float32[M, NI):

8 for i in range(M):

module {
func. func @gemm(
%argd: memref<32x
%argl: memref<32x32xf32>,
%arg2: memref<32x32xf32>)
// Algorithm specification
affine.for %arg2 = 0 to 32 {
affine.for %arg3 = 0 to 32 {

xf32>,

-~

Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

void gemm(
float A[32][32], float B[32][32],
float C[321[321) {
#pragma partition var=A cyclic \
factor=8 dim=1
#pragma partition var=B cyclic \
factor=8 dim=0
for (int i = 0; 1 < 32; ++i) {
for (int j = 0; j < 32; ++j) {

9 for j in range(N): affine.for %argd = 0 to 32 { X

10 for k in range(K): // ... Computation for (int k = 0; k < 32; ++k) {
11 C[i, j1 += ALi, k1 = B[k, jl } {loop_name = "k"} #pragma unroll factor=8

12 } {loop_name = "j"} s

13 Schedule construction } {loop_name = "i", op_name = "Sijk"} 3331

%1k = allo.loop_handle "Sijk", "k"
// Decoupled customizations

#

s = allo.customize(gemm)
15 s.unroll("k", 8)

s

s

B[O]

s

16 .partition(A, dim=1, factor=8) allo.unroll(%lk) BI7]
17 .partition(B, dim=0, factor=8) allo.partition(%argo, 1, 8)

18 allo.partition(%argl, 9, 8)

19 # Codegen return

20 s.build(target="hls") 13

(a) An example Allo program (b) The corresponding MLIR code (c) The generated HLS code

Fig. 1. Anexample Allo program and the corresponding MLIR and C++ code — The code snippets are simplified
for demonstration purposes.

Existing HLS tools often demand users to restructure their application code and insert vendor-
specific data types and pragmas to achieve high performance, which are not portable and main-
tainable. Moreover, with the prevalent use of Python-based frameworks [65, 93] for deep learning
models, manually translating those models into HLS C++ is impractical. Therefore, we emphasize
the following features as key principles when designing Allo: (1) Pythonic: embracing the Python
ecosystem makes the Allo coding experience similar to using native Python and effectively reduces
the learning burden; (2) Separation of concerns: decoupled hardware customizations make the
high-performance programs easier to write and maintain; and (3) Composability: all the kernels,
primitives, and schedules should be composable to form complex designs.

In the following, we begin by implementing a general matrix multiplication (GEMM) kernel in
Allo to illustrate the basic syntax and provide clues on why Allo can offer greater productivity
compared to HLS C++. As shown in Fig. 1a, we first define the algorithm specification of the GEMM
kernel (Lines 5-11), which specifies what the kernel computes. Since Allo is a Python-embedded
programming language, it supports all the imperative grammars in Python (e.g., if-else, for,
and while), with the distinction that users must provide explicit type annotations for function
arguments and variable declaration. This requirement arises from the dynamic typing nature of
Python, which may not be inherently suitable for hardware generation where static data types are
necessary to determine the accurate data bitwidth. The type annotation in Allo consists of the basic
element types and shapes. Formal definitions of the types can be found in Supplementary Material
A. Apart from the native integer and floating-point data types in Python, Allo accommodates
arbitrary-bitwidth integer and fixed-point types. This generality is important for designing high-
performance accelerators that declare bitwidth only as needed, ensuring adaptability to diverse
hardware requirements.

Once the algorithm is specified, we create a schedule by calling allo.customize (Line 14). The
function passed into .customize() is treated as an Allo kernel and will be parsed by the Allo
compiler. The schedule is a sequence of optimizations, which specifies how the kernel is executed
on real hardware. These optimizations can be applied to different algorithms and are independent
of any specific algorithm, which allows us to decouple them from the algorithm and encapsulate
each customization as a primitive. We unroll the innermost loop by a factor of 8 and provide
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1 // Vanilla 1 // Row-wise product
2 void gemm( 2 void rp_gemm(
3 float A[1024][1024], float B[1024]1[1024], 3 float A[10241[1024], float B[1024]1[1024],
4 float C[10241[1024] 4 float C[10241[1024]
5 ) { 5 ) {
6 for (int i = 0; 1 < 1024; ++i) { 6 #pragma partition var=B cyclic 32 dim=1
7 for (int j = 0; j < 1024; ++j) { 7 #pragma partition var=C cyclic 32 dim=1
8 for (int k = 0; k < 1024; ++k) { 8 float buf_C[1024];
9 CLiJ[31 += ALil[k] = BLKILjI; 9 #pragma partition var=buf_C cyclic 32 dim=0
0 333 10 : for (int i = 0; i < 1024; i++) {
1 11 // 1) initialization
12 // Inner-product 12 : for (int j = 0; j < 1024; j++) {
13 void ip_gemm( 13 #pragma pipeline II=1
14 float A[1024][1024], float B[1024][1024], 14 #pragma unroll factor=32
15 float C[1024][1024] 15 buf_C[j1 = CLil[jl;
16 ) { 16 }
17 #pragma partition var=A cyclic factor=32 dim=1 17 // 2) computation
18 #pragma partition var=B cyclic factor=32 dim=0 18 : for (int k = 0; k < 1024; k++) {
19 for (int i = 0; i < 1024; ++i) { 19 // reordered reduction loop
20 for (int j = 0; j < 1024; ++j) { 20 float a = A[i][k];
21 for (int k = 0; k < 1024; ++k) { 21 : for (int j = 0; j < 1024; j++) {
22 #pragma HLS pipeline II=1 Is it achievable? 22 #pragma pipeline II=1
23 #pragma HLS unroll factor=32 23 #pragma unroll factor=32
2 CLi1[3] += ALi1k] * BIKIL3T; 2 buf_C[31 += a = BLKILIY;
25 333} 25 3}
26 // 3) write-back
27 : for (int j = 0; j < 1024; j++) {
Latency (ms) II  Freq.(MHz) Speedup 5 #pragma pipeline II=1
Vanilla 25074 7 227 X 29 #pragma unroll factor=32
Inner-product 17950 128 240 1.4% 30 C[i1[j] = buf_C[jI1;
Row-wise product 112 1 427 223X 31 133

Fig. 2. HLS code for three different implementations of GEMM kernels — The loop unrolling factors are set
as 32. The latency, 11, and frequency results are obtained from the HLS report.

multiple banks for array A and B for parallel access using the provided primitives (Lines 15-17).
Allo utilizes MLIR as the intermediate representation (IR) and provides an MLIR dialect to decouple
these hardware customizations at the IR level, as shown in Fig. 1b.

Lastly, we call s.build (Line 20) to lower the MLIR module to the target backend, generating
the HLS code as depicted in Fig. 1c. The inserted pragmas align with the schedule in the frontend
program, and the generated accelerator executes the GEMM kernel with a parallelism factor of 8.

3 PITFALLS IN HLS-BASED HARDWARE ACCELERATOR DESIGN

In this section, we delve deeper into the limitations of existing HLS tools, which motivates the design
of Allo. We identify two common pitfalls in HLS and conduct several experiments to demonstrate
these issues. For the experiments, we use a widely used commercial HLS tool and target the AMD
Alveo U280 FPGA [96] with a frequency set to 300 MHz.

3.1 Single-Kernel Design

We still leverage the GEMM kernel as an example. Even in this simple case, achieving high perfor-
mance is not straightforward.

Pitfall I: Simply inserting pragmas cannot lead to high performance. As depicted on the
left in Fig. 2, an HLS programmer initially defines a vanilla floating-point GEMM kernel of size
1024 % 1024, consisting of a loop nest of three levels. If this code is directly fed to HLS, the resulting
latency is 25074 ms even though the HLS tool attempts to automatically pipeline the inner loop.

To further exploit the parallelism of the kernel, an intuitive idea is to unroll and pipeline the
innermost loop. Programmers can specify the target initiation interval (II) of the design using
#pragma pipeline. Given that the innermost loop is unrolled with a factor of 32, arrays A and B
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need to be partitioned into multiple banks to facilitate parallel access. Surprisingly, the latency
does not reduce to 1/32 but only 70% of the latency of the original design, with an unfavorable
increase in II. This is primarily due to a loop-carried dependency in the floating-point accumulation
of C[i1[j1], which requires more than one cycle to finish, preventing effective pipelining with an
IT equal to one [20]. Furthermore, the increased II leads to a reduced frequency, potentially causing
routing issues during backend synthesis.

