
Allo: A Programming Model for Composable Accelerator

Design

HONGZHENG CHEN∗, Cornell University, USA

NIANSONG ZHANG∗, Cornell University, USA

SHAOJIE XIANG, Cornell University, USA

ZHICHEN ZENG†, University of Science and Technology of China, China

MENGJIA DAI†, University of Science and Technology of China, China

ZHIRU ZHANG, Cornell University, USA

Special-purpose hardware accelerators are increasingly pivotal for sustaining performance improvements
in emerging applications, especially as the bene�ts of technology scaling continue to diminish. However,
designers currently lack e�ective tools and methodologies to construct complex, high-performance accelerator
architectures in a productive manner. Existing high-level synthesis (HLS) tools often require intrusive source-
level changes to attain satisfactory quality of results. Despite the introduction of several new accelerator
design languages (ADLs) aiming to enhance or replace HLS, their advantages are more evident in relatively
simple applications with a single kernel. Existing ADLs prove less e�ective for realistic hierarchical designs
with multiple kernels, even if the design hierarchy is �attened.

In this paper, we introduce Allo, a composable programming model for e�cient spatial accelerator design.
Allo decouples hardware customizations, including compute, memory, communication, and data type from
algorithm speci�cation, and encapsulates them as a set of customization primitives. Allo preserves the
hierarchical structure of an input program by combining customizations from di�erent functions in a bottom-
up, type-safe manner. This approach facilitates holistic optimizations that span across function boundaries. We
conduct comprehensive experiments on commonly-used HLS benchmarks and several realistic deep learning
models. Our evaluation shows that Allo can outperform state-of-the-art HLS tools and ADLs on all test cases
in the PolyBench. For the GPT2 model, the inference latency of the Allo generated accelerator is 1.7× faster
than the NVIDIA A100 GPU with 5.4× higher energy e�ciency, demonstrating the capability of Allo to handle
large-scale designs.

CCS Concepts: • Hardware → High-level and register-transfer level synthesis; • Software and its

engineering→ Compilers.

Additional Key Words and Phrases: Hardware accelerators, schedule language, accelerator design language,
compiler optimization

ACM Reference Format:

Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang. 2024. Allo:
A Programming Model for Composable Accelerator Design. Proc. ACM Program. Lang. 8, PLDI, Article 171
(June 2024), 28 pages. https://doi.org/10.1145/3656401

∗Equal contribution.
†Work was done when Zhichen and Mengjia interned at Cornell.

Authors’ addresses: Hongzheng Chen, Cornell University, USA, hzchen@cs.cornell.edu; Niansong Zhang, Cornell University,

USA, nz264@cornell.edu; Shaojie Xiang, Cornell University, USA, sx233@cornell.edu; Zhichen Zeng, University of Science

and Technology of China, China, zhichenzeng@mail.ustc.edu.cn; Mengjia Dai, University of Science and Technology of

China, China, mjd20021014@mail.ustc.edu.cn; Zhiru Zhang, Cornell University, USA, zhiruz@cornell.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART171

https://doi.org/10.1145/3656401

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

171:2 Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

1 INTRODUCTION

With the recent trends in technology scaling, computer engineers are increasingly turning to
special-purpose hardware accelerators to meet the escalating computational demands of emerging
applications, such as large language models (LLMs) [62, 74, 87]. One architectural paradigm that
has gained popularity is spatial architecture [27, 31, 42, 43, 56, 97], which instantiates specialized
processing engines interconnected through direct wires or streaming bu�ers to increase throughput
and reduce o�-chip memory accesses. While hardware specialization can signi�cantly improve
performance and energy e�ciency, it does entail a substantially higher development e�ort. Speci�-
cally, manually constructing spatial architectures has been notably challenging, particularly with
the traditional register-transfer-level (RTL) design abstraction. Consequently, modern accelerator
designs are increasingly embracing high-level synthesis (HLS) to expedite RTL code generation
and enable rapid exploration of diverse design alternatives [15, 16, 51]. However, to achieve high
performance, HLS users must extensively restructure the source program to guide the tool toward
realizing specialized architectures like systolic arrays. Additionally, they are required to employ
various vendor-speci�c data types and pragmas, diminishing design reusability and portability.

In this context, we identify two major challenges to the productive development of high-
performance accelerators.

Challenge 1: Balancing manual control with automated compiler optimizations. Kernels
manually created by experts deliver high-performance implementations but require substantial
manual e�ort for design and validation. Also, these kernels usually adhere to speci�c data types
and function signatures, which hampers their ability to keep up with rapidly evolving applications
and hardware advancements. There is an increasing use of automated compiler techniques such as
polyhedral compilation to generate on-chip bu�ers [71], streaming data�ow architectures [13], or
systolic arrays [17, 92] from a plain C/C++ code without sophisticated loop annotations. However,
these tools typically do not provide adequate control to the designers to explore various perfor-
mance/cost trade-o�s and customize the memory hierarchies and communication schemes for new
applications. Embracing domain-speci�c languages (DSLs) simpli�es tasks for both programmers
and compilers [25, 28, 35, 57, 84], but most DSLs are inherently tailored for speci�c application
domains, such as image processing, machine learning, and network processing, and they lack
support for general-purpose language constructs essential for accelerator hardware design [51].

Challenge 2: Bridging the gap from single-kernel optimization to complex multi-kernel

accelerator design. In recent trends, DSLs for hardware design are evolving to become more gen-
eralized, incorporating �exible imperative language constructs or being embedded in general host
languages such as C++, Python, or Scala [40, 47, 49, 59, 83]. We refer to this category of program-
ming models as accelerator design languages (ADLs). Inspired by Halide [75] and TVM [11], several
recent ADLs further separate algorithm de�nition from hardware optimizations [49, 83], which
improves both productivity and portability. However, existing ADLs primarily focus on optimizing
single application kernels like convolution and matrix multiplication. In the case of realistic multi-
kernel applications, these ADLs tend to generate monolithic �attened designs, sidestepping the
intricacies of composing distinct kernels, which may present incompatible interfaces or con�icting
optimizations. The inadequate support for composability compromises modularity, debuggability,
and often leads to suboptimal performance, as pre-optimized kernels cannot easily be integrated
into a hierarchical program structure.

To tackle these challenges, we propose Allo, a new programming model for composable design
of high-performance spatial accelerator architectures1. The key design principles of Allo are to

1Allo means “atypical” and re�ects our focus on developing non-traditional hardware architectures. The framework is

open-source and available at https://github.com/cornell-zhang/allo. The dinosaur in the project logo is an Allosaurus.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:3

provide decoupled hardware customization primitives, modularize the accelerator design process,
and facilitate type-safe composition of individual components.
ProgressiveHardware Customizations.We inherit the idea from popular schedule languages like
TVM [11] and Halide [75] to decouple hardware customizations (e.g., caching and pipelining) from
algorithm speci�cations. Each hardware customization is a primitive that performs a rewrite on the
program. We not only decouple the loop-based transformations, but also extend the decoupling to
memory, communication, and data types. Each customization primitive can be veri�ed individually
and progressively applied to a vanilla program to conduct optimizations.
Reusable Parameterized Kernel Templates. Allo supports declaring type variables during
kernel creation and instantiating the kernel when building the hardware executable, which is a
feature absent in most hardware ADLs [40, 47, 49] but is important for building reusable hardware
kernel libraries. Allo introduces a concise grammar for creating kernel templates, eliminating the
need for users to possess complicated metaprogramming expertise.
Composable Schedules. Allo empowers users to construct kernels incrementally from the bottom
up, adding customizations one at a time while validating the correctness of each submodule. Ulti-
mately, multiple schedules are progressively integrated into a complete design using the .compose()
primitive. This approach, unachievable by prior top-down methods, signi�cantly enhances produc-
tivity and debuggability.
Holistic Data�ow Optimizations.We introduce a hierarchical data�ow graph to support the
composition of multiple kernels within a complex design while maintaining the function boundaries.
To ensure the correctness of the interfaces when integrating distinct kernels, we model the interface
uni�cation problem as a type inference problem and solve it e�ciently through data�ow analysis.
Leveraging the hierarchical data�ow graph, we can e�ectively size the streaming bu�ers (FIFOs)
between stages.

To improve the usability of Allo, we have implemented the frontend language in Python, allowing
for a �exible programming style with minimal type annotations. We also present an end-to-
end optimizing compiler for Allo, allowing users to write Python programs and generate the
hardware bitstream. Moreover, we provide an MLIR dialect that supports decoupled hardware
customizations at the IR level and potentially supports multiple di�erent input languages. In
summary, our contributions are as follows:

• We introduce Allo, a composable programming model that enables progressive hardware
customizations, transforming a vanilla program into a high-performance design, with each
step being veri�able.

