PROJECTIONS ONTO LP-BERGMAN SPACES OF REINHARDT
DOMAINS

DEBRAJ CHAKRABARTI AND LUKE D. EDHOLM

ABSTRACT. For 1 < p < oo, we emulate the Bergman projection on Reinhardt domains by
using a Banach-space basis of LP-Bergman space. The construction gives an integral kernel
generalizing the (L?) Bergman kernel. The operator defined by the kernel is shown to be
an absolutely bounded projection on the LP-Bergman space on a class of domains where
the LP-boundedness of the Bergman projection fails for certain p # 2. As an application,
we identify the duals of these LP-Bergman spaces with weighted Bergman spaces.

1. INTRODUCTION

1.1. The Bergman projection on LP. Given a domain 2 C C™, the Bergman projection
B% is the orthogonal projection from L?(Q) onto the Bergman space A%(2) = L2(Q)NO(),
the subspace of square-integrable holomorphic functions. The Bergman projection can be
represented by integration against the Bergman kernel B®:

Bﬂf(z>—/Bﬂ(z,w)f(w)dww), fe Q) (1.1)
Q

where dV is Lebesgue measure. The Bergman kernel enjoys remarkable reproducing, in-
variance and extremal properties and is closely related to the 9-Neumann problem (see e.g.
[Ber70, FK72, Kral3]).

Bergman spaces can be naturally defined on all complex manifolds, in contrast with
Hardy spaces, whose construction is tied to distinguished measures on the boundary of a
domain, e.g., the Haar measure on the unit circle in the case of the classical Hardy space
HP(D) of LP boundary values of holomorphic functions.

Inspired by Hardy spaces, it is natural to consider the space of p-th power integrable
holomorphic functions AP(Q2) of a domain Q C C". These have been known as (LP-)
Bergman spaces since the 1970s, though S. Bergman only studied the square integrable
setting. In view of M. Riesz’s classical result on the LP-boundedness of the Szeg6 projection
for 1 < p < oo, it is also natural to ask whether the Bergman projection extends to a
bounded linear projection from LP(Q2) onto AP(Q) via the integral formula (1.1)). When € is
a ball in C", this turns out to be the case (see [ZJ64, [FR74]); the same remains true in many
classes of smoothly bounded pseudoconvex domains ([PS77, NRSWS89| [MS94| IMcN94] etc.)
In these cases, the extended operator turns out to be even absolutely bounded, in the sense
that the associated “absolute” operator (B®)* is bounded on LP(f2), where

(B 1) = [ B0 fw)ivie), S e @)
Q
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On the other hand, there are examples of domains for which the extended Bergman
projection fails to define a bounded projection from LP(€2) onto AP(2) for some (and some-
times for all) p # 2; see [Bar84, BB95, [FKP99, [FKPO1, Zey13, [EM17] and the survey
[Zey20]. Recent studies of the Bergman projection in certain classes of Reinhardt domains
([CZ16al EALI6, EMI6, [Chel7, [CEMII, EM20, W20, Zha21al Zha2ib, Mon2il, BCEM22]
etc.) shed more light on this phenomenon, revealing that the LP-behavior of the Bergman
projection that one sees on, e.g., smooth bounded strongly pseudoconvex domains breaks
down on bounded Reinhardt domains whose boundary passes through the center of rota-
tional symmetry, a simple example being the Hartogs triangle {|z1| < |22| < 1} € C2. On
such a domain it is possible that there are indices 1 < p; < p2 < oo such that the linear sub-
space AP2(Q2) is not dense in the Bergman space AP*(2). This phenomenon can never occur
on smoothly bounded pseudoconvex domains (see [Cat80]), and may constitute a glimpse
of an LP-function theory where the Banach geometry of LP replaces the Hilbert space idea
of orthogonality. In the Reinhardt domains studied in this paper, Laurent representations
are used to clarify some of these phenomena. For example, the fact that AP2(Q) is not
necessarily dense in AP'(2) is a manifestation of the fact that there may be monomials
whose pi-th power is integrable but not the ps-th power.

1.2. Projection operators associated to bases. Let L be a separable Hilbert space, A
a closed subspace of L and {e;} a complete orthogonal set in A. The orthogonal projection
P from L to A may be represented by the following series (convergent in the norm of L):

Pf= Z fse) fel. (1.2)

2 &
le;ll

Since Pf is defined geometrically as the point in A nearest to f, this representation is
independent of the choice of complete orthogonal set {e;}. When L = L?(Q), A = A%(Q),
(1.2) coincides with the Bergman projection formula given by .

In a general Banach space, the analog of a complete orthogonal set is a Schauder basis:

a sequence {ej}oil in a complex Banach space A is a Schauder basis if for each f € A,
there is a unique sequence {c]} © , of complex numbers such that f = Z 1 ¢jej, where the
series converges in the norm—topology of A (see [LT7T]). In this case, there exist bounded
linear functionals a; : A — C such that ¢; = a;(f), generalizing the Fourier coefficients

aj(f) = |<|f’e‘J“2> seen in the Hilbert setting.

When L is a Banach space, A a closed subspace, and {e;}32; a Schauder ba51s of A, one
might attempt to define a projection operator from L onto A by emulating (|1 .

Pr=> aj(fle;, [feL, (1.3)
i

where a; : L — C is a Hahn-Banach (norm-preserving) extension of a; : A — C. When it
exists, an operator of type will be called a basis projection determined by the Schauder
basis; this notion encapsulates the orthogonal projection when L is Hilbert. A less
obvious example of a basis projection is seen by considering the unit circle T with the Haar
measure and 1 < p < co. The classical Szeg6 projection from LP(T) onto the Hardy space
HP(D) is a basis projection; see Proposition In contrast, we show in Proposition
that for p # 2, the attempt to extend the Bergman projection to LP by continuity — even
if successful — is never a basis projection. This is an underlying reason for the deficiencies
of the Bergman projection in LP spaces, and our goal in this paper is to construct basis
projections from LP(£2) to AP(Q).
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1.3. The Monomial Basis Projection. Formula (1.3 is purely formal, as there is no
guarantee that a basis projection onto the subspace determined by a given basis exists.
Several technical points must first be addressed:

(1) A basis projection depends on both the range subspace A and on the choice of
Schauder basis — or the slightly more general notion of a Banach-space basis (see Section
— determining the projection. A Banach space need not have such a basis, but in the
Bergman space AP(Q2) of a Reinhardt domain € C C", there is a distinguished basis tied
to geometry and function theory. This is the collection of Laurent monomials in AP((),
functions z — 2{"25? ... 2% where aj € Z, 1 < j < n. The fact that these monomials
under an appropriate partial ordering give a Banach-space basis of AP()) was first proved
in [CEM19], and is recalled in a slightly more general form in Theorem below. The
projection operator from LP(Q2) to AP(Q2) defined in terms of this monomial basis by formula
is the main topic of this paper: the Monomial Basis Projection (MBP).

(2) A Hahn-Banach extension of a linear functional in general is far from unique, but
in our application, where we extend coefficient functionals defined on AP(Q) to LP(2), we
do have uniqueness; see Propositions [2.3] and [2.4] below. This means the MBP can be
unambiguously defined by (|1.3] -, since the summation procedure is specified by the partial
ordering of our Banach-space basis mentioned in item .

(3) None of the above guarantees that the formal series (|1.3)) converges for f € L. Show-
ing that defines a bounded operator on L requires direct estimation to show that the
partial summation operators are uniformly bounded in the operator norm of L. In our
application to Bergman spaces AP({2), the problem is simplified because of the availability
of an integral kernel representation of the MBP.

1.4. Notation, definitions and conventions.

(1) Unless otherwise indicated, € will denote a bounded Reinhardt domain in C" with
center of symmetry at 0, i.e., whenever z € Q, for every tuple (61,...,60,) € R™, we have
(e1z1,...,e%z2,) € Q. Let |Q C R denote its Reinhardt Shadow, i.c.,

Q] = {(|z1],-..,[z]) €R™ : 2 € OQ}.
he index p satisfies 1 < p < oo, and denote by ¢ the index Holder-conjugate to p,

=1.

a domain U C C" and a measurable function A : U — [0, o] which is positive
he weight), we set for a measurable function f,

1 Winy = 11 = [ 117 AaV (1.4)

where dV denotes Lebesgue measure, and functions equal a.e. are identified. We let LP(U, \)
be the space of functions f for which | f[|, \ < oo, which is a Banach space.
Let AP(U, M) be the subspace of LP(U, \) consisting of holomorphic functions:

AP(U,\) = LP(U,\) N O(U).

We will only consider weights A : U — [0,00] which are admissible in the sense that
Bergman’s inequality holds in AP(U, A), i.e., for each compact set K C U, there is a constant
Ck > 0 such that for each f € AP(U, \) we have

Sup 1< Cr lfllrny - (1.5)

It is easy to see that if A is a positive continuous function on U then it is an admissible
weight on U. We treat a class of more general admissible weights in Section

If A\ is an admissible weight on U, a standard argument shows that AP(U, \) is a closed
subspace of LP(U, \), and therefore a Banach space. It is called a weighted Bergman space.

(2T
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(4) We are interested in Reinhardt domains €2 and phenomena which are invariant under
rotational symmetry. Therefore, we consider only weights A on  which are both admissible
and multi-radial, in the sense that there is a function ¢ on the Reinhardt shadow || such

that A(z1,...,2n) = £(z1], ..., |zn])-
(5) For a € Z™, we denote by e, the Laurent monomial of exponent a:
eal(z) = 27" .. 2" (1.6)
(6) We define the set of p-allowable indices to be the collection
Sp(A) ={aeZ":eq € AP(QN)}. (1.7)

If X =1, we abbreviate Sp(€2, 1) by Sp(Q).
(7) The map x, : C* — C" defined by

(€)= (GGl GGl ) (18)

will be referred to as the twisting map. It appears in the definition of the Monomial Basis
Kernel in ([1.10]), and arises also in the duality pairing (7.5)). Given a function f we denote
by xpf its pullback under x,:

Xpf = foxp (1.9)
1.5. The Monomial Basis Kernel. When it exists, the MBP of AP(2, \) is (by construc-
tion) a bounded surjective projection, which we write pr’l/\ s LP(Q, \) — AP(Q, A). To obtain
an integral formula analogous to (1.1)), we define the Monomial Basis Kernel of AP(Q,\)
(abbreviated MBK ), as the formal series on 2 x € given by

ea(2)xteq(w
KX (w)= Y Mpa() (1.10)
OCGSP(Q7>\) HeaHIL)\
When p = 2, the MBK coincides with the Bergman kernel of A2(2, \), in which case the
above series is known to converge locally normally on 2 x Q. For a general 1 < p < oo, we

show in Theorem that when € is pseudoconvex, the series (1.10) also converges locally
normally on € x Q. In Theorem [3.13| we prove that the MBP admits the representation

PA(N)(z) = /QK&(Z’w)f(w)/\(w)dV(w), feLP(Q, ). (1.11)

1.6. Improved LP-mapping behavior. The main theme of this paper is that the Mono-
mial Basis Projection can have better mapping properties in LP spaces than the Bergman
projection. In Section [6] we illustrate this on nonsmooth pseudoconvex Reinhardt domains
called monomial polyhedra (see [NPO9, BCEM22]). A bounded domain % C C™ is a mono-
mial polyhedron in our sense, if there are exactly n monomials e, ..., eqn such that

U ={2€C":lepa(2)| <1,...,|lean(2)| < 1}.
We recall the LP-mapping behavior of the Bergman projection on % :

Proposition 1.12 ([BCEM22]). There is a positive integer k(%) such that the Bergman
projection on % is bounded in the LP-norm if and only if
26(% ) 26(% )
T cp< 227
k(%) +1 k(%) —1

Examples of monomial polyhedra in C? are the (rational) generalized Hartogs triangles
studied in [EMI6, [EM17]. Define H, = {|z1]” < |22| < 1}, v > 0. If v = T is rational,
ged(m,n) = 1, this domain is a monomial polyhedron with a! = (m, —n),a? = (0,1). In

this case it can be shown that x(H,,/,) = m +n, yielding the interval p € ( sﬁﬁﬁ, i’ﬂi’i)

(1.13)
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from on which the Bergman projection is LP-bounded. We also note the case of H,,
~ irrational — which is not a monomial polyhedron by our definition. On these domains, it
is shown in [EM17] that the Bergman projection is LP-bounded if and only if p = 2.