To resolve this issue, we can change the loop order to avoid updating the same matrix element
in consecutive iterations. As shown on the right of Fig. 2, by swapping the loops of j and k (Lines
18-25), we transform the accumulation pattern into row-wise product, ensuring that adjacent
iterations update different elements of the output matrix. Additionally, a buffer of size 1024 is
introduced to store intermediate results (Line 8), which are written back to memory only after
iterating through one row. As a result, we can achieve a 112 ms latency with II=1, which achieves a
223X speedup compared to the vanilla implementation.

This example underscores the importance of source-level transformation in HLS-based hardware
accelerator design. Adding pragmas alone does not result in high performance; instead, it requires
careful program restructuring to enable desired optimizations. Unfortunately, even with the latest
design-space exploration (DSE) techniques in HLS compilers [81, 82, 102, 104], identifying such
optimizations may prove challenging. These DSE methods commonly search for parameters associ-
ated with loop splitting, pipelining, or unrolling, yet they often lack support for crucial memory
customizations, as discussed in §8.2. Allo resolves this issue by providing memory customization
primitives, allowing users to insert buffers at a given axis (§5.1). A full Allo example can be found
in Supplementary Material C.

Further optimizing a GEMM kernel may adopt a systolic array architecture, which requires
streaming connections between multiple processing elements and constructing complex I/O net-
works to achieve high performance. These optimizations require substantial code rewriting and also
cannot be accomplished by simple pragma insertion. For example, a high-performance 2x2 systolic
array for GEMM already requires more than 1,100 lines of C++ code [92], which demonstrates the
complexity of single-kernel HLS design.

3.2 Multi-Kernel Design

Once we have optimized a single-kernel GEMM design, the next challenge is to employ it as a
fundamental building block for large designs. In this context, we aim to construct a two-layer feed-
forward network (FFN) module, a component commonly used in Transformer models [23, 74, 90].
However, it remains a non-trivial task even though we already have an optimized GEMM kernel.

Pitfall II: Simply calling optimized kernels does not guarantee a high-quality design. As
depicted on the left of Fig. 3, within the top-level function, we input an initial tensor X and two
weight parameters, W_A and W_B, followed by the output being written to Y (Lines 7-10). In the
main body, we create an intermediate tensor Z (Line 11), reuse the rp_gemm kernel defined in Fig. 2,
and invoke it twice to perform a linear layer computation (Lines 12-13). This approach intuitively
chains two function calls together.

Based on the results in Fig. 2, cascading two GEMM kernels should yield a latency of 224 ms,
since a single-kernel GEMM has a latency of 112 ms. However, the HLS report in Fig. 3 indicates a
latency of 280 ms, which is 1.25X slower than expected. Furthermore, reusing the GEMM kernel
for these two function calls should maintain resource usage at the same level as a single kernel,
yet the HLS report indicates a doubling of resource utilization. Closer examination reveals that
HLS generates two distinct copies of the GEMM kernel, named rp_gemm and rp_gemm_1, with
rp_gemm_1 exhibiting a worse latency than rp_gemm. The root cause is the function interface,
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1 // Simple cascade 1 // Interface unification
2 void rp_gemm( 2 void rp_gemm(
3 float A[1024]1[1024], float B[1024]1[1024], 3 float A[1024]1[1024], float B[1024][1024],
4 float C[10241[1024] 4 float C[10241[1024]
5 ) { /* See Fig. 2 */ } 5 ) {
6 6 // explicitly partition A
7 void top(float X[1024][1024], 7 #pragma partition var=A cyclic factor=32 dim=1
8 float W_AL1024][1024], 8 #pragma partition var=B cyclic factor=32 dim=1
9 float W_B[10241[1024], 9 #pragma partition var=C cyclic factor=32 dim=1
10 float Y[1024]1[1024]) { 10 e
11 float Z[1024][1024]; 1 }
12 rp_gemm(X, W_A, Z); 12
13 rp_gemm(Z, W.B, Y); 13 void top(float X[10241[1024],
14} 14 float W_A[10241[1024],
15 float W_B[1024][1024],
Latency (ms) BRAM DSP FF  LUT 16 float Y[1024][10241) {
Stmple cascade 280 1984 50 42761 24896 17 #pragma allocation instances=rp_gemm limit=1
+ rp_gemm 112 64 160 21391 11765 18 float Z[1024][1024];
+ rp_gemm_1 168 64 160 21364 11856 19 rp_gemm(X, W_A, Z);
Interface uni. 224 1920 160 21377 16068 20 rp_gemm(Z, W_B, Y);
+ rp_gemm 112 64 160 21372 11913 21 3

Fig. 3. HLS code for cascading two GEMM kernels — Changes are highlighted in yellow.

where, in Fig. 3, we partition the second and third arguments (A and B) for the rp_gemm function.
These two arguments correspond to the arrays W_A and Z in the top-level function. However, Z,
already a partitioned array, is once again passed into rp_gemm as the first argument, triggering
partitioning of the first argument of the rp_gemm function. This divergence in partitioning leads
HLS to view the two rp_gemm kernels as distinct, with the first kernel partitioning the latter two
arguments, while the second kernel partitions all three arguments. Thus, two different copies of
the rp_gemm kernel are generated. Consequently, two distinct copies of the rp_gemm kernel are
generated, and an unintended partition scheme causes HLS to make incorrect assumptions about
loop variable dependencies, resulting in increased latency.

To rectify this issue and ensure proper sharing of function units while generating a design with
the anticipated latency, we work towards unifying the function interface. As shown on the right of
Fig. 3, we explicitly partition the first argument of the rp_gemm kernel, thereby ensuring that all
inputs and outputs are partitioned consistently. Additionally, we enforce an allocation pragma
to ensure the generation of only one function instance. As a result, HLS produces a single copy of
the rp_gemm kernel, as indicated by the resource usage in the bottom-left of Fig. 3. Moreover, the
latency is twice that of a single-kernel latency, totaling 224 ms, aligning with our expectations.

This example highlights the inherent complexity of composing multiple kernels, requiring
careful consideration of appropriate interfaces for each kernel and effective connection through
intermediate buffers. Allo introduces composable schedules and holistic optimizations to resolve
this issue. Further insights will be discussed in §6.

4 ALLO OVERVIEW

Recently, various accelerator design languages (ADLs) have been proposed to mitigate the lim-
itations of HLS. Some of these approaches expose hardware customizations in a higher-level
language, requiring users to follow specific coding styles and relying on compilers to generate
high-performance implementations [26, 47, 86]. While this approach can partially resolve Pitfall
I if the compiler is able to generate a proper memory hierarchy for the design, it requires users
to write code in a functional language or in their custom formats, subsequently generating HDL
code in Verilog or Chisel [4]. This imposes a significant burden on programmers to translate their
applications and debug in these languages. Conversely, other ADLs are built on top of the original
HLS C++ toolchain [40, 49, 59]. HeteroCL [49] introduces the concept of separation of concerns in
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Table 1. Comparison between Allo and existing high-level hardware languages — APL denotes accelerator
programming language, ADL is accelerator design language, and IL denotes intermediate language.

Single-Kernel Design (§5) Multi-Kernel Design (§6)

Framework Type Input Output  Decoupled Customizations Verifiable Template Composable Dataflow
Language Format Y/N Compute Memory Types Comm. Rewrites Kernels Optimizations Optimizations

TVM [11] APL Python N/A X x X X
Exo [41] APL Python N/A X X X X
Spatial [47] ADL Custom Chisel X X X
Aetherling [26]  ADL Haskell Chisel X X X X X X X
Fleet [86] ADL Scala Chisel X X X X X X X X
ScaleHLS [102] 1L C++/MLIR  HLS C++ X X X X X X X X
PyLog [40] ADL Python HLS C++ X X X X X X
HeteroCL [49] ADL Python HLS C++ X X X X X
Dabhlia [59] ADL Custom HLS C++ X X X X X X X
Allo ADL/IL  Python/MLIR HLS C++

hardware design and provides primitives for users to optimize the program. Dahlia [59] proposes
a type system to ensure the consistency of memory partitioning and loop unrolling but lacks
crucial customizations for pipelining and dataflow. Both ScaleHLS [102] and PyLog [40] automate
hardware design and produce HLS C++ code as output. Nevertheless, most of these ADLs focus on
optimizing a single kernel and cannot efficiently address Pitfall II.