• We propose composable schedules, enabling users to construct modular hardware accelerators
from the ground up by combining customized kernels and external IPs. A type system for
the memory layout is also proposed to ensure type safety during schedule composition.
Additionally, we introduce holistic data�ow optimizations to ensure functional correctness
and enhance performance further.

• We conduct comprehensive experiments on both realistic benchmarks and large neural
networks. For PolyBench [69], we outperform several state-of-the-art HLS tools and ADLs [40,
49, 59, 102], across all design cases. Furthermore, we demonstrate the applicability of our
programming model in the context of large neural network designs. To the best of our
knowledge, we are the �rst to employ such an ADL for a complete evaluation of LLMs on an
FPGA. Our experimental results reveal a 1.7× speedup and 5.4× higher energy e�ciency on
the GPT2 model compared to the A100 GPU.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:5

1 // Vanilla

2 void gemm(

3 float A[1024][1024], float B[1024][1024],

4 float C[1024][1024]

5) {

6 for (int i = 0; i < 1024; ++i) {

7 for (int j = 0; j < 1024; ++j) {

8 for (int k = 0; k < 1024; ++k) {

9 C[i][j] += A[i][k] * B[k][j];

10 }}}}

11

12 // Inner-product

13 void ip_gemm(

14 float A[1024][1024], float B[1024][1024],

15 float C[1024][1024]

16) {

17 #pragma partition var=A cyclic factor=32 dim=1

18 #pragma partition var=B cyclic factor=32 dim=0

19 for (int i = 0; i < 1024; ++i) {

20 for (int j = 0; j < 1024; ++j) {

21 for (int k = 0; k < 1024; ++k) {

22 #pragma HLS pipeline II=1 Is it achievable?

23 #pragma HLS unroll factor=32

24 C[i][j] += A[i][k] * B[k][j];

25 }}}}

Latency (ms) II Freq. (MHz) Speedup

Vanilla 25074 7 427 1×
Inner-product 17950 128 240 1.4×

Row-wise product 112 1 427 223×

1 // Row-wise product

2 void rp_gemm(

3 float A[1024][1024], float B[1024][1024],

4 float C[1024][1024]

5) {

6 #pragma partition var=B cyclic 32 dim=1

7 #pragma partition var=C cyclic 32 dim=1

8 float buf_C[1024];

9 #pragma partition var=buf_C cyclic 32 dim=0

10 l_i: for (int i = 0; i < 1024; i++) {

11 // 1) initialization

12 l_j_init: for (int j = 0; j < 1024; j++) {

13 #pragma pipeline II=1

14 #pragma unroll factor=32

15 buf_C[j] = C[i][j];

16 }

17 // 2) computation

18 l_k: for (int k = 0; k < 1024; k++) {

19 // reordered reduction loop

20 float a = A[i][k];

21 l_j: for (int j = 0; j < 1024; j++) {

22 #pragma pipeline II=1

23 #pragma unroll factor=32

24 buf_C[j] += a * B[k][j];

25 }}

26 // 3) write-back

27 l_j_back: for (int j = 0; j < 1024; j++) {

28 #pragma pipeline II=1

29 #pragma unroll factor=32

30 C[i][j] = buf_C[j];

31 }}}

Fig. 2. HLS code for three di�erent implementations of GEMM kernels — The loop unrolling factors are set

as 32. The latency, II, and frequency results are obtained from the HLS report.

multiple banks for array � and � for parallel access using the provided primitives (Lines 15-17).
Allo utilizes MLIR as the intermediate representation (IR) and provides an MLIR dialect to decouple
these hardware customizations at the IR level, as shown in Fig. 1b.
Lastly, we call s.build (Line 20) to lower the MLIR module to the target backend, generating

the HLS code as depicted in Fig. 1c. The inserted pragmas align with the schedule in the frontend
program, and the generated accelerator executes the GEMM kernel with a parallelism factor of 8.

3 PITFALLS IN HLS-BASED HARDWARE ACCELERATOR DESIGN

In this section, we delve deeper into the limitations of existing HLS tools, which motivates the design
of Allo. We identify two common pitfalls in HLS and conduct several experiments to demonstrate
these issues. For the experiments, we use a widely used commercial HLS tool and target the AMD
Alveo U280 FPGA [96] with a frequency set to 300MHz.

3.1 Single-Kernel Design

We still leverage the GEMM kernel as an example. Even in this simple case, achieving high perfor-
mance is not straightforward.

Pitfall I: Simply inserting pragmas cannot lead to high performance. As depicted on the
left in Fig. 2, an HLS programmer initially de�nes a vanilla �oating-point GEMM kernel of size
1024× 1024, consisting of a loop nest of three levels. If this code is directly fed to HLS, the resulting
latency is 25 074ms even though the HLS tool attempts to automatically pipeline the inner loop.
To further exploit the parallelism of the kernel, an intuitive idea is to unroll and pipeline the

innermost loop. Programmers can specify the target initiation interval (II) of the design using
#pragma pipeline. Given that the innermost loop is unrolled with a factor of 32, arrays A and B

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

171:6 Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

need to be partitioned into multiple banks to facilitate parallel access. Surprisingly, the latency
does not reduce to 1/32 but only 70% of the latency of the original design, with an unfavorable
increase in II. This is primarily due to a loop-carried dependency in the �oating-point accumulation
of C[i][j], which requires more than one cycle to �nish, preventing e�ective pipelining with an
II equal to one [20]. Furthermore, the increased II leads to a reduced frequency, potentially causing
routing issues during backend synthesis.
To resolve this issue, we can change the loop order to avoid updating the same matrix element

in consecutive iterations. As shown on the right of Fig. 2, by swapping the loops of j and k (Lines
18-25), we transform the accumulation pattern into row-wise product, ensuring that adjacent
iterations update di�erent elements of the output matrix. Additionally, a bu�er of size 1024 is
introduced to store intermediate results (Line 8), which are written back to memory only after
iterating through one row. As a result, we can achieve a 112ms latency with II=1, which achieves a
223× speedup compared to the vanilla implementation.

This example underscores the importance of source-level transformation in HLS-based hardware
accelerator design. Adding pragmas alone does not result in high performance; instead, it requires
careful program restructuring to enable desired optimizations. Unfortunately, even with the latest
design-space exploration (DSE) techniques in HLS compilers [81, 82, 102, 104], identifying such
optimizations may prove challenging. These DSE methods commonly search for parameters associ-
ated with loop splitting, pipelining, or unrolling, yet they often lack support for crucial memory
customizations, as discussed in §8.2. Allo resolves this issue by providing memory customization
primitives, allowing users to insert bu�ers at a given axis (§5.1). A full Allo example can be found
in Supplementary Material C.
Further optimizing a GEMM kernel may adopt a systolic array architecture, which requires

streaming connections between multiple processing elements and constructing complex I/O net-
works to achieve high performance. These optimizations require substantial code rewriting and also
cannot be accomplished by simple pragma insertion. For example, a high-performance 2×2 systolic
array for GEMM already requires more than 1,100 lines of C++ code [92], which demonstrates the
complexity of single-kernel HLS design.

3.2 Multi-Kernel Design

Once we have optimized a single-kernel GEMM design, the next challenge is to employ it as a
fundamental building block for large designs. In this context, we aim to construct a two-layer feed-
forward network (FFN) module, a component commonly used in Transformer models [23, 74, 90].
However, it remains a non-trivial task even though we already have an optimized GEMM kernel.

Pitfall II: Simply calling optimized kernels does not guarantee a high-quality design. As
depicted on the left of Fig. 3, within the top-level function, we input an initial tensor X and two
weight parameters, W_A and W_B, followed by the output being written to Y (Lines 7-10). In the
main body, we create an intermediate tensor Z (Line 11), reuse the rp_gemm kernel de�ned in Fig. 2,
and invoke it twice to perform a linear layer computation (Lines 12-13). This approach intuitively
chains two function calls together.
Based on the results in Fig. 2, cascading two GEMM kernels should yield a latency of 224ms,

since a single-kernel GEMM has a latency of 112ms. However, the HLS report in Fig. 3 indicates a
latency of 280ms, which is 1.25× slower than expected. Furthermore, reusing the GEMM kernel
for these two function calls should maintain resource usage at the same level as a single kernel,
yet the HLS report indicates a doubling of resource utilization. Closer examination reveals that
HLS generates two distinct copies of the GEMM kernel, named rp_gemm and rp_gemm_1, with
rp_gemm_1 exhibiting a worse latency than rp_gemm. The root cause is the function interface,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:7

1 // Simple cascade

2 void rp_gemm(

3 float A[1024][1024], float B[1024][1024],

4 float C[1024][1024]

5) { /* See Fig. 2 */ }

6

7 void top(float X[1024][1024],

8 float W_A[1024][1024],

9 float W_B[1024][1024],

10 float Y[1024][1024]) {

11 float Z[1024][1024];

12 rp_gemm(X, W_A, Z);

13 rp_gemm(Z, W_B, Y);

14 }

Latency (ms) BRAM DSP FF LUT

Simple cascade 280 1984 320 42761 24896
+ rp_gemm 112 64 160 21391 11765
+ rp_gemm_1 168 64 160 21364 11856

Interface uni. 224 1920 160 21377 16068
+ rp_gemm 112 64 160 21372 11913

1 // Interface unification

2 void rp_gemm(

3 float A[1024][1024], float B[1024][1024],

4 float C[1024][1024]

5) {

6 // explicitly partition A

7 #pragma partition var=A cyclic factor=32 dim=1

8 #pragma partition var=B cyclic factor=32 dim=1

9 #pragma partition var=C cyclic factor=32 dim=1

10 // ...