This limited LP-regularity is one of several deficiencies that can arise when the Bergman
projection acts on LP spaces of nonsmooth domains; other possible defects such as a lack of
surjectivity onto AP are discussed in Section[8, The Monomial Basis Projection avoids these
defects and is shown to have far more favorable mapping behavior. Define for 1 < p < oo
the corresponding “absolute” operator of AP(%) by

B DE = [ K ew)] ) aviw) (119
/4

Theorem 1.15. Let 1 < p < oo and let % C C" be a monomial polyhedron. Then the
operator (P;{/l)+ is bounded from LP(% ) to itself.

After setting the stage in Sections [] and [5} the proof of Theorem [I.15] is finally carried
out in Section [6] An application of this result is given in Section [7, where we represent the
dual space AP(% )" as a weighted Bergman space on % ; see Theorem

Corollary 1.16. The Monomial Basis Projection is a bounded surjective projection operator
PH LP(U) — AP(U).

Proof. Tt is clear that the boundedness of the operator (P;f/l)Jr on LP(7/) implies the bound-
edness on LP(%) of the integral operator in (1.11). However, in Proposition we will
show that whenever this integral operator satisfies LP estimates, it coincides with the Mono-
mial Basis Projection PZ/I : LP(U) — AP(% ). The MBP is a surjective projection operator
whenever its defining series converges. O

1.7. Acknowledgements. The authors thank Zeljko Cuc¢kovié¢, Bernhard Lamel, Laszl6
Lempert, Jeff McNeal and Brett Wick for their comments and suggestions, which led to
mathematical and organizational improvements in this paper. We also thank the referee for
carefully reading the paper and providing constructive suggestions.

2. BASIS PROJECTIONS

2.1. Bases in Banach spaces. Since our application uses bases indexed by multi-indices,
we need a slightly more general notion of a basis in a Banach space than that of a Schauder
basis described in Section For a multi-index o € Z", let |a| , = maxi<j<y |oy].

Definition 2.1. Let A be a Banach space, n a positive integer and 24 C Z" a set of multi-
indices. A collection {e, : o € A} of elements of A is said to form a Banach-space basis of
A if for each f € A, there are unique complex numbers {c, : @ € A} such that

/ Ngnoo Z Caa, (2 2)
o] o <N
acA
where the sequence of partial sums converges to f in the norm-topology of A. The sums on
the right hand side of (2.2) whose limit is taken are called square partial sums.

Schauder bases are special cases of this definition corresponding to taking n = 1 and
2 the set of positive integers. A related notion is that of a finite dimensional Schauder
decomposition (see [LT77]). A Banach-space basis in our sense determines a Schauder
decomposition of the Banach space A into the finite-dimensional subspaces A,, = span{e,, :
la|, =n}, n>0.

Adapting a classical proof ([LT77, Proposition 1.a.2]), is not difficult to see that for each
a € 2, the map a, : A — C assigning to an element x € A the coefficient ¢, of the series
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(2.2)) is a bounded linear functional on A. The collection of functionals {a, : o € A} is
called the set of coefficient functionals dual to the basis {e, : v € A}.

2.2. Unique Hahn-Banach extension. Recall that a normed linear space is said to be
strictly conver, if for distinct vectors f, g of unit norm, we have || f + g|| < 2.

Proposition 2.3 ([Tay39]). If L is a Banach space such that its normed dual L' is strictly
convez, and f : A — C is a bounded linear functional on a subspace A C L, then f admits
a unique norm-preserving extension as a linear functional on L.

Proof. That at least one functional extending f and having the same norm exists is the
content of the Hahn-Banach theorem. Without loss of generality, the norm of f as an
element of A’ is 1. Suppose that f admits two distinct extensions fi, fo € L’ such that
| fill, = Il f2ll;; = 1. Then g = %(fl + f2) is yet another extension of f to an element of
L', so ||gll;; > || fll4 = 1. On the other hand, thanks to the strict convexity of L', we have
lgll;, < & -2 =1. This contradiction shows that f; = fo. O

The examples of unique Hahn-Banach extensions in this paper arise from the following:

Proposition 2.4. Let (X, F,pu) be a measure space, and 1 < p < oco. The dual of LP(u) is
strictly convex.

Proof. Since the dual of LP(u) can be isometrically identified with L9(u) where g is the
exponent conjugate to p, it suffices to check that L9(u) is strictly convex. Let f, g be distinct
elements of L%(u) such that || f[|, = [lgll, = 1. Suppose we have || f +g||, =2 = || fl,+lgll,,
so that we have equality in the Minkowski triangle inequality for L4(u). It is well-known
that equality occurs in the Minkowski triangle inequality only if f = cg for some ¢ > 0. But
since | f[|, = [lgll, = 1 this gives that ¢ = 1, which is a contradiction since f # g. Therefore
|f + gll, < 2 showing that L(u) is strictly convex. O

2.3. Basis projections. Let L be a Banach space such that its dual is strictly convex, A
be a closed subspace, the collection {e, : a € A} a Banach-space basis of A in the sense
of Definition and let {a, : a € A} be the coefficient functionals dual to this basis. Let
aq @ L — C be the unique Hahn-Banach extension of the functional a, : A — C, where
uniqueness follows by Propositon [2.3

Definition 2.5. A bounded linear projection operator P from L onto A is called the basis
projection determined by {e, : @ € 2}, if for each f € L, we have a series representation
convergent in the norm of L given by

Pf= ]\}gnoo Z aa(f)ea- (2'6)

2.4. The Szegd projection. Let 1 < p < oo, L = LP(T), the LP-space of the circle with
the normalized Haar measure %d@, and A = HP(D), the Hardy space of the unit disc,
the subspace of LP(T) consisting of those elements of LP(T) which are boundary values of
holomorphic functions in the disc. Let 74 (e?) = ¢’*?, a € Z, denote the a-th trigonometric
monomial on T. It is well-known that {7, : @ > 0} is a (normalized) Schauder basis of
HP(D), i.e., the partial sums of the Fourier series of a function in HP(D) converge in the
norm LP(T). Notice that Schauder bases are simply Banach-space bases in the sense of
Definition where 2[ is the set of positive integers.

Proposition 2.7. For 1 < p < oo, the basis projection from LP(T) onto HP(D) determined
by the Schauder basis {14152 exists, and coincides with the Szegd projection.
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Proof. The coefficient functionals on HP(ID) dual to the Schauder basis {7, : @ > 0} are

precisely the Fourier coefficient functionals {aq }52 -

alf) = [ f(e®)eard?

P
; 5 [ € H’(D). (2.8)
Notice that for f € HP(D), we have
27 de
10
laa(f)] < /0 ‘f(e ) or S 1 Wl oery 1 paery = I oy (2.9)

where ¢ is the Holder conjugate of p, and we use Holder’s inequality along with the fact
that the measure is a probability measure. Therefore |laq| < 1. But since [|7a|| 1oy = 1,
and a, (7o) = 1, it follows that ||as|| = 1. We now claim that the Hahn-Banach extension
Gq : LP(T) — C of the coefficient functional a, : HP(D) — C is still the Fourier coefficient
functional:
~ iy —ian 4O
()= [ s g,
Indeed, a, is an extension of a,, and repeating the argument of shows ||a,|| = 1, and
thus it is a Hahn-Banach extension. Uniqueness follows from Propositions [2.3] and
Let S denote the basis projection from LP(T) onto HP(D) and let f € LP(T) be a
trigonometric polynomial. Then formula in this case becomes:

) 0 2 ] . db ) 2w f(eie) do
Py § : 0\ —iaf iap .
SI(e) = bt </0 J(e)e 271') © = /0 1—eile=0) 27"

This shows that on the trigonometric polynomials, the basis projection coincides with the
Szegd projection, which is known to be represented by the singular integral at the end of the
above chain of equalities. But as the Szegd projection is bounded from LP(T) onto HP(D),
it follows that the basis projection exists and equals the Szegé projection on LP(T). U

e LP(T).

2.5. The Monomial Basis Projection. On a Reinhardt domain 2 C C" each holomor-
phic function f € O(f2) has a unique Laurent expansion

f: Z Ca€a, (210)

aEeZn

where ¢, € C and the series converges locally normally, i.e., for each compact K C €2, the
sum Y ||caeall g < 00, where ||-|| x = supg || is the sup norm (see e.g.[Ran86]). It follows
that (2.10]) converges uniformly on compact subsets of 2. Define

aq : O(Q) — C, ao(f) = ca (2.11)

where ¢, is as above in . The functional a, is called the a-th Laurent coefficient
functional of the domain €.

The following result shows that the Laurent monomials (under an appropriate ordering)
form a basis of the Bergman space AP(Q, \), where X is an admissible multi-radial weight.
The unweighted version of this result (the case A = 1) was proved in [CEM19], inspired
by the case of the disc considered in [Zhu91]. The more general Theorem is proved in
exactly the same way, by replacing the implicit weight A\ = 1 in [CEM19, Theorem 3.11]
with a general multi-radial weight A\. A key ingredient of the proof, the density of Laurent
polynomials in AP(2, \), can also be proved using Cesaro summability of power series (see
[CD22, Theorem 2.5].) Recall that the notation and conventions established in Section
are in force throughout the paper.
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Theorem 2.12. The collection of Laurent monomials {eq : o € Sp(2, A)} forms a Banach-
space basis of AP(Q,N). The functionals dual to this basis are the coefficient functionals
{aq : @ € Sp(Q,N)}, and the norm of aq : AP(Q, X) — C is given by

1

= . (2.13)
leallp

HaaHAp(Q,)\)/

Thus, if f € AP(Q, \), the Laurent series of f written as ) czn ao(f)ea consists only of
terms corresponding to monomials e, € AP(Q, ), i.e., if & € Sp(2, A), then aq(f) = 0.
We are ready to formally define the main object of this paper:

Definition 2.14. A bounded linear projection Pp%\ from LP(Q, \) onto AP(2, \) is called the
Monomial Basis Projection of AP(2, ), if for f € LP(£2, \) it admits the series representation
convergent in the norm of LP(, \) given by

PR(f)=Jim > Ga(f)ea; (2.15)
ol oo <N
€S, (LN

where aq : LP(£2,\) — C is the unique Hahn-Banach extension of the coefficient functional
ag : AP(2,\) — C.