In this section, we present an overview of the Allo programming model and compilation flow. A
comparison between Allo and other high-level hardware languages and compilers is listed in Table 1.
Allo fully decouples hardware customizations from algorithm specifications, with a particular focus
on enhancing memory and communication customizations. This approach effectively addresses
Pitfall I (see §5). Furthermore, Allo provides the ability to declare parameterized kernels, thereby
improving the usability of single-kernel designs. What differentiates Allo from other ADLs is its
ability to compose individual kernels and construct large-scale, high-performance designs. Allo
proposes composable schedules and holistic dataflow optimization to efficiently tackle Pitfall II (see
§6). Moreover, we leverage Allo to design a spatial architecture for large language models (LLMs)
and execute the design on an FPGA. The FPGA on-board evaluation shows its functionality and
high performance, which is unachievable by prior ADLs (§8.3).

\?C
hl (3 _y| Parser | Alio Typed,, IR Builder MLIR , Scheduler O|gt.g Codegen —>»LLVMIR
programs (§7) AS AST (§4) Assembly (§5, §6) MLI (§7) » HLS C/C++
Frontend P inaia it Allo dialect
rontends g inalg/tensor/arith/... —_—>
7 O PyTorch rransiation =S I Real-time compute;] [memory
(8§7) python — > Lower--------- *. .........
MLIR | lransformation
<) HuggingFace TorchVision affine/memreffarithy... <«——— comm.  datatype

Fig. 4. Overview of the Allo compilation flow.

As illustrated in Fig. 4, Allo offers a Python-embedded ADL for improved productivity, and
the Allo compiler follows a conventional compilation workflow. Users can either use the Python
frontend to write a Python kernel or leverage the PyTorch frontend to directly import deep learning
models from TorchVision [55] and HuggingFace [93], which will be further discussed in §7. For
the Python kernel, Allo first parses it into an abstract syntax tree (AST). The AST then proceeds
through a type system that performs essential tasks such as type checking, type inference, and type
conversions based on user-provided annotations (§7). The typed AST is subsequently passed into
an intermediate representation (IR) builder. We develop an Allo dialect within the MLIR ecosystem,
which facilitates the separation of hardware customizations at the IR level (§5). The IR builder
generates MLIR programs for customization and code generation. Once the IR is obtained, program
transformations are applied using the provided customization primitives (§5). This approach seam-
lessly integrates with different in-tree MLIR dialects, enabling the generation of high-performance
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Table 2. A partial list of the customization primitives supported by Allo.

Compute Customizations Memory Customizations
s.split(i,v) Split loop 1i into a two-level nested loop s.buffer_at(A,i) Create an intermediate buffer at loop i to
with v as the bound of the inner loop. store the results of array A.
s.fuse(x1) Fuse multiple sub-loops 1 in the same nest s.reuse_at(A,i) Create a buffer storing the values of array
loop into one. A, where the values are reused at loop i.
s.reorder(*1) Switch the order of sub-loops 1 in the same s.partition(A,d,v) Cyclic/Block partition dimension d of array
nest loop. A with a factor v.
s.compute_at Merge loop i of the operation Op1 to the . . L .
(0p1,0p2,1) corrfsponging loop le}\)/el in operation Op2. s.pack(A,i,v) Pack dimension i of array A into words

with a factor v.
s.unroll(i,v) Unroll loop i by factor v.

s.unfold(i) Unfold loop i as hardware instances. Communication Customizations
s.pipeline(i,v) Schedule loop i in a pipeline manner with s.relay(A,Dst,v) Connect array A to destination Dst with a
a target initiation interval v. FIFO of depth v.

designs for diverse backend targets. Lastly, we generate LLVM IR [52] for CPU simulation and
HLS C/C++ [100] for hardware synthesis (§7). Notice most of the hardware customizations are
target-independent, allowing our compilation flow to target ASIC designs as well. We plan to
integrate the CIRCT [14] project as our backend to support custom circuit generation.

5 CUSTOMIZABLE HARDWARE TRANSFORMATIONS

In this section, we use a systolic array [48] as an example to illustrate the language features of Allo,
showecasing its capabilities in handling complex transformations for a single kernel design. The
systolic array is a prevalent spatial architecture extensively employed in deep learning accelerators
such as Google TPUs [43] and AWS Inferentia [3]. It comprises a set of processing elements (PEs)
that iteratively execute repetitive operations. By reusing data across these PEs, it minimizes off-chip
memory access, resulting in high performance with minimal energy consumption.

5.1 Schedule Construction

Given the initial algorithm definition in Lines 2-6 of Fig. 5, we transform the algorithm specification
into a tangible hardware implementation. Here, we formally define a schedule S of a program P as
a sequence of transformations (pl-){i | such that

pisp B 2y, (1)

where 4 denotes a program rewrite with a primitive p;, and N is the number of customization
primitives in this schedule.

Table 2 lists the primitives supported by Allo. The compute customizations transform the loops
and attach necessary attributes, which inherit the idea from existing schedule languages [11,
41, 49, 75]. Notice instead of implementing monolithic compiler passes for the primitives [11,
49, 75], Allo adopts an approach akin to Exo [41], which treats primitives as program rewrites,
ensuring correctness for each transformation. Users can print the intermediate module after
each customization to inspect real-time program transformations, providing deeper insights into
the customization primitives. Moreover, we develop an Allo-MLIR dialect to implement those
customizations primitives at the IR level, with each primitive corresponding to an operation in the
Allo dialect. It enables Allo to serve as an intermediate language and support different frontends. In
the subsequent discussion, we will primarily focus on memory and communication customizations,
which distinguish Allo from other ADLs.

As illustrated in Fig. 5, users can create a schedule by invoking the allo.customize function
and progressively apply primitives to the newly-formed schedule (Line 9). Each primitive exactly
does one transformation as shown on the right of Fig. 5. We start by creating intermediate buffers
for A and B arrays (Lines 10-11), which creates a line buffer for peripheral PEs to efficiently load
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# Algorithm specification B

1
2 def gemm(A: int8[M, KI, B: int8[K, NI,

3 C: int16[M, NI):

4 for i, j in allo.grid(M, N, "PE"): buf B O buf B 1
5 for k in range(K): — —
6 C[i, j1 += ALi, kI = B[k, j]

7 o|

8  # Schedule construction fl PE PE
9 s = allo.customize(gemm) K

10 buf_A = s.buffer_at(s.A, "j") # po <

11 buf_B = s.buffer_at(s.B, "j") # p1

12 pe = s.unfold("PE", axis=[0, 1]) # po =

13 s.partition(s.C, dim=[0, 11) # ps .;(_l PE PE
14 s.partition(s.A, dim=0) # Py B

15 s.partition(s.B, dim=1) # ps

16 s.relay(buf_A, pe, axis=1, depth=M + 1) # pg

17 s.relay(buf_B, pe, axis=0, depth=N + 1) # p;

Fig. 5. Allo program for an integer output-stationary systolic array — M, N, and K are predefined integer
constants. allo.grid is a syntactic sugar for multiple Python range-for loops. A and B are located in DRAM.

data from off-chip memory. After that, we can easily generate M X N PEs along the Oth and 1st axes
by invoking .unfold() (Line 12). Further configurations on the number of PEs can be controlled
by loop tiling using the . split() primitive. As these PEs are actual hardware instances, and each
PE requires parallel memory access, C is partitioned in both dimensions to accommodate the nature
of output-stationary accumulation (Line 13). Furthermore, A and B arrays are also partitioned
to create multiple banks, facilitating parallel data input into the line buffers (Lines 14-15). More
importantly, users need to specify the intra-kernel communication. Allo offers a seamless way to
connect neighboring PEs with FIFOs through the .relay() primitive. As shown in Lines 16-17,
buf_A is connected along the 1st axis, while buf_B is connected along the Oth axis, and these
connections will subsequently be synthesized as FIFOs within the hardware. A generated HLS C++
code for this systolic array is attached in Supplementary Material D for reference.