11 }

12

13 void top(float X[1024][1024],

14 float W_A[1024][1024],

15 float W_B[1024][1024],

16 float Y[1024][1024]) {

17 #pragma allocation instances=rp_gemm limit=1

18 float Z[1024][1024];

19 rp_gemm(X, W_A, Z);

20 rp_gemm(Z, W_B, Y);

21 }

Fig. 3. HLS code for cascading two GEMM kernels — Changes are highlighted in yellow.

where, in Fig. 3, we partition the second and third arguments (A and B) for the rp_gemm function.
These two arguments correspond to the arrays W_A and Z in the top-level function. However, Z,
already a partitioned array, is once again passed into rp_gemm as the �rst argument, triggering
partitioning of the �rst argument of the rp_gemm function. This divergence in partitioning leads
HLS to view the two rp_gemm kernels as distinct, with the �rst kernel partitioning the latter two
arguments, while the second kernel partitions all three arguments. Thus, two di�erent copies of
the rp_gemm kernel are generated. Consequently, two distinct copies of the rp_gemm kernel are
generated, and an unintended partition scheme causes HLS to make incorrect assumptions about
loop variable dependencies, resulting in increased latency.

To rectify this issue and ensure proper sharing of function units while generating a design with
the anticipated latency, we work towards unifying the function interface. As shown on the right of
Fig. 3, we explicitly partition the �rst argument of the rp_gemm kernel, thereby ensuring that all
inputs and outputs are partitioned consistently. Additionally, we enforce an allocation pragma
to ensure the generation of only one function instance. As a result, HLS produces a single copy of
the rp_gemm kernel, as indicated by the resource usage in the bottom-left of Fig. 3. Moreover, the
latency is twice that of a single-kernel latency, totaling 224ms, aligning with our expectations.
This example highlights the inherent complexity of composing multiple kernels, requiring

careful consideration of appropriate interfaces for each kernel and e�ective connection through
intermediate bu�ers. Allo introduces composable schedules and holistic optimizations to resolve
this issue. Further insights will be discussed in §6.

4 ALLO OVERVIEW

Recently, various accelerator design languages (ADLs) have been proposed to mitigate the lim-
itations of HLS. Some of these approaches expose hardware customizations in a higher-level
language, requiring users to follow speci�c coding styles and relying on compilers to generate
high-performance implementations [26, 47, 86]. While this approach can partially resolve Pitfall
I if the compiler is able to generate a proper memory hierarchy for the design, it requires users
to write code in a functional language or in their custom formats, subsequently generating HDL
code in Verilog or Chisel [4]. This imposes a signi�cant burden on programmers to translate their
applications and debug in these languages. Conversely, other ADLs are built on top of the original
HLS C++ toolchain [40, 49, 59]. HeteroCL [49] introduces the concept of separation of concerns in

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:9

Table 2. A partial list of the customization primitives supported by Allo.

Compute Customizations Memory Customizations

s.split(i,v) Split loop i into a two-level nested loop
with v as the bound of the inner loop.

s.buffer_at(A,i) Create an intermediate bu�er at loop i to
store the results of array A.

s.fuse(*l) Fuse multiple sub-loops l in the same nest
loop into one.

s.reuse_at(A,i) Create a bu�er storing the values of array
A, where the values are reused at loop i.

s.reorder(*l) Switch the order of sub-loops l in the same
nest loop.

s.partition(A,d,v) Cyclic/Block partition dimension d of array
A with a factor v.

s.compute_at

(Op1,Op2,i)

Merge loop i of the operation Op1 to the
corresponding loop level in operation Op2.

s.pack(A,i,v) Pack dimension i of array A into words
with a factor v.

s.unroll(i,v) Unroll loop i by factor v.

s.unfold(i) Unfold loop i as hardware instances. Communication Customizations

s.pipeline(i,v) Schedule loop i in a pipeline manner with
a target initiation interval v.

s.relay(A,Dst,v) Connect array A to destination Dst with a
FIFO of depth v.

designs for diverse backend targets. Lastly, we generate LLVM IR [52] for CPU simulation and
HLS C/C++ [100] for hardware synthesis (§7). Notice most of the hardware customizations are
target-independent, allowing our compilation �ow to target ASIC designs as well. We plan to
integrate the CIRCT [14] project as our backend to support custom circuit generation.

5 CUSTOMIZABLE HARDWARE TRANSFORMATIONS

In this section, we use a systolic array [48] as an example to illustrate the language features of Allo,
showcasing its capabilities in handling complex transformations for a single kernel design. The
systolic array is a prevalent spatial architecture extensively employed in deep learning accelerators
such as Google TPUs [43] and AWS Inferentia [3]. It comprises a set of processing elements (PEs)
that iteratively execute repetitive operations. By reusing data across these PEs, it minimizes o�-chip
memory access, resulting in high performance with minimal energy consumption.

5.1 Schedule Construction

Given the initial algorithm de�nition in Lines 2-6 of Fig. 5, we transform the algorithm speci�cation
into a tangible hardware implementation. Here, we formally de�ne a schedule S of a program %0 as
a sequence of transformations (?8)

#
8=1 such that

%0
?1
⇝ %1

?2
⇝ · · ·

?#
⇝ %# , (1)

where
?8
⇝ denotes a program rewrite with a primitive ?8 , and # is the number of customization

primitives in this schedule.
Table 2 lists the primitives supported by Allo. The compute customizations transform the loops

and attach necessary attributes, which inherit the idea from existing schedule languages [11,
41, 49, 75]. Notice instead of implementing monolithic compiler passes for the primitives [11,
49, 75], Allo adopts an approach akin to Exo [41], which treats primitives as program rewrites,
ensuring correctness for each transformation. Users can print the intermediate module after
each customization to inspect real-time program transformations, providing deeper insights into
the customization primitives. Moreover, we develop an Allo-MLIR dialect to implement those
customizations primitives at the IR level, with each primitive corresponding to an operation in the
Allo dialect. It enables Allo to serve as an intermediate language and support di�erent frontends. In
the subsequent discussion, we will primarily focus on memory and communication customizations,
which distinguish Allo from other ADLs.

As illustrated in Fig. 5, users can create a schedule by invoking the allo.customize function
and progressively apply primitives to the newly-formed schedule (Line 9). Each primitive exactly
does one transformation as shown on the right of Fig. 5. We start by creating intermediate bu�ers
for A and B arrays (Lines 10-11), which creates a line bu�er for peripheral PEs to e�ciently load

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:11

1 # Algorithm specification

2 def gemm1(A: float[M, K], B: float[K, N],

3 C: float[M, N]):

4 ...

5 def gemm2(C: float[M, N], D: float[N, P],

6 E: float[M, P]):

7 ...