Remark 2.16. The surjectivity onto the space AP(2,\) is built in to the definition of the

Monomial Basis Projection, since it acts as the identity operator there. Notice that the

MBP is a basis projection in the sense of Definition when L = LP(Q2), A = AP(Q2) and

{eq} is the monomial basis of AP(£2, \). O
3. THE MONOMIAL BASIS KERNEL

3.1. Existence of the kernel function. The Monomial Basis Kernel of AP({2,\) was

introduced as a formal series in (1.10). Using (1.8) and (1.9)), we can write
Xpea(w) = ea(w) |ea(w)P~2, (3.1)

which allows for the re-expression of the MBK as

K;)?A(z, w) = Z ea(2)ea(w) lea(w)

p
aeS, (N lleally A

2

(3.2)

A sufficient condition for the convergence of this series is now given.

Theorem 3.3. Let Q be a pseudoconvex Reinhardt domain in C™ and X\ be an admissible
multi-radial weight function on . The series (3.2)) defining Kg)\(z,w) converges locally
normally on € x Q).

We need two lemmas for the proof of this result. The first is an analog for Laurent series
of Abel’s lemma on the domain of convergence of a Taylor series (|[Ran86, p. 14]):

Lemma 3.4. Let Q C C" be a Reinhardt domain, define S(2) = {a € Z" : eq € O(Q)},
and for coefficients aq € C, a € S(), let

Z (a€o (3.5)
aeS(Q)

be a formal Laurent series on ). Suppose that for each z € € there is a C' > 0 such that
for each o € S(2) we have |ageq(2)| < C. Then (3.5) converges locally normally on .

Proof. See Lemma 1.6.3 and Proposition 1.6.5 of [JP08, Section 1.6]. O
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Given a Reinhardt domain 2 C C" and a number m > 0, define the m-th Reinhardt
power of 2 to be the Reinhardt domain

Q<m>:{ze<c";(yzl\%,...,yznﬁ) eQ}. (3.6)

If © is pseudoconvex, then for each m > 0 the domain Q0™ is pseudoconvex. Indeed, recall
the logarithmic shadow of €2, the subset log(2) of R™ given by

log(Q2) = {(log|z1],.-.,log|z,]|) : z € Q}. (3.7)

4

Recall also that € is pseudoconvex if and only if the set log(€2) is convex, and € is “weakly
relatively complete” (JJPO8| Theorem 1.11.13 and Proposition 1.11.6]). It is easily seen that
the condition of weak relative completeness is preserved by the construction of Reinhardt
powers, and

log (Q(m)) = {(mlog|z],...,mlog|z,|) : z € Q} = mlog(Q)

is itself convex, if log(£2) is convex. So Q™) is pseudoconvex if and only if Q is pseudoconvex.
The second result needed in the proof of Theorem is the following:

Lemma 3.8. Let A be a Banach space of holomorphic functions on ) and suppose that
for each z € Q the evaluation functional ¢, : A — C given by ¢.(f) = f(2) for f € A is
continuous. Then for m > 0, the following series converges locally normally on Qim).

[S%e

aEZ" HBCYHZL .
ea €A

Proof. Let z € Q™ so that there is ¢ € Q such that |z;| = |¢;|™ for each j. If ¢¢ : A — C
is the evaluation functional, there is a constant C' > 0 such that |¢¢(f)| < C || f|| 4 for each
f € A. Then for each « € Z" such that e, € A we have

‘ea(zgj _ <|€a(<)‘>m _ <¢C(ea)>m <cm.
leall’s leall 4 llealla
The result now follows by Lemma [3.4] O

Proof of Theorem[3.3, Let t; = zjw; |w;[" 2, 1 < j < n, and t = (t1,...,t,). Then the
series for the MBK given in (3.2) assumes the form

Kg)\(z,w) = Z ~ . (3.9)

p
0€S,(QN) leally

Since Bergman’s inequality holds for admissible weights by definition, point evaluations
are bounded on AP(Q, \). Lemmatherefore guarantees the series in above converges
locally normally on Q) defined in . It thus suffices to show that the image of the map
Q x Q — C" given by
(z,w) — (t1,...,tn)

coincides with Q®) since then the image of a compact set K C Q x  is a compact subset
of Q®), on which the series is known to converge normally.

Now consider the logarithmic shadow log(©2 x ) = log(2) x log(€2) defined in (3.7).
Due to the log-convexity of pseudoconvex Reinhardt domains, what we want to prove is
equivalent to saying that the map from log(Q2) x log(2) — R"™ given by

Emn)r—&+@—1)n (3.10)
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has image exactly plog(Q2) = {pf : 6 € log(2)} = log (Q(p)). But since log(Q2) is convex,
the map on log(£2) x log(€2) given by

has image contained in log(Q2). Taking & = n we see that the image is exactly log(Q).
Therefore the image of (3.10]) is precisely plog(€2) and we have proved that the series (3.2)
converges locally normally on € x €. O

3.2. More general admissible weights. Continuous positive functions A are always ad-
missible weights in the sense of Section item . In Sections |§| and |7| below, we
encounter more general multi-radial weights which vanish or blow up along the axes. Let
Z C C™ denote the union of the coordinate hyperplanes

Z={2€C":2;=0for some 1 <j<n}.

Proposition 3.11. Let U be a domain in C™ and let U* = U \ Z. Suppose that X : U —
[0, 00] is a measurable function on U such that the restriction Ny~ is an admissible weight
on U*. Then X is an admissible weight on U.

Proof. Assume that UNZ # &, since otherwise there is nothing to show, and set A* = A|y+.
If f € AP(U, \), then since A* is admissible on U*, if a compact K is contained in U*, there
exists a C'x > 0 such that

Sup 1 < Cr [l fllapwe ey = Cx 1l av iy -

To complete the proof, we need to show that for each ( € U N Z, there is a compact
neighborhood K of ¢ in U such that holds for each f € AP(U,\). Now, there is a
polydisc P centered at ¢ given by P = {z € C" : |z; — (| < r, 1 < j < n} such that the
closure P is contained in U. We can assume further that the radius » > 0 is chosen so that
it is distinct from each of the nonnegative numbers |(;|, 1 < j < n. Then the “distinguished
boundary”

T={2z€C":|z;—¢|=r,1<j<n}

of this polydisc satisfies the condition that 7' C U*. Therefore for each f € O(U) and each
w € P, we have the Cauchy representation:

1 flz1,..0,2n) : ;
flw) = (27Ti)”/T(zl—wl)...(zn—wn)d Lo den (3.12)

where the integral is an n-times repeated contour integral on 7. Now suppose that K is a
compact subset of P containing the center ¢, and let p > 0 be such that |z; — w;| > p for
each z € T and w € K. Then for w € K, a sup-norm estimate on (3.12) gives

1 supyp | f| n r\" r\"
70 = g 2wy < (2) Wiy = () WL

where we used the fact that \* is admissible on U*. The result follows. O

3.3. Integral representation of the Monomial Basis Projection.

Theorem 3.13. If the Monomial Basis Projection P}?)\ s LP(Q,N) — AP(Q, \) exists, then

PA(N)(2) = /QK&(W)f(w)/\(w)dV(w), feLP(Q, ), (3.14)

and for each z € Q, we have Kz?)\(z’ )€ LI(, N).
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When p = 2, this is simply the representation of the Bergman projection B? of A%2(2, \)
by its Bergman kernel. But the existence of the MBP of AP(Q, \) for p # 2 is not guaranteed
by abstract Hilbert-space theory. We note a related consequence of Theorem (3 which
should be contrasted with Proposition

Corollary 3.15. Suppose the Bergman projection Bg\z s L2(Q,\) — A%2(Q, )\) estends by
continuity to a bounded operator Bf\2 D LP(QN) — AP(Q,N), p # 2. The extension is not
the basis projection determined by the monomial basis {eq : @ € Sp(2, A)}.

Proof. This is immediate, since the Bergman kernel is distinct from the MBK for p # 2. O

By Proposition the dual space of LP(Q2, \) is strictly convex. Proposition thus
guarantees that each coefficient functional in the set {a, : o € Sp(Q2,\)} dual to the
monomial basis {e, : @ € §,(€2,\)} has a unique Hahn-Banach extension to a functional
Ao : LP(2,X) — C. We now identify this extension:

Proposition 3.16. For a € S,(2, \), let go be the function defined on Q by
X;ea _ Ca |ea’p72
leallp s lleally

Then the unique Hahn-Banach extension aq : LP(Q,\) — C of the coefficient functional
aq : AP(Q,X) — C is given by

(3.17)

Ja =

f):/f-ga)\dv, feLP(Q,N). (3.18)
Q
Proof. First we compute the norm of g, in L7(€2, \):
1 1 1 1
laalln = 1 [ leal® NGV = el -
A leallph Jo | aHpq A ol 57 Tealll,

It follows that g, € L9(€2, A) and the linear functional in (3.18)) satisfies a, € LP(£2, \)" with
norm given by

1
leallp
By (2.13), we have laall ar,ny = l@all Lo,y To complete the proof it remains to show
that a, is an extension of ag.

By Theorem the linear span of {eg : B € Sp(2, \)} is dense in AP(£2, A). Therefore
we only need to show that for each g € S,(Q2, \), we have an(eg) = an(eg). Since A is multi-
radial, there is a function ¢ on the Reinhardt shadow [Q| such that A(z) = €(|z1],...,|znl).
And since g, € LI(2, \) and eg € LP(R, \), the product egga € L'(€2, \). Fubini’s theorem
therefore implies

/ eggardV = 1},/ P (reypt (/ ei<5°"9>d9> riry...rpldry ... dry,  (3.20)
Q 9] "

HeaHp,)\

”aaHLp Q) = ||9a ax = (3.19)

where df = df ...d#, is the natural volume element of the unit torus T”. First suppose
that 5 # «, so that the integral over T" on the right hand side of (3.20]) vanishes. Then we

have [, egGaAdV =0 = aq(eg). If § = o, (3.20) gives

27\ 1
/ ea%AdV = ( 7T)p . / (Ta)prl’r’g . Tngd’f’l ‘e drn =T r || aHpA 1= aa(ea)
. leal? . Jioy leally

It follows that a, is a norm preserving extension of a,. Since this extension is unique, the
result follows. O
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Observe that by combining (3.2]) and (3.17)), the MBK of AP(2, \) can be written as
Kg)\(za w) = Z ea(z)ga(w)' (3'21)
a€Sp(2N)

We now establish our necessary and sufficient condition for the existence of the MBP:

Proposition 3.22. Define an integral operator on C.(2) by

:/S)Kg)\(z,w)f(w))\(w)dV(w), fe (). (3.23)

The MBP of AP(Q2, \) ezists if and only if Q satisfies a weighted LP-estimate, i.e., there is
a constant C > 0 such that for each f € C.(2) we have the inequality

1QF I, < CUSlpx- (3.24)

Proof. Recall that Q C C" is a pseudoconvex Reinhardt domain and A is an admissible
multi-radial weight. The function Kg)\ is continuous on €2 x €2 by Theorem so the
integral in exists for each z € . Since the function z — Kg)\(z, w) is holomorphic
for each w € Q, Qf is holomorphic for f € C.(2), for instance, by applying Morera’s
theorem in each variable, or equivalently, by applying 0 to both sides.