Notice this approach is general enough to allow users to express programs in different forms.
Users can start from an arbitrary program status P; using our programming model and apply
customization primitives p; to obtain a transformed program P;.,. For example, in Fig. 5, the
program P, after applying py is still functional, as it essentially moves data from DRAM to an
intermediate buffer and lets the computation logic load the same data from this buffer. This is not
achievable by ad-hoc systolic array compilers like AutoSA [92]. The optimization process in AutoSA
is not transparent, and programmers cannot easily configure the architecture of the generated
systolic arrays. In contrast, our approach allows customization of compute, memory, data types, and
communication. We can further create an additional memory hierarchy using the .buffer_at()
primitive for buf_A and buf_B, which reduces the memory fan-out to one. Additionally, Allo
provides more flexibility than semi-manual systolic array generators like SuSy [50] and T2S [83],
which require users to write verbose uniform recurrence equations and conduct complex space-
time transformations manually. On the contrary, Allo can start from a vanilla GEMM kernel
and progressively transform it into a functional systolic array using eight lines of schedule code.
Leveraging the provided primitives, Allo can strike the right balance between compiler-based
optimizations and manual optimizations. As demonstrated in §8.2, our programming model can not
only be used to generate systolic arrays but is also general enough to support different applications.

5.2 Verification

Ensuring the correctness of the generated accelerator is of great importance. Allo employs two key
verification procedures to enhance the reliability of the generated code. First, Allo leverages the
CPU backend to conduct functional simulation testing (§7). Second, Allo integrates an equivalence
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void gemml(float A[M][K], float B[KI[N], stream C) {
for (int j = 0; j < N; j++) {
for (int i = 0; i <M; i++) {
float sum = 0;

1 # Algorithm specification 1
2 2
3 3
4 4
5 def gemm2(C: float[M, N], D: float[N, PJ, 5 for (int k = 0; k < K; k++) {
6 6
7 7
8 8
9

def gemml(A: float[M, K], B: float[K, NJ],
C: float[M, NI):

E: float[M, PI1): sum += A[i][k] » B[kI[j1;
C.write(sum);

def two_mm(A: float[M, KJ, B: float[K, NI, 333
9 D: float[N, P], E: float[M, P1): void gemm2(stream C, float D[NJ[P], float E[MI[P]) {
10 C: float[M, N] 10 float buf_E[N];
1 gemm1(A, B, C) 11 for (int i = 0; j < M; j++) {
12 gemm2(C, D, E) 12 // ... Initialize buf_E (omitted)
13 # Schedule construction 13 for (int k = 0; k < N; k++) {
14 s_orig = allo.customize(two_mm) 14 // A mismatch between read and write
15 # Duplicate schedule for verification 15 float ¢ = C.read();
16 s = allo.customize(two_mm) 16 for (int j = 0; j < P; j++) {
17 s.reorder("gemm2:k", "gemm2:3j") 17 buf_ELj] += ¢ * DLkIL[jI;
18 s.buffer_at(s.C, axis="gemm2:i") 18 3}
19 s.relay(s.A, "gemm2") 19 // ... Write-back to E (omitted)
20 s.reorder("gemml:3j", "gemml:i") 20 33
21 # 1. Functional simulation testing 21 void two_mm(float A[M][K], float B[KI[NIJ,
22 f = s.build() 22 float DLNI[P], float E[MI[PI) {
23 # ... Initialize NumPy arrays (omitted) 23 stream C_fifo;
24 f(np_A, np_B, np_D, np_E) 24 gemml1 (A, B, C_fifo);
25 # 2. Formal equivalence checking 25 gemm2(C_fifo, D, E);
26 allo.verify(s, s_orig) 26 }

(a) Allo code snippet (b) Corresponding HLS C++ code snippet

Fig. 6. A buggy Allo example with data streaming and loop reordering — The two matrix multiplications are
computed back-to-back. The code marked in red indicates bugs in the program.

checker [70] to formally verify the equivalence of the programs before and after customizations,
provided that the programs have statically interpretable control-flow (SICF). SICF requires the
problem size to be known at compile-time and does not support parametric loop nest analysis.

Fig. 6 shows a data access order bug caused by incorrect customizations. In this example, Lines
17-18 of Fig. 6a transform the second matrix multiplication from an inner-product to a row-wise
product, which reads the input C in a row-major order. However, Line 20 reorders the first matrix
multiplication loops to send the output C in a column-major order. This discrepancy in data receiving
and sending orders violates the requirement of in-order access on a stream FIFO. The .verify()
on Line 26 invokes the equivalence checker which takes the schedule before (Line 14) and after
customizations (Line 20) to formally verify the program semantic equivalence. In this example,
the customizations break the accelerator design and cause a semantic difference in the customized
code. The difference in the symbolic representation is detected and reported by the equivalence
checker to facilitate debugging. Notice the verification can be conducted after each primitive is
applied, ensuring the correctness of the transformations at each step.

5.3 Parameterized Kernel Templates

We initially constructed a systolic array with fixed dimensions and data types, which lacks flexibility
when handling variable-sized input matrices. In the following, we leverage the previously defined
systolic array to introduce a tiled design that accommodates inputs of arbitrary sizes.

Allo provides a user-friendly parameterization template to facilitate polymorphism. As illustrated
in Fig. 7, we parameterize the systolic function with type parameters. Users can define the
function signature using the syntax def <func>[<type params>](<args>). Again, given Allo’s
decoupling of data types from the algorithm specification, both data types and shapes can serve as
type parameters. Allo permits additional constraints for parameterized data types. For instance,
Ty: (int32, float32) specifies that the data type Ty must be either int32 or float32. If any
other data types are used, an error is raised. Within the tiled_systolic function, we partially
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1 def systolic[TyA, TyB, TyC, Mt: index, Nt: index, K: index]

2 (A: TyA[Mt, K1, B: TyB[K, Nt], C: TyC[Mt, Ntl)

3

4 def tiled_systolic[TyA, TyB, TyC, M: index, N: index, K: index]

5 (A: TyA[M, K1, B: TyBI[K, NI, C: TyC[M, NI):

6 local_A: TyA[8, K]; local_B: TyB[K, 8]; local_C: TyC[8, 8]

7 for mi, ni in allo.grid(M // 8, N // 8, name="outer_tile"):

8 # ... load_A_tile, load_B_tile

9 systolic[TyA, TyB, TyC, 8, 8, K]l(local_A, local_B, local_C)
10 # ... store_C_tile

Fig. 7. Tiled systolic array implementation in Allo.

specialize the inner systolic array with a fixed size of 8 X 8, allowing us to derive a tiled version of
the systolic array capable of accommodating inputs of varying dimensions.

In Allo, we have encapsulated several template kernels as libraries, each accompanied by pre-
defined schedules. These templates include commonly used deep learning operators and high-
performance systolic arrays for matrix-matrix multiplications and matrix-vector multiplication.
This approach allows users to conveniently reuse these kernels for their own workloads, reducing
the burden of writing efficient schedules. Additionally, this parameterized interface facilitates
auto-tuning and auto-scheduling [12, 78, 107], which we plan to explore in future work.

6 COMPOSABLE SCHEDULES

In this section, we explore the process of composing multiple schedules to construct a complete
design. We begin by introducing the . compose() primitive and delve into the implementation
details of the hierarchical dataflow graph. We then present the algorithm for schedule replay and
memory layout composition. Lastly, we extend Allo to support the composition of external kernels
and present an algorithm for holistic optimization.

6.1 .compose() Primitive

We leverage the systolic array implementation in Fig. 7 to illustrate how to cascade two systolic
arrays to create a larger design. As depicted in Fig. 8, the two systolic arrays are arranged in
sequence, with an intermediate tensor Z facilitating data transfer. This aligns with common practices
in nowadays neural network implementations [65].

1 def top(X: int8[32, 641) -> int8[64, 32]: M N2
2 Z: int8[32, 64] =0 Memory
3 Y: int8[64, 321 =0 K Z w K. Z W, ) access order
4 W_A: int8[64, 641 = W_A_cst ! S B
5 W_B: int8[64, 641 = W_B_cst —p Dawaow
6 tiled_systolic[int8, int8, int16, \ K, * *
7 32, 64, 64, "FFN1"1(X, W_A, Z)
8 tiled_systolic[int8, int8, int16, \
9 64, 32, 64, "FFN2"1(Z, W_B, Y) M > *'_) > *' > B tocal A
10 return Y M — [ local B
11

local_C
12 s_top = allo.customize(top) ot
13 s_top.compose(s) # ‘s is an optimized schedule
14 s_top.relay(s_top.Z, "tiled_systolic_FFN2") X 4 Y

Fig. 8. Cascading two systolic arrays — W_A_cst and W_B_cst are predefined weight parameters. Automatic
type conversion on Z is performed between two kernels.