8 def two_mm(A: float[M, K], B: float[K, N],

9 D: float[N, P], E: float[M, P]):

10 C: float[M, N]

11 gemm1(A, B, C)

12 gemm2(C, D, E)

13 # Schedule construction

14 s_orig = allo.customize(two_mm)

15 # Duplicate schedule for verification

16 s = allo.customize(two_mm)

17 s.reorder("gemm2:k", "gemm2:j")

18 s.buffer_at(s.C, axis="gemm2:i")

19 s.relay(s.A, "gemm2")

20 s.reorder("gemm1:j", "gemm1:i")

21 # 1. Functional simulation testing

22 f = s.build()

23 # ... Initialize NumPy arrays (omitted)

24 f(np_A, np_B, np_D, np_E)

25 # 2. Formal equivalence checking

26 allo.verify(s, s_orig)

(a) Allo code snippet

1 void gemm1(float A[M][K], float B[K][N], stream C) {

2 for (int j = 0; j < N; j++) {

3 for (int i = 0; i < M; i++) {

4 float sum = 0;

5 for (int k = 0; k < K; k++) {

6 sum += A[i][k] * B[k][j];

7 C.write(sum);

8 }}}}

9 void gemm2(stream C, float D[N][P], float E[M][P]) {

10 float buf_E[N];

11 for (int i = 0; j < M; j++) {

12 // ... Initialize buf_E (omitted)

13 for (int k = 0; k < N; k++) {

14 // A mismatch between read and write

15 float c = C.read();

16 for (int j = 0; j < P; j++) {

17 buf_E[j] += c * D[k][j];

18 }}

19 // ... Write-back to E (omitted)

20 }}

21 void two_mm(float A[M][K], float B[K][N],

22 float D[N][P], float E[M][P]) {

23 stream C_fifo;

24 gemm1(A, B, C_fifo);

25 gemm2(C_fifo, D, E);

26 }

(b) Corresponding HLS C++ code snippet

Fig. 6. A buggy Allo example with data streaming and loop reordering — The two matrix multiplications are

computed back-to-back. The code marked in red indicates bugs in the program.

checker [70] to formally verify the equivalence of the programs before and after customizations,
provided that the programs have statically interpretable control-�ow (SICF). SICF requires the
problem size to be known at compile-time and does not support parametric loop nest analysis.

Fig. 6 shows a data access order bug caused by incorrect customizations. In this example, Lines
17-18 of Fig. 6a transform the second matrix multiplication from an inner-product to a row-wise
product, which reads the input C in a row-major order. However, Line 20 reorders the �rst matrix
multiplication loops to send the output C in a column-major order. This discrepancy in data receiving
and sending orders violates the requirement of in-order access on a stream FIFO. The .verify()
on Line 26 invokes the equivalence checker which takes the schedule before (Line 14) and after
customizations (Line 20) to formally verify the program semantic equivalence. In this example,
the customizations break the accelerator design and cause a semantic di�erence in the customized
code. The di�erence in the symbolic representation is detected and reported by the equivalence
checker to facilitate debugging. Notice the veri�cation can be conducted after each primitive is
applied, ensuring the correctness of the transformations at each step.

5.3 Parameterized Kernel Templates

We initially constructed a systolic array with �xed dimensions and data types, which lacks �exibility
when handling variable-sized input matrices. In the following, we leverage the previously de�ned
systolic array to introduce a tiled design that accommodates inputs of arbitrary sizes.

Allo provides a user-friendly parameterization template to facilitate polymorphism. As illustrated
in Fig. 7, we parameterize the systolic function with type parameters. Users can de�ne the
function signature using the syntax def <func>[<type params>](<args>). Again, given Allo’s
decoupling of data types from the algorithm speci�cation, both data types and shapes can serve as
type parameters. Allo permits additional constraints for parameterized data types. For instance,
Ty: (int32, float32) speci�es that the data type Ty must be either int32 or float32. If any
other data types are used, an error is raised. Within the tiled_systolic function, we partially

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

171:14 Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

Algorithm 1: Composing multiple schedules with schedule replay

Data: Two schedules S% and S& for programs % and &
Result: Composition of the schedules S>DC = S& ◦ S% and the output program % ′ after applying S>DC

1 Initialize S>DC = S% ;

2 foreach primitive ?8 ∈ S& do

3 Update the arguments of ?8 to refer to the functions and arguments in program % ;

4 if ?8 con�icts with primitives in S>DC then

5 Composition fails, raise an error;

6 Append ?8 to S>DC ;

7 Apply each primitive in S>DC to the program % to obtain % ′

apply to the correct function and operations (Line 3). Before applying a new primitive, we verify
that it will not con�ict with previously applied primitives (Line 4). For compute customizations,
con�icts occur only when the same operation is targeted. In such cases, an error is raised because the
operation has already been transformed (Line 5). Con�icts related to .partition() and .relay()

will be discussed further in §6.4. The primitive is then appended to the new schedule (Line 6).
Primitives are applied to the program % only when all the sub-schedules are integrated into
the top-level function and are ready for backend executable construction (Line 7), which saves
redundant transformation time. The resulting S>DC can be used for subsequent composition. This
progressive composition process allows us to combine small designs step by step, culminating in
the construction of a large design, with each submodule thoroughly tested, as discussed in §5.2.

6.4 Memory Layout Composition

When the customization primitives only a�ect the inner computation, it is straightforward to
replay them with Algorithm 1. However, complexity arises when schedules overlap through the
function interface. If a sub-schedule changes the function interface, the parent program must also
change to avoid con�icts, as discussed in § 3.2. It is important to maintain the consistency between
function call arguments and actual function de�nitions. Array partitioning is an example of this
challenge. In Fig. 5, when the schedule is integrated into Fig. 7, the local_A, local_B, and local_C
arrays should also be partitioned. This is because these arrays are partitioned within the systolic
function and are passed into the function as arguments.
Since hardware memory partitioning essentially alters data layout, we can explicitly represent

data layouts as types [53, 66] and conduct analysis within this type system. As shown in the left
side of Fig. 10, we consider the partition type of an # -dimensional array. The partition type g is a
composite type consisting of the base type ĝ for each dimension. Each base type can assume one of
four choices. ⊥ means fully partitioning this dimension, allowing parallel access to all elements. ⊤
represents no partition in this dimension, resulting in only one memory bank on the hardware.
CU represents cyclic partitioning with a factor of U , where the elements in the original array are
interleaved. BU denotes block partitioning with a factor of U , where the original array is divided
into consecutive blocks. Denote B8 as the size of dimension 8 , and U should be an integer factor of
B8 (not including 1 and itself). We can construct subtype relations for these base types. If - <: . ,
it means the code expecting a memory with partition type . is also compatible with a memory
with the partition type - . For example, ⊥ is a subtype of C2 because complete partitioning already
partitions the array into cyclic with a factor of 2. If a kernel requires an array to be cyclic partitioned
into two banks to access the elements in parallel, it is also �ne to pass in a fully partitioned array
since it o�ers more memory banks. Notably, this subtyping relation is covariant, which means that
the subtyping relation of base types ĝ applies to composite types g as well. This subtyping relation

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:17

Therefore, the FIFO depth between the source and destination stages can be calculated as:

3 = max
C

(

5?A>3 (C) − 52>= (C) + 1
)

, C ∈

[

0, argmin
C ′

abs

(

+ −
∑

C ′

52>= (C)

)]

, (4)

where the maximum C represents the time required to receive all inputs. � �BA2 and � �3BC can be
obtained by running a high-level synthesis process.

This method is e�ective for optimizing a single connection between two stages. However, in cases
involving multiple stages, the production rate of the previous stages may in�uence all subsequent
stages. Based on Equation 3, let 52>= (C) = 5?A>3 (C), we can obtain the new � � ′

3BC
= � �BA2�3BC/�BA2 .

This information is then propagated through the data�ow graph from the top down. In cases where
multiple producers feed into a single consumer, the resulting � � is the maximum of them, as the
slowest stage dictates the overall pace. Thus, we can determine the proper FIFO sizes for the entire
data�ow graph. Notably, this optimization only eliminates the �rst type of data�ow stalling but
does not address potential design issues inside a kernel that might lead to a second type of stalling.

7 IMPLEMENTATION

Allo is implemented with 9K lines of Python code for the frontend ADL and 10K lines of C++ code
for the MLIR dialect and backend code generation. In this section, we provide the implementation
details of the frontend, type system, and codegen.

Frontend. Allo supports both imperative and declarative programming. Unlike several schedule
languages [11, 49] that rely on tracing-based techniques to generate AST and the corresponding IR,
Allo utilizes Python’s AST that provides the ability to handle control �ow e�ectively. Therefore,
Allo can seamlessly accommodate the latest Python language features and remain compatible with
the vast Python library ecosystem. Consequently, Allo kernels can be executed with the native
Python runtime to verify functional correctness, with minimal e�ort required to migrate a Python
program into the Allo representation.

To accommodate larger designs, such as neural networks, Allo o�ers direct support for importing
vision models from TorchVision [55] and language models from HuggingFace [93] to achieve maxi-
mum �exibility. Allo here serves as an intermediate language, showing its generality for hardware
accelerator design. We provide a backend for TorchDynamo [73] in PyTorch 2.0 [2], so users can
call torch.compile(model,"allo") to invoke the Allo compiler. We employ torch.fx [76] as the
high-level IR and translate each PyTorch operator into a library function call within Allo. PyTorch-
level optimizations (e.g., operator fusion) are orthogonal to Allo’s optimization. As long as the
model can be represented in torch.fx, Allo can take in and perform hardware-speci�c customiza-
tions. Compared to writing Allo kernels in Python, this approach eliminates the need for users to
rewrite the model and construct the schedule themselves. The PyTorch frontend further simpli�es
programming by allowing users to directly import a model and utilize the high-performance Allo
schedule out-of-the-box. As our IR is constructed on top of MLIR, we also plan to support other
frontends within the MLIR ecosystem [22, 58, 88] in the future.