Let f € C.(Q). Since the series for K;?)\ converges absolutely and uniformly on the

compact subset {z} x supp(f) C Q x €, equyation gives
QI(:) - /Q ( S eal)galw >)f<w>A<w> v (w)

a€SH(N)

( | fmtinw avw) ) eao) = Galf)eals).  (3:25)

a€S,( €S, (N

The series converges unconditionally and is the Laurent series of the holomorphic
function @ f . It is therefore uniformly convergent for z in compact subsets of 2.

Suppose now that the MBP Pps?/\ : LP(Q, ) — AP(Q, \) exists, which by Definition
is a bounded, surjective, linear projection given by the following limit of partial sums,
convergent in AP(€Q, )\)'

_ 5 p
oaf = lm > da(flea,  fELP(QN). (3.26)
a€Sp(Q2,A)

Since convergence in AP(€2, \) implies uniform convergence on compact subsets, it follows
that for f € C.(R), Qf = PQ f Therefore Q satisfies LP-estimates, i.e. (3.24) holds.

Conversely, suppose that holds. Then @ can then be extended by continuity to an
operator Q on LP(2, ) with the same norm. We claim that Q is the MBP.

If f € LP(Q2, X), we can find a sequence {f;} C C.(Q2) such that f; — fin LP(Q, \). Each
Qf; € AP(Q,)) and (by definition) Qf; — Qf in LP(Q, \). But this implies Qf; — Qf
uniformly on compact subsets, so the limit CNQ f is holomorphic, and thus the range of é is
contained in AP(Q, \). A direct computation now shows Qeq = eq for a € Sp(2, ), and it
follows that Q is a surjective projection from LP(,\) to AP(Q, ).

If f € C.(Q), then Qf = Qf € AP(Q,\) and by Theorem the Laurent series
expansion of C,~2 f given by converges (as a sequence of square partial sums) in AP(Q, \):

Qf = lim_ > Galf)ea (3.27)
o <N
a€Sp (L)
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For a general g € LP(Q, \), Qg € AP(Q, \) and so again by Theorem m

Qg:]\}gnoo Z aa(Qg)eq. (3.28)
lof (o <N
€S, (L)

It follows that on C.(2) we have the identity a, o @ = a,. This relation extends by
continuity to give a, 0 @ = a, as functionals on LP(£2, \). Then (3.28) becomes

Qg = li a. :
Qg = lim_ D> Gal9)ea
lo| (o <N
a€S,H(QN)

In other words, @ is the MBP, as we wanted to show. O

Proof of Theorem [3.13, Since the MBP exists, by Proposition the operator Q of ([3.23))
satisfies LP-estimates. Then, by the continuity of point-evaluation in AP(Q2, \), for each

z € § the map g — Qg(z) is a bounded linear functional on LP(2, ). Formula
representing this functional now shows that KSA(Z, ) € LY, \). Standard techniques of
real analysis (cutting off and mollification) gives us a sequence {f;} C C.(f2) such that
fi = [ in LP(Q,X). Therefore for each z € 2, the sequence {K‘g)\(z, )£} € Ce()
converges in L1(£2, \) to the limit Kg)\(z, -)f(+). Since integration against the weight A is a
bounded linear functional on L(£2, \), we obtain in the limit. O

4. THE ONE DIMENSIONAL CASE

In this section we compute Monomial Basis Kernels on the unit disc D and punctured unit
disc D* — specifically, the MBKs of the spaces AP(ID, j1,) and AP(D*, u,) where py(2) = |2[7.
From these formulas it is shown that the corresponding Monomial Basis Projections are
absolutely bounded integral operators. We begin with a more general computation of certain
subkernels that are needed in Section [6l

4.1. Arithmetic progression subkernels on D and D*. Let a,b € Z with b positive,
U=DorD* 1<p<ooand uy(z) =|z|", v € R. Consider the set of integers

AU, p,v,a,b) ={a € Z:a=a mod b} NS,(U, 11v), (4.1)

where as usual, S,(U, pty) C Z is the set of a such that e, € AP(U, p). Notice that a is
determined only modulo b, so we can always assume that 0 < a < b— 1. Notice also that if
b=1and a = 0 we have A(U,p,7,0,1) = S,(U, ty). We now identify A(U,p,~,a,b) with
an arithmetic progression:

Proposition 4.2. Let U,p,v,a,b be as above. There is an integer 6 such that
AU, p,v,a,b) ={0+vb:v>0,veZ} (4.3)
Proof. Let U = D*. We claim that a € S,(ID*, py) if and only if pa + v+ 2 > 0. Indeed,

2T

1
p — pocty — pa+y+1 _
leally,,., = /D |2| dV = zw/o r dr = Tt (4.4)

as long as pa+ v+ 2 > 0, otherwise the integral diverges. Now let 6 be the smallest integer
such that (i) 8 = a mod b, and (ii) pf + v + 2 > 0. Clearly holds.

The case U = D is nearly identical, but the condition that e, belongs to AP(ID, 11,) means
that o must be nonnegative. If 6 is the smallest integer in the set S,(ID, 11), it is determined
now by three conditions: (i) # =a mod b, (ii) pf + v+ 2 > 0, and (iii) § > 0. O
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Remark 4.5. For U,p,v,a,b as above (with 0 < a < b — 1), we can determine 6 explicitly:

9:{a+b£, v=p :{_M_a_}_lJ

max{a + bl,a}, U =D, pb b
O
Now define for z,w € U the arithmetric progression subkernel
ea(2)Xpea(w) e
kp'yab(zaw> = Z pp = Z s (46)

a€A(U,p,y,a,b) ”eaHp’“W a€A(U,p,y,a,b) lleallp e, ”p Hoy
where x;, is defined by (1.9) and t = 2w |w|P~2. Notice that kg,«,,o,l is the MBK of AP(U, p.).
Proposition 4.7. For z,w € U and other notation as specified above, we have

0 _ _ b
k;[;]'y,ab(zaw> — ;7 . (p0 +7+ 2) (1(1 :;)22+p(9 b))t ) (48)

Proof. The calculation in (4.4]) shows that if o € Sp(U, 1), then

_ 2T
leall, = oy

Now combining (4.6) with Proposition we see that

te ¥
K ap(zow) = el = 2= > (0 +bv) + v+ 2)t™
acA(U,p,y,a,b) Ca Py v=0
t@ o0 o0
=5 (pZ(bl/+ DY + (ph + v +2 —p)th”> .
g v=0 v=0
Writing this in closed form yields (4.8)).
O
Corollary 4.9. The arithmetic progression kernel kpUma’b admits the bound
S |- o
pryab(? = 7)1 — 2wl |w|(e-2)b)2
where C' > 0 is independent of z,w € U.
Proof. This follows from (4.8)), on noting that (pf + v + 2) is necessarily positive. O

Setting @ = 0, b = 1 in Proposition yields the MBKs of AP(D*, u,) and AP(D, p1+):
Corollary 4.10. Lety € R, ju(2) = |2|" and t = 2w |w|’~%. The Monomial Basis Kernels
of AP(D*, p1y) and AP(D, p,) are given, respectively, by

. 1 (pl+~y+2)t" — (y+24pl —1))ttH! N
(1) K2, (zw) = 5 g ,whereﬁz{—%%—lf
(2) K, (z,w) =

1 L4y +2)t" — (v +2+p(L - 1))t-+
27 (1—1)2

, where L = max{¢,0}.
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4.2. Two tools. We now recall two important results.

Proposition 4.11. For 1 < j < N, let D; be a domain in R", let K; : D;j x D; — [0, 00)
be a positive kernel on Dj, and let N be an a.e. positive weight on Dj. Suppose that for

each j, there exist a.e. positive measurable functions ¢;,v; on D; and constants C’j, Cg >0
such that the following two estimates hold:

(1) For every z € Dy, /D‘ K (2, w)h; (w) N (w) dV (w) < C{gbj(z)q.

(2) For every w € Dj, / ¢i(2)PKj(z,w)N (2)dV (2) < Cg?[)j(w)p.
i
Now let D = Dy x---x Dy be the product of the domains, let K(z,w) = H;VZI Kj(zj,wj),
where zj,w; € Dj, z = (21,...,2v) € D, w = (wy,...,wn) € D, and let \w) =
Hévzl N (wj). Then the following operator is bounded on LP(D,\):

/sz w)A(w)dV (w).

Proof. When N = 1, this is the classical Schur’s test for boundedness of integral operators
on LP-spaces (see [Zhu07, Theorem 3.6]). The case N > 2 reduces to the case N = 1, if
we let ¢(z) = vazl ¢j(z;) and Y(z) = Hé\;l 1(z;) and use the Tonelli-Fubini theorem to
represent integrals over D as repeated integrals over the product representations. ([l

Proposition 4.12 (Lemma 3.4 of [EMI16]; also see [FR74] for § = 0). Let U = D or D*,
0<e<1andp>—2. There exists C > 0 such that

/ A= lwP) s avw) < €1 = |22, (4.13)
U

|1 — 2w|?

4.3. LP-boundedness of operators. We now prove that arithmetic progression subkernels
represent absolutely bounded operators. In particular, the existence and absolute bound-
edness of the Monomial Basis Projections of A?(D*, u,) and AP(DD, i) are established.

Proposition 4.14. Define the following auziliary functions on U :

9(z) = |71~ [2)750, () = fwft (1 — fuf?F-D) 77

There exist constants C1,Co > 0, such that the following estimates hold:

(1) For z€ U, / ‘kgma’b(z,w)‘ (W) py (w) dV (w) < Cr(2)7.
(2) Forw e U, /¢ Pk Vabzw‘uv z)dV(z) < Coyp(w)P.