Based on the primitives proposed in §4, we can optimize individual kernels independently. How-
ever, we need a mechanism to connect these smaller kernels. Therefore, we propose a new primitive,
s.compose (<new_schedule>, <id>), for incorporating a <new_schedule> into the original sched-
ule s. In Fig. 8, we call s_top.compose(s) to integrate an optimized schedule s of tiled_systolic
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to s_top (Line 13). The additional <id> argument is used to distinguish between different function
calls. For instance, there are two callers to tiled_systolic in Lines 6 and 8. By including an
additional identifier in the type parameter list (e.g., "FFN1", "FFN2"), users can customize them
differently. The Allo compiler will generate two distinct instances for those functions. This fine-
grained control empowers users to customize specific functions to meet their requirements, offering
flexibility not available in traditional compilers with fixed patterns in the compiler pass. Finally, the
two systolic arrays are linked with another FIFO to establish a dataflow at the top level (Line 14).

Moreover, . compose() primitive can act as an IP integrator to import C++ kernels from existing
HLS-based kernel libraries [98, 99]. Allo parses the function interface of the HLS IPs, and the function
arguments will be translated into internal representations labeled with Allo-supported data types.
As long as users specify the correct number of arguments, Allo automatically generates wrapper
functions with PyBind11 [72], making it more general and extensible to different customizations.

6.2 Hierarchical Dataflow Graph

def add(A: T[M, NI) -> T[M, NI:

1 . . . .
) B=A+1 top:A top:B top:C top:D
3 return B

4 def mul(A: T[M, K1, B: T[K, NI) -> T[M, NI: ¢ ¢ ¢

5 # ... Calculate matrix multiply of A and B mul:A mul:B add:A

6 def top(A: T[M, K1, B: T[K, N1) -> T[M, NI: v

: Somi B \muI'C/ add:B

8 D = add(C) el 5 " 2dd

9 return D

Fig. 9. Example of a hierarchical dataflow graph.

Traditional dataflow graphs used in compilers for analysis are typically flattened, which removes
the boundaries between functions and may miss potential optimization opportunities at the graph
level [11, 49, 76]. To preserve the hierarchy of the modules during scheduling, we require a new
data structure capable of representing the dataflow graph in a way that facilitates the analysis of
interfaces between functions. As a solution, we propose a hierarchical dataflow graph that connects
nested functions in a hierarchical way.

Given that the constructed MLIR is in SSA form, each node in the dataflow graph represents
an operation in the IR. As shown in Fig. 9, the top function calls two subfunctions, mul and add,
within its body. To represent nodes in the dataflow graph, we use variable names with the function
name as a prefix. We maintain information about the caller and callee in the dataflow graph and
explicitly connect function arguments with the caller’s operands using edges. For example, array C
is passed into the function add, so there is an edge from top:C to add: A. Since our primary concern
is how data flows and not how many iterations are needed, control flow is eliminated from the
graph. This simplifies the composition process discussed in Section 6.4.

6.3 Schedule Replay

We formalize the process of schedule composition as follows. Consider a schedule of program P,
represented as a sequence of primitives Sp = (poP I pﬁp). Composing this schedule Sp with
another schedule Sg involves appending the customization primitives of Sg after the primitives of
Sp, ie., Sg o Sp, where o denotes sequence concatenation.

We outline a general algorithm for composing two schedules in Algorithm 1, and it is easy to
extend it to multiple schedules. This algorithm traverses the primitives in the input schedules and
replays them in the context of the new program space. Since some functions may be renamed or
duplicated due to the <id> interface, we must update the arguments of the primitives to ensure they
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Algorithm 1: Composing multiple schedules with schedule replay

Data: Two schedules Sp and Sg for programs P and Q

Result: Composition of the schedules Soy; = Sp o Sp and the output program P’ after applying Sou:
1 Initialize Soyr = Sp;
2 foreach primitive p; € Sp do

3 Update the arguments of p; to refer to the functions and arguments in program P;
4 if p; conflicts with primitives in Soy; then
5 L Composition fails, raise an error;

6 Append p; to Sour;
7 Apply each primitive in Sy to the program P to obtain P’

apply to the correct function and operations (Line 3). Before applying a new primitive, we verify
that it will not conflict with previously applied primitives (Line 4). For compute customizations,
conflicts occur only when the same operation is targeted. In such cases, an error is raised because the
operation has already been transformed (Line 5). Conflicts related to .partition() and .relay()
will be discussed further in §6.4. The primitive is then appended to the new schedule (Line 6).
Primitives are applied to the program P only when all the sub-schedules are integrated into
the top-level function and are ready for backend executable construction (Line 7), which saves
redundant transformation time. The resulting S,,; can be used for subsequent composition. This
progressive composition process allows us to combine small designs step by step, culminating in
the construction of a large design, with each submodule thoroughly tested, as discussed in §5.2.

6.4 Memory Layout Composition

When the customization primitives only affect the inner computation, it is straightforward to
replay them with Algorithm 1. However, complexity arises when schedules overlap through the
function interface. If a sub-schedule changes the function interface, the parent program must also
change to avoid conflicts, as discussed in § 3.2. It is important to maintain the consistency between
function call arguments and actual function definitions. Array partitioning is an example of this
challenge. In Fig. 5, when the schedule is integrated into Fig. 7, the local_A, local_B, and local_C
arrays should also be partitioned. This is because these arrays are partitioned within the systolic
function and are passed into the function as arguments.

Since hardware memory partitioning essentially alters data layout, we can explicitly represent
data layouts as types [53, 66] and conduct analysis within this type system. As shown in the left
side of Fig. 10, we consider the partition type of an N-dimensional array. The partition type 7 is a
composite type consisting of the base type 7 for each dimension. Each base type can assume one of
four choices. L means fully partitioning this dimension, allowing parallel access to all elements. T
represents no partition in this dimension, resulting in only one memory bank on the hardware.
C, represents cyclic partitioning with a factor of @, where the elements in the original array are
interleaved. B, denotes block partitioning with a factor of «, where the original array is divided
into consecutive blocks. Denote s; as the size of dimension i, and a should be an integer factor of
s; (not including 1 and itself). We can construct subtype relations for these base types. If X <: Y,
it means the code expecting a memory with partition type Y is also compatible with a memory
with the partition type X. For example, L is a subtype of C, because complete partitioning already
partitions the array into cyclic with a factor of 2. If a kernel requires an array to be cyclic partitioned
into two banks to access the elements in parallel, it is also fine to pass in a fully partitioned array
since it offers more memory banks. Notably, this subtyping relation is covariant, which means that
the subtyping relation of base types 7 applies to composite types 7 as well. This subtyping relation
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actually forms a lattice, where each pair of elements in the type definition has a unique supremum
T and a unique infimum L. The right side of Fig. 10 shows an example Hasse diagram.

~ N No partition T
T:=(f,...,TN) T T
Cyclic partition €, Block partition %2
a:=N | |
Cyclic partition €y Block partition %4
T:=1|Cu| Bl T T Complete partition L —

Fig. 10. Left: Definition of the partition types. Right: Example lattice of partition types for a 1D array of shape
(8,) — Since 8 can be divided into 2 X 4, there are six elements in this lattice.

After constructing this simple language for memory layout, we can define the typing rules for
these partition types. As shown in Fig. 11, the first row demonstrates the subtyping relations of
base types, and the second row shows the composite rule and function application. For function
application, it is important to ensure the partition types of function signatures and caller operands
are compatible, which results in a subtyping relation between 75 and 7;. For example, in Fig. 3, the
original function rp_gemm has already partitioned array Z in Cs,, while the program attempts to
pass in Z, which has no partitions (i.e., T). Therefore, our type system directly rejects this program,
avoiding possible performance issues in Pitfall II.