Type System. Allo is equipped with a type inference engine designed to manage both built-in and
custom data types. The Allo type system di�ers from the Python native one, as it includes arbitrary
bitwidth integers, �xed-point types, and additional shape information in the type hints. Allo’s
type system consistently prevents over�ow for any-bitwidth integers and �xed-point numbers,
promoting data types with larger bitwidths when necessary. Based on the prede�ned typing rules,
the type inference engine starts from the annotations at the top-level function and tries to infer the
data types of each inner variable. In cases where the inferred data type deviates from the user’s

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

171:18 Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

annotations, the engine attempts automatic type conversion if it is deemed feasible. Furthermore,
Allo incorporates shape information within the type declaration, facilitating shape inference, and
thus supporting array slicing and automatic broadcasting.

Code Generation. After customizing the program, users can call s.build(<target>) to generate
a valid program for CPU simulation or FPGA bitstream. For the CPU backend, Allo lowers custom
operations and data types to LLVM IR and uses the Just-in-Time execution engine [53] to run the
program. For the FPGA backend, Allo generates HLS C++ code for AMD Vivado/Vitis HLS [100].
Since these tools accept programs written in C/C++, Allo directly generates code from the affine
and memref dialects, bypassing the need for further lowering to lower-level dialects. Annotated
attributes such as pipelining and unrolling are converted into HLS pragmas during code generation.

8 EXPERIMENTS

In this section, we �rst present our experiment settings and evaluate Allo against several baselines
on a comprehensive benchmark and large neural network models.

8.1 Experiment Se�ings

For single-kernel evaluation, we compare Allo with ScaleHLS [102], PyLog [40], HeteroCL [49],
Merlin [101], andDahlia [59], all of which generateHLSC++ code as output. They represent the state-
of-the-art ADLs and compilers that are publicly available. We evaluate them on PolyBench [69],
a C-based benchmark suite consisting of commonly used kernels in scienti�c computing. All
experiments use the standard medium problem size and float32 data types.

For multi-kernel evaluation, we evaluate three di�erent convolutional neural networks (CNNs):
ResNet-18 [34], VGG [80], and MobileNet [39]. These models are implemented in PyTorch [65] and
imported from the TorchVision [55] library. We run model inference and compare the results with
ScaleHLS, which is the only frontend providing direct model import from PyTorch. Other ADLs
listed in Table 1 do not provide Python bindings [26, 47, 86] and do not generate HLS C++ code for
backend synthesis. Thus, it is challenging to reimplement these designs in their input languages,
especially for large deep neural networks, making a fair comparison di�cult.

To demonstrate the practical feasibility of Allo in generating large-scale designs running on real
hardware, we implement an accelerator for the GPT2 [74] model, the only open-sourced model
in the GPT family. GPT2 is a Transformer-based, decoder-only architecture widely used in text
generation tasks, with 355M parameters, 24 hidden layers, 16 heads in the attention module, and
a hidden size of 1024. We quantize the model into 4-bit weight and 8-bit activation (W4A8) for
e�cient deployment [30, 95, 106], and verify the results against the quantized model in PyTorch
to maintain accuracy. We run backend synthesis for the design generated by Allo and deploy the
bitstream on an FPGA. For accelerators of such scale, all of the baseline ADLs fail to generate valid
designs that satisfy the resource constraint. Even when attempts are made to reduce the size of
these designs, they still run into errors in the routing stage due to excessive memory access, leading
to lengthy on-board wires. Consequently, we directly compare Allo with DFX [38], a state-of-the-art
Transformer accelerator written in SystemVerilog. We further compare the accelerator with two
GPU devices, the NVIDIA GeForce GTX 1080Ti GPU, a widely-used commercial GPU, and the
NVIDIA Tesla A100 GPU, a high-end GPU commonly employed for large-scale model training
and inference. Note that GPU requires “fake” quantization, so the actual low-bit performance
is lower than the optimized fp16 performance, especially for models with less than one billion
parameters [21]. Therefore, we report the best fp16 performance for GPUs in our experiments.

All the experiments target the AMD Alveo U280 FPGA using Vitis HLS v2022.1 [100]. The U280
FPGA has 4032 BRAM 18K blocks, 9024 DSP slices, 2.6M �ip-�ops, 1.3M LUTs, and 960 URAM

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

171:22 Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

extends TVM to support a more �exible syntax for describing computations, enabling better
tensorization for TensorCore on GPUs. Exo [41] formalizes program rewrite rules using an e�ect
system to guarantee the correctness of transformations. The xform dialect [108] in MLIR also
supports rewrites to the programs. While these e�orts mainly focus on kernel-level optimizations,
they lack the capability to e�ectively compose optimizations across multiple kernels, limiting their
scalability to larger and more complex designs.

Accelerator Design Languages (ADLs) and Compilers. Numerous domain-speci�c languages (DSLs)
have emerged to facilitate hardware designs for di�erent applications [25, 35, 36, 54, 57, 63, 77, 79,
84, 91], providing highly optimized operators tailored for speci�c domains. Subsequently, various
ADLs have been introduced to address more general-purpose accelerator design [6, 26, 40, 46, 47, 86].
However, their algorithm and customizations are entangled together, leading to reduced productivity
and limited exploration of di�erent customization combinations. HeteroCL [49] decouples hardware
customizations from the algorithm but primarily focuses on single-kernel designs. Several ADLs also
emphasize data�ow optimizations [6, 26, 47, 86, 94], yet they struggle to preserve the hierarchical
structure of data�ow and cannot e�ciently compose small kernels into larger designs. Consequently,
they encounter challenges when scaling to accommodate large and complex models.
Recent e�orts harness the MLIR toolchain to generate C/C++ HLS code [1, 102, 105]. However,

the existing compiler passes and design space exploration (DSE) engines often fall short in produc-
ing high-performance accelerators, as showcased in Section 8.2. This is primarily because MLIR
lacks inherent support for crucial components like quantized data types, memory, and data�ow
customizations. Lastly, low-level hardware design languages (HDLs) such as Calyx [61] are designed
to facilitate the process of backend synthesis. Filament [60] is also a low-level HDL that leverages
timeline types to reason about timing safety. These e�orts are orthogonal to ours, and we plan to
support the CIRCT [14] project as a backend in the future.

10 CONCLUSION AND FUTURE WORK

In this paper, we propose Allo, a composable programming model for accelerator design. Allo
proposes progressive hardware customizations allowing users to apply provable program transfor-
mations step by step, and further introduces composable schedules to combine small kernels into
large designs. Nonetheless, there are several unexplored directions in our ongoing work.
For optimizations within a kernel, we plan to design an autoscheduler that can reduce the

programming e�orts required from developers. For composing multiple kernels, the techniques
proposed in §6.5 only address FIFO sizing but do not determine where to establish these connections
automatically. Some kernels may have dependency relations that prevent direct connection with
FIFOs and might require additional bu�ers to ensure sequential memory access. We plan to develop
automatic bu�erization techniques to create bu�ers between stages and guarantee correctness.
Practical hardware design entails more than just customizing and transforming code; it also

involves connecting components and guiding them through the entire backend synthesis process
to generate a bitstream. Mapping data�ow regions onto multi-die FPGA boards can be challenging.
Several large designs we experimented with for LLMs failed to meet timing requirements, often due
to issues during the routing stage. In order to improve the frequency of the design, it is essential to
explicitly bind data�ow regions to speci�c hardware regions andminimize cross-die communication.
Although e�orts such as AutoBridge [32] aim to decompose designs into smaller parts and assemble
them, they cannot accommodate complex hierarchical data�ow or create double bu�ers. We plan
to create a build system that can compile the entire design in parallel and e�ciently link the
components together, similar to how software linkers work. This approach will help optimize the
hardware design process further and enhance performance.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:23

ACKNOWLEDGMENTS

This work was supported in part by ACE, one of the seven centers in JUMP 2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA and NSF Awards #2019306 and #2118709,
and an Intel ISRA award. We gratefully acknowledge the anonymous reviewers, Prof. Adrian
Sampson, Prof. Louis-Noël Pouchet, Rachit Nigram, and Jialu Bao for their valuable feedback on
the initial draft of this work. We thank Jiahao Zhang for providing a reference LLM accelerator
implementation. We also thank Jin Yang, Jeremy Casas, and Zhenkun Yang for their insightful
feedback on the initial version of the Allo framework.