Proof. Throughout this proof, C' will denote a positive number depending on p,~,a,b but
independent of z,w € U. Its value will change from step to step.
From the kernel bound in Corollary [4.9, we obtain

(zlfwp~)”
v 1= w27

/U kY. (20 0) |0 (0) Ty () dV () < C ()1 () AV (w)

_1
e [ (P
— Ol /U\1_zbwbyw|<p—2>b|2‘w’ dV (w). (4.15)
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Set ¢ = wllu] 2P, so [¢] = |uw|®P, Jw] = |¢|F and aV(w) = (%) 7T 2V (Q).
This change of variable shows

1
1—[¢))» (v+2)(a=1)
[E18) < Ozl / e () (4.16)
u |12
This integral converges if and only if g6 + (v + 2)(¢ — 1) > 0. Multiplying by the positive
number s, we see this condition is equivalent to requiring that pf + v 4+ 2 > 0, which is
guaranteed to hold. Indeed, in the proof of Proposition 0 was shown to be the smallest
integer such that (i) # = a mod b, and (ii) pf + v + 2 > 0. Now apply Proposition m
(1) < Cl=1(1 — |=2)

1 L

P =C (-2 7)) = Cola),

giving us estimate upon taking the final constant C' to be C;. Now consider

. (zllol Y
| stz mloerm@avi < ¢ | T

¢(2)Ppq(2) AV (2)

26\~ 3
— (p—1)0 (1_ ‘Z| ) q (1+2)0+y
clul /U 1 — wh|w|(P=2)bzb|2 27T dV(2). (417)

Set & = 2, which says that |z| = |¢]s and dV(z) = b=2|¢|s~2dV (€). This shows that

1
_ 1—[¢?) a PO a2
I17) < Clw|® 1>9/ ( _ b5 24V (€), 4.18
This integral converges since pf + v + 2 > 0 (this is the same condition as before). Now
apply Proposition [4.12] again to see

1 _1

[ET8) < Clo|® (1 o P~) 75 = € (ol (1 = [w[20-0) 75 ) " = Cy()7,

giving estimate upon taking the final constant C' to be Cs. g
Corollary 4.19. The following operator is bounded on LP(U, jy):

TV, o)) = /U Y, (20 0)| ()t (w)dV (). (4.20)
Proof. Estimates and in Proposition allow for immediate application of Propo-
sition with IV = 1, proving the result. O

Corollary 4.21. The Monomial Basis Projections of the spaces AP(D, juy) and AP(D*, p.)
exist and are absolutely bounded.

Proof. Absolute boundedness (which by Theorem implies existence) follows from Corol-

lary on noting that the MBK of AP(U, u,) coincides with the subkernel k‘g’%OJ. O

5. TRANSFORMATION FORMULA

5.1. The canonical-bundle pullback. If ¢ : ; — s is a finite-sheeted holomorphic
map of domains in C”, and f is a function on )5, we define a function on 21 by setting

¢ (f) = fod-detg, (5.1)
where ¢/(z) : C* — C" is the complex derivative of the map ¢ at z € Q. If we think of
01,y as subsets of R?” and ¢ as a smooth mapping, we can also consider the 2n x 2n
real Jacobian D¢ of ¢. Using the well-known relation det D¢ = |det ¢/ \2 between the two
Jacobians, we see that ¢f is a continuous linear mapping of Hilbert spaces ¢ : L2() —
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L%(Q), and restricts to a map A%(Qz) — A%(Qy). We will refer to ¢* as the canonical-
bundle pullback induced by ¢, or informally as the §-pullback, in order to distinguish it from
a second pullback to be introduced in Section If ¢ is a biholomorphism, then ¢ is
an isometric isomorphism of Hilbert spaces L%(€2) = L?(£2;) that restricts to an isometric

isomorphism A%(s) = A%(Q).

5.2. Proper maps of quotient type. In the classical theory of holomorphic mappings,
one considers proper holomorphic mappings, and extends the biholomorphic invariance of
Bergman spaces to such mappings via Bell’s transformation formula (see [Bel81l Bel82)
DER2, BC82|). In our applications, we are concerned with a specific class of proper holo-
morphic mappings. We begin with the following definition (see [BCEM22]):

Definition 5.2. Let 1,Q9 C C" be domains, let ® : 23 — o be a proper holomorphic
mapping and I' C Aut(£2;) a finite group of biholomorphic automorphisms of ;. We say
® is of quotient type with respect to I' if
(1) there exist closed lower-dimensional complex-analytic subvarieties Z; C Q;, j = 1,2,
such that ® restricts to a covering map ® : Q1 \ Z1 — Q9 \ Z2, and
(2) for each z € Q9 \ Za, the action of I" on ; restricts to a transitive action on the
fiber ®71(2).

The group I is called the group of deck transformations of ®.

The restricted map ® : Q1 \ Z1 — Q9 \ Z2 is a regular covering map (see [Mas91l page 135
ff.]); i.e., it gives rise to a biholomorphism between €23 \ Z and the quotient (2, \ Z1)/T,
where it can be shown that I" acts properly and discontinuously on € \ Z;. It follows that
I is the full group of deck transformations of the covering map ® : Q; \ Z7 — Qo \ Zo,
and that this covering map has exactly |I'| sheets, where |T'| is the size of the group I'. By
analytic continuation, the relation ® o ¢ = ® holds for each ¢ in I' on all of §2;.

Definition 5.3. Given a domain 2 C C", a group I' C Aut(Q2) and a space § of functions
on {2, we define

B ={fe:f=0"f) forall o €T}, (5.4)
where ¢! is the canonical-bundle pullback induced by o as in (5.1). We say that functions
in this space are said to be I'-invariant in the § sense, or simply f-invariant.

If L, M are Banach spaces, by a homothetic isomorphism T : L — M we mean a bijection
such that there is a C' > 0 satisfying
ITfllar = Cllflz for every f € L. (5.5)

Fix 1 < p < oo and consider a proper holomorphic mapping ® : Q; — Qs of quotient
type with respect to group I'. Define the function

Ap = |det ®'|*7P. (5.6)

This function arises as a weight in naturally occuring LP-spaces. Indeed, in Proposition 4.5
of [BCEM22] it was shown that the map

OF 1 LP(Qg) — [LP(Q, \p)]" (5.7)
is a homothetic isomorphism with
teey|l” — Pl P
[# D] gy =T 10y (5.8)

which restricts to a homothetic isomorphism of the holomorphic subspaces

D 1 AP(Qp) — [AP(Q, \)]E. (5.9)
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5.3. Density-bundle pullbacks. Let €, be open sets in R? and ¢ : Q1 — Oy a
smooth map. Given a function f on €9, define the density-bundle pullback, or b-pullback, of
f to be the function on ; given by

1

¢ f = fo¢-|det Dg|?, (5.10)

where as before, D¢ denotes the d x d Jacobian matrix of ¢. From the change of variables

formula, it follows that if ¢ : Q1 — Qs is a diffeomorphism, then the induced map ¢, :

L%(Q2) — L?(f2) is an isometric isomorphism of Hilbert spaces. When €21, Qs are domains
in a complex Euclidean space C™ and the map ¢ : €21 — €9 is holomorphic, then

Gof = fog-|detd], (5.11)

where as before, ¢’ denotes the complex derivative.

Definition 5.12. Given a domain  C C", group I' C Aut(Q2) and function space §
consisting of functions on €2, define the subspace

Blr={fef:f=o0,(f) forall o €'}, (5.13)

where o, is the density-bundle pullback in (5.11]). Functions in [§] are said to be I'-invariant
in the b sense, or simply b-invariant when T' is clear from context.

The behavior of the b-pullback regarding LP-spaces and b-invariant functions is analogous
to the f-pullback regarding LP-spaces and f-invariant functions:

Proposition 5.14. Let 1 < p < oo, 21,89 be domains in C™* and @ : 1 — Q9 be a proper
holomorphic map of quotient type with respect to the group I' C Aut(Qy). Then

Dy, 0 LP(Q2) — [LP (1, M)l (5.15)
18 a homothetic isomorphism.

Proof. Let f € LP(Q9). By Definition there exist varieties Z7 C 21, Zo C {29 such that
O \Z1 — 2\ 7y is a regular covering map of order |I'|. Using the change of variables
formula (accounting for the fact that ® is a |I'|-to-one mapping), we see

T £, 0 = r/ fpdV:/ fodP|det ' 2dV = ||y (f)|P . (5.16
ICHIAIE S (p) = [T Q2\22| | Ql\le 7] | 125 (P17 n,) > (5:16)

which shows ®,(f) € LP(Q4, Ap). Observe also that for any o € T,
o,(fo®-|detd'|)=fo(Poo) |det(Poo)|=fod-|detd|

showing that ®,(f) € [LP(Q1, Ap)]-. This shows @, is a homothetic isomorphism of L”(£23)
onto a subspace of [LP(Q1, \p)];--

It remains to show that this image is the full space. By a partition of unity argument,
it is sufficient to show that a function g € [LP(21, Ap)] is in the range of ®,, provided the
support of g is contained in a set of the form ®~!(U), where U is an connected open subset
of Q9 \ Z5 evenly covered by the covering map ®. Notice that ®~!(U) is a disjoint collection
of connected open components each biholomorphic to U, and if Uy is one of them, ®~1(U)
is the disjoint union J, . 0(Up). Let ¥ : U — Uy be the local inverse of ® onto Uy. Define
foon U by fo =, (g|v,). We claim that fy is defined independently of the choice of the
component Uy of ®~1(U). Indeed, any other choice is of the form o(Up) for some o € T’
and the corresponding local inverse is o o W. But we have

(00 W), (9lows)) = Wb 00, (9lows)) = P (9luy) = fo,

where we have used the fact that o,g = g since g € [LP(21, )] A partition of unity
argument completes the proof. O



PROJECTIONS ONTO BERGMAN SPACES 19

5.4. Monomial maps. Consider an n X n integer matrix A whose element in the j-th row
and k-th column of A is ai. Let o/ denote the j-th row of A, and aj the k-th column.
Letting the rows of A correspond to monomials e,;, define for z € C" the matriz power

1 1 1

eq1(2) 2 2%
24 = : = : , (5.17)
ean (2) P

provided each component is defined. Define the monomial map ® 4 to be the rational map
on C" given by

D y(z) = 24 (5.18)

The following properties of monomial maps are known in the literature and references to

their proofs are given at the end of the list. Three pieces of notation must first be explained:

The element-wise exponential map exp : C* — (C*)™ is given by exp(z) = (e*',...,e*"); if
z2=1(z1,.-+,2n), w = (wy,...,wy) are points in C", define their component-wise product
to be z ®w = (z1w1, 22w2, . . ., Znwy); 1 € Z*™ is a row vector with 1 in each component.

(1) The following formula generalizes the familiar power-rule:
det @y =det A-epa 1. (5.19a)

(2) If A is an invertible n x n matrix of nonnegative integers, then ®4 : C* — C" is a
proper holomorphic map of quotient type with respect to the group

Ta={o,:0,(z) =exp (2miA V) ©® 2, v € 2"} (5.19Db)

(3) The group I'4 has exactly |det A| elements.
(4) The canonical-bundle pullback of the monomial e,, via the element o, € I'4 is

of(eq) = e2rilat DA™y o (5.19¢)
(5) The set of monomials that are I 4-invariant in the f sense as defined by (5.4)) is
{eq :a=pBA—1, gz} (5.19d)

Proof. Property (1) is proved in both [NP09, Lemma 4.2] and [BCEM22, Lemma 3.8].
Properties (2) and (3) can be found in [BCEM22 Theorem 3.12]. See also [Zwo00, NP21]
for related results. Properties (4) and (5) are found in [BCEM22], Proposition 6.12]. O

5.5. Conditions for the transformation formula. For the remainder of Section [5| we
assume the following conditions in the statements of our results:

The domain Qo C C" is pseudoconvex and Reinhardt, A is an n X n matriz of nonneg-
ative integers such that det A #£ 0, and Q1 = @Zl (Q2), the inverse image of Qo under the
monomial map ® 4 : C* — C" defined in ([5.18]).