S-BorTom-C S-BorTom-B S-CycLic S-Brock S-Tor-C S-Tor-B
as = 0(mod ;) az = 0(mod ay)
1 <:Cy, 1 <: 8B, Ca, <: Cyq B, <t By, Cp<:T B, <:T
S-ARRAY FuncArp
die{l,....N}: & <: ¢ Trfimm—>n Treim m<i
(fl,...,fN)<:(fI,...,f]’V rl—fe:’['z

Fig. 11. A partial list of typing rules for the partition types in Fig. 10 — I is the typing context.

Based on the typing rules, new partition types need to be assigned to each variable in the program
after schedule composition. The unification algorithm commonly employed in functional languages
for type inference does not fit in this case, due to the presence of subtyping relations [18, 19, 37].
In general, conducting type inference with subtypes can be a challenging task, which requires
complex algebraic operations or leveraging an SMT solver to solve the constraints [24, 64, 68].
However, given the lattice property of the subtyping relations, as well as the hierarchical dataflow
graph constructed in §6.2, we can apply dataflow analysis on this dataflow graph to efficiently
assign types for the variables in the transformed program.

Consider a dataflow graph with M nodes, we can use Algorithm 2 to calculate the proper memory
layout of each node. This iterative algorithm resembles the Worklist algorithm used in static dataflow
analysis [44]. We use a concrete example in Fig. 9 to illustrate the process. Suppose we apply fully
partition on array C, i.e., t/, = L. We first add the target node top:C and the target partition type
t{, to the worklist (Line 1). In the first iteration, we calculate top:C’s type as tiop.c ¢~ LM T = L
(Line 4), where MM is the greatest lower bound (GLB) operator. Since its type changes (Line 5), we
traverse its predecessors (i.e., mul : C) and successors (i.e., add:A) (Line 6) and append them to the
worklist since they are not in the same function (top) with C (Line 7-8). Similarly, in the latter
iterations, tny1.c and taqq. are updated to have type L, and no more dataflow nodes in the worklist
update the types, which finalizes the algorithm. Notice the M operator in Line 4 is used to handle
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Algorithm 2: Partition type inference (Memory layout propagation)

Data: The partition type (tl(o), e t](v?) ) of the nodes (ny, ..., ny) in the hierarchical dataflow graph,

and a .partition() primitive on node n;, that transforms type ¢;, to ti’n

l(aut), o t](v(l)ut))

1 Initialize Worklist « {(nin, t],))};
2 while Worklist is not empty do

Result: Result partition type (¢

3 Pick an item of dataflow node and target type (n,t") from Worklist;
4 Update type t,(lnex” —t'n t,(fmr);

5 if t,(,neXt) * t,(,curr) then

6 foreach predecessors and successors fi of n do

7 if 7 and n are in different functions then

8 | Add (7, £{"*")) to Worklist;

more general cases of merging two partition types, which makes sure, for example, even for two
different types C4 and B, in Fig. 10, they can be cast to a common type (e.g., L).
Algorithm 2 is guaranteed to terminate in linear time, as formally stated in the following:

THEOREM 6.1. Algorithm 2 can terminate in O (M) steps.

This termination condition can be established through the Knaster-Tarski Fixed-Point Theo-
rem [85] given the fact that the depths of the lattices are fixed constants not related to M. A formal
proof can be found in Supplementary Material B. Since in each iteration, #; only changes from one
partition type to another on the lattice in one direction, this algorithm is efficient in inferring the
partition types. Experimental results in §8.2 demonstrate its overhead is negligible.

It is worth noting that Algorithm 2 can also be applied for streaming type propagation. Due to
space constraints, we do not provide the full details here.

6.5 Holistic Optimization

To achieve high-performance spatial architecture, functions are interconnected using FIFOs, forming
distinct dataflow stages. While this creates a functional architecture, dataflow may suffer from
performance issues, particularly when there are data stalls. HLS alone cannot determine the ideal
FIFO size between stages. Dataflow stalls can arise from two primary situations: (1) when the
production rate exceeds the consumption rate, potentially filling the FIFO and causing stalling,
(2) or when the production rate is slower, leading to starvation in subsequent stages. Therefore,
determining appropriate FIFO sizes is crucial for high performance.

We formulate the problem as follows. Suppose the source stage can generate Cs,. outputs per Il
cycles, where I, is the initiation interval of the previous stage. The destination stage demands
Cyst inputs per I cycles for computation. The communication volume between the two stages is
denoted as V. We have functions, f,r04 (production rate) and f.o, (consumption rate), that track
the number of samples generated and consumed at any given time ¢. If there is no data in the FIFO,
the consequential stage cannot perform computation since it does not receive any data. Therefore,
the consumption rate is always smaller or equal to the production rate.

Time Time
f (t) _ Csrcl_t/IIsch t < V/Csrcllsrc (2) IIIW; d Dst >
- t
prod 1% t > V/Corellsre e o o latgy | stage
stage P
Jeon(t) = max (Cdst Lt/1ase ], f})rod(t)) ®3) Mo
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Therefore, the FIFO depth between the source and destination stages can be calculated as:

d= max (foroa(t) = feon(t) +1), te€ [0, argtrrnin abs (V - chon(t))l , (4)
7
where the maximum t represents the time required to receive all inputs. Il;,. and Il can be
obtained by running a high-level synthesis process.

This method is effective for optimizing a single connection between two stages. However, in cases
involving multiple stages, the production rate of the previous stages may influence all subsequent
stages. Based on Equation 3, let feon(t) = fproa(t), we can obtain the new I = IlscCast/Csre-
This information is then propagated through the dataflow graph from the top down. In cases where
multiple producers feed into a single consumer, the resulting II is the maximum of them, as the
slowest stage dictates the overall pace. Thus, we can determine the proper FIFO sizes for the entire
dataflow graph. Notably, this optimization only eliminates the first type of dataflow stalling but
does not address potential design issues inside a kernel that might lead to a second type of stalling.

7 IMPLEMENTATION

Allo is implemented with 9K lines of Python code for the frontend ADL and 10K lines of C++ code
for the MLIR dialect and backend code generation. In this section, we provide the implementation
details of the frontend, type system, and codegen.

Frontend. Allo supports both imperative and declarative programming. Unlike several schedule
languages [11, 49] that rely on tracing-based techniques to generate AST and the corresponding IR,
Allo utilizes Python’s AST that provides the ability to handle control flow effectively. Therefore,
Allo can seamlessly accommodate the latest Python language features and remain compatible with
the vast Python library ecosystem. Consequently, Allo kernels can be executed with the native
Python runtime to verify functional correctness, with minimal effort required to migrate a Python
program into the Allo representation.

To accommodate larger designs, such as neural networks, Allo offers direct support for importing
vision models from TorchVision [55] and language models from HuggingFace [93] to achieve maxi-
mum flexibility. Allo here serves as an intermediate language, showing its generality for hardware
accelerator design. We provide a backend for TorchDynamo [73] in PyTorch 2.0 [2], so users can
call torch.compile(model, "allo") to invoke the Allo compiler. We employ torch.fx [76] as the
high-level IR and translate each PyTorch operator into a library function call within Allo. PyTorch-
level optimizations (e.g., operator fusion) are orthogonal to Allo’s optimization. As long as the
model can be represented in torch. fx, Allo can take in and perform hardware-specific customiza-
tions. Compared to writing Allo kernels in Python, this approach eliminates the need for users to
rewrite the model and construct the schedule themselves. The PyTorch frontend further simplifies
programming by allowing users to directly import a model and utilize the high-performance Allo
schedule out-of-the-box. As our IR is constructed on top of MLIR, we also plan to support other
frontends within the MLIR ecosystem [22, 58, 88] in the future.

Type System. Allo is equipped with a type inference engine designed to manage both built-in and
custom data types. The Allo type system differs from the Python native one, as it includes arbitrary
bitwidth integers, fixed-point types, and additional shape information in the type hints. Allo’s
type system consistently prevents overflow for any-bitwidth integers and fixed-point numbers,
promoting data types with larger bitwidths when necessary. Based on the predefined typing rules,
the type inference engine starts from the annotations at the top-level function and tries to infer the
data types of each inner variable. In cases where the inferred data type deviates from the user’s
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annotations, the engine attempts automatic type conversion if it is deemed feasible. Furthermore,
Allo incorporates shape information within the type declaration, facilitating shape inference, and
thus supporting array slicing and automatic broadcasting.