ARTIFACT

The Allo code is open-source and available at the allo repository on GitHub. Detailed instructions
for reproducibility and reusability are provided in an archived version on Zenodo [10] and at the
allo-pldi24-artifact repository on GitHub.

REFERENCES

[1] Nicolas Bohm Agostini, Serena Curzel, Je� Jun Zhang, Ankur Limaye, Cheng Tan, Vinay Amatya, Marco Minutoli,

Vito Giovanni Castellana, Joseph Manzano, David Brooks, Gu-Yeon Wei, and Antonino Tumeo. 2022. Bridging Python

to Silicon: The SODA Toolchain. IEEE Micro 42, 5 (2022), 78–88. https://doi.org/10.1109/MM.2022.3178580

[2] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, et al. 2024. PyTorch 2:

Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation. In Proceedings

of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’24). Association for Computing Machinery, New York, NY, USA, 317–335.

[3] AWS. 2023. Inferentia Architecture. https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-

hardware/inferentia.html.

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek,

and Krste Asanović. 2012. Chisel: Constructing Hardware in a Scala Embedded Language. In Proceedings of the

49th Annual Design Automation Conference. Association for Computing Machinery, New York, NY, USA, 1216–1225.

https://doi.org/10.1145/2228360.2228584

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang,

Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast

and Portable Code. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization

(Washington, DC, USA) (CGO’19). IEEE Press, 193–205.

[6] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo Schneider, and Torsten Hoe�er. 2019. Stateful

Data�ow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures. In

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Denver,

Colorado) (SC’19). Association for Computing Machinery, New York, NY, USA, Article 81, 14 pages. https://doi.org/

10.1145/3295500.3356173

[7] Hongzheng Chen, Minghua Shen, Nong Xiao, and Yutong Lu. 2021. Krill: A Compiler and Runtime System for

Concurrent Graph Processing. In Proceedings of the International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC’21). Association for Computing Machinery, New York, NY, USA, Article 51, 16 pages.

https://doi.org/10.1145/3458817.3476159

[8] Hongzheng Chen, Cody Hao Yu, Shuai Zheng, Zhen Zhang, Zhiru Zhang, and Yida Wang. 2024. Slapo: A Schedule

Language for Progressive Optimization of Large Deep Learning Model Training. In Proceedings of the 29th ACM

International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (La

Jolla, CA, USA) (ASPLOS’24). Association for Computing Machinery, New York, NY, USA.

[9] Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Niansong Zhang, Yaohui Cai, and Zhiru

Zhang. 2024. Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference.

ACM Trans. Recon�gurable Technol. Syst. (2024).

[10] Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang. 2024. Artifact for

Allo: A Programming Model for Composable Accelerator Design. https://doi.org/10.5281/zenodo.10961342.

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan

Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End

Optimizing Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on Operating Systems Design

and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association, USA, 579–594.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

171:24 Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

[12] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. Learning to Optimize Tensor Programs. In Proceedings of the 32nd International Conference on

Neural Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY, USA,

3393–3404.

[13] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with Optimized Data�ow Architecture. In

2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Institute of Electrical and Electronic

Engineers, New York, NY, USA, 1–8. https://doi.org/10.1145/3240765.3240850

[14] CIRCT. 2024. CIRCT: Circuit IR Compilers and Tools. https://github.com/llvm/circt.

[15] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendor�er, Peichen Pan, Kees Vissers, and Zhiru Zhang. 2022. FPGA HLS

Today: Successes, Challenges, and Opportunities. ACM Trans. Recon�gurable Technol. Syst. 15, 4, Article 51 (aug 2022),

42 pages. https://doi.org/10.1145/3530775

[16] Jason Cong, Bin Liu, Stephen Neuendor�er, Juanjo Noguera, Kees Vissers, and Zhiru Zhang. 2011. High-Level

Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 30, 4 (2011), 473–491. https://doi.org/10.1109/TCAD.2011.2110592

[17] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-Based Systolic Array Auto-Compilation. In 2018 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD). Institute of Electrical and Electronic Engineers, New

York, NY, USA, 1–8. https://doi.org/10.1145/3240765.3240838

[18] Luis Damas. 1984. Type assignment in programming languages. Ph. D. Dissertation. University of Edinburgh.

[19] Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In Proceedings of the 9th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Albuquerque, New Mexico) (POPL’82).

Association for Computing Machinery, New York, NY, USA, 207–212. https://doi.org/10.1145/582153.582176

[20] Johannes de Fine Licht, Maciej Besta, Simon Meierhans, and Torsten Hoe�er. 2021. Transformations of High-Level

Synthesis Codes for High-Performance Computing. IEEE Trans. Parallel Distrib. Syst. 32, 5 (may 2021), 1014–1029.

https://doi.org/10.1109/TPDS.2020.3039409

[21] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. LLM.int8 (): 8-bit Matrix Multiplication for

Transformers at Scale. Advances in Neural Information Processing Systems 35 (2022), 30318–30332.

[22] IREE Developers. 2022. IREE (Intermediate Representation Execution Environment. https://google.github.io/iree/

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-Training of Deep Bidirectional

Transformers for Language Understanding. arXiv preprint arXiv:1810.04805 (2018).

[24] Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping, and Type Inference in MLsub. SIGPLAN Not. 52, 1

(jan 2017), 60–72. https://doi.org/10.1145/3093333.3009882

[25] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin Kreis, Jennifer Ngadiuba, Maurizio

Pierini, Ryan Rivera, Nhan Tran, et al. 2018. Fast Inference of Deep Neural Networks in FPGAs for Particle Physics.

Journal of instrumentation 13, 07 (2018), P07027.

[26] David Durst, Matthew Feldman, Dillon Hu�, David Akeley, Ross Daly, Gilbert Louis Bernstein, Marco Patrignani,

Kayvon Fatahalian, and Pat Hanrahan. 2020. Type-Directed Scheduling of Streaming Accelerators. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).

Association for Computing Machinery, New York, NY, USA, 408–422. https://doi.org/10.1145/3385412.3385983

[27] Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka, Rick Stevens, Laura Florescu, Sumti

Jairath, William Liu, Tejas Nama, and Arvind Sujeeth. 2021. Accelerating Scienti�c Applications With Sam-

baNova Recon�gurable Data�ow Architecture. Computing in Science & Engineering 23, 2 (2021), 114–119. https:

//doi.org/10.1109/MCSE.2021.3057203

[28] Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo Jindariani, Nhan Tran, et al. 2021. hls4ml:

An Open-Source Codesign Work�ow to Empower Scienti�c Low-Power Machine Learning Devices.

[29] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang Lai, Zihao Ye, Lianmin Zheng, Cody Hao

Yu, Yong Yu, and Tianqi Chen. 2023. TensorIR: An Abstraction for Automatic Tensorized Program Optimization.

In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New

York, NY, USA, 804–817. https://doi.org/10.1145/3575693.3576933

[30] Elias Frantar, Saleh Ashkboos, Torsten Hoe�er, and Dan Alistarh. 2022. GPTQ: Accurate Post-training Compression

for Generative Pretrained Transformers. arXiv preprint arXiv:2210.17323 (2022).

[31] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, et al. 2021. Gemmini: Enabling Systematic Deep-

Learning Architecture Evaluation via Full-Stack Integration. In 2021 58th ACM/IEEE Design Automation Conference

(DAC) (San Francisco, CA, USA). IEEE Press, 769–774. https://doi.org/10.1109/DAC18074.2021.9586216

[32] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru Zhang, and Jason Cong. 2021.

AutoBridge: Coupling Coarse-Grained Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die

FPGAs. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Virtual Event, USA)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:25

(FPGA’21). Association for ComputingMachinery, NewYork, NY, USA, 81–92. https://doi.org/10.1145/3431920.3439289

[33] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav Bodik, and Vinod Grover. 2020. Fireiron: A

Data-Movement-Aware Scheduling Language for GPUs. In Proceedings of the ACM International Conference on Parallel

Architectures and Compilation Techniques (Virtual Event, GA, USA) (PACT’20). Association for Computing Machinery,

New York, NY, USA, 71–82. https://doi.org/10.1145/3410463.3414632

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.