This set-up has several immediate consequences:

(1) We obtain by restriction a proper holomorphic map

@A:Ql—>92,

which is of quotient type with respect to the group I'4 defined in (5.19b)).
(2) The domain 5 is pseudoconvex and Reinhardt.
(3) The weight A, from (5.6)) is given by

Ap(Q) = [ det @ (PP = | det APP T T (¢l s —DE7), (5.20)
k=1

where as before 1 € Z'*" has 1 in each component and ay, is the k-th column of A.
(4) By Proposition the weight A, is admissible in the sense of Section
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(5) By the canonical-bundle pullback gives a homothetic isomorphism
2 LP(Q) — (LM, )],
which by restricts to a homothetic isomorphism of the holomorphic subspaces
O, AP(Qy) — [AP(Q, 0,74,
5.6. I'-invariant subkernel. Assuming the conditions and set-up established in Section|5.5

define the following subset of p-allowable indices which are I'-invariant in the § sense. (We
often suppress reference to the matrix A in our notation, writing ®4 = ®, I'y =T, etc.)

SII;(Ql, M) = {a € 8,(,\) : 0% (eq) = eq for all o € T}. (5.21)
We use this to define the “I’-invariant subkernel” of the Monomial Basis Kernel:

(zw)= % cal2)Xpealw) (5.22)

KQI
lleal b A
aeSh (21,2p) PAp

p7>\P7F

Proposition 5.23. The following sets are equal
{es : BES,(Q,0)} = {gaaPea) t a € Sp(R)}.

Proof. Thinking of « as an element of Z'*", a computation shows that eqo®4 = eq4. Thus
P (e,) = (det A)e(at1)4a—1, S0 we have

{ﬁ@ﬁ(ea) eSS Sp(Qg)} = {e(a—l—]l)A—]l RS Sp(QQ)} (524)
Since the image of AP(Qg) under ®* is the space [AP(9, \,)]", we see
{elasnya—1 1 @ € Sp(Q2)} C{eg: B € Sp(Q, Ap), o*(es) = eg for all o € T'}.

But since the map ®% : AP(Qg) — [AP(Q1, \,)]" is linear, ®*(f) must have more than one
term in its Laurent expansion if f has more than one term in its Laurent expansion. Thus

{e(a+1)a—1 @ € Sp(Q2)} = {eg : B € Sp(1, ), Uﬁ(eg) =eg for all 0 € '}
={eg: BES, (U, \)},
completing the proof. O

5.7. Transforming operators with positive kernels. We prove here a transformation
law for the “absolute” operator involving the MBK:

(P2)*f(z) = /

Qo

Kfi (zw)| f(w)dV(w), ] € Cul@). (5.25)

This operator is defined on C.(£22), but can be extended to LP(€2) when LP-estimates are
shown to hold. Define a related operator using the I'-invariant subkernel from (5.22)):

(PY )7 f(z) = /Q K, p(w)| f@)p(w)aV (w), [ eCal). (520

These operators are closely related via the b-pullback of Section
Theorem 5.27. The following statements are equivalent:
(1) (Ppg?f)+ extends to a bounded operator (Pg}f)"r s LP(Qy) — LP(Qo).
(2) (Ppg’z/{pI)Jr extends to a bounded operator (sz’l/{mr)Jr D [LP(Q1, Ap)]r = [LP (4, \p)]p-
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When these equivalent statements hold,

@, 0 (P2)* (PpQ/{pI) o ®, (5.28)

as operators on LP(Q9), which is to say, that the following diagram commutes
L7() L LP(Q1, \p)r
l( l( o (5.29)
LP QQ *) LP (Ql,)\ )F

The following kernel transformation formula can be thought of as a generalization of the
classical biholomorphic transformation formula for the Bergman kernel.

Proposition 5.30. The Monomial Basis Kernel admits the transformation law

1 , , | det @ (w)[P
= det @'(2) - K2 (®(2), B(w)) - Tdet @' (w)

Proof. Starting from the series representation for Kgf(z, w) in (3.2), we have

ca(®(2))ea(@(w))]ea(@(w)) P~

(5.31)

K3 (0(2), (w) = Y

aESp(Qz) HeOZHZ[)/p(QZ)
€S, (02) ”(I’ﬁ(ea)”w (2.A0) ’

since by (j5.8]), the homothetic isomorphism ¥ scales norms uniformly for each f € LP (Q2)
by || - Hngzp(%) = ||®*(f HLP(Ql ) . Now use the definition of ®* to write
p

_ det &'(w) P () () DF(ea) ()| P (eq) (w) P~
= ’d t @(z)| det &' (w)[P 2

o [ (ea) B
det @' (w es(2)eg(w)leg(w)|P—2
= |det<I>’(z)|de(t QZ’(w)\P Z & ”eﬁ(‘p)‘ : (5.33)
BESE(Q1,Ap) BllLr(@1,np)
det @' (w) o

(z,w). (5.34)

| |det /(2)| det @ (w)[p ~ PAT
Equation ({5.33]) follows from Proposition [5.23} and (/5.34]) follows from the definition of the
I-invariant MBK given in (5.22)). This completes the proof. O

Proof of Theorem . Proposition and show that @, : LP(Q2) — LP(Qq, A\p)r
is a homothetic 1somorphlsm with H<I>beLp (@A) = |F\ [Falim (g) NOW for f € Cc(2),

B, 0 (P%)* (2) = |det ¥/(2) |/

2),w)| f(w) aV (w)

e e >,<1><w>>]f<<1><w>> et @' ()| 4V (u)
- / KD, (2 0)] B, () (w) AV () (5.35)
2

= (P )" o, f(2).

Equality in (5.35]) uses the kernel transformation law (5.31)), and the final line makes sense
since the properness of ® guarantees ®,f € [C.(21)]p. The fact that C.(€2) is dense in
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LP(€3), along with the fact that its image ®, (C.(£22)) = [Ce(21)]p is dense in [LP (21, A,)] -
shows that statements (1) and (2) are equivalent. When these statements hold, equation

(5.28) and Diagram ([5.29) follow immediately. O

6. MONOMIAL POLYHEDRA

In this section we prove Theorem which says that if % is a monomial polyhedron and
1 < p < o0, the Monomial Basis Projection of AP(% ) is absolutely bounded. As discussed in
Section[I.6] this stands in contrast with the limited LP-regularity of the Bergman projection.

6.1. Matrix representation. We denote the spaces of row and column vectors with in-
teger entries by Z'*™ and Z"*!, respectively. Suppose B = (b}) € Myx,(Z) is a matrix of
integers with det B # 0, with rows written as ¥/ = (b),...,b}) € Z*". Define

%B:{ZEC”:\ebj(z)]<1, 1§]§n}, (6.1)

and call it the monomial polyhedron associated to the matrix B, provided it is bounded.
This gives a compact notation for the domains defined in Section

The matrix B in is far from unique. If B’ is obtained from B by permuting rows
or by multiplying any row by a positive integer, then 5 = %p'. We recall the following
observation, originally proved in [BCEM22, Proposition 3.2]:

Proposition 6.2. Suppose that % is a bounded monomial polyhedron as in (6.1), where
det B # 0. Without loss of generality we may assume

(1) det B > 0.

(2) each entry in the inverse matriz B~ is nonnegative.

Given the monomial polyhedron %, we will assume for the rest of the paper that B
satisfies both properties and (2)) of Proposition Observe that Cramer’s rule combined
with property ([2)) says that the adjugate A = (det B)B~! is a matrix of nonnegative integers.

The following representation of monomial polyhedra as quotients was first proved in
[BCEM22, Theorem 3.12].

Proposition 6.3. Let A = (det B)B™! € M,,«n(Z). There exists a product domain
Q=U; x---x U, CcC", (6.4)

each factor U; either a unit disc D or a unit punctured disc D*, such that the monomial
map 4 : C" — C" of (5.18) restricts to a proper holomorphic map ®4 : Q — Up. This
map is of quotient type with respect to group I" o, which is given in (5.19b)).

The conditions of Section [5.5| are satisfied, if we take Q1 = Q, Qo = %, and A, P 4,14 as
above in Proposition [6.3] In the present situation, the source domain Q; = € is a product
and the weight A\, = |det <I>£4|2_p of (5.20) admits a tensor product structure:

Ap(€) = [det @4 ()77 = (det )27 T 1, (&), (6.5)
j=1

where (i, is the weight on U; given by
pr; (2) = |2]7, where v =(1-a; —1)(2 —p), (6.6)

1 € Z™ is the row vector with 1 in each component and a; € Z™*! the j-th column of A.
We can remove the absolute value from det A since det A = (det B)" - ﬁ =det B! > 0.
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6.2. Absolute boundedness of the Monomial Basis Projection. We now give a de-
composition of the the I'-invariant subkernel defined in ([5.22)).

Proposition 6.7. Let d = det A (a positive integer). The T'-invariant subkernel defined in
(5.22)) admits the decomposition

dn—l
Ko, p(zw) = Y Ki(z,w), (6.8)
=1
where each K; is a tensor product of n arithmetic progression subkernels defined in (4.6)):
n
_ U;
Ki(z,w) =dP 2 H kp,{)/jyai,jvd(zj7 wj), (6.9)
j=1

where the v; 1s determined by and oy ; € Z/dZ is determined by the group T

Proof. Following ((5.22)), the I'-invariant subkernel Kg/\pm(z,w) is found by summing over
the p-allowable indices, I'-invariant in the f sense. From (/5.21)), this set can be written as
SZI;(Q, Ap) = {a € 8,(N,) : 0% (eq) = eq for all 0 € T} = S, (2, \,) N2, (6.10)

where [Z"]" is defined to be the subset of Z'*™ consisting of exactly those indices for which
the corresponding monomials are I'-invariant, i.e.,

Z"M' = {a € ZY" : 0¥ (eq) = eq for all o € T}.
By (5.19d), we see that [Z"]l' = {a € Z'*" : a = BA — 1, B € Z'*"}, so after translating
by 1, we have

Z"" +1=27""A={BA: B 7"} Cc 2",
We make two observations: first, it is known (see Lemma 3.3 of [NP21]) that Z'*"A is a
sublattice of Z'™ with index

|Z )(ZP" A)| = det A = d.