Code Generation. After customizing the program, users can call s.build(<target>) to generate
a valid program for CPU simulation or FPGA bitstream. For the CPU backend, Allo lowers custom
operations and data types to LLVM IR and uses the Just-in-Time execution engine [53] to run the
program. For the FPGA backend, Allo generates HLS C++ code for AMD Vivado/Vitis HLS [100].
Since these tools accept programs written in C/C++, Allo directly generates code from the affine
and memref dialects, bypassing the need for further lowering to lower-level dialects. Annotated
attributes such as pipelining and unrolling are converted into HLS pragmas during code generation.

8 EXPERIMENTS

In this section, we first present our experiment settings and evaluate Allo against several baselines
on a comprehensive benchmark and large neural network models.

8.1 Experiment Settings

For single-kernel evaluation, we compare Allo with ScaleHLS [102], PyLog [40], HeteroCL [49],
Merlin [101], and Dahlia [59], all of which generate HLS C++ code as output. They represent the state-
of-the-art ADLs and compilers that are publicly available. We evaluate them on PolyBench [69],
a C-based benchmark suite consisting of commonly used kernels in scientific computing. All
experiments use the standard medium problem size and float32 data types.

For multi-kernel evaluation, we evaluate three different convolutional neural networks (CNNs):
ResNet-18 [34], VGG [80], and MobileNet [39]. These models are implemented in PyTorch [65] and
imported from the TorchVision [55] library. We run model inference and compare the results with
ScaleHLS, which is the only frontend providing direct model import from PyTorch. Other ADLs
listed in Table 1 do not provide Python bindings [26, 47, 86] and do not generate HLS C++ code for
backend synthesis. Thus, it is challenging to reimplement these designs in their input languages,
especially for large deep neural networks, making a fair comparison difficult.

To demonstrate the practical feasibility of Allo in generating large-scale designs running on real
hardware, we implement an accelerator for the GPT2 [74] model, the only open-sourced model
in the GPT family. GPT2 is a Transformer-based, decoder-only architecture widely used in text
generation tasks, with 355M parameters, 24 hidden layers, 16 heads in the attention module, and
a hidden size of 1024. We quantize the model into 4-bit weight and 8-bit activation (W4A8) for
efficient deployment [30, 95, 106], and verify the results against the quantized model in PyTorch
to maintain accuracy. We run backend synthesis for the design generated by Allo and deploy the
bitstream on an FPGA. For accelerators of such scale, all of the baseline ADLs fail to generate valid
designs that satisfy the resource constraint. Even when attempts are made to reduce the size of
these designs, they still run into errors in the routing stage due to excessive memory access, leading
to lengthy on-board wires. Consequently, we directly compare Allo with DFX [38], a state-of-the-art
Transformer accelerator written in SystemVerilog. We further compare the accelerator with two
GPU devices, the NVIDIA GeForce GTX 1080Ti GPU, a widely-used commercial GPU, and the
NVIDIA Tesla A100 GPU, a high-end GPU commonly employed for large-scale model training
and inference. Note that GPU requires “fake” quantization, so the actual low-bit performance
is lower than the optimized fp16 performance, especially for models with less than one billion
parameters [21]. Therefore, we report the best fp16 performance for GPUs in our experiments.

All the experiments target the AMD Alveo U280 FPGA using Vitis HLS v2022.1 [100]. The U280
FPGA has 4032 BRAM 18K blocks, 9024 DSP slices, 2.6M flip-flops, 1.3M LUTs, and 960 URAM
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Fig. 12. PolyBench latency speedup over Vitis HLS baseline.

blocks. Allo generates the host program for Vitis in OpenCL. AMD Xilinx RunTime (XRT) and
Xilinx Board Utility (xbutil) are used for hardware execution and power measurements. We set
the frequency as 300 MHz for high-level synthesis and 250 MHz for on-board evaluation, since the
large designs may have routing issues when we further increase the frequency.

8.2 Single-Kernel Evaluation

Fig. 12 shows the latency speedup against the Vitis HLS baseline for multiple ADLs. For Vitis HLS,
we do not apply any pragma or hardware customizations other than the default automatic loop
pipelining. Merlin automatically inserts pragmas. ScaleHLS searches for the best optimizations from
the Pareto-optimal frontier with a design space exploration (DSE) engine. We manually design the
best optimization schemes with the available customization primitives for Allo, HeteroCL, PyLog,
and Dahlia. Although PyLog provides automatic pragma insertion, we find manual customizations
achieve better performance. HeteroCL features kernel-level decoupled customizations with a lack of
support for inter-kernel optimizations. PyLog has a limited set of customization primitives compared
to HeteroCL. For example, PyLog supports compute customizations such as loop unroll, pipeline,
reorder, and tiling, but cannot build a custom memory hierarchy. Dahlia focuses on the predictability
of HLS results instead of performance optimizations. For instance, Dahlia guarantees consistent
memory banking and loop unrolling factors but lacks important support for loop pipelining. Allo
delivers up to 1099x latency speedup over Vitis HLS, 1478 over ScaleHLS, 34X over HeteroCL,
837x over PyLog, 775X over Merlin, and 1405X over Dahlia across different cases.

Table 3. Results comparison between Allo and ScaleHLS — Il denotes the loop pipeline initiation interval. We

report the worst Il for designs with multiple pipelined loops. We compare the clock frequency after placement
and routing (PnR). The compilation time only includes the time to generate the HLS code.

Allo ScaleHLS

Benchmark Latency I DSP PnR Lines of Compile | Latency I DSP  PnR Compile

(cycles) Usage Freq. (MHz) Allo Custm. Time (s) | (cycles) Usage Freq. (MHz) Time (s)
atax 49K (] 3.9x) T 403 (1 2.9%) 111 9 1.0 194K 4 141 329 36.1
correlation | 498.7K (| 290.5x) 1 4168 (] 38.2x) 362 19 0.8 1449M 667 109 305 638.8
jacobi-2d | 58.8K (| 183.1x) 1 3968 (T 72.1x) 411 17 0.9 108M 28 55 308 47.9
symm 405.7K (| 427.4x) 1 1208 (] 201.3x) 402 15 1.0 1824M 13 6 397 35
trmm 492.6K (] 78.0x) 1 101 (T 14.4x) 414 12 0.8 38.4M 4 7 382 1.4

We select five designs from the PolyBench suite where Allo outperforms ScaleHLS by a significant
margin. From Table 3, we see although ScaleHLS uses an automatic design-space exploration (DSE)
engine to search for the best optimizations, the pipeline II of the DSE results is still high. A high
pipeline IT hurts the design performance in two ways: (1) the overall latency increases, and (2) HLS
generates large multiplexers due to DSP reuse. These large multiplexers become critical paths and
degrade the clock frequency. The frequency deterioration is especially evident for atax. ScaleHLS
cannot fully pipeline the designs because of loop-carried dependency, excessive memory access, and
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Fig. 13. A spatial architecture for the GPT2 model generated by Allo.

complex nested loop structures of a monolithic kernel. For instance, atax has two matrix-vector
products with loop-carried dependency. We implement the row-wise product discussed in §3.1
with Allo to break the loop-carried dependency and pipeline the inner loop to II=1. jacobi-2d is a
typical stencil kernel with a sliding window data access pattern. ScaleHLS cannot fully pipeline such
cases because it does not support data reuse. Allo builds two-level reuse buffers which drastically
reduces off-chip memory access and fully pipelines the design. For correlation, symm, and trmm,
Allo composes smaller kernels each customized with the aforementioned optimizations and forms a
dataflow-pipelined design. The scale factor of DSP usage and the latency speedup are marked blue
in Table 3. The fully pipelined designs customized with Allo deliver higher performance per DSP
while attaining higher clock frequencies. In addition, Allo improves accelerator design productivity
with fewer lines of code and short compilation time. The decoupled customizations and the kernel
composition are expressed succinctly in less than 20 lines of code with Allo primitives. We present
full examples of customized gemm and jacobi-2d designs in Supplementary Material C.