[35] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen, Steven Bell, Artem Vasilyev,

Mark Horowitz, and Pat Hanrahan. 2014. Darkroom: Compiling High-Level Image Processing Code into Hardware

Pipelines. ACM Trans. Graph. 33, 4, Article 144 (jul 2014), 11 pages. https://doi.org/10.1145/2601097.2601174

[36] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark Horowitz, and Pat Hanrahan. 2016. Rigel:

Flexible Multi-Rate Image Processing Hardware. ACM Trans. Graph. 35, 4, Article 85 (jul 2016), 11 pages. https:

//doi.org/10.1145/2897824.2925892

[37] R. Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969),

29–60. http://www.jstor.org/stable/1995158

[38] Seongmin Hong, Seungjae Moon, Junsoo Kim, Sungjae Lee, Minsub Kim, Dongsoo Lee, and Joo-Young Kim. 2022. DFX:

A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation. In 2022 55th IEEE/ACM

International Symposium on Microarchitecture (MICRO). 616–630. https://doi.org/10.1109/MICRO56248.2022.00051

[39] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,

and Hartwig Adam. 2017. Mobilenets: E�cient Convolutional Neural Networks for Mobile Vision Applications. arXiv

preprint arXiv:1704.04861 (2017).

[40] Sitao Huang, Kun Wu, Hyunmin Jeong, Chengyue Wang, Deming Chen, and Wen-Mei Hwu. 2021. PyLog: An

Algorithm-Centric Python-Based FPGA Programming and Synthesis Flow. IEEE Trans. Comput. 70, 12 (2021), 2015–

2028. https://doi.org/10.1109/TC.2021.3123465

[41] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley. 2022. Exocompilation

for Productive Programming of Hardware Accelerators. In Proceedings of the 43rd ACM SIGPLAN International

Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for

Computing Machinery, New York, NY, USA, 703–718. https://doi.org/10.1145/3519939.3523446

[42] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, et al. 2023. TPU v4: An Optically Recon�gurable

Supercomputer for Machine Learning with Hardware Support for Embeddings. In Proceedings of the 50th Annual

International Symposium on Computer Architecture (Orlando, FL, USA) (ISCA’23). Association for ComputingMachinery,

New York, NY, USA, Article 82, 14 pages. https://doi.org/10.1145/3579371.3589350

[43] Norman P. Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, et al. 2017. In-

Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International

Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA’17). Association for Computing Machinery, New

York, NY, USA, 1–12. https://doi.org/10.1145/3079856.3080246

[44] Gary A. Kildall. 1973. A Uni�ed Approach to Global Program Optimization. In Proceedings of the 1st Annual ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Boston, Massachusetts) (POPL’73). Association

for Computing Machinery, New York, NY, USA, 194–206. https://doi.org/10.1145/512927.512945

[45] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra

Compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (oct 2017), 29 pages. https://doi.org/10.1145/3133901

[46] David Koeplinger, Christina Delimitrou, Raghu Prabhakar, Christos Kozyrakis, Yaqi Zhang, and Kunle Olukotun.

2016. Automatic Generation of E�cient Accelerators for Recon�gurable Hardware. In Proceedings of the 43rd

International Symposium on Computer Architecture (Seoul, Republic of Korea) (ISCA’16). IEEE Press, 115–127. https:

//doi.org/10.1109/ISCA.2016.20

[47] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi

Nardi, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Language and Compiler for

Application Accelerators. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA,

296–311. https://doi.org/10.1145/3192366.3192379

[48] H. T. Kung and Charles E. Leiserson. 1978. Systolic Arrays for (VLSI). https://api.semanticscholar.org/CorpusID:

60531591

[49] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason Cong, and Zhiru Zhang. 2019. HeteroCL:

A Multi-Paradigm Programming Infrastructure for Software-De�ned Recon�gurable Computing. In Proceedings of

the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA’19).

Association for Computing Machinery, New York, NY, USA, 242–251. https://doi.org/10.1145/3289602.3293910

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

171:26 Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

[50] Yi-Hsiang Lai, Hongbo Rong, Size Zheng, Weihao Zhang, Xiuping Cui, Yunshan Jia, et al. 2020. SuSy: A Programming

Model for Productive Construction of High-Performance Systolic Arrays on FPGAs. In Proceedings of the 39th

International Conference on Computer-Aided Design (Virtual Event, USA) (ICCAD ’20). Association for Computing

Machinery, New York, NY, USA, Article 73, 9 pages. https://doi.org/10.1145/3400302.3415644

[51] Yi-Hsiang Lai, Ecenur Ustun, Shaojie Xiang, Zhenman Fang, Hongbo Rong, and Zhiru Zhang. 2021. Programming

and Synthesis for Software-De�ned FPGA Acceleration: Status and Future Prospects. ACM Trans. Recon�gurable

Technol. Syst. 14, 4, Article 17 (sep 2021), 39 pages. https://doi.org/10.1145/3469660

[52] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transfor-

mation. In International symposium on code generation and optimization, 2004. CGO 2004. IEEE, 75–86.

[53] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Sh-

peisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Speci�c

Computation. In Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation and Optimization

(Virtual Event, Republic of Korea) (CGO ’21). IEEE Press, 2–14. https://doi.org/10.1109/CGO51591.2021.9370308

[54] Jiajie Li, Yuze Chi, and Jason Cong. 2020. HeteroHalide: From Image Processing DSL to E�cient FPGA Acceleration.

In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA)

(FPGA’20). Association for ComputingMachinery, NewYork, NY, USA, 51–57. https://doi.org/10.1145/3373087.3375320

[55] TorchVision maintainers and contributors. 2016. TorchVision: PyTorch’s Computer Vision library. https://github.

com/pytorch/vision.

[56] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Je�rey S. Vetter. 2018. NVIDIA Tensor Core

Programmability, Performance & Precision. In 2018 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). 522–531. https://doi.org/10.1109/IPDPSW.2018.00091

[57] Peter Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. 2012. Computer Generation of Hardware for

Linear Digital Signal Processing Transforms. ACM Trans. Des. Autom. Electron. Syst. 17, 2, Article 15 (apr 2012),

33 pages. https://doi.org/10.1145/2159542.2159547

[58] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. 2021. Polygeist: Raising C to Polyhedral

MLIR. In 2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT). 45–59.

https://doi.org/10.1109/PACT52795.2021.00011

[59] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson,

and Zhiru Zhang. 2020. Predictable Accelerator Design with Time-Sensitive A�ne Types. In Proceedings of the

41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).

Association for Computing Machinery, New York, NY, USA, 393–407. https://doi.org/10.1145/3385412.3385974

[60] Rachit Nigam, Pedro Henrique Azevedo de Amorim, and Adrian Sampson. 2023. Modular Hardware Design with

Timeline Types. Proc. ACM Program. Lang. 7, PLDI, Article 120 (jun 2023), 25 pages. https://doi.org/10.1145/3591234

[61] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A Compiler Infrastructure for Accelerator

Generators. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY,

USA, 804–817. https://doi.org/10.1145/3445814.3446712

[62] OpenAI. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023).

[63] Debjit Pal, Yi-Hsiang Lai, Shaojie Xiang, Niansong Zhang, Hongzheng Chen, Jeremy Casas, Pasquale Cocchini,

Zhenkun Yang, Jin Yang, Louis-Noël Pouchet, and Zhiru Zhang. 2022. Accelerator Design with Decoupled Hardware

Customizations: Bene�ts and Challenges: Invited. In Proceedings of the 59th ACM/IEEE Design Automation Conference

(San Francisco, California) (DAC ’22). Association for Computing Machinery, New York, NY, USA, 1351–1354. https:

//doi.org/10.1145/3489517.3530681

[64] Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping: Principal Type Inference with SubtypingMade Easy

(Functional Pearl). Proc. ACM Program. Lang. 4, ICFP, Article 124 (aug 2020), 28 pages. https://doi.org/10.1145/3409006

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, et al. 2019. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 33rd International Conference on

Neural Information Processing Systems. IEEE Press, New York, NY, USA, 172–198.

[66] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah Chasins, and Rastislav Bodik.

2014. Chlorophyll: Synthesis-Aided Compiler for Low-Power Spatial Architectures. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14).

Association for Computing Machinery, New York, NY, USA, 396–407. https://doi.org/10.1145/2594291.2594339

[67] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan Heek, Kefan Xiao,

Shivani Agrawal, and Je� Dean. 2023. E�ciently Scaling Transformer Inference. In Proceedings of Machine Learning

and Systems, Vol. 5.

[68] François Pottier. 1998. Type Inference in the Presence of Subtyping: From Theory to Practice. Ph. D. Dissertation. INRIA.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

Allo: A Programming Model for Composable Accelerator Design 171:27

[69] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite. http://www.cs.ucla.edu/pouchet/

software/polybench

[70] Louis-Noël Pouchet, Emily Tucker, Niansong Zhang, Hongzheng Chen, Debjit Pal, Gabriel Rodríguez, and Zhiru Zhang.