Second, we claim that Z'*" A contains d Z*" = {dB : B € Z'*"} as a sublattice. Consider
a vector v = dy, for some y € Z'*™ and check that v € Z'X"A. Since A is invertible, there

is a solution € Q" with v = dy = xA. Write A in terms of its rows a',--- ,a" € Z*"
as A= [a',---,a™T. Cramer’s rule shows the j-th component of x is
det ([al, -, 0/~ dy,a?tt - o™ . .
A ( det A ) = det ([a17”' ,al 17yaa]+1>"' ’an]T) € Z,

confirming that x € Z'*", and therefore that d Z'*" is a sublattice of Z*"A.

Since the index !len /d ZlX"| = d", the Third Isomorphism Theorem for groups says
‘len/dzlxn‘
|Zxn jZxn A
It now follows that we have a representation of the group Z*" A as a disjoint union of d"~!
cosets of the subgroup dZ'*", i.e., there are ¢’ € Z'*" A, such that we have

dnfl
lenA _ [Zn]F 41 = |_| (dzlxn +£i)’

i=1

‘lenA/dlen‘ — dn_l.

where | | denotes disjoint union. Therefore, we have

an=1 ar=t
i=1 i=1
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Fix an 4,1 <i < d" ! and write £* = (¢},..., /) with E; € Z. Then we have

AdZV" + (0 —1) ={(d- i+ —1,....d vy + 0 —1):vy,... vy € L}

=[[{e€z:a=¢ -1 modd}, (6.11)
=1

where in the last line we have the Cartesian product of n sets of integers.

We now analyze the other intersecting set Sp(€2, \p) in (6.10). Let o € Z™. Combining
the representation of A, from (6.5)) with the fact that eq(z) = [i_; eq,(2;), we can write
the norm of e, on Q in terms of the norms of the €q; ON the factors Uj:

leallnan,) = 4* ”HH%H Vi) (6.12)

The left-hand side is finite, i.e., a € S,(€2, )\p), if and only if each factor on the right-hand
side is finite, i.e., for each 1 < j < n we have a; € S,(Uj, py;). Consequently we obtain a
Cartesian product representation of the set

n

SP(Q’)‘P) = HSP(UJ'MM’Y]‘)' (613>
j=1
Therefore by (6.10), we have
dn—l
Sy N) =S )N | | ] (dzbm+6)-1) | = | | 4,
=1 =
where
L =8, 0) N ((dZ" + 4;) — 1) by definition
= (Hsp(Uj,u%) N [[{e€Z:a=6~1 modd}| by [61I) and (6.13)
j=1 j=1
=[] (So(Uj,py;) N{a €Z: a=¢ —1 mod d})
j=1
= [[AW;.p.7.6 - 1,4), (6.14)
j=1

and the last equality follows from the definition (4.1]). We now define

ea(2)X5ea(w)
K; = § P T 6.15
z(Z,w) HeaHp)\ ’ ( )
aezi DsAp

which immediately gives , since absolute convergence permits rearrangement of the
series defining K 3;\ - Now from (6.12), we see that for v € £; we have

cal2)Xpalw) _ - 2H “o ()Xo, (47 (6.16)
leallp s, 7

J 1 H a]pr,y

where for each j, we have o; € A(Uj, p,~;, W 1, d), and on the right hand side x, : C - C
is the one-dimensional version of the map . Using (6.14]) and (6.16)), we can rearrange
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the sum (6.15) as

Ki(z,w) = dP~? ﬁ Z Co )Xo, (1) (6.17)

7=1 QJEA( DY g’b 1d) H a]Hp/},,y

2
= P~ H pw,W 1d(ZJ’wJ)

j_
where the rearrangement in is justified since each of the n factor series on the right
hand side is absolutely convergent. The final line is just the definition given in (4.6)). O
Proof of Theorem[1.15. Theorem says (Plf'/l)+ : LP(%) — LP(%) is a bounded oper-
ator if and only if (PpQ/\p SR [LP(Q, Ap)lr = [LP(€, A\p)]r is bounded. From (6.8)), we see
that

‘ 2 (zw) ‘ < 3 |Ki(z )] (6.18)
=1

From formula (5.26)) defining the operator (Pg)\pf)ﬂ it would be sufficient to prove that
for each 1 < i < n, the operator

Fro 1K)l )y w)av o)
is bounded on (the full space) LP(2, \,). Formula now gives

n
-2 U;
‘KZ(Zﬂ"U)‘ =d’ H ’kp,;j,ai,j,d(zﬁwj)‘ .
j=1
Proposition now says that for each 1 < j < n, there exist functions ¢;, 1; and constants
CY{,CY such that

/ ‘kgzyg,a”,d(z w)‘¢]( ) j(w) dV(w) < C{(;Sj(z)q,

/ 052 pvj,azj,d(z7w)’ finy; (2) AV (2) < Cytpj(w)P.
Proposition 4.11] now finishes the proof. .

7. DUALITY THEORY OF BERGMAN SPACES

7.1. Properties of the twisting map. In this section, €2 will denote an arbitrary Rein-
hardt domain in C". We return now to the twisting map x, introduced in , and use
it to present a duality theory for Bergman spaces on Reinhardt domains. This leads to a
concrete description for all 1 < p < oo of the duals of the AP-Bergman spaces when the
Monomial Basis Projection is absolutely bounded; this is new on all monomial polyhedral
domains (including the Hartogs triangle), and even new in the case of the punctured disc.

Proposition 7.1. The twisting map xp : C* — C" has the following properties.

(1) It is a homeomorphism of C™ with itself, and its inverse is the map x,.
(2) It is a diffeomorphism away from the set\J;_,{z; = 0} and its Jacobian determinant
(as a mapping of the real vector space C™) is given by

mp(¢) = det(Dxp) = (p = 1)" [CL - -+ Gl (7.2)
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(3) It restricts to a homeomorphism xp : @ — QW= with inverse Xq : Q-1 5 Q,
where QP s a Reinhardt power of Q as in (13.6)).

Proof. For item , notice that if w = x,(2), then for each j we have

|p—2 p*2|q—2 |p—2+(p—1)(q—2)

|2l = zj |z
sincep—2+4+ (p—1)(¢—2) =pg—p—q = 0. So x40 Xp is the identity, and similarly
Xp © Xq is also the identity. Item follows from direct computation. Item follows upon
noting that in each coordinate, the map z — z |z|F 2 s represented in polar coordinates as

ret? s rP=1¢®¥ The claim follows from the definition of Q®—1). O

—2
wj [wi|T77 = 2|z = zj,

Proposition 7.3. The Monomial Basis Kernels of AP(Q)) and A4 (Q(pfl),nq) are related
via the twisting map in the following way:

K (xg(2),w) = K200 (xp(w), 2),  2€ QP weq. (7.4)
This “twisted” symmetry generalizes the conjugate symmetry of the Bergman kernel on €.
Proof. Recalling equation ({3.1]) above, observe that

sealQ” = lealxg(O)F = lea(Q)I = lea(O)".

Now using x, to change of variables, we have

leallfoay = [ el m(OaV Q) = leall s

which in particular shows the equality of the sets S,(2) = S, (Q(p_l), nq) of allowable indices.
Thus, for z € Q=Y and w € Q, we have

Z Ca (Xq(z))X;ea (w)

Kgl (Xq(z)aw) = He ”p
YN (%) *NLP(Q)

(@) Xaeeld) _
) 2 leall] = K Op(w), 2).
a€S,(QP=1) ny) allpa@®e=1 n,)

By setting p = 2, (7.4]) recaptures the conjugate symmetry of the Bergman kernel. U

7.2. Adjoints and Duality. We now use the map x, to give a “twisted” L?-style pairing
of the spaces LP(Q) and LI(QP~1 p,):

(f 0} = /Q foG@dV,  feIMQ). geLiQ® ). (75)

Proposition 7.6. The map (f,g) — {f,g}p, is an isometric duality pairing of LP(Q2) and
L4 (Q(p_l),nq). In other words, through {-,-}, we obtain the dual space identification

LP(Q) = L9 (QP Y, 1),

where the operator norm of the functional {-,g}, € LP(Q) is equal to the norm of its
representative function g € L1 (Q(p_l),nq).

Proof. Tt is a classical fact that the ordinary L2-style pairing of LP()) with L9(Q) given by

(f,h)H/Qﬁth, felr(Q), geIiQ)
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is an isometric duality pairing. Proposition says that xq : Q=Y 5 Q is a diffeomor-
phism outside a set of measure zero, with inverse x, : 2 — QP=1 itself a diffeomorphism
outside a set of measure zero. It therefore suffices to show that

Xp : LUQ) — LYQP™ ) (7.7)

is an isometric isomorphism of Banach spaces. Calculation shows
ey = [, o xa)l mw)aV () = [0 o gy (79
Since the inverse map x;, of x; exists, it is surjective and the result follows by the closed-
graph theorem. O

Proposition 7.9. Suppose the Monomial Basis Projection of AP(Q) is absolutely bounded
on LP(Y). Then under the pairing {-,-}, defined in (7.5)), its adjoint is the Monomial Basis
Projection of Aq(Q(p_l),nq), which is itself absolutely bounded in Lq(Q(p_l),nq); i.e.,
(r—1) —
{Bhf.oy, = {£. B0 "o} . forall feIP(@), g L1Q n,).

Proof. Suppose that f € LP(Q) and g € Lq(Q(p_l),nq):
(Pra), = [ By = [ ([ Khewswav) sl @
-/ ( / K%@,w)g(xp(z))de)) Fw)dv(w), (7.11)

where the change in order of integration can be justified as follows. By the assumption that
Pp% is absolutely bounded on LP(f2), we see that the function on Q given by

s [ RS- )] aV ()
is in LP(2). Since g € LI(QP~1) 1), using Tonelli’s theorem we see that

[ R Gt @) v ew)
QxQ
- / ([ 1ol 1wl ave) ) latu)lavw) <.

by Proposition Fubini’s theorem gives that - Now change variables in
the inner integral of - by setting z = x,4(¢), where C ) to obtain

- [ ([ K0, >g<>nq<<>dv<<>) )V ()
= ([, K 0@ 00 m(@av(©) ) fwaviw) (72
Q-1)
= [ )P gt w) v w) (7.13)
= [ rog (P )dv {rPm e}

The second equality above follows from (7.4). The fact that (7.13) = (7.12) can be justified
as follows. For g € L4 (Q(p_l), nq), the quantity in ([7.12)) is finite for each f € LP(Q2), since
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by the above computations it is equal to the finite quantity {Pp{z1 f,g}p. Therefore we see
that for each g € Lq(Q(pfl),nq), we have that the function

(w — /QM K2 (xp(w), O)g(Cng(€) dV(g)> € L9(Q),

so that the linear map
(r—1)
g | L 000, QO dv(Q)

is bounded from L(QP~1 5.) to LI(Q) by the closed graph theorem (since the integral
operator is easily seen to be closed). Composing with the (isometric) bounded linear map
Xg L) — LI(Q®P=1 p,), we see that the operator on LI(QP~1) ) given by

g | i GO9Om(Q)dv(Q)

is bounded on LI(QP~Y n,). Now Proposition shows (7.13) = (7.12). O
Proposition 7.14. Suppose the Monomial Basis Projection of AP(Q) is absolutely bounded

on LP(Q). Then the duality pairing of LP(Q) and LI(QP=Y n,) by {-,-}, restricts to a
duality pairing of the holomorphic subspaces. In other words, we can identify the dual space

AP(Q) =~ A1(QP=D) ).