8.3 Multi-Kernel Evaluation

8.3.1 Convolutional Neural Networks. Table 4 shows the results for CNNs. Allo can achieve up
to 12.7x speedup compared to ScaleHLS while remaining smaller resource usage in most cases.
This is because ScaleHLS does not perform kernel fusion and lacks support for reuse buffers. Allo
incorporates these optimizations to enhance data locality significantly. Additionally, ScaleHLS falls
short in fully exploiting the inter-kernel dataflow of designs, missing opportunities for optimization
with FIFOs. In contrast, Allo excels in efficiently leveraging dataflow characteristics, resulting in
improved performance and resource utilization. Our evaluations showcase the proficiency of Allo
in composing diverse kernels to form a hierarchical structure and optimizing their orchestration,
presenting a great advantage over the challenges encountered by ScaleHLS.

Table 4. Allo and ScaleHLS per-sample latency and FPGA resource usage on CNN models — Vitis HLS
automatically implements the Allo buffers using LUTs thus leading to zero BRAM usage.

Allo ScaleHLS
Benchmark Latency (cyclesy FF LUT BRAM DSP Speedup | Latency (cycles) FF LUT BRAM DSP
VGG16 3.85M 36K 98K 0 440 74X 28.31M 100K 714K 3936 882
MobileNet | 0.26M 57K 128K 0 1942 8.3X 2.17M 93K 518K 6796 1778
ResNet18 8.29M 51K 124K 0 652 12.7X 104.88M 144K 992K 8416 1330

8.3.2 Large Language Models. The accelerator architecture for the GPT2 model is depicted in
Fig. 13. A typical Transformer block consists of an MHA module that leverages scaled dot-product
(SDP) to calculate the attention score and an FEN that cascades two linear layers. LLMs like GPT2
are inherently more complex than CNNs, both in terms of model sizes and the intricate connections
within the MHA module that require splitting the heads and merging the results at the end. Existing
ADLs and compilers often lack explicit memory and dataflow management [40, 49, 102]. Therefore,
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Fig. 14. Left: End-to-end latency on GPT2. Right: Resource utilization of Allo and DFX.

the designs they generate often demand significantly more resources — exceeding twice the on-
chip resources available. In contrast, Allo enables the design and optimization of each submodule
individually, providing control over memory hierarchy and data orchestration strategies. After
verifying their correctness, these submodules can be composed bottom-up using the . compose ()
primitive, and later connected with . relay() primitive to form a complete design.

In this experiment, we consider the generative inference scenario for LLMs in a single-batch low-
latency setting [9]. We adjust the input and output sequence lengths and measure the end-to-end
latency from kernel launch, including the CPU-GPU/FPGA communication time. As depicted in
Fig. 14, Allo consistently outperforms the state-of-the-art accelerator DFX, achieving up to 2.80x
speedup in terms of latency. This is primarily attributed to the highly customized high-performance
systolic array kernels and the efficient composition of multiple kernels within Allo. Allo also utilizes
fewer resources than DFX from the right side of Fig. 14. This is because the spatial architecture
designed in Allo maximally reduces on-chip intermediate buffers. In contrast, DFX employs an
overlay design that reuses hardware units for various operators, thereby increasing resource
utilization. Thus, we can achieve a higher frequency but use fewer resources than DFX. Notably,
the GPT2 model is directly imported using the PyTorch frontend (§7), which does not require users
to rewrite any code for the model. The accelerator fully leverages the Allo customization primitives
with less than 50 lines of customization code to optimize this intricate design, which is much more
productive than implementing it in a hardware description language (HDL).

Furthermore, we extend our performance evaluation to compare with two GPU devices. The
FPGA-based design exhibits a notable performance gap compared to GPUs when the output
sequence length is small. This discrepancy is primarily due to the extensive compute requirements
during the initial stage of generative inference, known as the prefill stage, which aligns more
effectively with throughput-oriented devices such as GPUs [9, 67]. However, as the output sequence
length increases, the FPGA accelerator generated by Allo surpasses GPU performance. In particular,
we achieve a 5.05X speedup compared to the 1080Ti GPU. Even in comparison to a high-end A100
GPU, we still attain a 1.70x speedup for longer output sequences. Additionally, the FPGA execution
requires only 30 watts of measured power, whereas the A100 counterpart demands 96 watts, which
means the Allo accelerator is 5.44X more energy-efficient than the A100 GPU.

9 RELATED WORK

Schedule Languages. Halide [75] first introduces the concept of algorithm and schedule decoupling
in the domain of image processing. TVM [11] extends this idea to deep learning and supports
end-to-end optimization workflow mapping neural network models to different hardware devices.
There are also other DSLs that leverage schedule languages to generate high-performance code in
their specific domains [5, 7, 8, 33, 45, 49, 89, 103]. Allo also adopts this decoupling idea but further
enhances the composability of customizations and schedules. It leverages a hierarchical dataflow
graph to compose smaller designs into larger ones, achieving high performance on large designs.

Recent developments explore program rewriting techniques as an alternative to the traditional
schedule tree, making it possible to handle more imperative programs. For instance, TensorIR [29]
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extends TVM to support a more flexible syntax for describing computations, enabling better
tensorization for TensorCore on GPUs. Exo [41] formalizes program rewrite rules using an effect
system to guarantee the correctness of transformations. The xform dialect [108] in MLIR also
supports rewrites to the programs. While these efforts mainly focus on kernel-level optimizations,
they lack the capability to effectively compose optimizations across multiple kernels, limiting their
scalability to larger and more complex designs.

Accelerator Design Languages (ADLs) and Compilers. Numerous domain-specific languages (DSLs)
have emerged to facilitate hardware designs for different applications [25, 35, 36, 54, 57, 63, 77, 79,
84, 91], providing highly optimized operators tailored for specific domains. Subsequently, various
ADLs have been introduced to address more general-purpose accelerator design [6, 26, 40, 46, 47, 86].
However, their algorithm and customizations are entangled together, leading to reduced productivity
and limited exploration of different customization combinations. HeteroCL [49] decouples hardware
customizations from the algorithm but primarily focuses on single-kernel designs. Several ADLs also
emphasize dataflow optimizations [6, 26, 47, 86, 94], yet they struggle to preserve the hierarchical
structure of dataflow and cannot efficiently compose small kernels into larger designs. Consequently,
they encounter challenges when scaling to accommodate large and complex models.

Recent efforts harness the MLIR toolchain to generate C/C++ HLS code [1, 102, 105]. However,
the existing compiler passes and design space exploration (DSE) engines often fall short in produc-
ing high-performance accelerators, as showcased in Section 8.2. This is primarily because MLIR
lacks inherent support for crucial components like quantized data types, memory, and dataflow
customizations. Lastly, low-level hardware design languages (HDLs) such as Calyx [61] are designed
to facilitate the process of backend synthesis. Filament [60] is also a low-level HDL that leverages
timeline types to reason about timing safety. These efforts are orthogonal to ours, and we plan to
support the CIRCT [14] project as a backend in the future.

10 CONCLUSION AND FUTURE WORK

In this paper, we propose Allo, a composable programming model for accelerator design. Allo
proposes progressive hardware customizations allowing users to apply provable program transfor-
mations step by step, and further introduces composable schedules to combine small kernels into
large designs. Nonetheless, there are several unexplored directions in our ongoing work.

For optimizations within a kernel, we plan to design an autoscheduler that can reduce the
programming efforts required from developers. For composing multiple kernels, the techniques
proposed in §6.5 only address FIFO sizing but do not determine where to establish these connections
automatically. Some kernels may have dependency relations that prevent direct connection with
FIFOs and might require additional buffers to ensure sequential memory access. We plan to develop
automatic bufferization techniques to create buffers between stages and guarantee correctness.

Practical hardware design entails more than just customizing and transforming code; it also
involves connecting components and guiding them through the entire backend synthesis process
to generate a bitstream. Mapping dataflow regions onto multi-die FPGA boards can be challenging.
Several large designs we experimented with for LLMs failed to meet timing requirements, often due
to issues during the routing stage. In order to improve the frequency of the design, it is essential to
explicitly bind dataflow regions to specific hardware regions and minimize cross-die communication.
Although efforts such as AutoBridge [32] aim to decompose designs into smaller parts and assemble
them, they cannot accommodate complex hierarchical dataflow or create double buffers. We plan
to create a build system that can compile the entire design in parallel and efficiently link the
components together, similar to how software linkers work. This approach will help optimize the
hardware design process further and enhance performance.
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