2024. Formal Veri�cation of Source-to-Source Transformations for HLS. In Proceedings of the 2024 ACM/SIGDA Inter-

national Symposium on Field Programmable Gate Arrays (Monterey, CA, USA) (FPGA’24). Association for Computing

Machinery, New York, NY, USA, 97–107. https://doi.org/10.1145/3626202.3637563

[71] Louis-Noël Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. 2013. Polyhedral-Based Data Reuse Optimization

for Con�gurable Computing. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA’13). Association for Computing Machinery, New York, NY, USA, 29–38.

[72] PyBind. 2023. PyBind11. https://github.com/pybind/pybind11.

[73] PyTorch. 2022. TorchDynamo Overview. https://pytorch.org/docs/master/dynamo/.

[74] Alec Radford, Je�rey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are

unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.

[75] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.

2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing

Pipelines. SIGPLAN Not. 48, 6 (jun 2013), 519–530. https://doi.org/10.1145/2499370.2462176

[76] James Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason Ansel. 2022. torch.fx: Practical Program Capture

and Transformation for Deep Learning in Python. In Proceedings of Machine Learning and Systems, Vol. 4.

[77] Oliver Reiche, M. Akif Özkan, Richard Membarth, Jürgen Teich, and Frank Hannig. 2017. Generating FPGA-based

image processing accelerators with Hipacc: (Invited paper). In 2017 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD). 1026–1033. https://doi.org/10.1109/ICCAD.2017.8203894

[78] Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai, Hongyi Jin, Wuwei Lin, Masahiro Masuda, Cody Hao

Yu, and Tianqi Chen. 2022. Tensor Program Optimization with Probabilistic Programs. In Advances in Neural

Information Processing Systems.

[79] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra,

and Hadi Esmaeilzadeh. 2016. From High-Level Deep Neural Models to FPGAs. In 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). Institute of Electrical and Electronic Engineers, Taipei, Taiwan,

1–12. https://doi.org/10.1109/MICRO.2016.7783720

[80] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.

arXiv preprint arXiv:1409.1556 (2014).

[81] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2022. Automated Accelerator Optimization Aided

by Graph Neural Networks. In 2022 59th ACM/IEEE Design Automation Conference (DAC). Association for Computing

Machinery, New York, NY, USA, 55–60.

[82] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2021. AutoDSE: Enabling Software Programmers

Design E�cient FPGA Accelerators. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (Virtual Event, USA) (FPGA’21). Association for Computing Machinery, New York, NY, USA, 147. https:

//doi.org/10.1145/3431920.3439464

[83] Nitish Srivastava, Hongbo Rong, Prithayan Barua, Guanyu Feng, Huanqi Cao, Zhiru Zhang, et al. 2019. T2S-

Tensor: Productively Generating High-Performance Spatial Hardware for Dense Tensor Computations. In 2019

IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 181–189.

https://doi.org/10.1109/FCCM.2019.00033

[84] Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia, Deepayan Bhowmik, and Andrew Wallace. 2018.

RIPL: A Parallel Image Processing Language for FPGAs. ACM Trans. Recon�gurable Technol. Syst. 11, 1, Article 7 (mar

2018), 24 pages. https://doi.org/10.1145/3180481

[85] Alfred Tarski. 1955. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Paci�c J. Math. 5 (1955), 285–309.

https://api.semanticscholar.org/CorpusID:13651629

[86] James Thomas, Pat Hanrahan, and Matei Zaharia. 2020. Fleet: A Framework for Massively Parallel Streaming on

FPGAs. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages

and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY,

USA, 639–651. https://doi.org/10.1145/3373376.3378495

[87] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste

Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and E�cient Foundation Language Models.

arXiv preprint arXiv.2302.13971 (2023).

[88] Nicolas Vasilache, Oleksandr Zinenko, Aart JC Bik, Mahesh Ravishankar, Thomas Raoux, Alexander Belyaev, et al.

2022. Composable and Modular Code Generation in MLIR: A Structured and Retargetable Approach to Tensor

Compiler Construction. arXiv preprint arXiv:2202.03293 (2022).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

171:28 Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai, and Zhiru Zhang

[89] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S Moses,

Sven Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-

Performance Machine Learning Abstractions. arXiv preprint arXiv:1802.04730 (2018).

[90] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information

Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.

[91] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate Foster, and Hakim Weatherspoon.

2017. P4FPGA: A Rapid Prototyping Framework for P4. In Proceedings of the Symposium on SDN Research (Santa

Clara, CA, USA) (SOSR’17). Association for Computing Machinery, New York, NY, USA, 122–135. https://doi.org/10.

1145/3050220.3050234

[92] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Compiler for High-Performance Systolic Arrays

on FPGA. In The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Virtual Event, USA)

(FPGA’21). Association for Computing Machinery, New York, NY, USA, 93–104. https://doi.org/10.1145/3431920.

3439292

[93] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim

Rault, Rémi Louf, Morgan Funtowicz, et al. 2019. Huggingface’s Transformers: State-of-the-Art Natural Language

Processing. arXiv preprint arXiv:1910.03771 (2019).

[94] Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang, Debjit Pal, and Zhiru Zhang. 2022.

HeteroFlow: An Accelerator Programming Model with Decoupled Data Placement for Software-De�ned FPGAs. In

Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Virtual Event, USA)

(FPGA’22). Association for ComputingMachinery, NewYork, NY, USA, 78–88. https://doi.org/10.1145/3490422.3502369

[95] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. 2023. SmoothQuant: Accurate and

E�cient Post-Training Quantization for Large Language Models. In International Conference on Machine Learning.

PMLR, 38087–38099.

[96] AMD Xilinx. 2021. Alveo U280 Data Center Accelerator Card. https://www.xilinx.com/products/boards-and-

kits/alveo/u280.html#speci�cations.

[97] AMD Xilinx. 2022. AI Engines and Their Applications. https://www.xilinx.com/content/dam/xilinx/support/

documents/white_papers/wp506-ai-engine.pdf

[98] AMD Xilinx. 2022. Vitis Accelerated Libraries. https://github.com/Xilinx/Vitis_Libraries.

[99] AMD Xilinx. 2022. Vitis AI: Adaptable & Real-Time AI Inference Acceleration. https://github.com/Xilinx/Vitis-AI.

[100] AMD Xilinx. 2022. Vitis HLS v2022.1. https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html.

[101] AMD Xilinx. 2023. Merlin Compiler. https://github.com/Xilinx/merlin-compiler.

[102] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen Neuendor�er, and Deming Chen. 2022.

ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate Representation. In 2022

IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[103] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018.

GraphIt: A High-Performance Graph DSL. Proc. ACM Program. Lang. 2, OOPSLA, Article 121 (oct 2018), 30 pages.

https://doi.org/10.1145/3276491

[104] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. 2017. COMBA: A Comprehensive

Model-Based Analysis Framework for High Level Synthesis of Real Applications. In 2017 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). Insititute of Electrical and Electronic Engineers, Irvine, CA, USA,

430–437. https://doi.org/10.1109/ICCAD.2017.8203809

[105] Ruizhe Zhao, Jianyi Cheng, Wayne Luk, and George A. Constantinides. 2022. POLSCA: Polyhedral High-Level

Synthesis with Compiler Transformations. In 2022 32nd International Conference on Field-Programmable Logic and

Applications (FPL). Institute of Electrical and Electronic Engineers, Belfast, United Kingdom, 235–242. https://doi.org/

10.1109/FPL57034.2022.00044

[106] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy, Tianqi

Chen, and Baris Kasikci. 2023. Atom: Low-Bit Quantization for E�cient and Accurate LLM Serving. arXiv preprint

arXiv:2310.19102 (2023).

[107] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang

Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs

for Deep Learning. In Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation

(OSDI’20). USENIX Association, USA, Article 49, 17 pages.

[108] Alex Zinenko. 2022. [RFC] Interfaces and Dialects for Precise IR Transformation Control. https://discourse.llvm.org/

t/rfc-interfaces-and-dialects-for-precise-ir-transformation-control/60927

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 171. Publication date: June 2024.

	Abstract
	1 Introduction
	2 An Allo Example
	3 Pitfalls in HLS-Based Hardware Accelerator Design
	3.1 Single-Kernel Design
	3.2 Multi-Kernel Design

	4 Allo Overview
	5 Customizable Hardware Transformations
	5.1 Schedule Construction
	5.2 Verification
	5.3 Parameterized Kernel Templates

	6 Composable Schedules
	6.1 .compose() Primitive
	6.2 Hierarchical Dataflow Graph
	6.3 Schedule Replay
	6.4 Memory Layout Composition
	6.5 Holistic Optimization

	7 Implementation
	8 Experiments
	8.1 Experiment Settings
	8.2 Single-Kernel Evaluation
	8.3 Multi-Kernel Evaluation

	9 Related Work
	10 Conclusion and Future Work
	Acknowledgments
	References