Proof. We claim that the conjugate-linear continuous map Aq(Q(pfl), ng) — AP(Q) given
by h +— {-, h}p1 is a homeomorphism of Banach spaces. To see surjectivity, let ¢ € AP(Q)’,

let ¢ : LP(Q) — C be its Hahn-Banach extension, and let g € L9(Q®~1 n,) be such

that qg( f) = {f,g}p1. The existence of g follows from Proposition We see from
Proposition that for each f € AP(2) we have

6(f) = o(f) = £ 9} = {PLS gk = {1, P2 g,

so the surjectivity follows since qu?éz_l)g e A1 (Q(p_l), nq). Now if h € A4 (Q(p_l),nq) is in

the null-space of this map, i.e., for each f € AP(Q) we have {f, h}, = 0, then for g € LP(2):

Q-1 Q
{97 h}p = {gv Pq,r]Z h}p = {Pp,lg7 h}]) =0.
This shows that h = 0, so the mapping is injective. O

7.3. Dual spaces on monomial polyhedra. The duality pairing in Section should
be contrasted with the usual Holder duality pairing of LP? and L%. On the disc D, the
Holder pairing restricts to a duality pairing of the holomorphic subspaces, yielding the
identification AP(D)" ~ A?(D). On the punctured disc, the Holder pairing fails to restrict to
a holomorphic duality pairing and any attempt to identify AP(D*)" with A?(D*) fails. This
is discussed further in Section For similar results, see [CZ16b].

Theorem 7.15. Let U = D* or D. The dual space of AP(U) admits the identification
AP(U) =~ AU, n,), 19(¢) = (g — DI,
via the pairing (7.5)), sending (f,g) — {f,g}p, where f € AP(U), g € AY(U,n,).

Proof. It was shown in Corollary that the MBP of AP(U) is absolutely bounded. Re-
calling the definition of a Reinhart power in (3.6)), it it clear that in our case U™ = U for
every m > 0, so in particular for m = p — 1. Proposition [7.14] now gives the result. O

The same behavior regarding Reinhardt powers seen on the disc and punctured disc
continues to hold on all monomial polyhedra:
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Proposition 7.16. Let % C C"™ be a monomial polyhedron of the form (6.1). Then for
each m > 0, the Reinhardt power %™ = % .

Proof. Write % = %p, where the rows of B are given by b/ = (b{, ..., bh) € ZY". From
the definition of the Reinhardt power of a domain given in (3.6)), we see

U™ =L eC: (|a|m,. .., |z|m) €UY
= {2€C": Jey (|aal ™, ... |mlm)| < 1, 1< 5 < n}
:{ZG(C":|ebj(z)|% <1,1<j<n}={z€C:leu(2)| <1, 1<j<n}=%.
O

Theorem 7.17. Let % be a monomial polyhedron in C". The dual space of AP(%) admits
the identification

AU = ANU ng), ng(Q) = (g = DG Gl
via the pairing (T.5), sending (f,g) — {f.g}p, where f € AP(U), g € AU U ,ny).

Proof. The absolute boundedness of the MBP of AP(% ) seen in Theorem allows for
the use of Proposition In this setting % ®~Y) = % by Proposition which yields
the result. O

8. COMPARING THE MBP TO THE BERGMAN PROJECTION ON LP

Let 2 C C" be a bounded Reinhardt domain such that the origin lies on its boundary. In
even the simplest example, the punctured disc D* = {z € C: 0 < |z| < 1}, special features of
the holomorphic function theory can be seen in the Riemann removable singularity theorem.
Higher dimensional versions of this phenomenon were noticed by Sibony in [Sib75] on the
Hartogs triangle and later generalized in [Chal9].

8.1. The LP-irregularity of the Bergman projection. In understanding the LP func-
tion theory on 2, it is instructive to consider the behavior of the sets of p-allowable indices
introduced in Section S5p(Q) = {a € Z™ : e € LP(Q)}, as p traverses the interval
(1,00). It is clear that the sets can only shrink as p increases, as fewer monomials become
integrable due to increase in the exponent p in the integral [, |eq|” dV. However, the set
Sp(Q) is always nonempty, since N” C S,(€2), © being bounded.

For example on the punctured disc, if p < 2, then S,(D*) = {a € Z : @ > —1}, and if
p > 2, then S,(D*) = {a € Z: a > 0}. The exponent p = 2 where the set of indices shrinks
is a threshold. The LP-irregularity of the Bergman projection is closely related with these
thresholds. It was shown in [BCEM22], that on a monomial polyhedron %/, the Bergman
projection is bounded in LP if and only if p € (¢*,p*), where p* = p*(%) is the smallest
threshold of % bigger than 2 and ¢* = ¢*(% ) is its Holder conjugate. Explicit values of p*
and ¢* are given in the main theorem of [BCEM22]; see also Proposition m

Outside the interval (¢*, p*), the LP-boundedness of the Bergman projection on the mono-
mial polyhedron % fails in different ways depending on whether p > p* or p < ¢*. Since
% is bounded, we have LP(%) C L*(%) if p > p* > 2, so the integral operator defining
the Bergman projection in is defined for each f € LP(% ). The failure of boundedness
of the Bergman projection corresponds to the fact that there are functions f € LP(%)
for which the projection B? f is not in AP(%). It is easy to give an explicit example
when % = H, the Hartogs triangle. Suppose p > p*(H) = 4 and let f(z) = Za, which is
bounded and therefore in LP(H). A computation shows that there is a constant C' such that
B f(z) = C2~! ¢ LP(H). This idea can be generalized to an arbitrary monomial polyhe-
dron % to show that if p > p*, there is a function in LP(% ) which projects to a monomial
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which is in L?(%) but not in LP(% ). In [CZ16a] the range of the map B™ : LP(H) — L?(H)
for p > 4 was identified as a weighted LP-Bergman space strictly larger than LP(H), and a
similar result holds on any monomial polyhedron. Recent work in [IW20] shows that B™ is
of weak-type (4,4), and this has been extended to generalized Hartogs triangles in [CK23].
For p < ¢*, the situation is even worse:

Proposition 8.1. Let 1 < p < ¢*(%) and z € % . There is a function f € LP(%) such
that the integral

/ BY (2, w) f(w) dV (w)
.,

diverges. Consequently, there is no way to extend the Bergman projection to LP(% ) using
its integral representation.

Proof. Let g denote the Holder conjugate of p so that ¢ > p*. The holomorphic function on
the Reinhardt domain % given by ¢g(¢) = B((, z) has Laurent expansion

0= 3 ¢

Q€S (%) leall:

Since ¢ > p*, and the set of integrable monomials shrinks at p*, it follows that there is a
monomial e, € A%(%)\ A%(%). Since this non-A? monomial appears in the above Laurent
series with a nonzero coefficient, and by Theorem the Laurent expansion of a function
in A? can only have monomials which are in A?, it follows that g ¢ A%(% ). By symmetry
therefore, B(z,-) ¢ L4(% ). It now follows that there is a function f € LP(% ) such that the
integral above does not converge. O

When % = H, one can show by explicit computation that if 1 < p < % = ¢*(H), we can
take f(w) = w,® in the above result for each z € H. Tt was shown in [AW20] that B fails
to be weak-type (%, %), and this was extended in [CK23] to generalized Hartogs triangles.
But in light of Proposition we see that B™ does not even exist as an everywhere defined
operator on L*3(H).

In contrast with the above, Theorem [I1.15] guarantees that for 1 < p < oo and % a
monomial polyhedron, that the MBP Pzﬂ is a bounded operator from LP(%) onto AP(%),

and Theorem says that for z € %, the function KZ{I(Z, -) € LY(% ), where ]l) + % =1

8.2. Failure of surjectivity. Even if the Bergman projection can be given a bounded
extension to LP, it need not be surjective onto AP for p < 2, as one sees in the case of the
punctured disc. Here, since A?2(D*) and A%(DD) are identical, the Bergman kernels have the
same formula. The Bergman projection on D* consequently extends to a bounded operator
on LP(D*) for every 1 < p < oo, but fails to be surjective onto AP(D*) for p € (1,2).
This happens because the range of the Bergman projection can be naturally identified with
AP(D), and when 1 < p < 2, the space AP(D) is a strict subspace of AP(D*) (for example
the function g(z) = 2z~! belongs to AP(D*) \ AP(D)). In particular, B" is not the identity
on AP(D*) and its nullspace is the one-dimensional span of g(z) = 2~ 1.

On the Hartogs triangle, the Bergman projection is bounded on LP(H) for % <p <4, but
is not surjective onto AP(H) for 3 < p < 2. Let N C AP(H) be the closed subspace spanned
by the monomials in AP(H) \ A?(H). One sees from a computation that the monomials
in AP(H) \ A%(H) are e, with a; > 0 and a3 + ag = —2. Then one can verify using
orthogonality of L? and L9 monomials that the nullspace of B restricted to AP(H) is .

In contrast, the MBP of AP(%) accounts for all monomials appearing in the Banach-
space basis {eg : f € S,(%)}, and Corollary shows that for 1 < p < oo, P;’l1 is a
bounded surjective projection of LP(% ) onto AP(% ).
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8.3. The Bergman projection and holomorphic dual spaces. The following is a
reformulation of [CEM19, Theorem 2.15]:

Theorem 8.2. Suppose that the following two conditions hold on a domain U C C™.

(1) The absolute Bergman operator (BY)* : LP(U) — LP(U) is bounded.
(2) The Bergman projection acts as the identity operator on both AP(U) and AY(U).

Then the sesquilinear Hélder pairing restricts to a duality pairing of AP(U) with AY(U):
()= [ faav.  feaw). geaw) (83)

providing the dual space identification AP(U) ~ A1(U).

Conditions (1) and (2) both hold, for instance, on smoothly bounded strongly pseudo-
convex domains (see [PS77] and [Cat80]), thus yielding the dual space identification. But
when one of the conditions (1) or (2) fails, the conclusion can fail.

On the punctured disc D* C C, (1) always holds but (2) fails for all p # 2; it can be shown
that under the pairing (8.3)), A?(D*)’ can only be identified with A%(D*) if p = ¢ = 2. On
the Hartogs triangle H, (1) holds if % < p < 4, but (2) never holds for a p in this range, as
we saw in Section The pairing is not a duality pairing on H for % < p < 4 unless
p = 2. The mapping A?(H) — AP(H) given by the pairing is not injective if 2 < p < 4 and
not surjective if % <p <2

In contrast with the above, the duality theory of Section [7.2] characterizes duals of
Bergman spaces of Reinhardt domains via the pairing whenever the MBP is abso-
lutely bounded. We saw that Theorem [7.15] gives a concrete description of the dual space
of AP(D*), and for monomial polyhedra Theorem does the same.
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